// simulates ridge lift // // Written by Patrice Poly // Copyright (C) 2009 Patrice Poly - p.polypa@gmail.com // // // Entirely based on the paper : // http://carrier.csi.cam.ac.uk/forsterlewis/soaring/sim/fsx/dev/sim_probe/sim_probe_paper.html // by Ian Forster-Lewis, University of Cambridge, 26th December 2007 // // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // #ifdef HAVE_CONFIG_H # include #endif #include
#include
#include
#include #include #include using std::string; #include "ridge_lift.hxx" static string CreateIndexedPropertyName(string Property, int index) { std::stringstream str; str << index; string tmp; str >> tmp; return Property + "[" + tmp + "]"; } static inline double sign(double x) { return x == 0 ? 0 : x > 0 ? 1.0 : -1.0; } static const double BOUNDARY1_m = 40.0; //constructor FGRidgeLift::FGRidgeLift () { dist_probe_m[0] = 0.0; // in meters dist_probe_m[1] = 250.0; dist_probe_m[2] = 750.0; dist_probe_m[3] = 2000.0; dist_probe_m[4] = -100.0; strength = 0.0; timer = 0.0; for( int i = 0; i < 5; i++ ) probe_elev_m[i] = probe_lat_deg[i] = probe_lon_deg[i] = 0.0; for( int i = 0; i < 4; i++ ) slope[i] = 0.0; } //destructor FGRidgeLift::~FGRidgeLift() { } void FGRidgeLift::init(void) { _enabled_node = fgGetNode( "/environment/ridge-lift/enabled", false ); _ridge_lift_fps_node = fgGetNode("/environment/ridge-lift-fps", true); _surface_wind_from_deg_node = fgGetNode("/environment/config/boundary/entry[0]/wind-from-heading-deg" , true); _surface_wind_speed_node = fgGetNode("/environment/config/boundary/entry[0]/wind-speed-kt" , true); _earth_radius_node = fgGetNode("/position/sea-level-radius-ft", true); _user_longitude_node = fgGetNode("/position/longitude-deg", true); _user_latitude_node = fgGetNode("/position/latitude-deg", true); _user_altitude_ft_node = fgGetNode("/position/altitude-ft", true); _user_altitude_agl_ft_node = fgGetNode("/position/altitude-agl-ft", true); } void FGRidgeLift::bind() { string prop; for( int i = 0; i < 5; i++ ) { prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-elev-m", i ); fgTie( prop.c_str(), this, i, &FGRidgeLift::get_probe_elev_m); // read-only prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-lat-deg", i ); fgTie( prop.c_str(), this, i, &FGRidgeLift::get_probe_lat_deg); // read-only prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-lon-deg", i ); fgTie( prop.c_str(), this, i, &FGRidgeLift::get_probe_lon_deg); // read-only } for( int i = 0; i < 4; i++ ) { prop = CreateIndexedPropertyName("/environment/ridge-lift/slope", i ); fgTie( prop.c_str(), this, i, &FGRidgeLift::get_slope); // read-only } } void FGRidgeLift::unbind() { string prop; for( int i = 0; i < 5; i++ ) { prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-elev-m", i ); fgUntie( prop.c_str() ); prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-lat-deg", i ); fgUntie( prop.c_str() ); prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-lon-deg", i ); fgUntie( prop.c_str() ); } for( int i = 0; i < 4; i++ ) { prop = CreateIndexedPropertyName("/environment/ridge-lift/slope", i ); fgUntie( prop.c_str() ); } } void FGRidgeLift::update(double dt) { if( dt <= 0 ) // paused, do nothing but keep current lift return; if( _enabled_node && false == _enabled_node->getBoolValue() ) { if( strength != 0.0 ) { strength = 0.0; _ridge_lift_fps_node->setDoubleValue( 0 ); } return; } //get