// replay.cxx - a system to record and replay FlightGear flights // // Written by Curtis Olson, started Juley 2003. // // Copyright (C) 2003 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include #include #include
#include #include #include #include #include "replay.hxx" const double FGReplay::st_list_time = 60.0; // 60 secs of high res data const double FGReplay::mt_list_time = 600.0; // 10 mins of 1 fps data const double FGReplay::lt_list_time = 3600.0; // 1 hr of 10 spf data // short term sample rate is as every frame const double FGReplay::mt_dt = 0.5; // medium term sample rate (sec) const double FGReplay::lt_dt = 5.0; // long term sample rate (sec) /** * Constructor */ FGReplay::FGReplay() { } /** * Destructor */ FGReplay::~FGReplay() { // no dynamically allocated memory to free } /** * Initialize the data structures */ void FGReplay::init() { sim_time = 0.0; last_mt_time = 0.0; last_lt_time = 0.0; // Make sure all queues are flushed while ( !short_term.empty() ) { short_term.pop_front(); } while ( !medium_term.empty() ) { medium_term.pop_front(); } while ( !medium_term.empty() ) { medium_term.pop_front(); } } /** * Bind to the property tree */ void FGReplay::bind() { // nothing to bind } /** * Unbind from the property tree */ void FGReplay::unbind() { // nothing to unbind } /** * Update the saved data */ void FGReplay::update( double dt ) { static SGPropertyNode *replay_master = fgGetNode( "/sim/freeze/replay" ); if ( replay_master->getBoolValue() ) { // don't record the replay session return; } sim_time += dt; // build the replay record FGNetFDM f; FGProps2NetFDM( &f, false ); // sanity check, don't collect data if FDM data isn't good if ( !cur_fdm_state->get_inited() ) { return; } FGNetCtrls c; FGProps2NetCtrls( &c, false, false ); FGReplayData r; r.sim_time = sim_time; r.ctrls = c; r.fdm = f; // update the short term list short_term.push_back( r ); FGReplayData st_front = short_term.front(); if ( sim_time - st_front.sim_time > st_list_time ) { while ( sim_time - st_front.sim_time > st_list_time ) { st_front = short_term.front(); short_term.pop_front(); } // update the medium term list if ( sim_time - last_mt_time > mt_dt ) { last_mt_time = sim_time; medium_term.push_back( st_front ); FGReplayData mt_front = medium_term.front(); if ( sim_time - mt_front.sim_time > mt_list_time ) { while ( sim_time - mt_front.sim_time > mt_list_time ) { mt_front = medium_term.front(); medium_term.pop_front(); } // update the long term list if ( sim_time - last_lt_time > lt_dt ) { last_lt_time = sim_time; long_term.push_back( mt_front ); FGReplayData lt_front = long_term.front(); if ( sim_time - lt_front.sim_time > lt_list_time ) { while ( sim_time - lt_front.sim_time > lt_list_time ) { lt_front = long_term.front(); long_term.pop_front(); } } } } } } #if 0 cout << "short term size = " << short_term.size() << " time = " << sim_time - short_term.front().sim_time << endl; cout << "medium term size = " << medium_term.size() << " time = " << sim_time - medium_term.front().sim_time << endl; cout << "long term size = " << long_term.size() << " time = " << sim_time - long_term.front().sim_time << endl; #endif } static double weight( double data1, double data2, double ratio, bool rotational = false ) { if ( rotational ) { // special handling of rotational data double tmp = data2 - data1; if ( tmp > SGD_PI ) { tmp -= SGD_2PI; } else if ( tmp < -SGD_PI ) { tmp += SGD_2PI; } return data1 + tmp * ratio; } else { // normal "linear" data return data1 + ( data2 - data1 ) * ratio; } } /** * given two FGReplayData elements and a time, interpolate between them */ static void update_fdm( FGReplayData frame ) { FGNetFDM2Props( &frame.fdm, false ); FGNetCtrls2Props( &frame.ctrls, false, false ); } /** * given two FGReplayData elements and a time, interpolate between them */ static FGReplayData interpolate( double time, FGReplayData f1, FGReplayData f2 ) { FGReplayData result = f1; FGNetFDM fdm1 = f1.fdm; FGNetFDM fdm2 = f2.fdm; FGNetCtrls ctrls1 = f1.ctrls; FGNetCtrls ctrls2 = f2.ctrls; double ratio = (time - f1.sim_time) / (f2.sim_time - f1.sim_time); // Interpolate FDM data // Positions result.fdm.longitude = weight( fdm1.longitude, fdm2.longitude, ratio ); result.fdm.latitude = weight( fdm1.latitude, fdm2.latitude, ratio ); result.fdm.altitude = weight( fdm1.altitude, fdm2.altitude, ratio ); result.fdm.agl = weight( fdm1.agl, fdm2.agl, ratio ); result.fdm.phi = weight( fdm1.phi, fdm2.phi, ratio, true ); result.fdm.theta = weight( fdm1.theta, fdm2.theta, ratio, true ); result.fdm.psi = weight( fdm1.psi, fdm2.psi, ratio, true ); // Velocities result.fdm.phidot = weight( fdm1.phidot, fdm2.phidot, ratio, true ); result.fdm.thetadot = weight( fdm1.thetadot, fdm2.thetadot, ratio, true ); result.fdm.psidot = weight( fdm1.psidot, fdm2.psidot, ratio, true ); result.fdm.vcas = weight( fdm1.vcas, fdm2.vcas, ratio ); result.fdm.climb_rate = weight( fdm1.climb_rate, fdm2.climb_rate, ratio ); result.fdm.v_north = weight( fdm1.v_north, fdm2.v_north, ratio ); result.fdm.v_east = weight( fdm1.v_east, fdm2.v_east, ratio ); result.fdm.v_down = weight( fdm1.v_down, fdm2.v_down, ratio ); result.fdm.v_wind_body_north = weight( fdm1.v_wind_body_north, fdm2.v_wind_body_north, ratio ); result.fdm.v_wind_body_east = weight( fdm1.v_wind_body_east, fdm2.v_wind_body_east, ratio ); result.fdm.v_wind_body_down = weight( fdm1.v_wind_body_down, fdm2.v_wind_body_down, ratio ); // Stall result.fdm.stall_warning = weight( fdm1.stall_warning, fdm2.stall_warning, ratio ); // Accelerations result.fdm.A_X_pilot = weight( fdm1.A_X_pilot, fdm2.A_X_pilot, ratio ); result.fdm.A_Y_pilot = weight( fdm1.A_Y_pilot, fdm2.A_Y_pilot, ratio ); result.fdm.A_Z_pilot = weight( fdm1.A_Z_pilot, fdm2.A_Z_pilot, ratio ); int i; // Engine status for ( i = 0; i < fdm1.num_engines; ++i ) { result.fdm.eng_state[i] = fdm1.eng_state[i]; result.fdm.rpm[i] = weight( fdm1.rpm[i], fdm2.rpm[i], ratio ); result.fdm.fuel_flow[i] = weight( fdm1.fuel_flow[i], fdm2.fuel_flow[i], ratio ); result.fdm.EGT[i] = weight( fdm1.EGT[i], fdm2.EGT[i], ratio ); result.fdm.oil_temp[i] = weight( fdm1.oil_temp[i], fdm2.oil_temp[i], ratio ); result.fdm.oil_px[i] = weight( fdm1.oil_px[i], fdm2.oil_px[i], ratio ); } // Consumables for ( i = 0; i < fdm1.num_tanks; ++i ) { result.fdm.fuel_quantity[i] = weight( fdm1.fuel_quantity[i], fdm2.fuel_quantity[i], ratio ); } // Gear status for ( i = 0; i < fdm1.num_wheels; ++i ) { result.fdm.wow[i] = weight( fdm1.wow[i], fdm2.wow[i], ratio ); result.fdm.gear_pos[i] = weight( fdm1.gear_pos[i], fdm2.gear_pos[i], ratio ); result.fdm.gear_steer[i] = weight( fdm1.gear_steer[i], fdm2.gear_steer[i], ratio ); result.fdm.gear_compression[i] = weight( fdm1.gear_compression[i], fdm2.gear_compression[i], ratio ); } // Environment result.fdm.cur_time = fdm1.cur_time; result.fdm.warp = fdm1.warp; result.fdm.visibility = weight( fdm1.visibility, fdm2.visibility, ratio ); // Control surface positions (normalized values) result.fdm.elevator = weight( fdm1.elevator, fdm2.elevator, ratio ); result.fdm.flaps = weight( fdm1.flaps, fdm2.flaps, ratio ); result.fdm.left_aileron = weight( fdm1.left_aileron, fdm2.left_aileron, ratio ); result.fdm.right_aileron = weight( fdm1.right_aileron, fdm2.right_aileron, ratio ); result.fdm.rudder = weight( fdm1.rudder, fdm2.rudder, ratio ); result.fdm.speedbrake = weight( fdm1.speedbrake, fdm2.speedbrake, ratio ); result.fdm.spoilers = weight( fdm1.spoilers, fdm2.spoilers, ratio ); // Interpolate Control input data // Aero controls result.ctrls.aileron = weight( ctrls1.aileron, ctrls2.aileron, ratio ); result.ctrls.elevator = weight( ctrls1.elevator, ctrls2.elevator, ratio ); result.ctrls.elevator_trim = weight( ctrls1.elevator_trim, ctrls2.elevator_trim, ratio ); result.ctrls.rudder = weight( ctrls1.rudder, ctrls2.rudder, ratio ); result.ctrls.flaps = weight( ctrls1.flaps, ctrls2.flaps, ratio ); result.ctrls.flaps_power = weight( ctrls1.flaps_power, ctrls2.flaps_power, ratio ); // Engine controls for ( i = 0; i < ctrls1.num_engines; ++i ) { result.ctrls.magnetos[i] = ctrls1.magnetos[i]; result.ctrls.starter_power[i] = ctrls1.starter_power[i]; result.ctrls.throttle[i] = weight( ctrls1.throttle[i], ctrls2.throttle[i], ratio ); result.ctrls.mixture[i] = weight( ctrls1.mixture[i], ctrls2.mixture[i], ratio ); result.ctrls.fuel_pump_power[i] = ctrls1.fuel_pump_power[i]; result.ctrls.prop_advance[i] = weight( ctrls1.prop_advance[i], ctrls2.prop_advance[i], ratio ); result.ctrls.engine_ok[i] = ctrls1.engine_ok[i]; result.ctrls.mag_left_ok[i] = ctrls1.mag_left_ok[i]; result.ctrls.mag_right_ok[i] = ctrls1.mag_right_ok[i]; result.ctrls.spark_plugs_ok[i] = ctrls1.spark_plugs_ok[i]; result.ctrls.oil_press_status[i] = ctrls1.oil_press_status[i]; result.ctrls.fuel_pump_ok[i] = ctrls1.fuel_pump_ok[i]; } // Fuel management for ( i = 0; i < ctrls1.num_tanks; ++i ) { result.ctrls.fuel_selector[i] = ctrls1.fuel_selector[i]; } // Brake controls for ( i = 0; i < ctrls1.num_wheels; ++i ) { result.ctrls.brake[i] = weight( ctrls1.brake[i], ctrls2.brake[i], ratio ); } // Landing Gear result.ctrls.gear_handle = ctrls1.gear_handle; // Switches result.ctrls.master_bat = ctrls1.master_bat; result.ctrls.master_alt = ctrls1.master_alt; result.ctrls.turbulence_norm = ctrls1.turbulence_norm; // wind and turbulance result.ctrls.wind_speed_kt = weight( ctrls1.wind_speed_kt, ctrls2.wind_speed_kt, ratio ); result.ctrls.wind_dir_deg = weight( ctrls1.wind_dir_deg, ctrls2.wind_dir_deg, ratio ); result.ctrls.turbulence_norm = weight( ctrls1.turbulence_norm, ctrls2.turbulence_norm, ratio ); // other information about environment result.ctrls.hground = weight( ctrls1.hground, ctrls2.hground, ratio ); result.ctrls.magvar = weight( ctrls1.magvar, ctrls2.magvar, ratio ); // simulation control result.ctrls.speedup = ctrls1.speedup; result.ctrls.freeze = ctrls1.freeze; return result; } /** * interpolate a specific time from a specific list */ static void interpolate( double time, const replay_list_type &list ) { // sanity checking if ( list.size() == 0 ) { // handle empty list return; } else if ( list.size() == 1 ) { // handle list size == 1 update_fdm( list[0] ); return; } unsigned int last = list.size() - 1; unsigned int first = 0; unsigned int mid = ( last + first ) / 2; bool done = false; while ( !done ) { // cout << " " << first << " <=> " << last << endl; if ( last == first ) { done = true; } else if ( list[mid].sim_time < time && list[mid+1].sim_time < time ) { // too low first = mid; mid = ( last + first ) / 2; } else if ( list[mid].sim_time > time && list[mid+1].sim_time > time ) { // too high last = mid; mid = ( last + first ) / 2; } else { done = true; } } FGReplayData result = interpolate( time, list[mid], list[mid+1] ); update_fdm( result ); } /** * Replay a saved frame based on time, interpolate from the two * nearest saved frames. */ void FGReplay::replay( double time ) { // cout << "replay: " << time << " "; // find the two frames to interpolate between double t1, t2; if ( short_term.size() > 0 ) { t1 = short_term.back().sim_time; t2 = short_term.front().sim_time; if ( time > t1 ) { // replay the most recent frame update_fdm( short_term.back() ); // cout << "first frame" << endl; } else if ( time <= t1 && time >= t2 ) { interpolate( time, short_term ); // cout << "from short term" << endl; } else if ( medium_term.size() > 0 ) { t1 = short_term.front().sim_time; t2 = medium_term.back().sim_time; if ( time <= t1 && time >= t2 ) { FGReplayData result = interpolate( time, medium_term.back(), short_term.front() ); update_fdm( result ); // cout << "from short/medium term" << endl; } else { t1 = medium_term.back().sim_time; t2 = medium_term.front().sim_time; if ( time <= t1 && time >= t2 ) { interpolate( time, medium_term ); // cout << "from medium term" << endl; } else if ( long_term.size() > 0 ) { t1 = medium_term.front().sim_time; t2 = long_term.back().sim_time; if ( time <= t1 && time >= t2 ) { FGReplayData result = interpolate( time, long_term.back(), medium_term.front()); update_fdm( result ); // cout << "from medium/long term" << endl; } else { t1 = long_term.back().sim_time; t2 = long_term.front().sim_time; if ( time <= t1 && time >= t2 ) { interpolate( time, long_term ); // cout << "from long term" << endl; } else { // replay the oldest long term frame update_fdm( long_term.front() ); // cout << "oldest long term frame" << endl; } } } else { // replay the oldest medium term frame update_fdm( medium_term.front() ); // cout << "oldest medium term frame" << endl; } } } else { // replay the oldest short term frame update_fdm( short_term.front() ); // cout << "oldest short term frame" << endl; } } else { // nothing to replay } } double FGReplay::get_start_time() { if ( long_term.size() > 0 ) { return long_term.front().sim_time; } else if ( medium_term.size() > 0 ) { return medium_term.front().sim_time; } else if ( short_term.size() ) { return short_term.front().sim_time; } else { return 0.0; } } double FGReplay::get_end_time() { if ( short_term.size() ) { return short_term.back().sim_time; } else { return 0.0; } }