/******************************************************************************* Header: FGInitialCondition.cpp Author: Tony Peden Date started: 7/1/99 ------------- Copyright (C) 1999 Anthony K. Peden (apeden@earthlink.net) ------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU General Public License can also be found on the world wide web at http://www.gnu.org. HISTORY -------------------------------------------------------------------------------- 7/1/99 TP Created FUNCTIONAL DESCRIPTION -------------------------------------------------------------------------------- The purpose of this class is to take a set of initial conditions and provide a kinematically consistent set of body axis velocity components, euler angles, and altitude. This class does not attempt to trim the model i.e. the sim will most likely start in a very dynamic state (unless, of course, you have chosen your IC's wisely) even after setting it up with this class. ******************************************************************************** INCLUDES *******************************************************************************/ #include "FGInitialCondition.h" #include "FGFDMExec.h" #include "FGState.h" #include "FGAtmosphere.h" #include "FGFCS.h" #include "FGAircraft.h" #include "FGTranslation.h" #include "FGRotation.h" #include "FGPosition.h" #include "FGAuxiliary.h" #include "FGOutput.h" #include "FGDefs.h" static const char *IdSrc = "$Id$"; static const char *IdHdr = ID_INITIALCONDITION; extern short debug_lvl; //****************************************************************************** FGInitialCondition::FGInitialCondition(FGFDMExec *FDMExec){ vt=vc=ve=vg=0; mach=0; alpha=beta=gamma=0; theta=phi=psi=0; altitude=hdot=0; latitude=longitude=0; u=v=w=0; vw=vw=ww=0; vnorth=veast=vdown=0; lastSpeedSet=setvt; sea_level_radius = EARTHRAD; radius_to_vehicle = EARTHRAD; terrain_altitude = 0; salpha=sbeta=stheta=sphi=spsi=sgamma=0; calpha=cbeta=ctheta=cphi=cpsi=cgamma=1; if(FDMExec != NULL ) { fdmex=FDMExec; fdmex->GetPosition()->Seth(altitude); fdmex->GetAtmosphere()->Run(); } else { cout << "FGInitialCondition: This class requires a pointer to a valid FGFDMExec object" << endl; } if (debug_lvl & 2) cout << "Instantiated: FGInitialCondition" << endl; } //****************************************************************************** FGInitialCondition::~FGInitialCondition() { if (debug_lvl & 2) cout << "Destroyed: FGInitialCondition" << endl; } //****************************************************************************** void FGInitialCondition::SetVcalibratedKtsIC(float tt) { if(getMachFromVcas(&mach,tt*jsbKTSTOFPS)) { //cout << "Mach: " << mach << endl; lastSpeedSet=setvc; vc=tt*jsbKTSTOFPS; vt=mach*fdmex->GetAtmosphere()->GetSoundSpeed(); ve=vt*sqrt(fdmex->GetAtmosphere()->GetDensityRatio()); //cout << "Vt: " << vt*jsbFPSTOKTS << " Vc: " << vc*jsbFPSTOKTS << endl; } else { cout << "Failed to get Mach number for given Vc and altitude, Vc unchanged." << endl; cout << "Please mail the set of initial conditions used to apeden@earthlink.net" << endl; } } //****************************************************************************** void FGInitialCondition::SetVequivalentKtsIC(float tt) { ve=tt*jsbKTSTOFPS; lastSpeedSet=setve; vt=ve*1/sqrt(fdmex->GetAtmosphere()->GetDensityRatio()); mach=vt/fdmex->GetAtmosphere()->GetSoundSpeed(); vc=calcVcas(mach); } //****************************************************************************** void FGInitialCondition::SetVgroundFpsIC(float tt) { //float ua,va,wa; float vxz; //cout << "FGInitialCondition::SetVgroundFpsIC" << endl; vg=tt; lastSpeedSet=setvg; vnorth = vg*cos(psi); veast = vg*sin(psi); vdown = 0; calcUVWfromNED(); //cout << "\tu,v,w: " << u << ", " << v << ", " << w << endl; calcWindUVW(); //cout << "\tuw,vw,ww: " << uw << ", " << vw << ", " << ww << endl; u = -uw; v = -vw; w = -ww; //ua = u - uw; va = v - vw; wa = w - ww; //cout << "\tua,va,wa: " << ua << ", " << va << ", " << wa << endl; vt = sqrt( u*u + v*v + w*w ); alpha = beta = 0; vxz = sqrt( u*u + w*w ); if( w != 0 ) alpha = atan2( w, u ); if( vxz != 0 ) beta = atan2( v, vxz ); //cout << "\tvt,alpha,beta: " << vt << ", " << alpha*RADTODEG << ", " // << beta*RADTODEG << endl; mach=vt/fdmex->GetAtmosphere()->GetSoundSpeed(); vc=calcVcas(mach); ve=vt*sqrt(fdmex->GetAtmosphere()->GetDensityRatio()); } //****************************************************************************** void FGInitialCondition::SetVtrueFpsIC(float tt) { vt=tt; lastSpeedSet=setvt; mach=vt/fdmex->GetAtmosphere()->GetSoundSpeed(); vc=calcVcas(mach); ve=vt*sqrt(fdmex->GetAtmosphere()->GetDensityRatio()); } //****************************************************************************** void FGInitialCondition::SetMachIC(float tt) { mach=tt; lastSpeedSet=setmach; vt=mach*fdmex->GetAtmosphere()->GetSoundSpeed(); vc=calcVcas(mach); ve=vt*sqrt(fdmex->GetAtmosphere()->GetDensityRatio()); //cout << "Vt: " << vt*jsbFPSTOKTS << " Vc: " << vc*jsbFPSTOKTS << endl; } //****************************************************************************** void FGInitialCondition::SetClimbRateFpmIC(float tt) { SetClimbRateFpsIC(tt/60.0); } //****************************************************************************** void FGInitialCondition::SetClimbRateFpsIC(float tt) { if(vt > 0.1) { hdot=tt; gamma=asin(hdot/vt); sgamma=sin(gamma); cgamma=cos(gamma); } } //****************************************************************************** void FGInitialCondition::SetFlightPathAngleRadIC(float tt) { gamma=tt; sgamma=sin(gamma); cgamma=cos(gamma); getTheta(); hdot=vt*sgamma; } //****************************************************************************** void FGInitialCondition::SetAlphaRadIC(float tt) { alpha=tt; salpha=sin(alpha); calpha=cos(alpha); getTheta(); } //****************************************************************************** void FGInitialCondition::SetPitchAngleRadIC(float tt) { theta=tt; stheta=sin(theta); ctheta=cos(theta); calcWindUVW(); getAlpha(); } //****************************************************************************** void FGInitialCondition::SetBetaRadIC(float tt) { beta=tt; sbeta=sin(beta); cbeta=cos(beta); getTheta(); } //****************************************************************************** void FGInitialCondition::SetRollAngleRadIC(float tt) { phi=tt; sphi=sin(phi); cphi=cos(phi); getTheta(); } //****************************************************************************** void FGInitialCondition::SetTrueHeadingRadIC(float tt) { psi=tt; spsi=sin(psi); cpsi=cos(psi); calcWindUVW(); } //****************************************************************************** void FGInitialCondition::SetUBodyFpsIC(float tt) { u=tt; vt=sqrt(u*u + v*v + w*w); lastSpeedSet=setuvw; } //****************************************************************************** void FGInitialCondition::SetVBodyFpsIC(float tt) { v=tt; vt=sqrt(u*u + v*v + w*w); lastSpeedSet=setuvw; } //****************************************************************************** void FGInitialCondition::SetWBodyFpsIC(float tt) { w=tt; vt=sqrt( u*u + v*v + w*w ); lastSpeedSet=setuvw; } //****************************************************************************** float FGInitialCondition::GetUBodyFpsIC(void) { if(lastSpeedSet == setvg ) return u; else return vt*calpha*cbeta; } //****************************************************************************** float FGInitialCondition::GetVBodyFpsIC(void) { if( lastSpeedSet == setvg ) return v; else return vt*sbeta; } //****************************************************************************** float FGInitialCondition::GetWBodyFpsIC(void) { if( lastSpeedSet == setvg ) return w; else { return vt*salpha*cbeta; } } //****************************************************************************** void FGInitialCondition::SetWindNEDFpsIC(float wN, float wE, float wD ) { wnorth = wN; weast = wE; wdown = wD; if(lastSpeedSet == setvg) SetVgroundFpsIC(vg); } //****************************************************************************** void FGInitialCondition::calcWindUVW(void) { if(lastSpeedSet == setvg ) { uw=wnorth*ctheta*cpsi + weast*ctheta*spsi - wdown*stheta; vw=wnorth*( sphi*stheta*cpsi - cphi*spsi ) + weast*( sphi*stheta*spsi + cphi*cpsi ) + wdown*sphi*ctheta; ww=wnorth*(cphi*stheta*cpsi + sphi*spsi) + weast*(cphi*stheta*spsi - sphi*cpsi) + wdown*cphi*ctheta; /* cout << "FGInitialCondition::calcWindUVW: wnorth, weast, wdown " << wnorth << ", " << weast << ", " << wdown << endl; cout << "FGInitialCondition::calcWindUVW: theta, phi, psi " << theta << ", " << phi << ", " << psi << endl; cout << "FGInitialCondition::calcWindUVW: uw, vw, ww " << uw << ", " << vw << ", " << ww << endl; */ } else { uw=vw=ww=0; } } //****************************************************************************** void FGInitialCondition::SetAltitudeFtIC(float tt) { altitude=tt; fdmex->GetPosition()->Seth(altitude); fdmex->GetAtmosphere()->Run(); //lets try to make sure the user gets what they intended switch(lastSpeedSet) { case setned: case setuvw: case setvt: SetVtrueKtsIC(vt*jsbFPSTOKTS); break; case setvc: SetVcalibratedKtsIC(vc*jsbFPSTOKTS); break; case setve: SetVequivalentKtsIC(ve*jsbFPSTOKTS); break; case setmach: SetMachIC(mach); break; case setvg: SetVgroundFpsIC(vg); break; } } //****************************************************************************** void FGInitialCondition::SetAltitudeAGLFtIC(float tt) { fdmex->GetPosition()->SetDistanceAGL(tt); altitude=fdmex->GetPosition()->Geth(); SetAltitudeFtIC(altitude); } //****************************************************************************** void FGInitialCondition::SetSeaLevelRadiusFtIC(double tt) { sea_level_radius = tt; } //****************************************************************************** void FGInitialCondition::SetTerrainAltitudeFtIC(double tt) { terrain_altitude=tt; fdmex->GetPosition()->SetDistanceAGL(altitude-terrain_altitude); fdmex->GetPosition()->SetRunwayRadius(sea_level_radius + terrain_altitude); } //****************************************************************************** void FGInitialCondition::calcUVWfromNED(void) { u=vnorth*ctheta*cpsi + veast*ctheta*spsi - vdown*stheta; v=vnorth*( sphi*stheta*cpsi - cphi*spsi ) + veast*( sphi*stheta*spsi + cphi*cpsi ) + vdown*sphi*ctheta; w=vnorth*( cphi*stheta*cpsi + sphi*spsi ) + veast*( cphi*stheta*spsi - sphi*cpsi ) + vdown*cphi*ctheta; } //****************************************************************************** void FGInitialCondition::SetVnorthFpsIC(float tt) { vnorth=tt; calcUVWfromNED(); vt=sqrt(u*u + v*v + w*w); lastSpeedSet=setned; } //****************************************************************************** void FGInitialCondition::SetVeastFpsIC(float tt) { veast=tt; calcUVWfromNED(); vt=sqrt(u*u + v*v + w*w); lastSpeedSet=setned; } //****************************************************************************** void FGInitialCondition::SetVdownFpsIC(float tt) { vdown=tt; calcUVWfromNED(); vt=sqrt(u*u + v*v + w*w); SetClimbRateFpsIC(-1*vdown); lastSpeedSet=setned; } //****************************************************************************** bool FGInitialCondition::getMachFromVcas(float *Mach,float vcas) { bool result=false; float guess=1.5; xlo=xhi=0; xmin=0;xmax=50; sfunc=&FGInitialCondition::calcVcas; if(findInterval(vcas,guess)) { if(solve(&mach,vcas)) result=true; } return result; } //****************************************************************************** bool FGInitialCondition::getAlpha(void) { bool result=false; float guess=theta-gamma; xlo=xhi=0; xmin=fdmex->GetAircraft()->GetAlphaCLMin(); xmax=fdmex->GetAircraft()->GetAlphaCLMax(); sfunc=&FGInitialCondition::GammaEqOfAlpha; if(findInterval(0,guess)){ if(solve(&alpha,0)){ result=true; salpha=sin(alpha); calpha=cos(alpha); } } return result; } //****************************************************************************** bool FGInitialCondition::getTheta(void) { bool result=false; float guess=alpha+gamma; xlo=xhi=0; xmin=-89;xmax=89; sfunc=&FGInitialCondition::GammaEqOfTheta; if(findInterval(0,guess)){ if(solve(&theta,0)){ result=true; stheta=sin(theta); ctheta=cos(theta); } } return result; } //****************************************************************************** float