the windspeed at ground level double ground_wind_from_rad = _surface_wind_from_deg_node->getDoubleValue() * SG_DEGREES_TO_RADIANS; double ground_wind_speed_mps = _surface_wind_speed_node->getDoubleValue() * SG_NM_TO_METER / 3600; timer -= dt; if (timer <= 0.0 ) { // copy values double user_latitude_rad = _user_latitude_node->getDoubleValue() * SG_DEGREES_TO_RADIANS; double user_longitude_rad = _user_longitude_node->getDoubleValue() * SG_DEGREES_TO_RADIANS; double earth_rad_m = _earth_radius_node->getDoubleValue() * SG_FEET_TO_METER; if( earth_rad_m < SG_EPSILON ) earth_rad_m = SG_EARTH_RAD * 1000; // Placing the probes for (int i = 0; i < sizeof(probe_lat_rad)/sizeof(probe_lat_rad[0]); i++) { double probe_radius_ratio = dist_probe_m[i]/earth_rad_m; double sin_probe_radius_ratio = sin(probe_radius_ratio); probe_lat_rad[i] = asin(sin(user_latitude_rad)*cos(probe_radius_ratio) +cos(user_latitude_rad)*sin_probe_radius_ratio*cos(ground_wind_from_rad)); if (fabs(fabs(probe_lat_rad[i])-SG_PI/2.0) < SG_EPSILON ) { probe_lon_rad[i] = user_latitude_rad; // probe on a pole } else { probe_lon_rad[i] = fmod((user_longitude_rad+asin(sin(ground_wind_from_rad) *sin_probe_radius_ratio/cos(probe_lat_rad[i]))+SG_PI) ,SGD_2PI)-SG_PI; } probe_lat_deg[i]= probe_lat_rad[i] * SG_RADIANS_TO_DEGREES; probe_lon_deg[i]= probe_lon_rad[i] * SG_RADIANS_TO_DEGREES; } for (int i = 0; i < sizeof(probe_elev_m)/sizeof(probe_elev_m[0]); i++) { if (!globals->get_scenery()->get_elevation_m(SGGeod::fromGeodM( SGGeod::fromRad(probe_lon_rad[i],probe_lat_rad[i]), 20000), probe_elev_m[i], 0)) { probe_elev_m[i] = 0.1; } } // slopes double adj_slope[4]; slope[0] = (probe_elev_m[0] - probe_elev_m[1]) / dist_probe_m[1]; slope[1] = (probe_elev_m[1] - probe_elev_m[2]) / dist_probe_m[2]; slope[2] = (probe_elev_m[2] - probe_elev_m[3]) / dist_probe_m[3]; slope[3] = (probe_elev_m[4] - probe_elev_m[0]) / -dist_probe_m[4]; for (int i = 0; i < sizeof(slope)/sizeof(slope[0]); i++) adj_slope[i] = sin(atan(5.0 * pow ( (fabs(slope[i])),1.7) ) ) *sign(slope[i]); //adjustment adj_slope[0] *= 0.2; adj_slope[1] *= 0.2; if ( adj_slope [2] < 0.0 ) { adj_slope[2] *= 0.5; } else { adj_slope[2] = 0.0 ; } if ( ( adj_slope [0] >= 0.0 ) && ( adj_slope [3] < 0.0 ) ) { adj_slope[3] = 0.0; } else { adj_slope[3] *= 0.2; } lift_factor = adj_slope[0]+adj_slope[1]+adj_slope[2]+adj_slope[3]; // restart the timer timer = 1.0; } //user altitude above ground double user_altitude_agl_m = _user_altitude_agl_ft_node->getDoubleValue() * SG_FEET_TO_METER; //boundaries double boundary2_m = 130.0; // in the lift if (lift_factor < 0.0) { // in the sink double highest_probe_temp= max ( probe_elev_m[1], probe_elev_m[2] ); double highest_probe_downwind_m= max ( highest_probe_temp, probe_elev_m[3] ); boundary2_m = highest_probe_downwind_m - probe_elev_m[0]; } double agl_factor; if ( user_altitude_agl_m < BOUNDARY1_m ) { agl_factor = 0.5+0.5*user_altitude_agl_m /BOUNDARY1_m ; } else if ( user_altitude_agl_m < boundary2_m ) { agl_factor = 1.0; } else { agl_factor = exp(-(2 + probe_elev_m[0] / 2000) * (user_altitude_agl_m - boundary2_m) / max(probe_elev_m[0],200.0)); } double lift_mps = lift_factor* ground_wind_speed_mps * agl_factor; //the updraft, finally, in ft per second strength = fgGetLowPass( strength, lift_mps * SG_METER_TO_FEET, dt ); _ridge_lift_fps_node->setDoubleValue( strength ); }