/* splittris.c -- read in a .ele/.node file pair generated by the * triangle program and output a simple Wavefront .obj * file for the north, south, east, and west edge * verticies ... including the normals. * * Written by Curtis Olson, started January 1998. * * Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id$ * (Log is kept at end of this file) */ #include #include #include /* for atoi() */ #include #include /* for stat() */ #include /* for stat() */ #include "splittris.h" #include "../../Src/Include/constants.h" #include "../../Src/Include/types.h" #include "../../Src/Math/fg_geodesy.h" #include "../../Src/Math/mat3.h" #include "../../Src/Math/polar.h" #include "../../Src/Scenery/tileutils.h" int nodecount, tricount; double xmin, xmax, ymin, ymax; double nodes_orig[MAX_NODES][3]; int tris[MAX_TRIS][3]; int new_tris[MAX_TRIS][3]; struct fgCartesianPoint nodes_cart[MAX_NODES]; long int ne_index, nw_index, sw_index, se_index; long int north_index, south_index, east_index, west_index; /* convert a geodetic point lon(arcsec), lat(arcsec), elev(meter) to * a cartesian point */ struct fgCartesianPoint geod_to_cart(double geod[3]) { struct fgCartesianPoint p; double gc_lon, gc_lat, sl_radius; /* printf("A geodetic point is (%.2f, %.2f, %.2f)\n", geod[0], geod[1], geod[2]); */ gc_lon = geod[0]*ARCSEC_TO_RAD; fgGeodToGeoc(geod[1]*ARCSEC_TO_RAD, geod[2], &sl_radius, &gc_lat); /* printf("A geocentric point is (%.2f, %.2f, %.2f)\n", gc_lon, gc_lat, sl_radius+geod[2]); */ p = fgPolarToCart(gc_lon, gc_lat, sl_radius+geod[2]); /* printf("A cart point is (%.8f, %.8f, %.8f)\n", p.x, p.y, p.z); */ return(p); } /* given three points defining a triangle, calculate the normal */ void calc_normal(struct fgCartesianPoint p1, struct fgCartesianPoint p2, struct fgCartesianPoint p3, double normal[3]) { double v1[3], v2[3]; float temp; v1[0] = p2.x - p1.x; v1[1] = p2.y - p1.y; v1[2] = p2.z - p1.z; v2[0] = p3.x - p1.x; v2[1] = p3.y - p1.y; v2[2] = p3.z - p1.z; MAT3cross_product(normal, v1, v2); MAT3_NORMALIZE_VEC(normal,temp); /* printf(" Normal = %.2f %.2f %.2f\n", normal[0], normal[1], normal[2]); */ } /* return the file base name ( foo/bar/file.ext = file.ext ) */ void extract_file(char *in, char *base) { int len, i; len = strlen(in); i = len - 1; while ( (i >= 0) && (in[i] != '/') ) { i--; } in += (i + 1); strcpy(base, in); } /* return the file path name ( foo/bar/file.ext = foo/bar ) */ void extract_path(char *in, char *base) { int len, i; len = strlen(in); strcpy(base, in); i = len - 1; while ( (i >= 0) && (in[i] != '/') ) { i--; } base[i] = '\0'; } /* return the index of all triangles containing the specified node */ void find_tris(int n, int *t1, int *t2, int *t3, int *t4, int *t5) { int i; *t1 = *t2 = *t3 = *t4 = *t5 = 0; i = 1; while ( i <= tricount ) { if ( (n == tris[i][0]) || (n == tris[i][1]) || (n == tris[i][2]) ) { if ( *t1 == 0 ) { *t1 = i; } else if ( *t2 == 0 ) { *t2 = i; } else if ( *t3 == 0 ) { *t3 = i; } else if ( *t4 == 0 ) { *t4 = i; } else { *t5 = i; } } i++; } } /* Initialize a new mesh structure */ void triload(char *basename) { char nodename[256], elename[256]; FILE *node, *ele; int dim, junk1, junk2; int i; strcpy(nodename, basename); strcat(nodename, ".node"); strcpy(elename, basename); strcat(elename, ".ele"); printf("Loading node file: %s ...