// panel_io.cxx - I/O for 2D panel. // // Written by David Megginson, started January 2000. // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include #endif #ifdef HAVE_WINDOWS_H # include #endif #include #include #include #include #include #include STL_IOSTREAM #include STL_FSTREAM #include STL_STRING #include
#include
#include #include "panel.hxx" #include "steam.hxx" #include "panel_io.hxx" #if !defined (SG_HAVE_NATIVE_SGI_COMPILERS) SG_USING_STD(istream); SG_USING_STD(ifstream); #endif SG_USING_STD(string); //////////////////////////////////////////////////////////////////////// // Built-in layer for the magnetic compass ribbon layer. // // TODO: move this out into a special directory for built-in // layers of various sorts. //////////////////////////////////////////////////////////////////////// class FGMagRibbon : public FGTexturedLayer { public: FGMagRibbon (int w, int h); virtual ~FGMagRibbon () {} virtual void draw (); }; FGMagRibbon::FGMagRibbon (int w, int h) : FGTexturedLayer(w, h) { FGCroppedTexture texture("Aircraft/Instruments/Textures/compass-ribbon.rgb"); setTexture(texture); } void FGMagRibbon::draw () { double heading = FGSteam::get_MH_deg(); double xoffset, yoffset; while (heading >= 360.0) { heading -= 360.0; } while (heading < 0.0) { heading += 360.0; } if (heading >= 60.0 && heading <= 180.0) { xoffset = heading / 240.0; yoffset = 0.75; } else if (heading >= 150.0 && heading <= 270.0) { xoffset = (heading - 90.0) / 240.0; yoffset = 0.50; } else if (heading >= 240.0 && heading <= 360.0) { xoffset = (heading - 180.0) / 240.0; yoffset = 0.25; } else { if (heading < 270.0) heading += 360.0; xoffset = (heading - 270.0) / 240.0; yoffset = 0.0; } xoffset = 1.0 - xoffset; // Adjust to put the number in the centre xoffset -= 0.25; FGCroppedTexture &t = getTexture(); t.setCrop(xoffset, yoffset, xoffset + 0.5, yoffset + 0.25); FGTexturedLayer::draw(); } //////////////////////////////////////////////////////////////////////// // Read and construct a panel. // // The panel is specified as a regular property list, and each of the // instruments is its own, separate property list (and thus, a separate // XML document). The functions in this section read in the files // as property lists, then extract properties to set up the panel // itself. // // A panel contains zero or more instruments. // // An instrument contains one or more layers and zero or more actions. // // A layer contains zero or more transformations. // // Some special types of layers also contain other objects, such as // chunks of text or other layers. // // There are currently four types of layers: // // 1. Textured Layer (type="texture"), the default // 2. Text Layer (type="text") // 3. Switch Layer (type="switch") // 4. Built-in Layer (type="built-in", must also specify class) // // The only built-in layer so far is the ribbon for the magnetic compass // (class="compass-ribbon"). // // There are three types of actions: // // 1. Adjust (type="adjust"), the default // 2. Swap (type="swap") // 3. Toggle (type="toggle") // // There are three types of transformations: // // 1. X shift (type="x-shift"), the default // 2. Y shift (type="y-shift") // 3. Rotation (type="rotation") // // Each of these may be associated with a property, so that a needle // will rotate with the airspeed, for example, or may have a fixed // floating-point value. //////////////////////////////////////////////////////////////////////// /** * Read a cropped texture from the instrument's property list. * * The x1 and y1 properties give the starting position of the texture * (between 0.0 and 1.0), and the the x2 and y2 properties give the * ending position. For example, to use the bottom-left quarter of a * texture, x1=0.0, y1=0.0, x2=0.5, y2=0.5. */ static FGCroppedTexture readTexture (const SGPropertyNode * node) { FGCroppedTexture texture(node->getStringValue("path"), node->getFloatValue("x1"), node->getFloatValue("y1"), node->getFloatValue("x2", 1.0), node->getFloatValue("y2", 1.0)); SG_LOG(SG_COCKPIT, SG_DEBUG, "Read texture " << node->getName()); return texture; } /** * Test for a condition in the