FGInitialCondition::GammaEqOfTheta(float Theta) { float a,b,c,d; float sTheta,cTheta; //theta=Theta; stheta=sin(theta); ctheta=cos(theta); sTheta=sin(Theta); cTheta=cos(Theta); calcWindUVW(); a=wdown + vt*calpha*cbeta + uw; b=vt*sphi*sbeta + vw*sphi; c=vt*cphi*salpha*cbeta + ww*cphi; return vt*sgamma - ( a*sTheta - (b+c)*cTheta); } //****************************************************************************** float FGInitialCondition::GammaEqOfAlpha(float Alpha) { float a,b,c,d; float sAlpha,cAlpha; sAlpha=sin(Alpha); cAlpha=cos(Alpha); a=wdown + vt*cAlpha*cbeta + uw; b=vt*sphi*sbeta + vw*sphi; c=vt*cphi*sAlpha*cbeta + ww*cphi; return vt*sgamma - ( a*stheta - (b+c)*ctheta ); } //****************************************************************************** float FGInitialCondition::calcVcas(float Mach) { float p=fdmex->GetAtmosphere()->GetPressure(); float psl=fdmex->GetAtmosphere()->GetPressureSL(); float rhosl=fdmex->GetAtmosphere()->GetDensitySL(); float pt,A,B,D,vcas; if(Mach < 0) Mach=0; if(Mach < 1) //calculate total pressure assuming isentropic flow pt=p*pow((1 + 0.2*Mach*Mach),3.5); else { // shock in front of pitot tube, we'll assume its normal and use // the Rayleigh Pitot Tube Formula, i.e. the ratio of total // pressure behind the shock to the static pressure in front //the normal shock assumption should not be a bad one -- most supersonic //aircraft place the pitot probe out front so that it is the forward //most point on the aircraft. The real shock would, of course, take //on something like the shape of a rounded-off cone but, here again, //the assumption should be good since the opening of the pitot probe //is very small and, therefore, the effects of the shock curvature //should be small as well. AFAIK, this approach is fairly well accepted //within the aerospace community B = 5.76*Mach*Mach/(5.6*Mach*Mach - 0.8); // The denominator above is zero for Mach ~ 0.38, for which // we'll never be here, so we're safe D = (2.8*Mach*Mach-0.4)*0.4167; pt = p*pow(B,3.5)*D; } A = pow(((pt-p)/psl+1),0.28571); vcas = sqrt(7*psl/rhosl*(A-1)); //cout << "calcVcas: vcas= " << vcas*jsbFPSTOKTS << " mach= " << Mach << " pressure: " << pt << endl; return vcas; } //****************************************************************************** bool FGInitialCondition::findInterval(float x,float guess) { //void find_interval(inter_params &ip,eqfunc f,float y,float constant, int &flag){ int i=0; bool found=false; float flo,fhi,fguess; float lo,hi,step; step=0.1; fguess=(this->*sfunc)(guess)-x; lo=hi=guess; do { step=2*step; lo-=step; hi+=step; if(lo < xmin) lo=xmin; if(hi > xmax) hi=xmax; i++; flo=(this->*sfunc)(lo)-x; fhi=(this->*sfunc)(hi)-x; if(flo*fhi <=0) { //found interval with root found=true; if(flo*fguess <= 0) { //narrow interval down a bit hi=lo+step; //to pass solver interval that is as //small as possible } else if(fhi*fguess <= 0) { lo=hi-step; } } //cout << "findInterval: i=" << i << " Lo= " << lo << " Hi= " << hi << endl; } while((found == 0) && (i <= 100)); xlo=lo; xhi=hi; return found; } //****************************************************************************** bool FGInitialCondition::solve(float *y,float x) { float x1,x2,x3,f1,f2,f3,d,d0; float eps=1E-5; float const relax =0.9; int i; bool success=false; //initializations d=1; x1=xlo;x3=xhi; f1=(this->*sfunc)(x1)-x; f3=(this->*sfunc)(x3)-x; d0=fabs(x3-x1); //iterations i=0; while ((fabs(d) > eps) && (i < 100)) { d=(x3-x1)/d0; x2=x1-d*d0*f1/(f3-f1); f2=(this->*sfunc)(x2)-x; //cout << "solve x1,x2,x3: " << x1 << "," << x2 << "," << x3 << endl; //cout << " " << f1 << "," << f2 << "," << f3 << endl; if(fabs(f2) <= 0.001) { x1=x3=x2; } else if(f1*f2 <= 0.0) { x3=x2; f3=f2; f1=relax*f1; } else if(f2*f3 <= 0) { x1=x2; f1=f2; f3=relax*f3; } //cout << i << endl; i++; }//end while if(i < 100) { success=true; *y=x2; } //cout << "Success= " << success << " Vcas: " << vcas*jsbFPSTOKTS << " Mach: " << x2 << endl; return success; } //****************************************************************************** void FGInitialCondition::Debug(void) { //TODO: Add your source code here }