// tilemgr.cxx -- routines to handle dynamic management of scenery tiles // // Written by Curtis Olson, started January 1998. // // Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include #endif #ifdef HAVE_WINDOWS_H # include #endif #include #include #include #include // #include #include #include
#include
#include #include #include #include #include #include #include #ifndef FG_OLD_WEATHER # include #else # include #endif #include "scenery.hxx" #include "tilecache.hxx" #include "tileentry.hxx" #include "tilemgr.hxx" // to test clipping speedup in fgTileMgrRender() #if defined ( USE_FAST_FOV_CLIP ) // #define TEST_FOV_CLIP // #define TEST_ELEV #endif extern ssgRoot *scene; // the tile manager FGTileMgr global_tile_mgr; // Constructor FGTileMgr::FGTileMgr ( void ): state( Start ) { } // Destructor FGTileMgr::~FGTileMgr ( void ) { } // Initialize the Tile Manager subsystem int FGTileMgr::init( void ) { FG_LOG( FG_TERRAIN, FG_INFO, "Initializing Tile Manager subsystem." ); // load default material library if ( ! material_mgr.loaded() ) { material_mgr.load_lib(); } global_tile_cache.init(); state = Inited; return 1; } // schedule a tile for loading static void disable_tile( int cache_index ) { // see if tile already exists in the cache // cout << "DISABLING CACHE ENTRY = " << cache_index << endl; FGTileEntry *t = global_tile_cache.get_tile( cache_index ); t->ssg_disable(); } // schedule a tile for loading int FGTileMgr::sched_tile( const FGBucket& b ) { // see if tile already exists in the cache int cache_index = global_tile_cache.exists( b ); if ( cache_index >= 0 ) { // tile exists in cache, reenable it. // cout << "REENABLING DISABLED TILE" << endl; FGTileEntry *t = global_tile_cache.get_tile( cache_index ); t->select_ptr->select( 1 ); t->mark_loaded(); } else { // find the next available cache entry and mark it as // scheduled cache_index = global_tile_cache.next_avail(); FGTileEntry *t = global_tile_cache.get_tile( cache_index ); t->mark_scheduled_for_use(); // register a load request FGLoadRec request; request.b = b; request.cache_index = cache_index; load_queue.push_back( request ); } return cache_index; } // load a tile void FGTileMgr::load_tile( const FGBucket& b, int cache_index) { FG_LOG( FG_TERRAIN, FG_DEBUG, "Loading tile " << b ); global_tile_cache.fill_in(cache_index, b); FG_LOG( FG_TERRAIN, FG_DEBUG, "Loaded for cache index: " << cache_index ); } // Calculate shortest distance from point to line static double point_line_dist_squared( const Point3D& tc, const Point3D& vp, MAT3vec d ) { MAT3vec p, p0; p[0] = tc.x(); p[1] = tc.y(); p[2] = tc.z(); p0[0] = vp.x(); p0[1] = vp.y(); p0[2] = vp.z(); return fgPointLineSquared(p, p0, d); } // Determine scenery altitude. Normally this just happens when we // render the scene, but we'd also like to be able to do this // explicitely. lat & lon are in radians. abs_view_pos in meters. // Returns result in meters. double FGTileMgr::current_elev_new( const FGBucket& p ) { FGTileEntry *t; fgFRAGMENT *frag_ptr; Point3D abs_view_pos = current_view.get_abs_view_pos(); Point3D earth_center(0.0); Point3D result; MAT3vec local_up; double dist, lat_geod, alt, sea_level_r; int