// Utility functions for the ATC / AI system #include #include #include #include // Given two positions, get the HORIZONTAL separation (in meters) double dclGetHorizontalSeparation(Point3D pos1, Point3D pos2) { double x; //East-West separation double y; //North-South separation double z; //Horizontal separation - z = sqrt(x^2 + y^2) double lat1 = pos1.lat() * SG_DEGREES_TO_RADIANS; double lon1 = pos1.lon() * SG_DEGREES_TO_RADIANS; double lat2 = pos2.lat() * SG_DEGREES_TO_RADIANS; double lon2 = pos2.lon() * SG_DEGREES_TO_RADIANS; y = sin(fabs(lat1 - lat2)) * SG_EQUATORIAL_RADIUS_M; x = sin(fabs(lon1 - lon2)) * SG_EQUATORIAL_RADIUS_M * (cos((lat1 + lat2) / 2.0)); z = sqrt(x*x + y*y); return(z); } // Given a position (lat/lon/elev), heading, vertical angle, and distance, calculate the new position. // Assumes that the ground is not hit!!! Expects heading and angle in degrees, distance in meters. Point3D dclUpdatePosition(Point3D pos, double heading, double angle, double distance) { double lat = pos.lat() * SG_DEGREES_TO_RADIANS; double lon = pos.lon() * SG_DEGREES_TO_RADIANS; double elev = pos.elev(); double horiz_dist = distance * cos(angle); double vert_dist = distance * sin(angle); double north_dist = horiz_dist * cos(heading); double east_dist = horiz_dist * sin(heading); lat += asin(north_dist / SG_EQUATORIAL_RADIUS_M); lon += asin(east_dist / SG_EQUATORIAL_RADIUS_M) * (1.0 / cos(lat)); // I suppose really we should use the average of the original and new lat but we'll assume that this will be good enough. elev += vert_dist; return(Point3D(lon*SG_RADIANS_TO_DEGREES, lat*SG_RADIANS_TO_DEGREES, elev)); } #if 0 /* Determine location in runway coordinates */ Radius_to_rwy = Sea_level_radius + Runway_altitude; cos_rwy_hdg = cos(Runway_heading*DEG_TO_RAD); sin_rwy_hdg = sin(Runway_heading*DEG_TO_RAD); D_cg_north_of_rwy = Radius_to_rwy*(Latitude - Runway_latitude); D_cg_east_of_rwy = Radius_to_rwy*cos(Runway_latitude) *(Longitude - Runway_longitude); D_cg_above_rwy = Radius_to_vehicle - Radius_to_rwy; X_cg_rwy = D_cg_north_of_rwy*cos_rwy_hdg + D_cg_east_of_rwy*sin_rwy_hdg; Y_cg_rwy =-D_cg_north_of_rwy*sin_rwy_hdg + D_cg_east_of_rwy*cos_rwy_hdg; H_cg_rwy = D_cg_above_rwy; #endif