current node. */ //////////////////////////////////////////////////////////////////////// // Read a condition and use it if necessary. //////////////////////////////////////////////////////////////////////// static void readConditions (FGConditional * component, const SGPropertyNode * node) { const SGPropertyNode * conditionNode = node->getChild("condition"); if (conditionNode != 0) // The top level is implicitly AND component->setCondition(fgReadCondition(conditionNode)); } /** * Read an action from the instrument's property list. * * The action will be performed when the user clicks a mouse button * within the specified region of the instrument. Actions always work * by modifying the value of a property (see the SGPropertyNode * class). * * The following action types are defined: * * "adjust" - modify the value of a floating-point property by * the increment specified. This is the default. * * "swap" - swap the values of two-floating-point properties. * * "toggle" - toggle the value of a boolean property between true and * false. * * For the adjust action, it is possible to specify an increment * (use a negative number for a decrement), a minimum allowed value, * a maximum allowed value, and a flag to indicate whether the value * should freeze or wrap-around when it reachs the minimum or maximum. * * The action will be scaled automatically if the instrument is not * being drawn at its regular size. */ static FGPanelAction * readAction (const SGPropertyNode * node, float w_scale, float h_scale) { string name = node->getStringValue("name"); int button = node->getIntValue("button"); int x = int(node->getIntValue("x") * w_scale); int y = int(node->getIntValue("y") * h_scale); int w = int(node->getIntValue("w") * w_scale); int h = int(node->getIntValue("h") * h_scale); FGPanelAction * action = new FGPanelAction(button, x, y, w, h); vectorbindings = node->getChildren("binding"); for (unsigned int i = 0; i < bindings.size(); i++) { SG_LOG(SG_INPUT, SG_INFO, "Reading binding " << bindings[i]->getStringValue("command")); action->addBinding(new FGBinding(bindings[i])); // TODO: allow modifiers } readConditions(action, node); return action; } /** * Read a transformation from the instrument's property list. * * The panel module uses the transformations to slide or spin needles, * knobs, and other indicators, and to place layers in the correct * positions. Every layer starts centered exactly on the x,y co-ordinate, * and many layers need to be moved or rotated simply to display the * instrument correctly. * * There are three types of transformations: * * "x-shift" - move the layer horizontally. * * "y-shift" - move the layer vertically. * * "rotation" - rotate the layer. * * Each transformation may have a fixed offset, and may also have * a floating-point property value to add to the offset. The * floating-point property may be clamped to a minimum and/or * maximum range and scaled (after clamping). * * Note that because of the way OpenGL works, transformations will * appear to be applied backwards. */ static FGPanelTransformation * readTransformation (const SGPropertyNode * node, float w_scale, float h_scale) { FGPanelTransformation * t = new FGPanelTransformation; string name = node->getName(); string type = node->getStringValue("type"); string propName = node->getStringValue("property", ""); SGPropertyNode * target = 0; if (type == "") { SG_LOG( SG_COCKPIT, SG_ALERT, "No type supplied for transformation " << name << " assuming \"rotation\"" ); type = "rotation"; } if (propName != (string)"") { target = fgGetNode(propName, true); } t->node = target; t->min = node->getFloatValue("min", -9999999); t->max = node->getFloatValue("max", 99999999); t->factor = node->getFloatValue("scale", 1.0); t->offset = node->getFloatValue("offset", 0.0); // Check for an interpolation table const SGPropertyNode * trans_table = node->getNode("interpolation"); if (trans_table != 0) { SG_LOG( SG_COCKPIT, SG_INFO, "Found interpolation table with " << trans_table->nChildren() << "children" ); t->table = new SGInterpTable(); for(int i = 0; i < trans_table->nChildren(); i++) { const