index; local_up[0] = abs_view_pos.x(); local_up[1] = abs_view_pos.y(); local_up[2] = abs_view_pos.z(); // Find current translation offset // fgBucketFind(lon * RAD_TO_DEG, lat * RAD_TO_DEG, &p); index = global_tile_cache.exists(p); if ( index < 0 ) { FG_LOG( FG_TERRAIN, FG_WARN, "Tile not found" ); return 0.0; } t = global_tile_cache.get_tile(index); scenery.next_center = t->center; FG_LOG( FG_TERRAIN, FG_DEBUG, "Current bucket = " << p << " Index = " << p.gen_index_str() ); FG_LOG( FG_TERRAIN, FG_DEBUG, "abs_view_pos = " << abs_view_pos ); // calculate tile offset // x = (t->offset.x = t->center.x - scenery.center.x); // y = (t->offset.y = t->center.y - scenery.center.y); // z = (t->offset.z = t->center.z - scenery.center.z); // calc current terrain elevation calculate distance from // vertical tangent line at current position to center of // tile. /* printf("distance squared = %.2f, bounding radius = %.2f\n", point_line_dist_squared(&(t->offset), &(v->view_pos), v->local_up), t->bounding_radius); */ dist = point_line_dist_squared( t->center, abs_view_pos, local_up ); if ( dist < FG_SQUARE(t->bounding_radius) ) { // traverse fragment list for tile FGTileEntry::FragmentIterator current = t->begin(); FGTileEntry::FragmentIterator last = t->end(); for ( ; current != last; ++current ) { frag_ptr = &(*current); /* printf("distance squared = %.2f, bounding radius = %.2f\n", point_line_dist_squared( &(frag_ptr->center), &abs_view_pos), local_up), frag_ptr->bounding_radius); */ dist = point_line_dist_squared( frag_ptr->center, abs_view_pos, local_up); if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) { if ( frag_ptr->intersect( abs_view_pos, earth_center, 0, result ) ) { FG_LOG( FG_TERRAIN, FG_DEBUG, "intersection point " << result ); // compute geocentric coordinates of tile center Point3D pp = fgCartToPolar3d(result); FG_LOG( FG_TERRAIN, FG_DEBUG, " polar form = " << pp ); // convert to geodetic coordinates fgGeocToGeod(pp.lat(), pp.radius(), &lat_geod, &alt, &sea_level_r); // printf("alt = %.2f\n", alt); // exit since we found an intersection if ( alt > -9999.0 ) { // printf("returning alt\n"); return alt; } else { // printf("returning 0\n"); return 0.0; } } } } } FG_LOG( FG_TERRAIN, FG_INFO, "(new) no terrain intersection found" ); return 0.0; } // Determine scenery altitude. Normally this just happens when we // render the scene, but we'd also like to be able to do this // explicitely. lat & lon are in radians. abs_view_pos in meters. // Returns result in meters. double FGTileMgr::current_elev( double lon, double lat, const Point3D& abs_view_pos ) { FGTileCache *c; FGTileEntry *t; fgFRAGMENT *frag_ptr; Point3D earth_center(0.0); Point3D result; MAT3vec local_up; double dist, lat_geod, alt, sea_level_r; int index; c = &global_tile_cache; local_up[0] = abs_view_pos.x(); local_up[1] = abs_view_pos.y(); local_up[2] = abs_view_pos.z(); FG_LOG( FG_TERRAIN, FG_DEBUG, "Absolute view pos = " << abs_view_pos ); // Find current translation offset FGBucket p( lon * RAD_TO_DEG, lat * RAD_TO_DEG ); index = c->exists(p); if ( index < 0 ) { FG_LOG( FG_TERRAIN, FG_WARN, "Tile not found" ); return 0.0; } t = c->get_tile(index); scenery.next_center = t->center; FG_LOG( FG_TERRAIN, FG_DEBUG, "Pos = (" << lon * RAD_TO_DEG << ", " << lat * RAD_TO_DEG << ") Current bucket = " << p << " Index = " << p.gen_index_str() ); FG_LOG( FG_TERRAIN, FG_DEBUG, "Tile center " << t->center << " bounding radius = " << t->bounding_radius ); // calculate tile offset // x = (t->offset.x = t->center.x - scenery.center.x); // y = (t->offset.y = t->center.y - scenery.center.y); // z = (t->offset.z = t->center.z - scenery.center.z); // calc current terrain elevation calculate distance from // vertical tangent line at current position to center of // tile. /* printf("distance squared = %.2f, bounding radius = %.2f\n", point_line_dist_squared(&(t->offset), &(v->view_pos), v->local_up), t->bounding_radius); */ dist = point_line_dist_squared( t->center, abs_view_pos, local_up ); FG_LOG( FG_TERRAIN, FG_DEBUG, "(gross check) dist squared = " << dist ); if ( dist < FG_SQUARE(t->bounding_radius) ) { // traverse fragment list for tile FGTileEntry::FragmentIterator current = t->begin(); FGTileEntry::FragmentIterator last = t->end(); for ( ; current != last; ++current ) { frag_ptr = &(*current); /* printf("distance squared = %.2f, bounding radius = %.2f\n", point_line_dist_squared( &(frag_ptr->center), &abs_view_pos), local_up), frag_ptr->bounding_radius); */ dist = point_line_dist_squared( frag_ptr->center, abs_view_pos, local_up); if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) { if ( frag_ptr->intersect( abs_view_pos, earth_center, 0, result ) ) { FG_LOG( FG_TERRAIN, FG_DEBUG, "intersection point " << result ); // compute geocentric coordinates of tile center Point3D pp = fgCartToPolar3d(result); FG_LOG( FG_TERRAIN, FG_DEBUG, " polar form = " << pp ); // convert to geodetic coordinates fgGeocToGeod(pp.lat(), pp.radius(), &lat_geod, &alt, &sea_level_r); // printf("alt = %.2f\n", alt); // exit since we found an intersection if ( alt > -9999.0 ) { // printf("returning alt\n"); return alt; } else { // printf("returning 0\n"); return 0.0; } } } } } FG_LOG( FG_TERRAIN, FG_INFO, "(old) no terrain intersection found" ); return 0.0; } inline int fg_sign( const double x ) { return x < 0 ? -1 : 1; } inline double fg_min( const double a, const double b ) { return b < a ? b : a; } inline double fg_max( const double a, const double b ) { return a < b ? b : a; } // return the minimum of the three values inline double fg_min3( const double a, const double b, const double c ) { return a > b ? fg_min(b, c) : fg_min(a, c); } // return the maximum of the three values inline double fg_max3 (const double a, const double b, const double c ) { return a < b ? fg_max(b, c) : fg_max(a, c); } // check for an instersection with the individual triangles of a leaf static bool my_ssg_instersect_leaf( string s, ssgLeaf *leaf, sgMat4 m, const sgVec3 p, const sgVec3 dir, sgVec3 result ) { sgVec3 v1, v2, n; sgVec3 p1, p2, p3; double x, y, z; // temporary holding spot for result double a, b, c, d; double x0, y0, z0, x1, y1, z1, a1, b1, c1; double t1, t2, t3; double xmin, xmax, ymin, ymax, zmin, zmax; double dx, dy, dz, min_dim, x2, y2, x3, y3, rx, ry; float *tmp; int side1, side2; short i1, i2, i3; cout << s << "Intersecting" << endl; // traverse the triangle