// FGAICarrier - FGAIShip-derived class creates an AI aircraft carrier // // Written by David Culp, started October 2004. // - davidculp2@comcast.net // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include
#include
#include "AICarrier.hxx" FGAICarrier::FGAICarrier(FGAIManager* mgr) : FGAIShip(mgr) { _type_str = "carrier"; _otype = otCarrier; } FGAICarrier::~FGAICarrier() { } void FGAICarrier::setSolidObjects(const list& so) { solid_objects = so; } void FGAICarrier::setWireObjects(const list& wo) { wire_objects = wo; } void FGAICarrier::setCatapultObjects(const list& co) { catapult_objects = co; } void FGAICarrier::setParkingPositions(const list& p) { ppositions = p; } void FGAICarrier::setSign(const string& s) { sign = s; } void FGAICarrier::setFlolsOffset(const Point3D& off) { flols_off = off; } void FGAICarrier::getVelocityWrtEarth(sgVec3 v) { sgCopyVec3(v, vel_wrt_earth ); } void FGAICarrier::update(double dt) { UpdateFlols(dt); FGAIShip::update(dt); // Update the velocity information stored in those nodes. double v_north = 0.51444444*speed*cos(hdg * SGD_DEGREES_TO_RADIANS); double v_east = 0.51444444*speed*sin(hdg * SGD_DEGREES_TO_RADIANS); double sin_lat = sin(pos.lat() * SGD_DEGREES_TO_RADIANS); double cos_lat = cos(pos.lat() * SGD_DEGREES_TO_RADIANS); double sin_lon = sin(pos.lon() * SGD_DEGREES_TO_RADIANS); double cos_lon = cos(pos.lon() * SGD_DEGREES_TO_RADIANS); sgSetVec3( vel_wrt_earth, - cos_lon*sin_lat*v_north - sin_lon*v_east, - sin_lon*sin_lat*v_north + cos_lon*v_east, cos_lat*v_north ); } bool FGAICarrier::init() { if (!FGAIShip::init()) return false; // process the 3d model here // mark some objects solid, mark the wires ... // The model should be used for altitude computations. // To avoid that every detail in a carrier 3D model will end into // the aircraft local cache, only set the HOT traversal bit on // selected objects. ssgEntity *sel = aip.getSceneGraph(); // Clear the HOT traversal flag mark_nohot(sel); // Selectively set that flag again for wires/cats/solid objects. // Attach a pointer to this carrier class to those objects. mark_wires(sel, wire_objects); mark_cat(sel, catapult_objects); mark_solid(sel, solid_objects); return true; } void FGAICarrier::bind() { FGAIShip::bind(); props->tie("controls/flols/source-lights", SGRawValuePointer(&source)); props->tie("controls/flols/distance-m", SGRawValuePointer(&dist)); props->tie("controls/flols/angle-degs", SGRawValuePointer(&angle)); props->setBoolValue("controls/flols/cut-lights", false); props->setBoolValue("controls/flols/wave-off-lights", false); props->setBoolValue("controls/flols/cond-datum-lights", true); props->setBoolValue("controls/crew", false); props->setStringValue("sign", sign.c_str()); } void FGAICarrier::unbind() { FGAIShip::unbind(); props->untie("controls/flols/source-lights"); props->untie("controls/flols/distance-m"); props->untie("controls/flols/angle-degs"); } void FGAICarrier::mark_nohot(ssgEntity* e) { if (e->isAKindOf(ssgTypeBranch())) { ssgBranch* br = (ssgBranch*)e; ssgEntity* kid; for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() ) mark_nohot(kid); br->clrTraversalMaskBits(SSGTRAV_HOT); } else if (e->isAKindOf(ssgTypeLeaf())) { e->clrTraversalMaskBits(SSGTRAV_HOT); } } bool FGAICarrier::mark_wires(ssgEntity* e, const list& wire_objects, bool mark) { bool found = false; if (e->isAKindOf(ssgTypeBranch())) { ssgBranch* br = (ssgBranch*)e; ssgEntity* kid; list::const_iterator it; for (it = wire_objects.begin(); it != wire_objects.end(); ++it) mark = mark || (e->getName() && (*it) == e->getName()); for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() ) found = mark_wires(kid, wire_objects, mark) || found; if (found) br->setTraversalMaskBits(SSGTRAV_HOT); } else if (e->isAKindOf(ssgTypeLeaf())) { list::const_iterator it; for (it = wire_objects.begin(); it != wire_objects.end(); ++it) { if (mark || (e->getName() && (*it) == e->getName())) { e->setTraversalMaskBits(SSGTRAV_HOT); ssgBase* ud = e->getUserData(); if (ud) { FGAICarrierHardware* ch = dynamic_cast(ud); if (ch) { SG_LOG(SG_GENERAL, SG_WARN, "AICarrier: Carrier hardware gets marked twice!