/*************************************************************************** TITLE: ls_step ---------------------------------------------------------------------------- FUNCTION: Integration routine for equations of motion (vehicle states) ---------------------------------------------------------------------------- MODULE STATUS: developmental ---------------------------------------------------------------------------- GENEALOGY: Written 920802 by Bruce Jackson. Based upon equations given in reference [1] and a Matrix-X/System Build block diagram model of equations of motion coded by David Raney at NASA-Langley in June of 1992. ---------------------------------------------------------------------------- DESIGNED BY: Bruce Jackson CODED BY: Bruce Jackson MAINTAINED BY: ---------------------------------------------------------------------------- MODIFICATION HISTORY: DATE PURPOSE BY 921223 Modified calculation of Phi and Psi to use the "atan2" routine rather than the "atan" to allow full circular angles. "atan" limits to +/- pi/2. EBJ 940111 Changed from oldstyle include file ls_eom.h; also changed from DATA to SCALAR type. EBJ 950207 Initialized Alpha_dot and Beta_dot to zero on first pass; calculated thereafter. EBJ 950224 Added logic to avoid adding additional increment to V_east in case V_east already accounts for rotating earth. EBJ CURRENT RCS HEADER: $Header$ $Log$ Revision 1.4 2001/03/24 05:03:12 curt SG-ified logstream. Revision 1.3 2000/10/23 22:34:55 curt I tested: LaRCsim c172 on-ground and in-air starts, reset: all work UIUC Cessna172 on-ground and in-air starts work as expected, reset results in an aircraft that is upside down but does not crash FG. I don't know what it was like before, so it may well be no change. JSBSim c172 and X15 in-air starts work fine, resets now work (and are trimmed), on-ground starts do not -- the c172 ends up on its back. I suspect this is no worse than before. I did not test: Balloon (the weather code returns nan's for the atmosphere data --this is in the weather module and apparently is a linux only bug) ADA (don't know how) MagicCarpet (needs work yet) External (don't know how) known to be broken: LaRCsim c172 on-ground starts with a negative terrain altitude (this happens at KPAO when the scenery is not present). The FDM inits to about 50 feet AGL and the model falls to the ground. It does stay upright, however, and seems to be fine once it settles out, FWIW. To do: --implement set_Model on the bus --bring Christian's weather data into JSBSim -- add default method to bus for updating things like the sin and cos of latitude (for Balloon, MagicCarpet) -- lots of cleanup The files: src/FDM/flight.cxx src/FDM/flight.hxx -- all data members now declared protected instead of private. -- eliminated all but a small set of 'setters', no change to getters. -- that small set is declared virtual, the default implementation provided preserves the old behavior -- all of the vector data members are now initialized. -- added busdump() method -- SG_LOG's all the bus data when called, useful for diagnostics. src/FDM/ADA.cxx -- bus data members now directly assigned to src/FDM/Balloon.cxx -- bus data members now directly assigned to -- changed V_equiv_kts to