\n", nodename); if ( (node = fopen(nodename, "r")) == NULL ) { printf("Cannot open file '%s'\n", nodename); exit(-1); } fscanf(node, "%d %d %d %d", &nodecount, &dim, &junk1, &junk2); if ( nodecount > MAX_NODES - 1 ) { printf("Error, too many nodes, need to increase array size\n"); exit(-1); } else { printf(" Expecting %d nodes\n", nodecount); } for ( i = 1; i <= nodecount; i++ ) { fscanf(node, "%d %lf %lf %lf %d\n", &junk1, &nodes_orig[i][0], &nodes_orig[i][1], &nodes_orig[i][2], &junk2); /* printf("%d %.2f %.2f %.2f\n", junk1, n[0], n[1], n[2]); */ nodes_cart[i] = geod_to_cart(nodes_orig[i]); /* printf("%d %.2f %.2f %.2f\n", junk1, nodes_cart[i].x, nodes_cart[i].y, nodes_cart[i].z); */ if ( i == 1 ) { xmin = xmax = nodes_orig[i][0]; ymin = ymax = nodes_orig[i][1]; } else { if ( nodes_orig[i][0] < xmin ) { xmin = nodes_orig[i][0]; } if ( nodes_orig[i][0] > xmax ) { xmax = nodes_orig[i][0]; } if ( nodes_orig[i][1] < ymin ) { ymin = nodes_orig[i][1]; } if ( nodes_orig[i][1] > ymax ) { ymax = nodes_orig[i][1]; } } } fclose(node); printf("Loading element file: %s ...\n", elename); if ( (ele = fopen(elename, "r")) == NULL ) { printf("Cannot open file '%s'\n", elename); exit(-1); } fscanf(ele, "%d %d %d", &tricount, &junk1, &junk2); if ( tricount > MAX_TRIS - 1 ) { printf("Error, too many elements, need to increase array size\n"); exit(-1); } else { printf(" Expecting %d elements\n", tricount); } for ( i = 1; i <= tricount; i++ ) { fscanf(ele, "%d %d %d %d\n", &junk1, &tris[i][0], &tris[i][1], &tris[i][2]); /* printf("%d %d %d %d\n", junk1, tris[i][0], tris[i][1], tris[i][2]);*/ } fclose(ele); } /* check if a file exists */ int file_exists(char *file) { struct stat stat_buf; result = stat(file, &stat_buf); if ( result != 0 ) { /* stat failed, no file */ return(0); } else { /* stat succeeded, file exists */ return(1); } } /* my custom file opening routine ... don't open if a shared edge or * vertex alread exists */ FILE *my_open(char *basename, char *basepath, char *ext) { FILE *fp; char filename[256]; /* create the output file name */ strcpy(filename, basename); strcpy(filename, ext); /* check if a shared object already exist from a different tile */ if ( 0 ) { /* not an actual file open error, but we've already got the * shared edge, so we don't want to create another one */ return(NULL); } else { /* open the file */ fp = fopen(filename, "w"); return(fp); } } /* dump in WaveFront .obj format */ void dump_obj(char *basename, char *basepath) { char sw_name[256], se_name[256], ne_name[256], nw_name[256]; char north_name[256], south_name[256], east_name[256], west_name[256]; char body_name[256]; double n1[3], n2[3], n3[3], n4[3], n5[3], norm[3], temp; FILE *sw, *se, *ne, *nw, *north, *south, *east, *west, *body; int i, t1, t2, t3, t4, t5, count; sw = my_open(basename, basepath, ".sw"); se = my_open(basename, basepath, ".se"); ne = my_open(basename, basepath, ".ne"); nw = my_open(basename, basepath, ".nw"); north = my_open(basename, basepath, ".north"); south = my_open(basename, basepath, ".south"); east = my_open(basename, basepath, ".east"); west = my_open(basename, basepath, ".west"); body = my_open(basename, basepath, ".body"); printf("Dumping edges file basename: %s ...