/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Module: FGAuxiliary.cpp Author: Tony Peden, Jon Berndt Date started: 01/26/99 Purpose: Calculates additional parameters needed by the visual system, etc. Called by: FGSimExec ------------- Copyright (C) 1999 Jon S. Berndt (jon@jsbsim.org) ------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU Lesser General Public License can also be found on the world wide web at http://www.gnu.org. FUNCTIONAL DESCRIPTION -------------------------------------------------------------------------------- This class calculates various auxiliary parameters. REFERENCES Anderson, John D. "Introduction to Flight", 3rd Edition, McGraw-Hill, 1989 pgs. 112-126 HISTORY -------------------------------------------------------------------------------- 01/26/99 JSB Created %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCLUDES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include "FGAuxiliary.h" #include "FGAerodynamics.h" #include "FGPropagate.h" #include "FGAtmosphere.h" #include #include "FGAircraft.h" #include "FGInertial.h" #include "FGExternalReactions.h" #include "FGBuoyantForces.h" #include "FGGroundReactions.h" #include "FGPropulsion.h" #include namespace JSBSim { static const char *IdSrc = "$Id$"; static const char *IdHdr = ID_AUXILIARY; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CLASS IMPLEMENTATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ FGAuxiliary::FGAuxiliary(FGFDMExec* fdmex) : FGModel(fdmex) { Name = "FGAuxiliary"; vcas = veas = pt = tat = 0; psl = rhosl = 1; qbar = 0; qbarUW = 0.0; qbarUV = 0.0; Re = 0.0; Mach = 0.0; alpha = beta = 0.0; adot = bdot = 0.0; gamma = Vt = Vground = 0.0; psigt = 0.0; day_of_year = 1; seconds_in_day = 0.0; hoverbmac = hoverbcg = 0.0; tatc = RankineToCelsius(tat); vPilotAccel.InitMatrix(); vPilotAccelN.InitMatrix(); vToEyePt.InitMatrix(); vAeroPQR.InitMatrix(); vEulerRates.InitMatrix(); bind(); Debug(0); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bool FGAuxiliary::InitModel(void) { if (!FGModel::InitModel()) return false; vcas = veas = pt = tat = 0; psl = rhosl = 1; qbar = 0; qbarUW = 0.0; qbarUV = 0.0; Mach = 0.0; alpha = beta = 0.0; adot = bdot = 0.0; gamma = Vt = Vground = 0.0; psigt = 0.0; day_of_year = 1; seconds_in_day = 0.0; hoverbmac = hoverbcg = 0.0; vPilotAccel.InitMatrix(); vPilotAccelN.InitMatrix(); vToEyePt.InitMatrix(); vAeroPQR.InitMatrix(); vEulerRates.InitMatrix(); return true; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FGAuxiliary::~FGAuxiliary() { Debug(1); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bool FGAuxiliary::Run() { double A,B,D; if (FGModel::Run()) return true; // return true if error returned from base class if (FDMExec->Holding()) return false; const FGColumnVector3& vPQR = Propagate->GetPQR(); const FGColumnVector3& vUVW = Propagate->GetUVW(); const FGColumnVector3& vUVWdot = Propagate->GetUVWdot(); const FGColumnVector3& vVel = Propagate->GetVel(); p = Atmosphere->GetPressure(); rhosl = Atmosphere->GetDensitySL(); psl = Atmosphere->GetPressureSL(); sat = Atmosphere->GetTemperature(); // Rotation double cTht = Propagate->GetCosEuler(eTht); double sTht = Propagate->GetSinEuler(eTht); double cPhi = Propagate->GetCosEuler(ePhi); double