V_calibrated_kts src/FDM/JSBSim.cxx src/FDM/JSBSim.hxx -- bus data members now directly assigned to -- implemented the FGInterface virtual setters with JSBSim specific logic -- changed the static FDMExec to a dynamic fdmex (needed so that the JSBSim object can be deleted when a model change is called for) -- implemented constructor and destructor, moved some of the logic formerly in init() to constructor -- added logic to bring up FGEngInterface objects and set the RPM and throttle values. src/FDM/LaRCsim.cxx src/FDM/LaRCsim.hxx -- bus data members now directly assigned to -- implemented the FGInterface virtual setters with LaRCsim specific logic, uses LaRCsimIC -- implemented constructor and destructor, moved some of the logic formerly in init() to constructor -- moved default inertias to here from fg_init.cxx -- eliminated the climb rate calculation. The equivalent, climb_rate = -1*vdown, is now in copy_from_LaRCsim(). src/FDM/LaRCsimIC.cxx src/FDM/LaRCsimIC.hxx -- similar to FGInitialCondition, this class has all the logic needed to turn data like Vc and Mach into the more fundamental quantities LaRCsim needs to initialize. -- put it in src/FDM since it is a class src/FDM/MagicCarpet.cxx -- bus data members now directly assigned to src/FDM/Makefile.am -- adds LaRCsimIC.hxx and cxx src/FDM/JSBSim/FGAtmosphere.h src/FDM/JSBSim/FGDefs.h src/FDM/JSBSim/FGInitialCondition.cpp src/FDM/JSBSim/FGInitialCondition.h src/FDM/JSBSim/JSBSim.cpp -- changes to accomodate the new bus src/FDM/LaRCsim/atmos_62.h src/FDM/LaRCsim/ls_geodesy.h -- surrounded prototypes with #ifdef __cplusplus ... #endif , functions here are needed in LaRCsimIC src/FDM/LaRCsim/c172_main.c src/FDM/LaRCsim/cherokee_aero.c src/FDM/LaRCsim/ls_aux.c src/FDM/LaRCsim/ls_constants.h src/FDM/LaRCsim/ls_geodesy.c src/FDM/LaRCsim/ls_geodesy.h src/FDM/LaRCsim/ls_step.c src/FDM/UIUCModel/uiuc_betaprobe.cpp -- changed PI to LS_PI, eliminates preprocessor naming conflict with weather module src/FDM/LaRCsim/ls_interface.c src/FDM/LaRCsim/ls_interface.h -- added function ls_set_model_dt() src/Main/bfi.cxx -- eliminated calls that set the NED speeds to body components. They are no longer needed and confuse the new bus. src/Main/fg_init.cxx -- eliminated calls that just brought the bus data up-to-date (e.g. set_sin_cos_latitude). or set default values. The bus now handles the defaults and updates itself when the setters are called (for LaRCsim and JSBSim). A default method for doing this needs to be added to the bus. -- added fgVelocityInit() to set the speed the user asked for. Both JSBSim and LaRCsim can now be initialized using any of: vc,mach, NED components, UVW components. src/Main/main.cxx --eliminated call to fgFDMSetGroundElevation, this data is now 'pulled' onto the bus every update() src/Main/options.cxx src/Main/options.hxx -- added enum to keep track of the speed requested by the user -- eliminated calls to set NED velocity properties to body speeds, they are no longer needed. -- added options for the NED components. src/Network/garmin.cxx src/Network/nmea.cxx --eliminated calls that just brought the bus data up-to-date (e.g. set_sin_cos_latitude). The bus now updates itself when the setters are called (for LaRCsim and JSBSim). A default