/************************************************************************** * views.c -- data structures and routines for managing and view parameters. * * Written by Curtis Olson, started August 1997. * * Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id$ * (Log is kept at end of this file) **************************************************************************/ #include "views.h" #include "../constants.h" #include "../Flight/flight.h" #include "../Math/mat3.h" #include "../Math/polar.h" #include "../Scenery/scenery.h" /* Initialize a view structure */ void fgViewInit(struct VIEW *v) { v->view_offset = 0.0; v->goal_view_offset = 0.0; } /* Update the view parameters */ void fgViewUpdate(struct FLIGHT *f, struct VIEW *v) { MAT3vec vec, forward; MAT3mat R, TMP, UP, LOCAL, VIEW; /* calculate view position in current FG view coordinate system */ v->view_pos = fgPolarToCart(FG_Longitude, FG_Lat_geocentric, FG_Radius_to_vehicle * FEET_TO_METER + 1.0); v->view_pos.x -= scenery.center.x; v->view_pos.y -= scenery.center.y; v->view_pos.z -= scenery.center.z; printf("View pos = %.4f, %.4f, %.4f\n", v->view_pos.x, v->view_pos.y, v->view_pos.z); /* Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw) */ MAT3_SET_VEC(vec, 0.0, 0.0, 1.0); MAT3rotate(R, vec, FG_Phi); /* printf("Roll matrix\n"); */ /* MAT3print(R, stdout); */ MAT3_SET_VEC(vec, 0.0, 1.0, 0.0); /* MAT3mult_vec(vec, vec, R); */ MAT3rotate(TMP, vec, FG_Theta); /* printf("Pitch matrix\n"); */ /* MAT3print(TMP, stdout); */ MAT3mult(R, R, TMP); MAT3_SET_VEC(vec, 1.0, 0.0, 0.0); /* MAT3mult_vec(vec, vec, R); */ /* MAT3rotate(TMP, vec, FG_Psi - FG_PI_2); */ MAT3rotate(TMP, vec, -FG_Psi); /* printf("Yaw matrix\n"); MAT3print(TMP, stdout); */ MAT3mult(LOCAL, R, TMP); /* printf("LOCAL matrix\n"); */ /* MAT3print(LOCAL, stdout); */ /* Derive the local UP transformation matrix based on *geodetic* * coordinates */ MAT3_SET_VEC(vec, 0.0, 0.0, 1.0); MAT3rotate(R, vec, FG_Longitude); /* R = rotate about Z axis */ /* printf("Longitude matrix\n"); */ /* MAT3print(R, stdout); */ MAT3_SET_VEC(vec, 0.0, 1.0, 0.0); MAT3mult_vec(vec, vec, R); MAT3rotate(TMP, vec, -FG_Latitude); /* TMP = rotate about X axis */ /* printf("Latitude matrix\n"); */ /* MAT3print(TMP, stdout); */ MAT3mult(UP, R, TMP); /* printf("Local up matrix\n"); */ /* MAT3print(UP, stdout); */ MAT3_SET_VEC(v->local_up, 1.0, 0.0, 0.0); MAT3mult_vec(v->local_up, v->local_up, UP); printf(" Local Up = (%.4f, %.4f, %.4f)\n", v->local_up[0], v->local_up[1], v->local_up[2]); /* Alternative method to Derive local up vector based on * *geodetic* coordinates */ /* alt_up = fgPolarToCart(FG_Longitude, FG_Latitude, 1.0); */ /* printf(" Alt Up = (%.4f, %.4f, %.4f)\n", alt_up.x, alt_up.y, alt_up.z); */ /* Derive the VIEW matrix */ MAT3mult(VIEW, LOCAL, UP); /* printf("VIEW matrix\n"); */ /* MAT3print(VIEW, stdout); */ /* generate the current up, forward, and fwrd-view vectors */ MAT3_SET_VEC(vec, 1.0, 0.0, 0.0); MAT3mult_vec(v->view_up, vec, VIEW); MAT3_SET_VEC(vec, 0.0, 0.0, 1.0); MAT3mult_vec(forward, vec, VIEW); printf("Forward vector is (%.2f,%.2f,%.2f)\n", forward[0], forward[1], forward[2]); MAT3rotate(TMP, v->view_up, v->view_offset); MAT3mult_vec(v->view_forward, forward, TMP); } /* $Log$ /* Revision 1.1 1997/08/27 21:31:17 curt /* Initial revision. /* */