sPhi = Propagate->GetSinEuler(ePhi); vEulerRates(eTht) = vPQR(eQ)*cPhi - vPQR(eR)*sPhi; if (cTht != 0.0) { vEulerRates(ePsi) = (vPQR(eQ)*sPhi + vPQR(eR)*cPhi)/cTht; vEulerRates(ePhi) = vPQR(eP) + vEulerRates(ePsi)*sTht; } // 12/16/2005, JSB: For ground handling purposes, at this time, let's ramp // in the effects of wind from 10 fps to 30 fps when there is weight on the // landing gear wheels. if (GroundReactions->GetWOW() && vUVW(eU) < 10) { vAeroPQR = vPQR; vAeroUVW = vUVW; } else if (GroundReactions->GetWOW() && vUVW(eU) < 30) { double factor = (vUVW(eU) - 10.0)/20.0; vAeroPQR = vPQR - factor*Atmosphere->GetTurbPQR(); vAeroUVW = vUVW - factor*Propagate->GetTl2b()*Atmosphere->GetTotalWindNED(); } else { FGColumnVector3 wind = Propagate->GetTl2b()*Atmosphere->GetTotalWindNED(); vAeroPQR = vPQR - Atmosphere->GetTurbPQR(); vAeroUVW = vUVW - wind; } Vt = vAeroUVW.Magnitude(); if ( Vt > 0.05) { if (vAeroUVW(eW) != 0.0) alpha = vAeroUVW(eU)*vAeroUVW(eU) > 0.0 ? atan2(vAeroUVW(eW), vAeroUVW(eU)) : 0.0; if (vAeroUVW(eV) != 0.0) beta = vAeroUVW(eU)*vAeroUVW(eU)+vAeroUVW(eW)*vAeroUVW(eW) > 0.0 ? atan2(vAeroUVW(eV), sqrt(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW))) : 0.0; double mUW = (vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW)); double signU=1; if (vAeroUVW(eU) != 0.0) signU = vAeroUVW(eU)/fabs(vAeroUVW(eU)); if ( (mUW == 0.0) || (Vt == 0.0) ) { adot = 0.0; bdot = 0.0; } else { adot = (vAeroUVW(eU)*vUVWdot(eW) - vAeroUVW(eW)*vUVWdot(eU))/mUW; bdot = (signU*mUW*vUVWdot(eV) - vAeroUVW(eV)*(vAeroUVW(eU)*vUVWdot(eU) + vAeroUVW(eW)*vUVWdot(eW)))/(Vt*Vt*sqrt(mUW)); } } else { alpha = beta = adot = bdot = 0; } Re = Vt * Aircraft->Getcbar() / Atmosphere->GetKinematicViscosity(); qbar = 0.5*Atmosphere->GetDensity()*Vt*Vt; qbarUW = 0.5*Atmosphere->GetDensity()*(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW)); qbarUV = 0.5*Atmosphere->GetDensity()*(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eV)*vAeroUVW(eV)); Mach = Vt / Atmosphere->GetSoundSpeed(); MachU = vMachUVW(eU) = vAeroUVW(eU) / Atmosphere->GetSoundSpeed(); vMachUVW(eV) = vAeroUVW(eV) / Atmosphere->GetSoundSpeed(); vMachUVW(eW) = vAeroUVW(eW) / Atmosphere->GetSoundSpeed(); // Position Vground = sqrt( vVel(eNorth)*vVel(eNorth) + vVel(eEast)*vVel(eEast) ); psigt = atan2(vVel(eEast), vVel(eNorth)); if (psigt < 0.0) psigt += 2*M_PI; gamma = atan2(-vVel(eDown), Vground); tat = sat*(1 + 0.2*Mach*Mach); // Total Temperature, isentropic flow tatc = RankineToCelsius(tat); if (MachU < 1) { // Calculate total pressure assuming isentropic flow pt = p*pow((1 + 0.2*MachU*MachU),3.5); } else { // Use Rayleigh pitot tube formula for normal shock in front of pitot tube B = 5.76*MachU*MachU/(5.6*MachU*MachU - 0.8); D = (2.8*MachU*MachU-0.4)*0.4167; pt = p*pow(B,3.5)*D; } A = pow(((pt-p)/psl+1),0.28571); if (MachU > 0.0) { vcas = sqrt(7*psl/rhosl*(A-1)); veas = sqrt(2*qbar/rhosl); } else { vcas = veas = 0.0; } vPilotAccel.InitMatrix(); if ( Vt > 1.0 ) { vAircraftAccel = Aerodynamics->GetForces() + Propulsion->GetForces() + GroundReactions->GetForces() + ExternalReactions->GetForces() + BuoyantForces->GetForces(); vAircraftAccel /= MassBalance->GetMass(); // Nz is Acceleration in "g's", along normal axis (-Z