SGPropertyNode * node = trans_table->getChild(i); if (node->getName() == "entry") { double ind = node->getDoubleValue("ind", 0.0); double dep = node->getDoubleValue("dep", 0.0); SG_LOG( SG_COCKPIT, SG_INFO, "Adding interpolation entry " << ind << "==>" << dep ); t->table->addEntry(ind, dep); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in interpolation" ); } } } else { t->table = 0; } // Move the layer horizontally. if (type == "x-shift") { t->type = FGPanelTransformation::XSHIFT; // t->min *= w_scale; //removed by Martin Dressler // t->max *= w_scale; //removed by Martin Dressler t->offset *= w_scale; t->factor *= w_scale; //Added by Martin Dressler } // Move the layer vertically. else if (type == "y-shift") { t->type = FGPanelTransformation::YSHIFT; //t->min *= h_scale; //removed //t->max *= h_scale; //removed t->offset *= h_scale; t->factor *= h_scale; //Added } // Rotate the layer. The rotation // is in degrees, and does not need // to scale with the instrument size. else if (type == "rotation") { t->type = FGPanelTransformation::ROTATION; } else { SG_LOG( SG_COCKPIT, SG_ALERT, "Unrecognized transformation type " << type ); delete t; return 0; } readConditions(t, node); SG_LOG( SG_COCKPIT, SG_DEBUG, "Read transformation " << name ); return t; } /** * Read a chunk of text from the instrument's property list. * * A text layer consists of one or more chunks of text. All chunks * share the same font size and color (and eventually, font), but * each can come from a different source. There are three types of * text chunks: * * "literal" - a literal text string (the default) * * "text-value" - the current value of a string property * * "number-value" - the current value of a floating-point property. * * All three may also include a printf-style format string. */ FGTextLayer::Chunk * readTextChunk (const SGPropertyNode * node) { FGTextLayer::Chunk * chunk; string name = node->getStringValue("name"); string type = node->getStringValue("type"); string format = node->getStringValue("format"); // Default to literal text. if (type == "") { SG_LOG( SG_COCKPIT, SG_INFO, "No type provided for text chunk " << name << " assuming \"literal\""); type = "literal"; } // A literal text string. if (type == "literal") { string text = node->getStringValue("text"); chunk = new FGTextLayer::Chunk(text, format); } // The value of a string property. else if (type == "text-value") { SGPropertyNode * target = fgGetNode(node->getStringValue("property"), true); chunk = new FGTextLayer::Chunk(FGTextLayer::TEXT_VALUE, target, format); } // The value of a float property. else if (type == "number-value") { string propName = node->getStringValue("property"); float scale = node->getFloatValue("scale", 1.0); SGPropertyNode * target = fgGetNode(propName, true); chunk = new FGTextLayer::Chunk(FGTextLayer::DOUBLE_VALUE, target, format, scale); } // Unknown type. else { SG_LOG( SG_COCKPIT, SG_ALERT, "Unrecognized type " << type << " for text chunk " << name ); return 0; } readConditions(chunk, node); return chunk; } /** * Read a single layer from an instrument's property list. * * Each instrument consists of one or more layers stacked on top * of each other; the lower layers show through only where the upper * layers contain an alpha component. Each layer can be moved * horizontally and vertically and rotated using transformations. * * This module currently recognizes four kinds of layers: * * "texture" - a layer containing a texture (the default) * * "text" - a layer containing text * * "switch" - a layer that switches between two other layers * based on the current value of a boolean property. * * "built-in" - a hard-coded layer supported by C++ code in FlightGear. * * Currently, the only built-in layer class is "compass-ribbon". */ static FGInstrumentLayer * readLayer (const SGPropertyNode * node, float w_scale, float h_scale) { FGInstrumentLayer * layer = NULL; string name = node->getStringValue("name"); string type = node->getStringValue("type"); int w = node->getIntValue("w", -1); int h = node->getIntValue("h", -1); if (w != -1) w = int(w * w_scale); if (h != -1) h = int(h * h_scale); if (type == "") { SG_LOG( SG_COCKPIT, SG_ALERT, "No type supplied for layer " << name << " assuming \"texture\"" ); type = "texture"; } // A textured instrument layer. if (type == "texture") { FGCroppedTexture texture = readTexture(node->getNode("texture")); layer = new FGTexturedLayer(texture, w, h); } // A group of sublayers. else if (type == "group") { layer = new FGGroupLayer(); for (int i = 0; i < node->nChildren(); i++) { const SGPropertyNode * child = node->getChild(i); cerr << "Trying child " << child->getName() << endl; if (child->getName() == "layer") { cerr << "succeeded!" << endl; ((FGGroupLayer *)layer)->addLayer(readLayer(child, w_scale, h_scale)); } } } // A textual instrument layer. else if (type == "text") { FGTextLayer * tlayer = new FGTextLayer(w, h); // FIXME // Set the text color. float red = node->getFloatValue("color/red", 0.0); float green = node->getFloatValue("color/green", 0.0); float blue = node->getFloatValue("color/blue", 0.0); tlayer->setColor(red, green, blue); // Set the point size. float pointSize = node->getFloatValue("point-size", 10.0) * w_scale; tlayer->setPointSize(pointSize); // Set the font. // TODO const SGPropertyNode * chunk_group = node->getNode("chunks"); if (chunk_group != 0) { int nChunks = chunk_group->nChildren(); for (int i = 0; i < nChunks; i++) { const SGPropertyNode * node = chunk_group->getChild(i); if (node->getName() == "chunk") { FGTextLayer::Chunk * chunk = readTextChunk(node); if (chunk != 0) tlayer->addChunk(chunk); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in chunks" ); } } layer = tlayer; } } // A switch instrument layer. else if (type == "switch") { SGPropertyNode * target = fgGetNode(node->getStringValue("property"), true); FGInstrumentLayer * layer1 = readLayer(node->getNode("layer[0]"), w_scale, h_scale); FGInstrumentLayer * layer2 = readLayer(node->getNode("layer[1]"), w_scale, h_scale); layer = new FGSwitchLayer(w, h, target, layer1, layer2); } // A built-in instrument layer. else if (type == "built-in") { string layerclass = node->getStringValue("class"); if (layerclass == "mag-ribbon") { layer = new FGMagRibbon(w, h); } else if (layerclass == "") { SG_LOG( SG_COCKPIT, SG_ALERT, "No class provided for built-in layer " << name ); return 0; } else { SG_LOG( SG_COCKPIT, SG_ALERT, "Unknown built-in layer class " << layerclass); return 0; } } // An unknown type. else { SG_LOG( SG_COCKPIT, SG_ALERT, "Unrecognized layer type " << type ); delete layer; return 0; } // // Get the transformations for each layer. // const SGPropertyNode * trans_group = node->getNode("transformations"); if (trans_group != 0) { int nTransformations = trans_group->nChildren(); for (int i = 0; i < nTransformations; i++) { const SGPropertyNode * node = trans_group->getChild(i); if (node->getName() == "transformation") { FGPanelTransformation * t = readTransformation(node, w_scale, h_scale); if (t != 0) layer->addTransformation(t); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in transformations" ); } } } readConditions(layer, node); SG_LOG( SG_COCKPIT, SG_DEBUG, "Read layer " << name ); return layer; } /** * Read an instrument from a property list. * * The instrument consists of a preferred width and height * (the panel may override these), together with a list of layers * and a list of actions to be performed when the user clicks * the mouse over the instrument. All co-ordinates are relative * to the instrument's position, so instruments are fully relocatable; * likewise, co-ordinates for actions and transformations will be * scaled automatically if the instrument is not at its preferred size. */ static FGPanelInstrument * readInstrument (const SGPropertyNode * node) { const string &name = node->getStringValue("name"); int x = node->getIntValue("x", -1); int y = node->getIntValue("y", -1); int real_w = node->getIntValue("w", -1); int real_h = node->getIntValue("h", -1); int w = node->getIntValue("w-base", -1); int h = node->getIntValue("h-base", -1); if (x == -1 || y == -1) { SG_LOG( SG_COCKPIT, SG_ALERT, "x and y positions must be specified and > 0" ); return 0; } float w_scale = 1.0; float h_scale = 1.0; if (real_w != -1) { w_scale = float(real_w) / float(w); w = real_w; } if (real_h != -1) { h_scale = float(real_h) / float(h); h = real_h; } SG_LOG( SG_COCKPIT, SG_DEBUG, "Reading instrument " << name ); FGLayeredInstrument * instrument = new FGLayeredInstrument(x, y, w, h); // // Get the actions for the instrument. // const SGPropertyNode * action_group = node->getNode("actions"); if (action_group != 0) { int nActions = action_group->nChildren(); for (int i = 0; i < nActions; i++) { const SGPropertyNode * node = action_group->getChild(i); if (node->getName() == "action") { FGPanelAction * action = readAction(node, w_scale, h_scale); if (action != 0) instrument->addAction(action); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in actions" ); } } } // // Get the layers for the instrument. // const SGPropertyNode * layer_group = node->getNode("layers"); if (layer_group != 0) { int nLayers = layer_group->nChildren(); for (int i = 0; i < nLayers; i++) { const SGPropertyNode * node = layer_group->getChild(i); if (node->getName() == "layer") { FGInstrumentLayer * layer = readLayer(node, w_scale, h_scale); if (layer != 0) instrument->addLayer(layer); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in layers" ); } } } readConditions(instrument, node); SG_LOG( SG_COCKPIT, SG_DEBUG, "Done reading instrument " << name ); return instrument; } /** * Construct the panel from a property tree. */ FGPanel * readPanel (const SGPropertyNode * root) { SG_LOG( SG_COCKPIT, SG_INFO, "Reading properties for panel " << root->getStringValue("name", "[Unnamed Panel]") ); FGPanel * panel = new FGPanel(); panel->setWidth(root->getIntValue("w", 1024)); panel->setHeight(root->getIntValue("h", 443)); // // Grab the visible external viewing area, default to // panel->setViewHeight(root->getIntValue("view-height", 768 - panel->getHeight() + 2)); // // Grab the panel's initial offsets, default to 0, 0. // if (!fgHasNode("/sim/panel/x-offset")) fgSetInt("/sim/panel/x-offset", root->getIntValue("x-offset", 0)); if (!fgHasNode("/sim/panel/y-offset")) fgSetInt("/sim/panel/y-offset", root->getIntValue("y-offset", 0)); // // Assign the background texture, if any, or a bogus chequerboard. // string bgTexture = root->getStringValue("background"); if (bgTexture == "") bgTexture = "FOO"; panel->setBackground(FGTextureManager::createTexture(bgTexture.c_str())); SG_LOG( SG_COCKPIT, SG_INFO, "Set background texture to " << bgTexture ); // // Create each instrument. // SG_LOG( SG_COCKPIT, SG_INFO, "Reading panel instruments" ); const SGPropertyNode * instrument_group = root->getChild("instruments"); if (instrument_group != 0) { int nInstruments = instrument_group->nChildren(); for (int i = 0; i < nInstruments; i++) { const SGPropertyNode * node = instrument_group->getChild(i); if (node->getName() == "instrument") { FGPanelInstrument * instrument = readInstrument(node); if (instrument != 0) panel->addInstrument(instrument); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in instruments section" ); } } } SG_LOG( SG_COCKPIT, SG_INFO, "Done reading panel instruments" ); // // Return the new panel. // return panel; } /** * Read a panel from a property list. * * Each panel instrument will appear in its own, separate * property list. The top level simply names the panel and * places the instruments in their appropriate locations (and * optionally resizes them if necessary). * * Returns 0 if the read fails for any reason. */ FGPanel * fgReadPanel (istream &input) { SGPropertyNode root; try { readProperties(input, &root); } catch (const sg_exception &e) { guiErrorMessage("Error reading panel: ", e); return 0; } return readPanel(&root); } /** * Read a panel from a property list. * * This function opens a stream to a file, then invokes the * main fgReadPanel() function. */ FGPanel * fgReadPanel (const string &relative_path) { SGPath path(globals->get_fg_root()); path.append(relative_path); SGPropertyNode root; try { readProperties(path.str(), &root); } catch (const sg_exception &e) { guiErrorMessage("Error reading panel: ", e); return 0; } return readPanel(&root); } // end of panel_io.cxx