/************************************************************************** * obj.c -- routines to handle WaveFront .obj format files. * * Written by Curtis Olson, started October 1997. * * Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id$ * (Log is kept at end of this file) **************************************************************************/ #include #include #include "obj.h" #include /* what do ya' know, here's some global variables */ static double nodes[MAXNODES][3]; static double normals[MAXNODES][3]; static int faces[MAXNODES][3]; int ncount, vncount, fcount; static int ccw_list[MAXNODES]; int ccw_list_ptr; static int cw_list[MAXNODES]; int cw_list_ptr; FILE *in, *out; double refx, refy, refz; /* some simple list routines */ /* reset the list */ void list_init(int *list_ptr) { *list_ptr = 0; } /* add to list */ void list_add(int *list, int *list_ptr, int node) { if ( *list_ptr >= MAXNODES ) { printf("ERROR: list overflow in list_add()\n"); exit(-1); } list[*list_ptr] = node; *list_ptr += 1; /* printf("list pointer = %d adding %d\n", *list_ptr, node); */ } /* fix the cw list and append to ccw_list */ void fix_cw_list(int *list, int list_ptr) { int i, j, len; if ( list_ptr < 3 ) { printf("List is empty ... skipping\n"); return; } printf("Fixing cw list, size = %d\n", list_ptr); i = 0; while ( i < list_ptr ) { /* do next strip */ /* find length */ len = 0; /* scan rest of strip (until -1) */ while ( ((i+len) < list_ptr) && (list[i+len] != -1) ) { // printf("len = %d item = %d\n", len, list[i+len] ); len++; } // printf(" Final length = %d\n", len); if ( (len % 2) != 0 ) { /* if length is odd, just reverse order of nodes to reverse winding */ if ( ccw_list_ptr ) { list_add(ccw_list, &ccw_list_ptr, -1); } for ( j = i + len - 1; j >= i; j-- ) { // printf(" odd -> item = %d\n", list[j] ); list_add(ccw_list, &ccw_list_ptr, list[j]); } } else { /* if length is even, reverse order of (n-1) nodes to reverse winding, and create an orphan triangle for the last "nth" node */ if ( ccw_list_ptr ) { list_add(ccw_list, &ccw_list_ptr, -1); } for ( j = i + len - 2; j >= i; j-- ) { // printf(" even -> item = %d\n", list[j] ); list_add(ccw_list, &ccw_list_ptr, list[j]); } // printf(" even bonus -> item = %d\n", list[i + len - 1] ); // printf(" even bonus -> item = %d\n", list[i + len - 2] ); // printf(" even bonus -> item = %d\n", list[i + len - 3] ); list_add(ccw_list, &ccw_list_ptr, -1); list_add(ccw_list, &ccw_list_ptr, list[i + len - 3]); list_add(ccw_list, &ccw_list_ptr, list[i + len - 2]); list_add(ccw_list, &ccw_list_ptr, list[i + len - 1]); } i += len + 1; } } // Calculate distance between (0,0,0) and the specified point static double calc_dist(double x, double y, double z) { return ( sqrt(x*x + y*y + z*z) ); } void dump_global_bounds( void ) { double dist, radius; int i; radius = 0.0; fprintf(out, "\n"); for ( i = 1; i < ncount; i++ ) { dist = calc_dist(nodes[i][0] - refx, nodes[i][1] - refy, nodes[i][2] - refz); // printf("node = %.2f %.2f %.2f dist = %.2f\n", // nodes[i][0], nodes[i][1], nodes[i][2], // dist); if ( dist > radius ) { radius = dist; } } fprintf(out, "gbs %.5f %.5f %.5f %.2f\n", refx, refy, refz, radius); } /* dump nodes */ void dump_nodes( void ) { int i; fprintf(out, "\n"); for ( i = 1; i < ncount; i++ ) { fprintf(out, "v %.5f %.5f %.5f\n", nodes[i][0] - refx, nodes[i][1] - refy, nodes[i][2] - refz); } } /* dump normals */ void dump_normals( void ) { int i; fprintf(out, "\n"); for ( i = 1; i < vncount; i++ ) { fprintf(out, "vn %.5f %.5f %.5f\n", normals[i][0], normals[i][1], normals[i][2]); } } /* dump faces */ void dump_faces( void ) { int i, n1, n2, n3; double