#include "atmosphere.hxx" using namespace std; #include FGAtmoCache::FGAtmoCache() : a_tvs_p(0) {} FGAtmoCache::~FGAtmoCache() { delete a_tvs_p; } // Pressure as a function of height. // Valid below 32000 meters, // i.e. troposphere and first two layers of stratosphere. // Does not depend on any caching; can be used to // *construct* caches and interpolation tables. // // Height in meters, pressure in pascals. double FGAtmo::p_vs_a(const double height) { using namespace atmodel; if (height <= 11000.) { return P_layer(height, 0.0, ISA::P0, ISA::T0, ISA::lam0); } else if (height <= 20000.) { return P_layer(height, 11000., 22632.06, 216.65, 0.0); } else if (height <= 32000.) { return P_layer(height, 20000., 5474.89, 216.65, -0.001); } return 0; } // degrees C, height in feet double FGAtmo::fake_t_vs_a_us(const double h_ft) { using namespace atmodel; return ISA::T0 - ISA::lam0 * h_ft * foot - freezing; } // Dewpoint. degrees C or K, height in feet double FGAtmo::fake_dp_vs_a_us(const double dpsl, const double h_ft) { const double dp_lapse(0.002); // [K/m] approximate // Reference: http://en.wikipedia.org/wiki/Lapse_rate return dpsl - dp_lapse * h_ft * atmodel::foot; } // Height as a function of pressure. // Valid in the troposphere only. double FGAtmo::a_vs_p(const double press, const double qnh) { using namespace atmodel; using namespace ISA; double nn = lam0 * Rgas / g / mm; return T0 * ( pow(qnh/P0,nn) - pow(press/P0,nn) ) / lam0; } // force retabulation void FGAtmoCache::tabulate() { using namespace atmodel; delete a_tvs_p; a_tvs_p = new SGInterpTable; for (double hgt = -1000; hgt <= 32000;) { double press = p_vs_a(hgt); a_tvs_p->addEntry(press / inHg, hgt / foot); #ifdef DEBUG_EXPORT_P_H char buf[100]; char* fmt = " { %9.2f , %5.0f },"; if (press < 10000) fmt = " { %9.3f , %5.0f },"; snprintf(buf, 100, fmt, press, hgt); cout << buf << endl; #endif if (hgt < 6000) { hgt += 500; } else { hgt += 1000; } } } // make sure cache is valid void FGAtmoCache::cache() { if (!a_tvs_p) tabulate(); } // Pressure within a layer, as a function of height. // Physics model: standard or nonstandard atmosphere, // depending on what parameters you pass in. // Height in meters, pressures in pascals. // As always, lapse is positive in the troposphere, // and zero in the first part of the stratosphere. double FGAtmo::P_layer(const double height, const double href, const double Pref, const double Tref, const double lapse) { using namespace atmodel; if (lapse) { double N = lapse * Rgas / mm / g; return Pref * pow( (Tref - lapse*(height - href)) / Tref , (1/N)); } else { return Pref * exp(-g * mm / Rgas / Tref * (height - href)); } } // Check the basic function, // then compare against the interpolator. void FGAtmoCache::check_model() { double hgts[] = { -1000, -250, 0, 250, 1000, 5250, 11000, 11000.00001, 15500, 20000, 20000.00001, 25500, 32000, 32000.00001, -9e99 }; for (int i = 0; ; i++) { double height = hgts[i]; if (height < -1e6) break; using namespace atmodel; cache(); double press = p_vs_a(height); cout << "Height: " << height << " \tpressure: " << press << endl; cout << "Check: " << a_tvs_p->interpolate(press / inHg)*foot << endl; } } ////////////////////////////////////////////////////////////////////// FGAltimeter::FGAltimeter() : kset(atmodel::ISA::P0), kft(0) { cache(); } double FGAltimeter::reading_ft(const double p_inHg, const double set_inHg) { using namespace atmodel; double press_alt = a_tvs_p->interpolate(p_inHg); double kollsman_shift = a_tvs_p->interpolate(set_inHg); return (press_alt - kollsman_shift); } // Altimeter setting. // Field elevation in feet // Field pressure in inHg // field elevation in troposphere only double FGAtmo::qnh(const double field_ft, const double press_inHg) { using namespace atmodel; // Equation derived in altimetry.htm // exponent in QNH equation: double nn = ISA::lam0 * Rgas / g / mm; // pressure ratio factor: double prat = pow(ISA::P0/inHg / press_inHg, nn); return press_inHg * pow(1 + ISA::lam0 * field_ft * foot / ISA::T0 * prat, 1/nn); } void FGAltimeter::dump_stack1(const double Tref) { using namespace atmodel; const int bs(200); char buf[bs]; double Psl = P_layer(0, 0, ISA::P0, Tref, ISA::lam0); snprintf(buf, bs, "Tref: %6.2f Psl: %5.0f = %7.4f", Tref, Psl, Psl / inHg); cout << buf << endl; snprintf(buf, bs, " %6s %6s %6s %6s %6s %6s %6s", "A", "Aind", "Apr", "Aprind", "P", "Psl", "Qnh"); cout << buf << endl; double hgts[] = {0, 2500, 5000, 7500, 10000, -9e99}; for (int ii = 0; ; ii++) { double hgt_ft = hgts[ii]; if (hgt_ft < -1e6) break; double press = P_layer(hgt_ft*foot, 0, ISA::P0, Tref, ISA::lam0); double p_inHg = press / inHg; double qnhx = qnh(hgt_ft, p_inHg); double qnh2 = round(qnhx*100)/100; double Aprind = reading_ft(p_inHg); double Apr = a_vs_p(p_inHg*inHg) / foot; double hind = reading_ft(p_inHg, qnh2); snprintf(buf, bs, " %6.0f %6.0f %6.0f %6.0f %6.2f %6.2f %6.2f", hgt_ft, hind, Apr, Aprind, p_inHg, Psl/inHg, qnh2); cout << buf << endl; } } void FGAltimeter::dump_stack() { using namespace atmodel; cout << "........." << endl; cout << "Size: " << sizeof(FGAtmo) << endl; dump_stack1(ISA::T0); dump_stack1(ISA::T0 - 20); }