#ifdef HAVE_CONFIG_H # include #endif #ifdef HAVE_WINDOWS_H # include #endif #include #include #include #include #include #include #include #include "hitlist.hxx" // check to see if the intersection point is // actually inside this face static bool sgdPointInTriangle( sgdVec3 point, sgdVec3 tri[3] ) { double xmin, xmax, ymin, ymax, zmin, zmax; // punt if outside bouding cube if ( point[0] < (xmin = SG_MIN3 (tri[0][0], tri[1][0], tri[2][0])) ) { return false; } else if ( point[0] > (xmax = SG_MAX3 (tri[0][0], tri[1][0], tri[2][0])) ) { return false; } else if ( point[1] < (ymin = SG_MIN3 (tri[0][1], tri[1][1], tri[2][1])) ) { return false; } else if ( point[1] > (ymax = SG_MAX3 (tri[0][1], tri[1][1], tri[2][1])) ) { return false; } else if ( point[2] < (zmin = SG_MIN3 (tri[0][2], tri[1][2], tri[2][2])) ) { return false; } else if ( point[2] > (zmax = SG_MAX3 (tri[0][2], tri[1][2], tri[2][2])) ) { return false; } // (finally) check to see if the intersection point is // actually inside this face //first, drop the smallest dimension so we only have to work //in 2d. double dx = xmax - xmin; double dy = ymax - ymin; double dz = zmax - zmin; double min_dim = SG_MIN3 (dx, dy, dz); //first, drop the smallest dimension so we only have to work //in 2d. double x1, y1, x2, y2, x3, y3, rx, ry; if ( fabs(min_dim-dx) <= FG_EPSILON ) { // x is the smallest dimension x1 = point[1]; y1 = point[2]; x2 = tri[0][1]; y2 = tri[0][2]; x3 = tri[1][1]; y3 = tri[1][2]; rx = tri[2][1]; ry = tri[2][2]; } else if ( fabs(min_dim-dy) <= FG_EPSILON ) { // y is the smallest dimension x1 = point[0]; y1 = point[2]; x2 = tri[0][0]; y2 = tri[0][2]; x3 = tri[1][0]; y3 = tri[1][2]; rx = tri[2][0]; ry = tri[2][2]; } else if ( fabs(min_dim-dz) <= FG_EPSILON ) { // z is the smallest dimension x1 = point[0]; y1 = point[1]; x2 = tri[0][0]; y2 = tri[0][1]; x3 = tri[1][0]; y3 = tri[1][1]; rx = tri[2][0]; ry = tri[2][1]; } else { // all dimensions are really small so lets call it close // enough and return a successful match return true; } // check if intersection point is on the same side of p1 <-> p2 as p3 double tmp = (y2 - y3) / (x2 - x3); int side1 = SG_SIGN (tmp * (rx - x3) + y3 - ry); int side2 = SG_SIGN (tmp * (x1 - x3) + y3 - y1); if ( side1 != side2 ) { // printf("failed side 1 check\n"); return false; } // check if intersection point is on correct side of p2 <-> p3 as p1 tmp = (y3 - ry) / (x3 - rx); side1 = SG_SIGN (tmp * (x2 - rx) + ry - y2); side2 = SG_SIGN (tmp * (x1 - rx) + ry - y1); if ( side1 != side2 ) { // printf("failed side 2 check\n"); return false; } // check if intersection point is on correct side of p1 <-> p3 as p2 tmp = (y2 - ry) / (x2 - rx); side1 = SG_SIGN (tmp * (x3 - rx) + ry - y3); side2 = SG_SIGN (tmp * (x1 - rx) + ry - y1); if ( side1 != side2 ) { // printf("failed side 3 check\n"); return false; } return true; } static int sgdIsectInfLinePlane( sgdVec3 dst, const sgdVec3 l_org, const sgdVec3 l_vec, const sgdVec4 plane ) { SGDfloat tmp = sgdScalarProductVec3 ( l_vec, plane ) ; /* Is line parallel to plane? */ if ( fabs ( tmp ) < FLT_EPSILON ) return false ; sgdScaleVec3 ( dst, l_vec, -( sgdScalarProductVec3 ( l_org, plane ) + plane[3] ) / tmp ) ; sgdAddVec3 ( dst, l_org ) ; return true ; } static void sgdXformPnt3 ( sgdVec3 dst, const sgVec3 src, const sgdMat4 mat ) { SGDfloat t0 = src[ 0 ] ; SGDfloat t1 = src[ 1 ] ; SGDfloat t2 = src[ 2 ] ; dst[0] = ( t0 * mat[ 0 ][ 0 ] + t1 * mat[ 1 ][ 0 ] + t2 * mat[ 2 ][ 0 ] + mat[ 3 ][ 0 ] ) ; dst[1] = ( t0 * mat[ 0 ][ 1 ] + t1 * mat[ 1 ][ 1 ] + t2 * mat[ 2 ][ 1 ] + mat[ 3 ][ 1 ] ) ; dst[2] = ( t0 * mat[ 0 ][ 2 ] + t1 * mat[ 1 ][ 2 ] + t2 * mat[ 2 ][ 2 ] + mat[ 3 ][ 2 ] ) ; } /* Find the intersection of an infinite line with a leaf the line being defined by a point and direction. Variables In: ssgLeaf pointer -- leaf qualified matrix -- m line origin -- orig line direction -- dir Out: result -- intersection point normal -- intersected tri's normal Returns: true if intersection found false otherwise */ int FGHitList::IntersectLeaf( ssgLeaf *leaf, sgdMat4 m, sgdVec3 orig, sgdVec3 dir ) { int num_hits = 0; for ( int i = 0; i < leaf->getNumTriangles(); ++i ) { short i1, i2, i3; leaf->getTriangle( i, &i1, &i2, &i3 ); sgdVec3 tri[3]; sgdXformPnt3( tri[0], leaf->getVertex( i1 ), m ); sgdXformPnt3( tri[1], leaf->getVertex( i2 ), m ); sgdXformPnt3( tri[2], leaf->getVertex( i3 ), m ); sgdVec4 plane; sgdMakePlane( plane, tri[0], tri[1], tri[2] ); sgdVec3 point; if( sgdIsectInfLinePlane( point, orig, dir, plane ) ) { if( sgdPointInTriangle( point, tri ) ) { add(leaf,i,point,plane); num_hits++; } } } return num_hits; } void FGHitList::IntersectBranch( ssgBranch *branch, sgdMat4 m, sgdVec3 orig, sgdVec3 dir ) { sgSphere *bsphere; for ( ssgEntity *kid = branch->getKid( 0 ); kid != NULL; kid = branch->getNextKid() ) { if ( kid->getTraversalMask() & SSGTRAV_HOT ) { bsphere = kid->getBSphere(); sgVec3 fcenter; sgCopyVec3( fcenter, bsphere->getCenter() ); sgdVec3 center; center[0] = fcenter[0]; center[1] = fcenter[1]; center[2] = fcenter[2]; sgdXformPnt3( center, m ) ; double radius_sqd = bsphere->getRadius() * bsphere->getRadius(); if ( sgdClosestPointToLineDistSquared( center, orig, dir ) < radius_sqd ) { // possible intersections if ( kid->isAKindOf ( ssgTypeBranch() ) ) { sgdMat4 m_new; sgdCopyMat4(m_new, m); if ( kid->isA( ssgTypeTransform() ) ) { sgMat4 fxform; ((ssgTransform *)kid)->getTransform( fxform ); sgdMat4 xform; sgdSetMat4( xform, fxform ); sgdPreMultMat4( m_new, xform ); } IntersectBranch( (ssgBranch *)kid, m_new, orig, dir ); } else if ( kid->isAKindOf ( ssgTypeLeaf() ) ) { IntersectLeaf( (ssgLeaf *)kid, m, orig, dir ); } } else { // end of the line for this branch } } else { // branch requested not to be traversed } } } // This expects the inital m to the identity transform void ssgGetEntityTransform(ssgEntity *branch, sgMat4 m ) { for ( ssgEntity *parent = branch->getParent(0); parent != NULL; parent = parent->getNextParent() ) { // recurse till we are at the scene root // then just unwinding the stack should // give us our cumulative transform :-) NHV ssgGetEntityTransform( parent, m ); if ( parent->isA( ssgTypeTransform() ) ) { sgMat4 xform; ((ssgTransform *)parent)->getTransform( xform ); sgPreMultMat4( m, xform ); } } } // return the passed entitity's bsphere's center point radius and // fully formed current model matrix for entity void ssgGetCurrentBSphere( ssgEntity *entity, sgVec3 center, float *radius, sgMat4 m ) { sgSphere *bsphere = entity->getBSphere(); *radius = (double)bsphere->getRadius(); sgCopyVec3( center, bsphere->getCenter() ); sgMakeIdentMat4 ( m ) ; ssgGetEntityTransform( entity, m ); } void FGHitList::IntersectCachedLeaf( sgdMat4 m, sgdVec3 orig, sgdVec3 dir) { if ( last_hit() ) { float radius; sgVec3 fcenter; sgMat4 fxform; // ssgEntity *ent = last_hit(); ssgGetCurrentBSphere( last_hit(), fcenter, &radius, fxform ); sgdMat4 m; sgdVec3 center; sgdSetMat4( m, fxform ); sgdXformPnt3( center, m ); if ( sgdClosestPointToLineDistSquared( center, orig, dir ) < radius*radius ) { IntersectLeaf( (ssgLeaf *)last_hit(), m, orig, dir ); } } }