x, y, z, xmax, xmin, ymax, ymin, zmax, zmin, dist, radius; fprintf(out, "\n"); for ( i = 1; i < fcount; i++ ) { n1 = faces[i][0]; n2 = faces[i][1]; n3 = faces[i][2]; /* calc center of face */ xmin = xmax = nodes[n1][0]; ymin = ymax = nodes[n1][1]; zmin = zmax = nodes[n1][2]; if ( nodes[n2][0] < xmin ) { xmin = nodes[n2][0]; } if ( nodes[n2][0] > xmax ) { xmax = nodes[n2][0]; } if ( nodes[n2][1] < ymin ) { ymin = nodes[n2][1]; } if ( nodes[n2][1] > ymax ) { ymax = nodes[n2][1]; } if ( nodes[n2][2] < zmin ) { zmin = nodes[n2][2]; } if ( nodes[n2][2] > zmax ) { zmax = nodes[n2][2]; } if ( nodes[n3][0] < xmin ) { xmin = nodes[n3][0]; } if ( nodes[n3][0] > xmax ) { xmax = nodes[n3][0]; } if ( nodes[n3][1] < ymin ) { ymin = nodes[n3][1]; } if ( nodes[n3][1] > ymax ) { ymax = nodes[n3][1]; } if ( nodes[n3][2] < zmin ) { zmin = nodes[n3][2]; } if ( nodes[n3][2] > zmax ) { zmax = nodes[n3][2]; } x = (xmin + xmax) / 2.0; y = (ymin + ymax) / 2.0; z = (zmin + zmax) / 2.0; /* calc bounding radius */ radius = calc_dist(nodes[n1][0] - x, nodes[n1][1] - y, nodes[n1][2] - z); dist = calc_dist(nodes[n2][0] - x, nodes[n2][1] - y, nodes[n2][2] - z); if ( dist > radius ) { radius = dist; } dist = calc_dist(nodes[n3][0] - x, nodes[n3][1] - y, nodes[n3][2] - z); if ( dist > radius ) { radius = dist; } /* output data */ fprintf(out, "bs %.2f %.2f %.2f %.2f\n", x, y, z, radius); fprintf(out, "f %d %d %d\n", n1, n2, n3); } } /* dump list */ void dump_list(int *list, int list_ptr) { double x, y, z, xmax, xmin, ymax, ymin, zmax, zmin, dist, radius; int i, j, len, n; if ( list_ptr < 3 ) { printf("List is empty ... skipping\n"); return; } printf("Dumping list, size = %d\n", list_ptr); i = 0; while ( i < list_ptr ) { /* do next strip */ if ( (i % 2) == 0 ) { fprintf(out, "\nusemtl desert1\n"); } else { fprintf(out, "\nusemtl desert2\n"); } /* find length of next tri strip */ len = 0; /* scan rest of strip (until -1) */ while ( ((i+len) < list_ptr) && (list[i+len] != -1) ) { // printf("len = %d item = %d\n", len, list[i+len] ); len++; } // printf("strip length = %d\n", len); /* calc center of face */ n = list[i]; xmin = xmax = nodes[n][0]; ymin = ymax = nodes[n][1]; zmin = zmax = nodes[n][2]; // printf("%.2f %.2f %.2f\n", nodes[n][0], nodes[n][1], nodes[n][2]); for ( j = i + 1; j < i + len; j++ ) { // printf("j = %d\n", j); n = list[j]; if ( nodes[n][0] < xmin ) { xmin = nodes[n][0]; } if ( nodes[n][0] > xmax ) { xmax = nodes[n][0]; } if ( nodes[n][1] < ymin ) { ymin = nodes[n][1]; } if ( nodes[n][1] > ymax ) { ymax = nodes[n][1]; } if ( nodes[n][2] < zmin ) { zmin = nodes[n][2]; } if ( nodes[n][2] > zmax ) { zmax = nodes[n][2]; } // printf("%.2f %.2f %.2f\n", nodes[n][0], nodes[n][1], nodes[n][2]); } x = (xmin + xmax) / 2.0; y = (ymin + ymax) / 2.0; z = (zmin + zmax) / 2.0; // printf("center = %.2f %.2f %.2f\n", x, y, z); /* calc bounding radius */ n = list[i]; radius = calc_dist(nodes[n][0] - x, nodes[n][1] - y, nodes[n][2] - z); for ( j = i + 1; j < i + len; j++ ) { n = list[j]; dist = calc_dist(nodes[n][0] - x, nodes[n][1] - y, nodes[n][2] - z); if ( dist > radius ) { radius = dist; } } // printf("radius = %.2f\n", radius); /* dump bounding sphere and header */ fprintf(out, "bs %.2f %.2f %.2f %.2f\n", x, y, z, radius); fprintf(out, "t %d %d %d\n", list[i], list[i+1], list[i+2]); /* printf("t %d %d %d\n", list[i], list[i+1], list[i+2]); */ i += 3; /* dump rest of strip (until -1) */ while ( (i < list_ptr) && (list[i] != -1) ) { fprintf(out, "q %d", list[i]); i++; if ( (i < list_ptr) && (list[i] != -1) ) { fprintf(out, " %d", list[i]); i++; } fprintf(out, "\n"); } i++; } } /* Check the direction the current triangle