\n" " You have propably a whole branch marked as" " a wire which also includes other carrier hardware." ); } else { SG_LOG(SG_GENERAL, SG_ALERT, "AICarrier: Found user data attached to a leaf node which " "should be marked as a wire!\n ****Skipping!****"); } } else { e->setUserData( FGAICarrierHardware::newWire( this ) ); ssgLeaf *l = (ssgLeaf*)e; if ( l->getNumLines() != 1 ) { SG_LOG(SG_GENERAL, SG_ALERT, "AICarrier: Found wires not modelled with exactly one line!"); } found = true; } } } } return found; } bool FGAICarrier::mark_solid(ssgEntity* e, const list& solid_objects, bool mark) { bool found = false; if (e->isAKindOf(ssgTypeBranch())) { ssgBranch* br = (ssgBranch*)e; ssgEntity* kid; list::const_iterator it; for (it = solid_objects.begin(); it != solid_objects.end(); ++it) mark = mark || (e->getName() && (*it) == e->getName()); for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() ) found = mark_solid(kid, solid_objects, mark) || found; if (found) br->setTraversalMaskBits(SSGTRAV_HOT); } else if (e->isAKindOf(ssgTypeLeaf())) { list::const_iterator it; for (it = solid_objects.begin(); it != solid_objects.end(); ++it) { if (mark || (e->getName() && (*it) == e->getName())) { e->setTraversalMaskBits(SSGTRAV_HOT); ssgBase* ud = e->getUserData(); if (ud) { FGAICarrierHardware* ch = dynamic_cast(ud); if (ch) { SG_LOG(SG_GENERAL, SG_WARN, "AICarrier: Carrier hardware gets marked twice!\n" " You have propably a whole branch marked solid" " which also includes other carrier hardware." ); } else { SG_LOG(SG_GENERAL, SG_ALERT, "AICarrier: Found user data attached to a leaf node which " "should be marked solid!\n ****Skipping!****"); } } else { e->setUserData( FGAICarrierHardware::newSolid( this ) ); found = true; } } } } return found; } bool FGAICarrier::mark_cat(ssgEntity* e, const list& cat_objects, bool mark) { bool found = false; if (e->isAKindOf(ssgTypeBranch())) { ssgBranch* br = (ssgBranch*)e; ssgEntity* kid; list::const_iterator it; for (it = cat_objects.begin(); it != cat_objects.end(); ++it) mark = mark || (e->getName() && (*it) == e->getName()); for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() ) found = mark_cat(kid, cat_objects, mark) || found; if (found) br->setTraversalMaskBits(SSGTRAV_HOT); } else if (e->isAKindOf(ssgTypeLeaf())) { list::const_iterator it; for (it = cat_objects.begin(); it != cat_objects.end(); ++it) { if (mark || (e->getName() && (*it) == e->getName())) { e->setTraversalMaskBits(SSGTRAV_HOT); ssgBase* ud = e->getUserData(); if (ud) { FGAICarrierHardware* ch = dynamic_cast(ud); if (ch) { SG_LOG(SG_GENERAL, SG_WARN, "AICarrier: Carrier hardware gets marked twice!\n" "You have probably a whole branch marked as" "a catapult which also includes other carrier hardware." ); } else { SG_LOG(SG_GENERAL, SG_ALERT, "AICarrier: Found user data attached to a leaf node which " "should be marked as a catapult!\n ****Skipping!****"); } } else { e->setUserData( FGAICarrierHardware::newCatapult( this ) ); ssgLeaf *l = (ssgLeaf*)e; if ( l->getNumLines() != 1 ) { SG_LOG(SG_GENERAL, SG_ALERT, "AICarrier: Found a cat not modelled with exactly " "one line!"); } else { // Now some special code to make sure the cat points in the right // direction. The 0 index must be the backward end, the 1 index // the forward end. // Forward is positive x-direction in our 3D model, also the model // as such is flattened when it is loaded, so we do not need to // care for transforms ... short v[2]; l->getLine(0, v, v+1 ); sgVec3 ends[2]; for (int k=0; k<2; ++k) sgCopyVec3( ends[k], l->getVertex( v[k] ) ); // When the 1 end is behind the 0 end, swap the coordinates. if (ends[0][0] < ends[1][0]) { sgCopyVec3( l->getVertex( v[0] ), ends[1] ); sgCopyVec3( l->getVertex( v[1] ), ends[0] ); } found = true; } } } } } return found; } void FGAICarrier::UpdateFlols( double dt) { float trans[3][3]; float in[3]; float out[3]; float cosRx, sinRx; float cosRy, sinRy; float cosRz, sinRz; double flolsXYZ[3], eyeXYZ[3]; double lat, lon, alt; Point3D