body axis) Nz = -vAircraftAccel(eZ)/Inertial->gravity(); vToEyePt = MassBalance->StructuralToBody(Aircraft->GetXYZep()); vPilotAccel = vAircraftAccel + Propagate->GetPQRdot() * vToEyePt; vPilotAccel += vPQR * (vPQR * vToEyePt); } else { // The line below handles low velocity (and on-ground) cases, basically // representing the opposite of the force that the landing gear would // exert on the ground (which is just the total weight). This eliminates // any jitter that could be introduced by the landing gear. Theoretically, // this branch could be eliminated, with a penalty of having a short // transient at startup (lasting only a fraction of a second). vPilotAccel = Propagate->GetTl2b() * FGColumnVector3( 0.0, 0.0, -Inertial->gravity() ); Nz = -vPilotAccel(eZ)/Inertial->gravity(); } vPilotAccelN = vPilotAccel/Inertial->gravity(); // VRP computation const FGLocation& vLocation = Propagate->GetLocation(); FGColumnVector3 vrpStructural = Aircraft->GetXYZvrp(); FGColumnVector3 vrpBody = MassBalance->StructuralToBody( vrpStructural ); FGColumnVector3 vrpLocal = Propagate->GetTb2l() * vrpBody; vLocationVRP = vLocation.LocalToLocation( vrpLocal ); // Recompute some derived values now that we know the dependent parameters values ... hoverbcg = Propagate->GetDistanceAGL() / Aircraft->GetWingSpan(); FGColumnVector3 vMac = Propagate->GetTb2l()*MassBalance->StructuralToBody(Aircraft->GetXYZrp()); hoverbmac = (Propagate->GetDistanceAGL() + vMac(3)) / Aircraft->GetWingSpan(); // when all model are executed, // please calculate the distance from the initial point CalculateRelativePosition(); return false; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // // A positive headwind is blowing with you, a negative headwind is blowing against you. // psi is the direction the wind is blowing *towards*. double FGAuxiliary::GetHeadWind(void) const { double psiw,vw; psiw = Atmosphere->GetWindPsi(); vw = Atmosphere->GetTotalWindNED().Magnitude(); return vw*cos(psiw - Propagate->GetEuler(ePsi)); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // // A positive crosswind is blowing towards the right (from teh perspective of the // pilot). A negative crosswind is blowing towards the -Y direction (left). // psi is the direction the wind is blowing *towards*. double FGAuxiliary::GetCrossWind(void) const { double psiw,vw; psiw = Atmosphere->GetWindPsi(); vw = Atmosphere->GetTotalWindNED().Magnitude(); return vw*sin(psiw - Propagate->GetEuler(ePsi)); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGAuxiliary::bind(void) { typedef double (FGAuxiliary::*PMF)(int) const; typedef double (FGAuxiliary::*PF)(void) const; PropertyManager->Tie("propulsion/tat-r", this, &FGAuxiliary::GetTotalTemperature); PropertyManager->Tie("propulsion/tat-c", this, &FGAuxiliary::GetTAT_C); PropertyManager->Tie("propulsion/pt-lbs_sqft", this, &FGAuxiliary::GetTotalPressure); PropertyManager->Tie("velocities/vc-fps", this, &FGAuxiliary::GetVcalibratedFPS); PropertyManager->Tie("velocities/vc-kts", this, &FGAuxiliary::GetVcalibratedKTS); PropertyManager->Tie("velocities/ve-fps", this, &FGAuxiliary::GetVequivalentFPS); PropertyManager->Tie("velocities/ve-kts", this, &FGAuxiliary::GetVequivalentKTS); PropertyManager->Tie("velocities/