method for doing this needs to be added to the bus. -- changed set_V_equiv_kts to set_V_calibrated_kts. set_V_equiv_kts no longer exists ( get_V_equiv_kts still does, though) src/WeatherCM/FGLocalWeatherDatabase.cpp -- commented out the code to put the weather data on the bus, a different scheme for this is needed. Revision 1.2 1999/10/29 16:08:33 curt Added flaps support to c172 model. Revision 1.1.1.1 1999/06/17 18:07:33 curt Start of 0.7.x branch Revision 1.1.1.1 1999/04/05 21:32:45 curt Start of 0.6.x branch. Revision 1.4 1998/08/24 20:09:27 curt Code optimization tweaks from Norman Vine. Revision 1.3 1998/07/12 03:11:04 curt Removed some printf()'s. Fixed the autopilot integration so it should be able to update it's control positions every time the internal flight model loop is run, and not just once per rendered frame. Added a routine to do the necessary stuff to force an arbitrary altitude change. Gave the Navion engine just a tad more power. Revision 1.2 1998/01/19 18:40:28 curt Tons of little changes to clean up the code and to remove fatal errors when building with the c++ compiler. Revision 1.1 1997/05/29 00:09:59 curt Initial Flight Gear revision. * Revision 1.5 1995/03/02 20:24:13 bjax * Added logic to avoid adding additional increment to V_east * in case V_east already accounts for rotating earth. EBJ * * Revision 1.4 1995/02/07 20:52:21 bjax * Added initialization of Alpha_dot and Beta_dot to zero on first * pass; they get calculated by ls_aux on next pass... EBJ * * Revision 1.3 1994/01/11 19:01:12 bjax * Changed from DATA to SCALAR type; also fixed header files (was ls_eom.h) * * Revision 1.2 1993/06/02 15:03:09 bjax * Moved initialization of geocentric position to subroutine ls_geod_to_geoc. * * Revision 1.1 92/12/30 13:16:11 bjax * Initial revision * ---------------------------------------------------------------------------- REFERENCES: [ 1] McFarland, Richard E.: "A Standard Kinematic Model for Flight Simulation at NASA-Ames", NASA CR-2497, January 1975 [ 2] ANSI/AIAA R-004-1992 "Recommended Practice: Atmos- pheric and Space Flight Vehicle Coordinate Systems", February 1992 ---------------------------------------------------------------------------- CALLED BY: ---------------------------------------------------------------------------- CALLS TO: None. ---------------------------------------------------------------------------- INPUTS: State derivatives ---------------------------------------------------------------------------- OUTPUTS: States --------------------------------------------------------------------------*/ #include "ls_types.h" #include "ls_constants.h" #include "ls_generic.h" #include "ls_accel.h" #include "ls_aux.h" #include "ls_model.h" #include "ls_step.h" #include "ls_geodesy.h" #include "ls_gravity.h" /* #include "ls_sim_control.h" */ #include extern SCALAR Simtime; /* defined in ls_main.c */ void ls_step( SCALAR dt, int Initialize ) { static int inited = 0; SCALAR dth; static SCALAR v_dot_north_past, v_dot_east_past, v_dot_down_past; static SCALAR latitude_dot_past, longitude_dot_past, radius_dot_past; static SCALAR p_dot_body_past, q_dot_body_past, r_dot_body_past; SCALAR p_local_in_body, q_local_in_body, r_local_in_body; SCALAR epsilon, inv_eps, local_gnd_veast; SCALAR