// UFO.cxx -- interface to the "UFO" flight model // // Written by Curtis Olson, started October 1999. // Slightly modified from MagicCarpet.cxx by Jonathan Polley, April 2002 // // Copyright (C) 1999-2002 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // #include #include #include #include #include
#include
#include "UFO.hxx" const double throttle_damp = 0.05; const double aileron_damp = 0.01; const double elevator_damp = 0.01; FGUFO::FGUFO( double dt ) : Throttle(0.0), Aileron(0.0), Elevator(0.0) { // set_delta_t( dt ); } FGUFO::~FGUFO() { } // Initialize the UFO flight model, dt is the time increment // for each subsequent iteration through the EOM void FGUFO::init() { common_init(); } // Run an iteration of the EOM (equations of motion) void FGUFO::update( double dt ) { // cout << "FGLaRCsim::update()" << endl; if (is_suspended()) return; int multiloop = _calc_multiloop(dt); double time_step = dt; // read the throttle double th = globals->get_controls()->get_throttle( 0 ); if (globals->get_controls()->get_brake(0)) { th = -th; } Throttle = th * throttle_damp + Throttle * (1 - throttle_damp); // read the state of the control surfaces Aileron = globals->get_controls()->get_aileron() * aileron_damp + Aileron * (1 - aileron_damp); Elevator = globals->get_controls()->get_elevator() * elevator_damp + Elevator * (1 - elevator_damp); // the velocity of the aircraft double velocity = Throttle * 2000; // meters/sec double old_pitch = get_Theta(); double pitch_rate = SGD_PI_4; // assume I will be pitching up double target_pitch = -Elevator * SGD_PI_2; // if I am pitching down if (old_pitch > target_pitch) // set the pitch rate to negative (down) pitch_rate *= -1; double pitch = old_pitch + (pitch_rate * time_step); // if I am pitching up if (pitch_rate > 0.0) { // clip the pitch at the limit if ( pitch > target_pitch) { pitch = target_pitch; } } // if I am pitching down else if (pitch_rate < 0.0) { // clip the pitch at the limit if ( pitch < target_pitch) { pitch = target_pitch; } } double old_roll = get_Phi(); double roll_rate = SGD_PI_4; double target_roll = Aileron * SGD_PI_2; if (old_roll > target_roll) roll_rate *= -1; double roll = old_roll + (roll_rate * time_step); // if I am rolling CW if (roll_rate > 0.0) { // clip the roll at the limit if ( roll > target_roll) { roll = target_roll; } } // if I am rolling CCW else if (roll_rate < 0.0) { // clip the roll at the limit if ( roll < target_roll) { roll = target_roll; } } // the vertical speed of the aircraft double real_climb_rate = sin (pitch) * SG_METER_TO_FEET * velocity; // feet/sec _set_Climb_Rate( -Elevator * 10.0 ); double climb = real_climb_rate * time_step; // the lateral speed of the aircraft double speed = cos (pitch) * velocity; // meters/sec double dist = speed * time_step; double kts = velocity * SG_METER_TO_NM * 3600.0; _set_V_equiv_kts( kts ); _set_V_calibrated_kts( kts ); _set_V_ground_speed( kts ); // angle of turn double turn_rate = sin(roll) * SGD_PI_4; // radians/sec double turn = turn_rate * time_step; // update (lon/lat) position double lat2, lon2, az2; if ( fabs(speed) > SG_EPSILON ) { geo_direct_wgs_84 ( get_Altitude(), get_Latitude() * SGD_RADIANS_TO_DEGREES, get_Longitude() * SGD_RADIANS_TO_DEGREES, get_Psi() * SGD_RADIANS_TO_DEGREES, dist, &lat2, &lon2, &az2 ); _set_Longitude( lon2 * SGD_DEGREES_TO_RADIANS ); _set_Latitude( lat2 * SGD_DEGREES_TO_RADIANS ); } // cout << "lon error = " << fabs(end.x()*SGD_RADIANS_TO_DEGREES - lon2) // << " lat error = " << fabs(end.y()*SGD_RADIANS_TO_DEGREES - lat2) // << endl; double sl_radius, lat_geoc; sgGeodToGeoc( get_Latitude(), get_Altitude(), &sl_radius, &lat_geoc ); // update euler angles _set_Euler_Angles( roll, pitch, fmod(get_Psi() + turn, SGD_2PI) ); _set_Euler_Rates(0,0,0); _set_Geocentric_Position( lat_geoc, get_Longitude(), sl_radius + get_Altitude() + climb ); // cout << "sea level radius (ft) = " << sl_radius << endl; // cout << "(setto) sea level radius (ft) = " << get_Sea_level_radius() << endl; _set_Sea_level_radius( sl_radius * SG_METER_TO_FEET); _set_Altitude( get_Altitude() + climb ); }