#include "Atmosphere.hpp" #include "Thruster.hpp" #include "Math.hpp" #include "RigidBody.hpp" #include "Integrator.hpp" #include "Propeller.hpp" #include "PistonEngine.hpp" #include "Gear.hpp" #include "Surface.hpp" #include "Rotor.hpp" #include "Rotorpart.hpp" #include "Rotorblade.hpp" #include "Glue.hpp" #include "Model.hpp" namespace yasim { #if 0 void printState(State* s) { State tmp = *s; Math::vmul33(tmp.orient, tmp.v, tmp.v); Math::vmul33(tmp.orient, tmp.acc, tmp.acc); Math::vmul33(tmp.orient, tmp.rot, tmp.rot); Math::vmul33(tmp.orient, tmp.racc, tmp.racc); printf("\nNEW STATE (LOCAL COORDS)\n"); printf("pos: %10.2f %10.2f %10.2f\n", tmp.pos[0], tmp.pos[1], tmp.pos[2]); printf("o: "); int i; for(i=0; i<3; i++) { if(i != 0) printf(" "); printf("%6.2f %6.2f %6.2f\n", tmp.orient[3*i+0], tmp.orient[3*i+1], tmp.orient[3*i+2]); } printf("v: %6.2f %6.2f %6.2f\n", tmp.v[0], tmp.v[1], tmp.v[2]); printf("acc: %6.2f %6.2f %6.2f\n", tmp.acc[0], tmp.acc[1], tmp.acc[2]); printf("rot: %6.2f %6.2f %6.2f\n", tmp.rot[0], tmp.rot[1], tmp.rot[2]); printf("rac: %6.2f %6.2f %6.2f\n", tmp.racc[0], tmp.racc[1], tmp.racc[2]); } #endif Model::Model() { int i; for(i=0; i<3; i++) _wind[i] = 0; _integrator.setBody(&_body); _integrator.setEnvironment(this); // Default value of 30 Hz _integrator.setInterval(1.0f/30.0f); _agl = 0; _crashed = false; _turb = 0; } Model::~Model() { // FIXME: who owns these things? Need a policy } void Model::getThrust(float* out) { float tmp[3]; out[0] = out[1] = out[2] = 0; int i; for(i=0; i<_thrusters.size(); i++) { Thruster* t = (Thruster*)_thrusters.get(i); t->getThrust(tmp); Math::add3(tmp, out, out); } } void Model::initIteration() { // Precompute torque and angular momentum for the thrusters int i; for(i=0; i<3; i++) _gyro[i] = _torque[i] = 0; for(i=0; i<_thrusters.size(); i++) { Thruster* t = (Thruster*)_thrusters.get(i); // Get the wind velocity at the thruster location float pos[3], v[3]; t->getPosition(pos); localWind(pos, _s, v); t->setWind(v); t->setAir(_pressure, _temp, _rho); t->integrate(_integrator.getInterval()); t->getTorque(v); Math::add3(v, _torque, _torque); t->getGyro(v); Math::add3(v, _gyro, _gyro); } } // FIXME: This method looks to me like it's doing *integration*, not // initialization. Integration code should ideally go into // calcForces. Only very "unstiff" problems can be solved well like // this (see the engine code for an example); I don't know if rotor // dynamics qualify or not. // -Andy void Model::initRotorIteration() { int i; float dt = _integrator.getInterval(); float lrot[3]; Math::vmul33(_s->orient, _s->rot, lrot); Math::mul3(dt,lrot,lrot); for(i=0; i<_rotors.size(); i++) { Rotor* r = (Rotor*)_rotors.get(i); r->inititeration(dt); } for(i=0; i<_rotorparts.size(); i++) { Rotorpart* rp = (Rotorpart*)_rotorparts.get(i); rp->inititeration(dt,lrot); } for(i=0; i<_rotorblades.size(); i++) { Rotorblade* rp = (Rotorblade*)_rotorblades.get(i); rp->inititeration(dt,lrot); } } void Model::iterate() { initIteration(); initRotorIteration(); _body.recalc(); // FIXME: amortize this, somehow _integrator.calcNewInterval(); } bool Model::isCrashed() { return _crashed; } void Model::setCrashed(bool crashed) { _crashed = crashed; } float Model::getAGL() { return _agl; } State* Model::getState() { return _s; } void Model::setState(State* s) { _integrator.setState(s); _s = _integrator.getState(); } RigidBody* Model::getBody() { return &_body; } Integrator* Model::getIntegrator() { return &_integrator; } Surface* Model::getSurface(int