list for this leaf for ( int i = 0; i < leaf->getNumTriangles(); ++i ) { // cout << s << "testing triangle = " << i << endl; leaf->getTriangle( i, &i1, &i2, &i3 ); // get triangle vertex coordinates tmp = leaf->getVertex( i1 ); // cout << s << "orig point 1 = " << tmp[0] << " " << tmp[1] // << " " << tmp[2] << endl; sgXformPnt3( p1, tmp, m ) ; tmp = leaf->getVertex( i2 ); // cout << s << "orig point 2 = " << tmp[0] << " " << tmp[1] // << " " << tmp[2] << endl; sgXformPnt3( p2, tmp, m ) ; tmp = leaf->getVertex( i3 ); // cout << s << "orig point 3 = " << tmp[0] << " " << tmp[1] // << " " << tmp[2] << endl; sgXformPnt3( p3, tmp, m ) ; // cout << s << "point 1 = " << p1[0] << " " << p1[1] << " " << p1[2] // << endl; // cout << s << "point 2 = " << p2[0] << " " << p2[1] << " " << p2[2] // << endl; // cout << s << "point 3 = " << p3[0] << " " << p3[1] << " " << p3[2] // << endl; // calculate two edge vectors, and the face normal sgSubVec3(v1, p2, p1); sgSubVec3(v2, p3, p1); sgVectorProductVec3(n, v1, v2); // calculate the plane coefficients for the plane defined by // this face. If n is the normal vector, n = (a, b, c) and p1 // is a point on the plane, p1 = (x0, y0, z0), then the // equation of the line is a(x-x0) + b(y-y0) + c(z-z0) = 0 a = n[0]; b = n[1]; c = n[2]; d = a * p1[0] + b * p1[1] + c * p1[2]; // printf("a, b, c, d = %.2f %.2f %.2f %.2f\n", a, b, c, d); // printf("p1(d) = %.2f\n", a * p1[0] + b * p1[1] + c * p1[2]); // printf("p2(d) = %.2f\n", a * p2[0] + b * p2[1] + c * p2[2]); // printf("p3(d) = %.2f\n", a * p3[0] + b * p3[1] + c * p3[2]); // calculate the line coefficients for the specified line x0 = p[0]; x1 = p[0] + dir[0]; y0 = p[1]; y1 = p[1] + dir[1]; z0 = p[2]; z1 = p[2] + dir[2]; if ( fabs(x1 - x0) > FG_EPSILON ) { a1 = 1.0 / (x1 - x0); } else { // we got a big divide by zero problem here a1 = 0.0; } b1 = y1 - y0; c1 = z1 - z0; // intersect the specified line with this plane t1 = b * b1 * a1; t2 = c * c1 * a1; // printf("a = %.2f t1 = %.2f t2 = %.2f\n", a, t1, t2); if ( fabs(a + t1 + t2) > FG_EPSILON ) { x = (t1*x0 - b*y0 + t2*x0 - c*z0 + d) / (a + t1 + t2); t3 = a1 * (x - x0); y = b1 * t3 + y0; z = c1 * t3 + z0; // printf("result(d) = %.2f\n", a * x + b * y + c * z); } else { // no intersection point continue; } #if 0 if ( side_flag ) { // check to see if end0 and end1 are on opposite sides of // plane if ( (x - x0) > FG_EPSILON ) { t1 = x; t2 = x0; t3 = x1; } else if ( (y - y0) > FG_EPSILON ) { t1 = y; t2 = y0; t3 = y1; } else if ( (z - z0) > FG_EPSILON ) { t1 = z; t2 = z0; t3 = z1; } else { // everything is too close together to tell the difference // so the current intersection point should work as good // as any sgSetVec3( result, x, y, z ); return true; } side1 = fg_sign (t1 - t2); side2 = fg_sign (t1 - t3); if ( side1 == side2 ) { // same side, punt continue; } } #endif // check to see if intersection point is in the bounding // cube of the face #ifdef XTRA_DEBUG_STUFF xmin = fg_min3 (p1[0], p2[0], p3[0]); xmax = fg_max3 (p1[0], p2[0], p3[0]); ymin = fg_min3 (p1[1], p2[1], p3[1]); ymax = fg_max3 (p1[1], p2[1], p3[1]); zmin = fg_min3 (p1[2], p2[2], p3[2]); zmax = fg_max3 (p1[2], p2[2], p3[2]); printf("bounding cube = %.2f,%.2f,%.2f %.2f,%.2f,%.2f\n", xmin, ymin, zmin, xmax, ymax, zmax); #endif // punt if outside bouding cube if ( x < (xmin = fg_min3 (p1[0], p2[0], p3[0])) ) { continue; } else if ( x > (xmax = fg_max3 (p1[0], p2[0], p3[0])) ) { continue; } else if ( y < (ymin = fg_min3 (p1[1], p2[1], p3[1])) ) { continue; } else if ( y > (ymax = fg_max3 (p1[1], p2[1], p3[1])) ) { continue; } else if ( z < (zmin = fg_min3 (p1[2], p2[2], p3[2])) ) { continue; } else if ( z > (zmax = fg_max3 (p1[2], p2[2], p3[2])) ) { continue; } // (finally) check to see if the intersection point is // actually inside this face //first, drop the smallest dimension so we only have to work //in 2d. dx = xmax - xmin; dy = ymax - ymin; dz = zmax - zmin; min_dim = fg_min3 (dx, dy, dz); if ( fabs(min_dim - dx) <= FG_EPSILON ) { // x is the smallest dimension x1 = p1[1]; y1 = p1[2]; x2 = p2[1]; y2 = p2[2]; x3 = p3[1]; y3 = p3[2]; rx = y; ry = z; } else if ( fabs(min_dim - dy) <= FG_EPSILON ) { // y is the smallest dimension x1 = p1[0]; y1 = p1[2]; x2 = p2[0]; y2 = p2[2]; x3 = p3[0]; y3 = p3[2]; rx = x; ry = z; } else if ( fabs(min_dim - dz) <= FG_EPSILON ) { // z is the smallest dimension x1 = p1[0]; y1 = p1[1]; x2 = p2[0]; y2 = p2[1]; x3 = p3[0]; y3 = p3[1]; rx = x; ry = y; } else { // all dimensions are really small so lets call it close // enough and return a successful match sgSetVec3( result, x, y, z ); return true; } // check if intersection point is on the same side of p1 <-> p2 as p3 t1 = (y1 - y2) / (x1 - x2); side1 = fg_sign (t1 * ((x3) - x2) + y2 - (y3)); side2 = fg_sign (t1 * ((rx) - x2) + y2 - (ry)); if ( side1 != side2 ) { // printf("failed side 1 check\n"); continue; } // check if intersection point is on correct side of p2 <-> p3 as p1 t1 = (y2 - y3) / (x2 - x3); side1 = fg_sign (t1 * ((x1) - x3) + y3 - (y1)); side2 = fg_sign (t1 * ((rx) - x3) + y3 - (ry)); if ( side1 != side2 ) { // printf("failed side 2 check\n"); continue; } // check if intersection point is on correct side of p1 <-> p3 as p2 t1 = (y1 - y3) / (x1 - x3); side1 = fg_sign (t1 * ((x2) - x3) + y3 - (y2)); side2 = fg_sign (t1 * ((rx) - x3) + y3 - (ry)); if ( side1 != side2 ) { // printf("failed side 3 check\n"); continue; } // printf( "intersection point = %.2f %.2f %.2f\n", x, y, z); sgSetVec3( result, x, y, z ); return true; } // printf("\n"); return false; } void FGTileMgr::my_ssg_los( string s, ssgBranch *branch, sgMat4 m, const sgVec3 p, const sgVec3 dir ) { sgSphere *bsphere; for ( ssgEntity *kid = branch->getKid( 0 ); kid != NULL; kid = branch->getNextKid() ) { if ( kid->getTraversalMask() & SSGTRAV_HOT ) { bsphere = kid->getBSphere(); sgVec3 center; sgCopyVec3( center, bsphere->getCenter() ); sgXformPnt3( center, m ) ; // cout << s << "entity bounding sphere:" << endl; // cout << s << "center = " << center[0] << " " // << center[1] << " " << center[2] << endl; // cout << s << "radius = " << bsphere->getRadius() << endl; double radius_sqd = bsphere->getRadius() * bsphere->getRadius(); if ( sgPointLineDistSquared( center, p, dir ) < radius_sqd ) { // possible intersections if ( kid->isAKindOf ( ssgTypeBranch() ) ) { sgMat4 m_new; sgCopyMat4(m_new, m); if ( kid->isA( ssgTypeTransform() ) ) { sgMat4 