eyepos; Point3D flolspos; /* cout << "x_offset " << flols_x_offset << " y_offset " << flols_y_offset << " z_offset " << flols_z_offset << endl; cout << "roll " << roll << " heading " << hdg << " pitch " << pitch << endl; cout << "carrier lon " << pos[0] << " lat " << pos[1] << " alt " << pos[2] << endl;*/ // set the Flols intitial position to the carrier position flolspos = pos; /* cout << "flols lon " << flolspos[0] << " lat " << flolspos[1] << " alt " << flolspos[2] << endl;*/ // set the offsets in metres /* cout << "flols_x_offset " << flols_x_offset << endl << "flols_y_offset " << flols_y_offset << endl << "flols_z_offset " << flols_z_offset << endl;*/ in[0] = flols_off.x(); in[1] = flols_off.y(); in[2] = flols_off.z(); // pre-process the trig functions cosRx = cos(roll * SG_DEGREES_TO_RADIANS); sinRx = sin(roll * SG_DEGREES_TO_RADIANS); cosRy = cos(pitch * SG_DEGREES_TO_RADIANS); sinRy = sin(pitch * SG_DEGREES_TO_RADIANS); cosRz = cos(hdg * SG_DEGREES_TO_RADIANS); sinRz = sin(hdg * SG_DEGREES_TO_RADIANS); // set up the transform matrix trans[0][0] = cosRy * cosRz; trans[0][1] = -1 * cosRx * sinRz + sinRx * sinRy * cosRz ; trans[0][2] = sinRx * sinRz + cosRx * sinRy * cosRz; trans[1][0] = cosRy * sinRz; trans[1][1] = cosRx * cosRz + sinRx * sinRy * sinRz; trans[1][2] = -1 * sinRx * cosRx + cosRx * sinRy * sinRz; trans[2][0] = -1 * sinRy; trans[2][1] = sinRx * cosRy; trans[2][2] = cosRx * cosRy; // multiply the input and transform matrices out[0] = in[0] * trans[0][0] + in[1] * trans[0][1] + in[2] * trans[0][2]; out[1] = in[0] * trans[1][0] + in[1] * trans[1][1] + in[2] * trans[1][2]; out[2] = in[0] * trans[2][0] + in[1] * trans[2][1] + in[2] * trans[2][2]; // convert meters to ft to degrees of latitude out[0] = (out[0] * 3.28083989501) /(366468.96 - 3717.12 * cos(flolspos[0] * SG_DEGREES_TO_RADIANS)); // convert meters to ft to degrees of longitude out[1] = (out[1] * 3.28083989501)/(365228.16 * cos(flolspos[1] * SG_DEGREES_TO_RADIANS)); //print out the result /* cout << "lat adjust deg" << out[0] << " lon adjust deg " << out[1] << " alt adjust m " << out[2] << endl;*/ // adjust Flols position flolspos[0] += out[0]; flolspos[1] += out[1]; flolspos[2] += out[2]; // convert flols position to cartesian co-ordinates sgGeodToCart(flolspos[1] * SG_DEGREES_TO_RADIANS, flolspos[0] * SG_DEGREES_TO_RADIANS, flolspos[2] , flolsXYZ ); /* cout << "flols X " << flolsXYZ[0] << " Y " << flolsXYZ[1] << " Z " << flolsXYZ[2] << endl; // check the conversion sgCartToGeod(flolsXYZ, &lat, &lon, &alt); cout << "flols check lon " << lon << " lat " << lat << " alt " << alt << endl; */ //get the current position of the pilot's eyepoint (cartesian cordinates) sgdCopyVec3( eyeXYZ, globals->get_current_view()->get_absolute_view_pos() ); /* cout << "Eye_X " << eyeXYZ[0] << " Eye_Y " << eyeXYZ[1] << " Eye_Z " << eyeXYZ[2] << endl; */ sgCartToGeod(eyeXYZ, &lat, &lon, &alt); eyepos[0] = lon * SG_RADIANS_TO_DEGREES; eyepos[1] = lat * SG_RADIANS_TO_DEGREES; eyepos[2] = alt; /* cout << "eye lon " << eyepos[0] << " eye lat " << eyepos[1] << " eye alt " << eyepos[2] << endl; */ //calculate the ditance from eye to flols dist = sgdDistanceVec3( flolsXYZ, eyeXYZ ); //apply an index error dist -= 100; //cout << "distance " << dist << endl; if ( dist < 5000 ) { // calculate height above FLOLS double y = eyepos[2] - flolspos[2]; // calculate the angle from the flols to eye // above the horizontal // double angle; if ( dist != 0 ) { angle = asin( y / dist ); } else { angle = 0.0; } angle *= SG_RADIANS_TO_DEGREES; // cout << " height " << y << " angle " << angle ; // set the value of source if ( angle <= 4.35 && angle > 4.01 ) { source = 1; } else if ( angle <= 4.01 && angle > 3.670 ) { source = 2; } else if ( angle <= 3.670 && angle > 3.330 ) { source = 3; } else if ( angle <= 3.330 && angle > 2.990 ) { source = 4; } else if ( angle <= 2.990 && angle > 2.650 ) { source = 5; } else if ( angle <= 2.650 ) { source = 6; } else { source = 0; } // cout << " source " << source << endl; } } // end updateflols int FGAICarrierHardware::unique_id = 1;