\n", basename); sw = fopen(sw_name, "w"); se = fopen(se_name, "w"); ne = fopen(ne_name, "w"); nw = fopen(nw_name, "w"); north = fopen(north_name, "w"); south = fopen(south_name, "w"); east = fopen(east_name, "w"); west = fopen(west_name, "w"); body = fopen(body_name, "w"); /* dump vertices */ printf(" writing vertices\n"); for ( i = 1; i <= nodecount; i++ ) { if ( (fabs(nodes_orig[i][1] - ymin) < FG_EPSILON) && (fabs(nodes_orig[i][0] - xmin) < FG_EPSILON) ) { fprintf(sw, "geodn %.2f %.2f %.2f\n", nodes_orig[i][0], nodes_orig[i][1], nodes_orig[i][2]); } else if ( (fabs(nodes_orig[i][1] - ymin) < FG_EPSILON) && (fabs(nodes_orig[i][0] - xmax) < FG_EPSILON) ) { fprintf(se, "geodn %.2f %.2f %.2f\n", nodes_orig[i][0], nodes_orig[i][1], nodes_orig[i][2]); } else if ( (fabs(nodes_orig[i][1] - ymax) < FG_EPSILON) && (fabs(nodes_orig[i][0] - xmax) < FG_EPSILON)) { fprintf(ne, "geodn %.2f %.2f %.2f\n", nodes_orig[i][0], nodes_orig[i][1], nodes_orig[i][2]); } else if ( (fabs(nodes_orig[i][1] - ymax) < FG_EPSILON) && (fabs(nodes_orig[i][0] - xmin) < FG_EPSILON) ) { fprintf(nw, "geodn %.2f %.2f %.2f\n", nodes_orig[i][0], nodes_orig[i][1], nodes_orig[i][2]); } else if ( fabs(nodes_orig[i][0] - xmin) < FG_EPSILON ) { fprintf(west, "geodn %.2f %.2f %.2f\n", nodes_orig[i][0], nodes_orig[i][1], nodes_orig[i][2]); } else if ( fabs(nodes_orig[i][0] - xmax) < FG_EPSILON ) { fprintf(east, "geodn %.2f %.2f %.2f\n", nodes_orig[i][0], nodes_orig[i][1], nodes_orig[i][2]); } else if ( fabs(nodes_orig[i][1] - ymin) < FG_EPSILON ) { fprintf(south, "geodn %.2f %.2f %.2f\n", nodes_orig[i][0], nodes_orig[i][1], nodes_orig[i][2]); } else if ( fabs(nodes_orig[i][1] - ymax) < FG_EPSILON ) { fprintf(north, "geodn %.2f %.2f %.2f\n", nodes_orig[i][0], nodes_orig[i][1], nodes_orig[i][2]); } else { fprintf(body, "geodn %.2f %.2f %.2f\n", nodes_orig[i][0], nodes_orig[i][1], nodes_orig[i][2]); } } printf(" calculating and writing normals\n"); /* calculate and generate normals */ for ( i = 1; i <= nodecount; i++ ) { /* printf("Finding normal\n"); */ find_tris(i, &t1, &t2, &t3, &t4, &t5); n1[0] = n1[1] = n1[2] = 0.0; n2[0] = n2[1] = n2[2] = 0.0; n3[0] = n3[1] = n3[2] = 0.0; n4[0] = n4[1] = n4[2] = 0.0; n5[0] = n5[1] = n5[2] = 0.0; count = 1; calc_normal(nodes_cart[tris[t1][0]], nodes_cart[tris[t1][1]], nodes_cart[tris[t1][2]], n1); if ( t2 > 0 ) { calc_normal(nodes_cart[tris[t2][0]], nodes_cart[tris[t2][1]], nodes_cart[tris[t2][2]], n2); count = 2; } if ( t3 > 0 ) { calc_normal(nodes_cart[tris[t3][0]], nodes_cart[tris[t3][1]], nodes_cart[tris[t3][2]], n3); count = 3; } if ( t4 > 0 ) { calc_normal(nodes_cart[tris[t4][0]], nodes_cart[tris[t4][1]], nodes_cart[tris[t4][2]], n4); count = 4; } if ( t5 > 0 ) { calc_normal(nodes_cart[tris[t5][0]], nodes_cart[tris[t5][1]], nodes_cart[tris[t5][2]], n5); count = 5; } /* printf(" norm[2] = %.2f %.2f %.2f\n", n1[2], n2[2], n3[2]); */ norm[0] = ( n1[0] + n2[0] + n3[0] + n4[0] + n5[0] ) / (double)count; norm[1] = ( n1[1] + n2[1] + n3[1] + n4[1] + n5[1] ) / (double)count; norm[2] = ( n1[2] + n2[2] + n3[2] + n4[2] + n5[2] ) / (double)count; /* printf(" count = %d\n", count); */ /* printf(" Ave. normal = %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]);*/ MAT3_NORMALIZE_VEC(norm, temp); /* printf(" Normalized ave. normal = %.4f %.4f %.4f\n", */ /* norm[0], norm[1], norm[2]); */ if ( (fabs(nodes_orig[i][1] - ymin) < FG_EPSILON) && (fabs(nodes_orig[i][0] - xmin) < FG_EPSILON) ) { fprintf(sw, "vn %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]); } else if ( (fabs(nodes_orig[i][1] - ymin) < FG_EPSILON) && (fabs(nodes_orig[i][0] - xmax) < FG_EPSILON) ) { fprintf(se, "vn %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]); } else if ( (fabs(nodes_orig[i][1] - ymax) < FG_EPSILON) && (fabs(nodes_orig[i][0] - xmax) < FG_EPSILON)) { fprintf(ne, "vn %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]); } else if ( (fabs(nodes_orig[i][1] - ymax) < FG_EPSILON) && (fabs(nodes_orig[i][0] - xmin) < FG_EPSILON) ) { fprintf(nw, "vn %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]); } else if ( fabs(nodes_orig[i][0] - xmin) < FG_EPSILON ) { fprintf(west, "vn %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]); } else if ( fabs(nodes_orig[i][0] - xmax) < FG_EPSILON ) { fprintf(east, "vn %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]); } else if ( fabs(nodes_orig[i][1] - ymin) < FG_EPSILON ) { fprintf(south, "vn %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]); } else if ( fabs(nodes_orig[i][1] - ymax) < FG_EPSILON ) { fprintf(north, "vn %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]); } } fclose(sw); fclose(se); fclose(ne); fclose(nw); fclose(north); fclose(south); fclose(east); fclose(west); } int main(int argc, char **argv) { char basename[256], basepath[256], temp[256]; struct bucket p1, p2; long int index; int len; strcpy(basename, argv[1]); /* find the base path of the file */ extract_path(basename, basepath); extract_path(basepath, basepath); extract_path(basepath, basepath); printf("%s\n", basepath); /* find the index of the current file */ extract_file(basename, temp); len = strlen(temp); if ( len >= 2 ) { temp[len-2] = '\0'; } index = atoi(temp); printf("%ld\n", index); parse_index(index, &p1); /* generate the indexes of the neighbors */ offset_bucket(&p1, &p2, 1, 1); ne_index = gen_index(&p2); offset_bucket(&p1, &p2, 1, -1); nw_index = gen_index(&p2); offset_bucket(&p1, &p2, -1, 1); se_index = gen_index(&p2); offset_bucket(&p1, &p2, -1, -1); sw_index = gen_index(&p2); offset_bucket(&p1, &p2, 0, 1); north_index = gen_index(&p2); offset_bucket(&p1, &p2, 0, -1); south_index = gen_index(&p2); offset_bucket(&p1, &p2, 1, 0); east_index = gen_index(&p2); offset_bucket(&p1, &p2, -1, 1); west_index = gen_index(&p2); printf("Corner indexes = %ld %ld %ld %ld\n", ne_index, nw_index, sw_index, se_index); printf("Edge indexes = %ld %ld %ld %ld\n", north_index, south_index, east_index, west_index); /* load the input data files */ triload(basename); /* dump in WaveFront .obj format */ dump_obj(basename, basepath); return(0); } /* $Log$ /* Revision 1.1 1998/01/14 02:11:31 curt /* Initial revision. /* */