xform; ((ssgTransform *)kid)->getTransform( xform ); sgPreMultMat4( m_new, xform ); } my_ssg_los( s + " ", (ssgBranch *)kid, m_new, p, dir ); } else if ( kid->isAKindOf ( ssgTypeLeaf() ) ) { sgVec3 result; if ( my_ssg_instersect_leaf( s, (ssgLeaf *)kid, m, p, dir, result ) ) { cout << "sgLOS hit: " << result[0] << "," << result[1] << "," << result[2] << endl; } } } else { // end of the line for this branch } } else { // branch requested not to be traversed } } } // Determine scenery altitude via ssg. Normally this just happens // when we render the scene, but we'd also like to be able to do this // explicitely. lat & lon are in radians. view_pos in current world // coordinate translated near (0,0,0) (in meters.) Returns result in // meters. double FGTileMgr::current_elev_ssg( const Point3D& abs_view_pos, const Point3D& view_pos ) { hitcount = 0; sgMat4 m; sgMakeIdentMat4 ( m ) ; sgVec3 sgavp, sgvp; sgSetVec3(sgavp, abs_view_pos.x(), abs_view_pos.y(), abs_view_pos.z() ); sgSetVec3(sgvp, view_pos.x(), view_pos.y(), view_pos.z() ); cout << "starting ssg_los, view pos = " << view_pos[0] << " " << view_pos[1] << " " << view_pos[2] << endl; my_ssg_los( "", scene, m, sgvp, sgavp ); } // given the current lon/lat, fill in the array of local chunks. If // the chunk isn't already in the cache, then read it from disk. int FGTileMgr::update( void ) { FGTileCache *c; FGInterface *f; FGBucket p2; static FGBucket p_last(false); static double last_lon = -1000.0; // in degrees static double last_lat = -1000.0; // in degrees int tile_diameter; int i, j, dw, dh; c = &global_tile_cache; f = current_aircraft.fdm_state; tile_diameter = current_options.get_tile_diameter(); FGBucket p1( f->get_Longitude() * RAD_TO_DEG, f->get_Latitude() * RAD_TO_DEG ); dw = tile_diameter / 2; dh = tile_diameter / 2; if ( (p1 == p_last) && (state == Running) ) { // same bucket as last time FG_LOG( FG_TERRAIN, FG_DEBUG, "Same bucket as last time" ); } else if ( (state == Start) || (state == Inited) ) { state = Running; // First time through or we have teleported, initialize the // system and load all relavant tiles FG_LOG( FG_TERRAIN, FG_INFO, "Updating Tile list for " << p1 ); FG_LOG( FG_TERRAIN, FG_INFO, " First time through ... " ); FG_LOG( FG_TERRAIN, FG_INFO, " Updating Tile list for " << p1 ); FG_LOG( FG_TERRAIN, FG_INFO, " Loading " << tile_diameter * tile_diameter << " tiles" ); // wipe/initialize tile cache c->init(); p_last.make_bad(); // build the local area list and schedule tiles for loading // start with the center tile and work out in concentric // "rings" p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG, f->get_Latitude() * RAD_TO_DEG, 0, 0 ); sched_tile( p2 ); for ( i = 3; i <= tile_diameter; i = i + 2 ) { int span = i / 2; // bottom row for ( j = -span; j <= span; ++j ) { p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG, f->get_Latitude() * RAD_TO_DEG, j, -span ); sched_tile( p2 ); } // top row for ( j = -span; j <= span; ++j ) { p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG, f->get_Latitude() * RAD_TO_DEG, j, span ); sched_tile( p2 ); } // middle rows for ( j = -span + 1; j <= span - 1; ++j ) { p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG, f->get_Latitude() * RAD_TO_DEG, -span, j ); sched_tile( p2 ); p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG, f->get_Latitude() * RAD_TO_DEG, span, j ); sched_tile( p2 ); } } /* for ( j = 0; j < tile_diameter; j++ ) { for ( i = 0; i < tile_diameter; i++ ) { // fgBucketOffset(&p1, &p2, i - dw, j - dh); p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG, f->get_Latitude() * RAD_TO_DEG, i - dw, j -dh ); sched_tile( p2 ); } } */ // Now force a load of the center tile and inner ring so we // have something to see in our first frame. for ( i = 0; i < 9; ++i ) { if ( load_queue.size() ) { FG_LOG( FG_TERRAIN, FG_DEBUG, "Load queue not empty, loading a tile" ); FGLoadRec pending = load_queue.front(); load_queue.pop_front(); load_tile( pending.b, pending.cache_index ); } } } else { // We've moved to a new bucket, we need to scroll our // structures, and load in the new tiles #if 0 // make sure load queue is flushed before doing shift while ( load_queue.size() ) { FG_LOG( FG_TERRAIN, FG_DEBUG, "Load queue not empty, flushing queue before tile shift." ); FGLoadRec pending = load_queue.front(); load_queue.pop_front(); load_tile( pending.b, pending.index ); } #endif // CURRENTLY THIS ASSUMES WE CAN ONLY MOVE TO ADJACENT TILES. // AT ULTRA HIGH SPEEDS THIS ASSUMPTION MAY NOT BE VALID IF // THE AIRCRAFT CAN SKIP A TILE IN A SINGLE ITERATION. FG_LOG( FG_TERRAIN, FG_INFO, "Updating Tile list for " << p1 ); if ( (p1.get_lon() > p_last.get_lon()) || ( (p1.get_lon() == p_last.get_lon()) && (p1.get_x() > p_last.get_x()) ) ) { FG_LOG( FG_TERRAIN, FG_INFO, " (East) Loading " << tile_diameter << " tiles" ); for ( j = 0; j < tile_diameter; j++ ) { // scrolling East // schedule new column p2 = fgBucketOffset( last_lon, last_lat, dw + 1, j - dh ); sched_tile( p2 ); } } else if ( (p1.get_lon() < p_last.get_lon()) || ( (p1.get_lon() == p_last.get_lon()) && (p1.get_x() < p_last.get_x()) ) ) { FG_LOG( FG_TERRAIN, FG_INFO, " (West) Loading " << tile_diameter << " tiles" ); for ( j = 0; j < tile_diameter; j++ ) { // scrolling West // schedule new column p2 = fgBucketOffset( last_lon, last_lat, -dw - 1, j - dh ); sched_tile( p2 ); } } if ( (p1.get_lat() > p_last.get_lat()) || ( (p1.get_lat() == p_last.get_lat()) && (p1.get_y() > p_last.get_y()) ) ) { FG_LOG( FG_TERRAIN, FG_INFO, " (North) Loading " << tile_diameter << " tiles" ); for ( i = 0; i < tile_diameter; i++ ) { // scrolling North // schedule new row p2 = fgBucketOffset( last_lon, last_lat, i - dw, dh + 1); sched_tile( p2 ); } } else if ( (p1.get_lat() < p_last.get_lat()) || ( (p1.get_lat() == p_last.get_lat()) && (p1.get_y() < p_last.get_y()) ) ) { FG_LOG( FG_TERRAIN, FG_INFO, " (South) Loading " << tile_diameter << " tiles" ); for ( i = 0; i < tile_diameter; i++ ) { // scrolling South // schedule new row p2 = fgBucketOffset( last_lon, last_lat, i - dw, -dh - 1); sched_tile( p2 ); } } } if ( load_queue.size() ) { FG_LOG( FG_TERRAIN, FG_DEBUG, "Load queue not empty, loading a tile" ); FGLoadRec pending = load_queue.front(); load_queue.pop_front(); load_tile( pending.b, pending.cache_index ); } // find our current elevation (feed in the current bucket to save work) Point3D geod_pos = Point3D( f->get_Longitude(), f->get_Latitude(), 0.0); Point3D tmp_abs_view_pos = fgGeodToCart(geod_pos); scenery.cur_elev = current_elev( f->get_Longitude(), f->get_Latitude(), tmp_abs_view_pos ); cout << "current elevation == " << scenery.cur_elev << endl; double junk = current_elev_ssg( current_view.abs_view_pos, current_view.view_pos ); cout << "current elevation (ssg) == " << junk << endl; p_last = p1; last_lon = f->get_Longitude() * RAD_TO_DEG; last_lat = f->get_Latitude() * RAD_TO_DEG; return 1; } // NEW // inrange() IS THIS POINT WITHIN POSSIBLE VIEWING RANGE ? // calculate distance from vertical tangent line at // current position to center of object. // this is equivalent to // dist = point_line_dist_squared( &(t->center), &(v->abs_view_pos), // v->local_up ); // if ( dist < FG_SQUARE(t->bounding_radius) ) { // // the compiler should inline this for us static int inrange( const double radius, const Point3D& center, const Point3D& vp, const MAT3vec up) { MAT3vec u, u1, v; // double tmp; // u = p - p0 u[0] = center.x() - vp.x(); u[1] = center.y() - vp.y(); u[2] = center.z() - vp.z(); // calculate the projection, u1, of u along d. // u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d; MAT3_SCALE_VEC(u1, up, (MAT3_DOT_PRODUCT(u, up) / MAT3_DOT_PRODUCT(up, up)) ); // v = u - u1 = vector from closest point on line, p1, to the // original point, p. MAT3_SUB_VEC(v, u, u1); return( FG_SQUARE(radius) >= MAT3_DOT_PRODUCT(v, v)); } // NEW for legibility // update this tile's geometry for current view // The Compiler should inline this static void update_tile_geometry( FGTileEntry *t, GLdouble *MODEL_VIEW) { GLfloat *m; double x, y, z; // calculate tile offset t->offset = t->center - scenery.center; x = t->offset.x(); y = t->offset.y(); z = t->offset.z(); m = t->model_view; // Calculate the model_view transformation matrix for this tile FG_MEM_COPY( m, MODEL_VIEW, 16*sizeof(GLdouble) ); // This is equivalent to doing a glTranslatef(x, y, z); m[12] += (m[0]*x + m[4]*y + m[8] *z); m[13] += (m[1]*x + m[5]*y + m[9] *z); m[14] += (m[2]*x + m[6]*y + m[10]*z); // m[15] += (m[3]*x + m[7]*y + m[11]*z); // m[3] m7[] m[11] are 0.0 see LookAt() in views.cxx // so m[15] is unchanged } // Prepare the ssg nodes ... for each tile, set it's proper // transform and update it's range selector based on current // visibilty void FGTileMgr::prep_ssg_nodes( void ) { FGTileEntry *t; float ranges[2]; ranges[0] = 0.0f; // traverse the potentially viewable tile list and update range // selector and transform for ( int i = 0; i < (int)global_tile_cache.get_size(); i++ ) { t = global_tile_cache.get_tile( i ); if ( t->is_loaded() ) { // set range selector (LOD trick) to be distance to center // of tile + bounding radius #ifndef FG_OLD_WEATHER ranges[1] = WeatherDatabase->getWeatherVisibility() + t->bounding_radius; #else ranges[1] = current_weather.get_visibility()+t->bounding_radius; #endif t->range_ptr->setRanges( ranges, 2 ); // calculate tile offset t->SetOffset( scenery.center ); // calculate ssg transform sgCoord sgcoord; sgSetCoord( &sgcoord, t->offset.x(), t->offset.y(), t->offset.z(), 0.0, 0.0, 0.0 ); t->transform_ptr->setTransform( &sgcoord ); } } }