#include #include #include #include #include #include "FGFDM.hpp" #include "Atmosphere.hpp" #include "Airplane.hpp" #include using namespace yasim; // Stubs. Not needed by a batch program, but required to link. bool fgSetFloat (const char * name, float val) { return false; } bool fgSetBool(char const * name, bool val) { return false; } bool fgGetBool(char const * name, bool def) { return false; } bool fgSetString(char const * name, char const * str) { return false; } SGPropertyNode* fgGetNode (const char * path, bool create) { return 0; } SGPropertyNode* fgGetNode (const char * path, int i, bool create) { return 0; } float fgGetFloat (const char * name, float defaultValue) { return 0; } double fgGetDouble (const char * name, double defaultValue = 0.0) { return 0; } bool fgSetDouble (const char * name, double defaultValue = 0.0) { return 0; } static const float RAD2DEG = 57.2957795131; static const float DEG2RAD = 0.0174532925199; static const float KTS2MPS = 0.514444444444; // Generate a graph of lift, drag and L/D against AoA at the specified // speed and altitude. The result is a space-separated file of // numbers: "aoa lift drag LD" (aoa in degrees, lift and drag in // G's). You can use this in gnuplot like so (assuming the output is // in a file named "dat": // // plot "dat" using 1:2 with lines title 'lift', \ // "dat" using 1:3 with lines title 'drag', \ // "dat" using 1:4 with lines title 'LD' // void yasim_graph(Airplane* a, float alt, float kts) { Model* m = a->getModel(); State s; m->setAir(Atmosphere::getStdPressure(alt), Atmosphere::getStdTemperature(alt), Atmosphere::getStdDensity(alt)); m->getBody()->recalc(); for(int deg=-179; deg<=179; deg++) { float aoa = deg * DEG2RAD; Airplane::setupState(aoa, kts * KTS2MPS, 0 ,&s); m->getBody()->reset(); m->initIteration(); m->calcForces(&s); float acc[3]; m->getBody()->getAccel(acc); Math::tmul33(s.orient, acc, acc); float drag = acc[0] * (-1/9.8); float lift = 1 + acc[2] * (1/9.8); printf("%d %g %g %g\n", deg, lift, drag, lift/drag); } } int usage() { fprintf(stderr, "Usage: yasim [-g [-a alt] [-s kts]]\n"); return 1; } int main(int argc, char** argv) { FGFDM* fdm = new FGFDM(); Airplane* a = fdm->getAirplane(); if(argc < 2) return usage(); // Read try { string file = argv[1]; readXML(file, *fdm); } catch (const sg_exception &e) { printf("XML parse error: %s (%s)\n", e.getFormattedMessage().c_str(), e.getOrigin()); } // ... and run a->compile(); if(a->getFailureMsg()) printf("SOLUTION FAILURE: %s\n", a->getFailureMsg()); if(!a->getFailureMsg() && argc > 2 && strcmp(argv[2], "-g") == 0) { float alt = 5000, kts = 100; for(int i=3; igetCruiseAoA() * RAD2DEG; float tail = -1 * a->getTailIncidence() * RAD2DEG; float drag = 1000 * a->getDragCoefficient(); float cg[3]; a->getModel()->getBody()->getCG(cg); a->getModel()->getBody()->recalc(); float SI_inertia[9]; a->getModel()->getBody()->getInertiaMatrix(SI_inertia); printf("Solution results:"); printf(" Iterations: %d\n", a->getSolutionIterations()); printf(" Drag Coefficient: %f\n", drag); printf(" Lift Ratio: %f\n", a->getLiftRatio()); printf(" Cruise AoA: %f\n", aoa); printf(" Tail Incidence: %f\n", tail); printf("Approach Elevator: %f\n", a->getApproachElevator()); printf(" CG: x:%.3f, y:%.3f, z:%.3f\n\n", cg[0], cg[1], cg[2]); printf(" Inertia tensor : %.3f, %.3f, %.3f\n", SI_inertia[0], SI_inertia[1], SI_inertia[2]); printf(" [kg*m^2] %.3f, %.3f, %.3f\n", SI_inertia[3], SI_inertia[4], SI_inertia[5]); printf(" Origo at CG %.3f, %.3f, %.3f\n", SI_inertia[6], SI_inertia[7], SI_inertia[8]); } delete fdm; return 0; }