e_dot_0, e_dot_1, e_dot_2, e_dot_3; static SCALAR e_0, e_1, e_2, e_3; static SCALAR e_dot_0_past, e_dot_1_past, e_dot_2_past, e_dot_3_past; SCALAR cos_Lat_geocentric, inv_Radius_to_vehicle; /* I N I T I A L I Z A T I O N */ if ( (inited == 0) || (Initialize != 0) ) { /* Set past values to zero */ v_dot_north_past = v_dot_east_past = v_dot_down_past = 0; latitude_dot_past = longitude_dot_past = radius_dot_past = 0; p_dot_body_past = q_dot_body_past = r_dot_body_past = 0; e_dot_0_past = e_dot_1_past = e_dot_2_past = e_dot_3_past = 0; /* Initialize geocentric position from geodetic latitude and altitude */ ls_geod_to_geoc( Latitude, Altitude, &Sea_level_radius, &Lat_geocentric); Earth_position_angle = 0; Lon_geocentric = Longitude; Radius_to_vehicle = Altitude + Sea_level_radius; /* Correct eastward velocity to account for earths' rotation, if necessary */ local_gnd_veast = OMEGA_EARTH*Sea_level_radius*cos(Lat_geocentric); if( fabs(V_east - V_east_rel_ground) < 0.8*local_gnd_veast ) V_east = V_east + local_gnd_veast; /* Initialize quaternions and transformation matrix from Euler angles */ e_0 = cos(Psi*0.5)*cos(Theta*0.5)*cos(Phi*0.5) + sin(Psi*0.5)*sin(Theta*0.5)*sin(Phi*0.5); e_1 = cos(Psi*0.5)*cos(Theta*0.5)*sin(Phi*0.5) - sin(Psi*0.5)*sin(Theta*0.5)*cos(Phi*0.5); e_2 = cos(Psi*0.5)*sin(Theta*0.5)*cos(Phi*0.5) + sin(Psi*0.5)*cos(Theta*0.5)*sin(Phi*0.5); e_3 =-cos(Psi*0.5)*sin(Theta*0.5)*sin(Phi*0.5) + sin(Psi*0.5)*cos(Theta*0.5)*cos(Phi*0.5); T_local_to_body_11 = e_0*e_0 + e_1*e_1 - e_2*e_2 - e_3*e_3; T_local_to_body_12 = 2*(e_1*e_2 + e_0*e_3); T_local_to_body_13 = 2*(e_1*e_3 - e_0*e_2); T_local_to_body_21 = 2*(e_1*e_2 - e_0*e_3); T_local_to_body_22 = e_0*e_0 - e_1*e_1 + e_2*e_2 - e_3*e_3; T_local_to_body_23 = 2*(e_2*e_3 + e_0*e_1); T_local_to_body_31 = 2*(e_1*e_3 + e_0*e_2); T_local_to_body_32 = 2*(e_2*e_3 - e_0*e_1); T_local_to_body_33 = e_0*e_0 - e_1*e_1 - e_2*e_2 + e_3*e_3; /* Calculate local gravitation acceleration */ ls_gravity( Radius_to_vehicle, Lat_geocentric, &Gravity ); /* Initialize vehicle model */ ls_aux(); ls_model(0.0, 0); /* Calculate initial accelerations */ ls_accel(); /* Initialize auxiliary variables */ ls_aux(); Alpha_dot = 0.; Beta_dot = 0.; /* set flag; disable integrators */ inited = -1; dt = 0.0; } /* Update time */ dth = 0.5*dt; Simtime = Simtime + dt; /* L I N E A R V E L O C I T I E S */ /* Integrate linear accelerations to get velocities */ /* Using predictive Adams-Bashford algorithm */ V_north = V_north + dth*(3*V_dot_north - v_dot_north_past); V_east = V_east + dth*(3*V_dot_east - v_dot_east_past ); V_down = V_down + dth*(3*V_dot_down - v_dot_down_past ); /* record past states */ v_dot_north_past = V_dot_north; v_dot_east_past = V_dot_east; v_dot_down_past = V_dot_down; /* Calculate trajectory rate (geocentric coordinates) */ inv_Radius_to_vehicle = 1.0/Radius_to_vehicle; cos_Lat_geocentric = cos(Lat_geocentric); if ( cos_Lat_geocentric != 0) { Longitude_dot = V_east/(Radius_to_vehicle*cos_Lat_geocentric); } Latitude_dot = V_north*inv_Radius_to_vehicle; Radius_dot = -V_down; /* A N G U L A R V E L O C I T I E S A N D P O S I T I O N S */ /* Integrate rotational accelerations to get velocities */ P_body = P_body + dth*(3*P_dot_body - p_dot_body_past); Q_body = Q_body + dth*(3*Q_dot_body - q_dot_body_past); R_body = R_body + dth*(3*R_dot_body - r_dot_body_past); /* Save past states */ p_dot_body_past = P_dot_body; q_dot_body_past = Q_dot_body; r_dot_body_past = R_dot_body; /* Calculate local axis frame rates due to travel over curved earth */ P_local = V_east*inv_Radius_to_vehicle; Q_local = -V_north*inv_Radius_to_vehicle; R_local = -V_east*tan(Lat_geocentric)*inv_Radius_to_vehicle; /* Transform local axis frame rates to body axis rates */ p_local_in_body = T_local_to_body_11*P_local + T_local_to_body_12*Q_local + T_local_to_body_13*R_local; q_local_in_body = T_local_to_body_21*P_local + T_local_to_body_22*Q_local + T_local_to_body_23*R_local; r_local_in_body = T_local_to_body_31*P_local + T_local_to_body_32*Q_local + T_local_to_body_33*R_local; /* Calculate total angular rates in body axis */ P_total = P_body - p_local_in_body; Q_total = Q_body - q_local_in_body; R_total = R_body - r_local_in_body; /* Transform to quaternion rates (see Appendix E in [2]) */ e_dot_0 = 0.5*( -P_total*e_1 - Q_total*e_2 - R_total*e_3 ); e_dot_1 = 0.5*( P_total*e_0 - Q_total*e_3 + R_total*e_2 ); e_dot_2 = 0.5*( P_total*e_3 + Q_total*e_0 - R_total*e_1 ); e_dot_3 = 0.5*( -P_total*e_2 + Q_total*e_1 + R_total*e_0 ); /* Integrate using trapezoidal as before */ e_0 = e_0 + dth*(e_dot_0 + e_dot_0_past); e_1 = e_1 + dth*(e_dot_1 + e_dot_1_past); e_2 = e_2 + dth*(e_dot_2 + e_dot_2_past); e_3 = e_3 + dth*(e_dot_3 + e_dot_3_past); /* calculate orthagonality correction - scale quaternion to unity length */ epsilon = sqrt(e_0*e_0 + e_1*e_1 + e_2*e_2 + e_3*e_3); inv_eps = 1/epsilon; e_0 = inv_eps*e_0; e_1 = inv_eps*e_1; e_2 = inv_eps*e_2; e_3 = inv_eps*e_3; /* Save past values */ e_dot_0_past = e_dot_0; e_dot_1_past = e_dot_1; e_dot_2_past = e_dot_2; e_dot_3_past = e_dot_3; /* Update local to body transformation matrix */ T_local_to_body_11 = e_0*e_0 + e_1*e_1 - e_2*e_2 - e_3*e_3; T_local_to_body_12 = 2*(e_1*e_2 + e_0*e_3); T_local_to_body_13 = 2*(e_1*e_3 - e_0*e_2); T_local_to_body_21 = 2*(e_1*e_2 - e_0*e_3); T_local_to_body_22 = e_0*e_0 - e_1*e_1 + e_2*e_2 - e_3*e_3; T_local_to_body_23 = 2*(e_2*e_3 + e_0*e_1); T_local_to_body_31 = 2*(e_1*e_3 + e_0*e_2); T_local_to_body_32 = 2*(e_2*e_3 - e_0*e_1); T_local_to_body_33 = e_0*e_0 - e_1*e_1 - e_2*e_2 + e_3*e_3; /* Calculate Euler angles */ Theta = asin( -T_local_to_body_13 ); if( T_local_to_body_11 == 0 ) Psi = 0; else Psi = atan2( T_local_to_body_12, T_local_to_body_11 ); if( T_local_to_body_33 == 0 ) Phi = 0; else Phi = atan2( T_local_to_body_23, T_local_to_body_33 ); /* Resolve Psi to 0 - 359.9999 */ if (Psi < 0 ) Psi = Psi + 2*LS_PI; /* L I N E A R P O S I T I O N S */ /* Trapezoidal acceleration for position */ Lat_geocentric = Lat_geocentric + dth*(Latitude_dot + latitude_dot_past ); Lon_geocentric = Lon_geocentric + dth*(Longitude_dot + longitude_dot_past); Radius_to_vehicle = Radius_to_vehicle + dth*(Radius_dot + radius_dot_past ); Earth_position_angle = Earth_position_angle + dt*OMEGA_EARTH; /* Save past values */ latitude_dot_past = Latitude_dot; longitude_dot_past = Longitude_dot; radius_dot_past = Radius_dot; /* end of ls_step */ } /*************************************************************************/