faces, compared to it's * pregenerated normal. Returns the dot product between the target * normal and actual normal. If the dot product is close to 1.0, they * nearly match. If the are close to -1.0, the are nearly * opposite. */ double check_cur_face(int n1, int n2, int n3) { double v1[3], v2[3], approx_normal[3], dot_prod, temp; /* check for the proper rotation by calculating an approximate * normal and seeing if it is close to the precalculated normal */ v1[0] = nodes[n2][0] - nodes[n1][0]; v1[1] = nodes[n2][1] - nodes[n1][1]; v1[2] = nodes[n2][2] - nodes[n1][2]; v2[0] = nodes[n3][0] - nodes[n1][0]; v2[1] = nodes[n3][1] - nodes[n1][1]; v2[2] = nodes[n3][2] - nodes[n1][2]; MAT3cross_product(approx_normal, v1, v2); MAT3_NORMALIZE_VEC(approx_normal,temp); dot_prod = MAT3_DOT_PRODUCT(normals[n1], approx_normal); /* not first triangle */ /* if ( ((dot_prod < -0.5) && !is_backwards) || ((dot_prod > 0.5) && is_backwards) ) { printf(" Approx normal = %.2f %.2f %.2f\n", approx_normal[0], approx_normal[1], approx_normal[2]); printf(" Dot product = %.4f\n", dot_prod); } */ /* angle = acos(dot_prod); */ /* printf("Normal ANGLE = %.3f rads.\n", angle); */ return(dot_prod); } /* Load a .obj file */ void obj_fix(char *infile, char *outfile) { char line[256]; double dot_prod; int first, n1, n2, n3, n4; double x, y, z, xmax, xmin, ymax, ymin, zmax, zmin; int is_ccw; if ( (in = fopen(infile, "r")) == NULL ) { printf("Cannot open file: %s\n", infile); exit(-1); } if ( (out = fopen(outfile, "w")) == NULL ) { printf("Cannot open file: %s\n", outfile); exit(-1); } list_init(&ccw_list_ptr); list_init(&cw_list_ptr); /* I start counting at one because that is how the triangle program refers to nodes and normals */ first = 1; ncount = 1; vncount = 1; fcount = 1; printf("Reading file: %s\n", infile); while ( fgets(line, 250, in) != NULL ) { if ( line[0] == '#' ) { /* pass along the comments verbatim */ fprintf(out, "%s", line); } else if ( strlen(line) <= 1 ) { /* don't pass along empty lines */ // fprintf(out, "%s", line); } else if ( strncmp(line, "v ", 2) == 0 ) { /* save vertex to memory and output to file */ if ( ncount < MAXNODES ) { /* printf("vertex = %s", line); */ sscanf(line, "v %lf %lf %lf\n", &x, &y, &z); nodes[ncount][0] = x; nodes[ncount][1] = y; nodes[ncount][2] = z; /* first time through set min's and max'es */ if ( ncount == 1 ) { xmin = x; xmax = x; ymin = y; ymax = y; zmin = z; zmax = z; } /* keep track of min/max vertex values */ if ( x < xmin ) xmin = x; if ( x > xmax ) xmax = x; if ( y < ymin ) ymin = y; if ( y > ymax ) ymax = y; if ( z < zmin ) zmin = z; if ( z > zmax ) zmax = z; // fprintf(out, "v %.2f %.2f %.2f\n", // nodes[ncount][0], nodes[ncount][1], nodes[ncount][2]); ncount++; } else { printf("Read too many nodes ... dying :-(\n"); exit(-1); } } else if ( strncmp(line, "vn ", 3) == 0 ) { /* save vertex normals to memory and output to file */ if ( vncount < MAXNODES ) { /* printf("vertex normal = %s", line); */ sscanf(line, "vn %lf %lf %lf\n", &normals[vncount][0], &normals[vncount][1], &normals[vncount][2]); // fprintf(out, "vn %.4f %.4f %.4f\n", normals[vncount][0], // normals[vncount][1], normals[vncount][2]); vncount++; } else { printf("Read too many vertex normals ... dying :-(\n"); exit(-1); } } else if ( line[0] == 't' ) { /* starting a new triangle strip */ printf("Starting a new triangle strip\n"); n1 = n2 = n3 = n4 = 0; printf("new tri strip = %s", line); sscanf(line, "t %d %d %d %d\n", &n1, &n2, &n3, &n4); /* special cases to handle bugs in our beloved tri striper */ if ( (n1 == 4) && (n2 == 2) && (n3 == 2) && (n4 == 1) ) { n2 = 3; } if ( (n1 == 3) && (n2 == 1) && (n3 == 1) && (n4 == 0) ) { n3 = 4; } dot_prod = check_cur_face(n1, n2, n3); if ( dot_prod < 0.0 ) { /* this stripe is backwards (CW) */ is_ccw = 0; printf(" -> Starting a backwards stripe\n"); } else { /* this stripe is normal (CCW) */ is_ccw = 1; } if ( is_ccw ) { if ( ccw_list_ptr ) { list_add(ccw_list, &ccw_list_ptr, -1); } list_add(ccw_list, &ccw_list_ptr, n1); list_add(ccw_list, &ccw_list_ptr, n2); list_add(ccw_list, &ccw_list_ptr, n3); } else { if ( cw_list_ptr ) { list_add(cw_list, &cw_list_ptr, -1); } list_add(cw_list, &cw_list_ptr, n1); list_add(cw_list, &cw_list_ptr, n2); list_add(cw_list, &cw_list_ptr, n3); } if ( n4 > 0 ) { if ( is_ccw ) { list_add(ccw_list, &ccw_list_ptr, n4); } else { list_add(cw_list, &cw_list_ptr, n4); } } } else if ( line[0] == 'f' ) { if ( fcount < MAXNODES ) { /* pass along the unoptimized faces verbatim */ sscanf(line, "f %d %d %d\n", &n1, &n2, &n3); faces[fcount][0] = n1; faces[fcount][1] = n2; faces[fcount][2] = n3; fcount++; } else { printf("Read too many unoptimized faces ... dying :-(\n"); exit(-1); } // fprintf(out, "%s", line); } else if ( line[0] == 'q' ) { /* continue a triangle strip */ n1 = n2 = 0; /* printf("continued tri strip = %s ", line); */ sscanf(line, "q %d %d\n", &n1, &n2); if ( is_ccw ) { list_add(ccw_list, &ccw_list_ptr, n1); } else { list_add(cw_list, &cw_list_ptr, n1); } if ( n2 > 0 ) { if ( is_ccw ) { list_add(ccw_list, &ccw_list_ptr, n2); } else { list_add(cw_list, &cw_list_ptr, n2); } } } else { printf("Unknown line in %s = %s\n", infile, line); } } /* reference point is the "center" */ refx = (xmin + xmax) / 2.0; refy = (ymin + ymax) / 2.0; refz = (zmin + zmax) / 2.0; /* convert the cw_list to ccw add append to ccw_list */ fix_cw_list(cw_list, cw_list_ptr); dump_global_bounds(); dump_nodes(); dump_normals(); if ( fcount > 1 ) { dump_faces(); } dump_list(ccw_list, ccw_list_ptr); fclose(in); fclose(out); } /* $Log$ /* Revision 1.16 1998/05/27 02:27:22 curt /* Commented out a couple of debugging messages. /* * Revision 1.15 1998/05/24 02:47:47 curt * For each strip, specify a default material property and calculate a center * and bounding sphere. * * Revision 1.14 1998/05/23 15:19:49 curt * Output more digits after the decimal place. * * Revision 1.13 1998/05/20 20:55:19 curt * Fixed arbitrary polygon winding problem here so all tristrips are passed * to runtime simulator with a consistant counter clockwise winding. * * Revision 1.12 1998/05/16 13:11:26 curt * Fixed an off by one error in node, normal, and face counters. * * Revision 1.11 1998/04/27 15:59:24 curt * Fixed an off by one error. * * Revision 1.10 1998/04/27 03:33:11 curt * Code now calculates a center reference points and outputs everything * relative to that. This is useful in the rendering engine to keep everything * close to (0, 0, 0) where we can avoid many GLfloat precision problems. * * Revision 1.9 1998/04/18 04:01:03 curt * Now use libMath rather than having local copies of math routines. * * Revision 1.8 1998/04/08 23:19:37 curt * Adopted Gnu automake/autoconf system. * * Revision 1.7 1998/03/19 02:51:41 curt * Added special case handling to compensate for bugs in our beloved tri striper * * Revision 1.6 1998/03/03 15:36:12 curt * Tweaks for compiling with g++ * * Revision 1.5 1998/03/03 03:37:03 curt * Cumulative tweaks. * * Revision 1.4 1998/01/31 00:41:25 curt * Made a few changes converting floats to doubles. * * Revision 1.3 1998/01/19 19:51:07 curt * A couple final pre-release tweaks. * * Revision 1.2 1998/01/09 23:03:12 curt * Restructured to split 1deg x 1deg dem's into 64 subsections. * * Revision 1.1 1997/12/08 19:28:54 curt * Initial revision. * */