handle) { return (Surface*)_surfaces.get(handle); } Rotorpart* Model::getRotorpart(int handle) { return (Rotorpart*)_rotorparts.get(handle); } Rotorblade* Model::getRotorblade(int handle) { return (Rotorblade*)_rotorblades.get(handle); } Rotor* Model::getRotor(int handle) { return (Rotor*)_rotors.get(handle); } int Model::addThruster(Thruster* t) { return _thrusters.add(t); } int Model::numThrusters() { return _thrusters.size(); } Thruster* Model::getThruster(int handle) { return (Thruster*)_thrusters.get(handle); } void Model::setThruster(int handle, Thruster* t) { _thrusters.set(handle, t); } int Model::addSurface(Surface* surf) { return _surfaces.add(surf); } int Model::addRotorpart(Rotorpart* rpart) { return _rotorparts.add(rpart); } int Model::addRotorblade(Rotorblade* rblade) { return _rotorblades.add(rblade); } int Model::addRotor(Rotor* r) { return _rotors.add(r); } int Model::addGear(Gear* gear) { return _gears.add(gear); } void Model::setGroundEffect(float* pos, float span, float mul) { Math::set3(pos, _wingCenter); _groundEffectSpan = span; _groundEffect = mul; } // The first three elements are a unit vector pointing from the global // origin to the plane, the final element is the distance from the // origin (the radius of the earth, in most implementations). So // (v dot _ground)-_ground[3] gives the distance AGL. void Model::setGroundPlane(double* planeNormal, double fromOrigin) { int i; for(i=0; i<3; i++) _ground[i] = planeNormal[i]; _ground[3] = fromOrigin; } void Model::setAir(float pressure, float temp, float density) { _pressure = pressure; _temp = temp; _rho = density; } void Model::setWind(float* wind) { Math::set3(wind, _wind); } void Model::calcForces(State* s) { // Add in the pre-computed stuff. These values aren't part of the // Runge-Kutta integration (they don't depend on position or // velocity), and are therefore constant across the four calls to // calcForces. They get computed before we begin the integration // step. _body.setGyro(_gyro); _body.addTorque(_torque); int i; for(i=0; i<_thrusters.size(); i++) { Thruster* t = (Thruster*)_thrusters.get(i); float thrust[3], pos[3]; t->getThrust(thrust); t->getPosition(pos); _body.addForce(pos, thrust); } // Gravity, convert to a force, then to local coordinates float grav[3]; Glue::geodUp(s->pos, grav); Math::mul3(-9.8f * _body.getTotalMass(), grav, grav); Math::vmul33(s->orient, grav, grav); _body.addForce(grav); // Do each surface, remembering that the local velocity at each // point is different due to rotation. float faero[3]; faero[0] = faero[1] = faero[2] = 0; for(i=0; i<_surfaces.size(); i++) { Surface* sf = (Surface*)_surfaces.get(i); // Vsurf = wind - velocity + (rot cross (cg - pos)) float vs[3], pos[3]; sf->getPosition(pos); localWind(pos, s, vs); float force[3], torque[3]; sf->calcForce(vs, _rho, force, torque); Math::add3(faero, force, faero); _body.addForce(pos, force); _body.addTorque(torque); } for(i=0; i<_rotorparts.size(); i++) { Rotorpart* sf = (Rotorpart*)_rotorparts.get(i); // Vsurf = wind - velocity + (rot cross (cg - pos)) float vs[3], pos[3]; sf->getPosition(pos); localWind(pos, s, vs); float force[3], torque[3]; sf->calcForce(vs, _rho, force, torque); //Math::add3(faero, force, faero); sf->getPositionForceAttac(pos); _body.addForce(pos, force); _body.addTorque(torque); } for(i=0; i<_rotorblades.size(); i++) { Rotorblade* sf = (Rotorblade*)_rotorblades.get(i); // Vsurf = wind - velocity + (rot cross (cg - pos)) float vs[3], pos[3]; sf->getPosition(pos); localWind(pos, s, vs); float