machU", this, &FGAuxiliary::GetMachU); PropertyManager->Tie("velocities/p-aero-rad_sec", this, eX, (PMF)&FGAuxiliary::GetAeroPQR); PropertyManager->Tie("velocities/q-aero-rad_sec", this, eY, (PMF)&FGAuxiliary::GetAeroPQR); PropertyManager->Tie("velocities/r-aero-rad_sec", this, eZ, (PMF)&FGAuxiliary::GetAeroPQR); PropertyManager->Tie("velocities/phidot-rad_sec", this, ePhi, (PMF)&FGAuxiliary::GetEulerRates); PropertyManager->Tie("velocities/thetadot-rad_sec", this, eTht, (PMF)&FGAuxiliary::GetEulerRates); PropertyManager->Tie("velocities/psidot-rad_sec", this, ePsi, (PMF)&FGAuxiliary::GetEulerRates); PropertyManager->Tie("velocities/u-aero-fps", this, eU, (PMF)&FGAuxiliary::GetAeroUVW); PropertyManager->Tie("velocities/v-aero-fps", this, eV, (PMF)&FGAuxiliary::GetAeroUVW); PropertyManager->Tie("velocities/w-aero-fps", this, eW, (PMF)&FGAuxiliary::GetAeroUVW); PropertyManager->Tie("velocities/vt-fps", this, &FGAuxiliary::GetVt, &FGAuxiliary::SetVt, true); PropertyManager->Tie("velocities/mach", this, &FGAuxiliary::GetMach, &FGAuxiliary::SetMach, true); PropertyManager->Tie("velocities/vg-fps", this, &FGAuxiliary::GetVground); PropertyManager->Tie("accelerations/a-pilot-x-ft_sec2", this, eX, (PMF)&FGAuxiliary::GetPilotAccel); PropertyManager->Tie("accelerations/a-pilot-y-ft_sec2", this, eY, (PMF)&FGAuxiliary::GetPilotAccel); PropertyManager->Tie("accelerations/a-pilot-z-ft_sec2", this, eZ, (PMF)&FGAuxiliary::GetPilotAccel); PropertyManager->Tie("accelerations/n-pilot-x-norm", this, eX, (PMF)&FGAuxiliary::GetNpilot); PropertyManager->Tie("accelerations/n-pilot-y-norm", this, eY, (PMF)&FGAuxiliary::GetNpilot); PropertyManager->Tie("accelerations/n-pilot-z-norm", this, eZ, (PMF)&FGAuxiliary::GetNpilot); PropertyManager->Tie("accelerations/Nz", this, &FGAuxiliary::GetNz); /* PropertyManager->Tie("atmosphere/headwind-fps", this, &FGAuxiliary::GetHeadWind, true); PropertyManager->Tie("atmosphere/crosswind-fps", this, &FGAuxiliary::GetCrossWind, true); */ PropertyManager->Tie("aero/alpha-rad", this, (PF)&FGAuxiliary::Getalpha, &FGAuxiliary::Setalpha, true); PropertyManager->Tie("aero/beta-rad", this, (PF)&FGAuxiliary::Getbeta, &FGAuxiliary::Setbeta, true); PropertyManager->Tie("aero/mag-beta-rad", this, (PF)&FGAuxiliary::GetMagBeta); PropertyManager->Tie("aero/alpha-deg", this, inDegrees, (PMF)&FGAuxiliary::Getalpha); PropertyManager->Tie("aero/beta-deg", this, inDegrees, (PMF)&FGAuxiliary::Getbeta); PropertyManager->Tie("aero/mag-beta-deg", this, inDegrees, (PMF)&FGAuxiliary::GetMagBeta); PropertyManager->Tie("aero/Re", this, &FGAuxiliary::GetReynoldsNumber); PropertyManager->Tie("aero/qbar-psf", this, &FGAuxiliary::Getqbar, &FGAuxiliary::Setqbar, true); PropertyManager->Tie("aero/qbarUW-psf", this, &FGAuxiliary::GetqbarUW, &FGAuxiliary::SetqbarUW, true); PropertyManager->Tie("aero/qbarUV-psf", this, &FGAuxiliary::GetqbarUV, &FGAuxiliary::SetqbarUV, true); PropertyManager->Tie("aero/alphadot-rad_sec", this, (PF)&FGAuxiliary::Getadot, &FGAuxiliary::Setadot, true); PropertyManager->Tie("aero/betadot-rad_sec", this, (PF)&FGAuxiliary::Getbdot, &FGAuxiliary::Setbdot, true); PropertyManager->Tie("aero/alphadot-deg_sec", this, inDegrees, (PMF)&FGAuxiliary::Getadot); PropertyManager->Tie("aero/betadot-deg_sec", this, inDegrees, (PMF)&FGAuxiliary::Getbdot); PropertyManager->Tie("aero/h_b-cg-ft", this, &FGAuxiliary::GetHOverBCG); PropertyManager->Tie("aero/h_b-mac-ft", this, &FGAuxiliary::GetHOverBMAC); PropertyManager->Tie("flight-path/gamma-rad", this, &FGAuxiliary::GetGamma, &FGAuxiliary::SetGamma); PropertyManager->Tie("flight-path/psi-gt-rad", this, &FGAuxiliary::GetGroundTrack); PropertyManager->Tie("position/distance-from-start-lon-mt", this, &FGAuxiliary::GetLongitudeRelativePosition); PropertyManager->Tie("position/distance-from-start-lat-mt", this, &FGAuxiliary::GetLatitudeRelativePosition); PropertyManager->Tie("position/distance-from-start-mag-mt", this, &FGAuxiliary::GetDistanceRelativePosition); PropertyManager->Tie("position/vrp-gc-latitude_deg", &vLocationVRP, &FGLocation::GetLatitudeDeg); PropertyManager->Tie("position/vrp-longitude_deg", &vLocationVRP, &FGLocation::GetLongitudeDeg); PropertyManager->Tie("position/vrp-radius-ft", &vLocationVRP, &FGLocation::GetRadius); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGAuxiliary::CalculateRelativePosition(void) { const double earth_radius_mt = Inertial->GetRefRadius()*fttom; lat_relative_position=(FDMExec->GetPropagate()->GetLatitude() - FDMExec->GetIC()->GetLatitudeDegIC() *degtorad)*earth_radius_mt; lon_relative_position=(FDMExec->GetPropagate()->GetLongitude() - FDMExec->GetIC()->GetLongitudeDegIC()*degtorad)*earth_radius_mt; relative_position = sqrt(lat_relative_position*lat_relative_position + lon_relative_position*lon_relative_position); }; //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // The bitmasked value choices are as follows: // unset: In this case (the default) JSBSim would only print // out the normally expected messages, essentially echoing // the config files as they are read. If the environment // variable is not set, debug_lvl is set to 1 internally // 0: This requests JSBSim not to output any messages // whatsoever. // 1: This value explicity requests the normal JSBSim // startup messages // 2: This value asks for a message to be printed out when // a class is instantiated // 4: When this value is set, a message is displayed when a // FGModel object executes its Run() method // 8: When this value is set, various runtime state variables // are printed out periodically // 16: When set various parameters are sanity checked and // a message is printed out when they go out of bounds void FGAuxiliary::Debug(int from) { if (debug_lvl <= 0) return; if (debug_lvl & 1) { // Standard console startup message output if (from == 0) { // Constructor } } if (debug_lvl & 2 ) { // Instantiation/Destruction notification if (from == 0) cout << "Instantiated: FGAuxiliary" << endl; if (from == 1) cout << "Destroyed: FGAuxiliary" << endl; } if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects } if (debug_lvl & 8 ) { // Runtime state variables } if (debug_lvl & 16) { // Sanity checking if (Mach > 100 || Mach < 0.00) cout << "FGPropagate::Mach is out of bounds: " << Mach << endl; if (qbar > 1e6 || qbar < 0.00) cout << "FGPropagate::qbar is out of bounds: " << qbar << endl; } if (debug_lvl & 64) { if (from == 0) { // Constructor cout << IdSrc << endl; cout << IdHdr << endl; } } } } // namespace JSBSim