force[3], torque[3]; sf->calcForce(vs, _rho, force, torque); //Math::add3(faero, force, faero); sf->getPositionForceAttac(pos); _body.addForce(pos, force); _body.addTorque(torque); } // Get a ground plane in local coordinates. The first three // elements are the normal vector, the final one is the distance // from the local origin along that vector to the ground plane // (negative for objects "above" the ground) float ground[4]; ground[3] = localGround(s, ground); // Account for ground effect by multiplying the vertical force // component by an amount linear with the fraction of the wingspan // above the ground. float dist = ground[3] - Math::dot3(ground, _wingCenter); if(dist > 0 && dist < _groundEffectSpan) { float fz = Math::dot3(faero, ground); fz *= (_groundEffectSpan - dist) / _groundEffectSpan; fz *= _groundEffect; Math::mul3(fz, ground, faero); _body.addForce(faero); } // Convert the velocity and rotation vectors to local coordinates float lrot[3], lv[3]; Math::vmul33(s->orient, s->rot, lrot); Math::vmul33(s->orient, s->v, lv); // The landing gear for(i=0; i<_gears.size(); i++) { float force[3], contact[3]; Gear* g = (Gear*)_gears.get(i); g->calcForce(&_body, lv, lrot, ground); g->getForce(force, contact); _body.addForce(contact, force); } } void Model::newState(State* s) { _s = s; // Some simple collision detection float min = 1e8; float ground[4], pos[3], cmpr[3]; ground[3] = localGround(s, ground); int i; for(i=0; i<_gears.size(); i++) { Gear* g = (Gear*)_gears.get(i); // Get the point of ground contact g->getPosition(pos); g->getCompression(cmpr); Math::mul3(g->getCompressFraction(), cmpr, cmpr); Math::add3(cmpr, pos, pos); float dist = ground[3] - Math::dot3(pos, ground); // Find the lowest one if(dist < min) min = dist; } _agl = min; if(_agl < -1) // Allow for some integration slop _crashed = true; } // Returns a unit "down" vector for the ground in out, and the // distance from the local origin to the ground as the return value. // So for a given position V, "dist - (V dot out)" will be the height // AGL. float Model::localGround(State* s, float* out) { // Get the ground's "down" vector, this can be in floats, because // we don't need positioning accuracy. The direction has plenty // of accuracy after truncation. out[0] = -(float)_ground[0]; out[1] = -(float)_ground[1]; out[2] = -(float)_ground[2]; Math::vmul33(s->orient, out, out); // The distance from the ground to the Aircraft's origin: double dist = (s->pos[0]*_ground[0] + s->pos[1]*_ground[1] + s->pos[2]*_ground[2] - _ground[3]); return (float)dist; } // Calculates the airflow direction at the given point and for the // specified aircraft velocity. void Model::localWind(float* pos, State* s, float* out) { float tmp[3], lwind[3], lrot[3], lv[3]; // Get a global coordinate for our local position, and calculate // turbulence. // FIXME: modify turbulence for altitude, attenuating the vertical // component near the ground. if(_turb) { double gpos[3]; Math::tmul33(s->orient, pos, tmp); for(int i=0; i<3; i++) gpos[i] = s->pos[i] + tmp[i]; _turb->getTurbulence(gpos, lwind); Math::add3(_wind, lwind, lwind); } else { Math::set3(_wind, lwind); } // Convert to local coordinates Math::vmul33(s->orient, lwind, lwind); Math::vmul33(s->orient, s->rot, lrot); Math::vmul33(s->orient, s->v, lv); _body.pointVelocity(pos, lrot, out); // rotational velocity Math::mul3(-1, out, out); // (negated) Math::add3(lwind, out, out); // + wind Math::sub3(out, lv, out); // - velocity } }; // namespace yasim