// groundcache.cxx -- carries a small subset of the scenegraph near the vehicle // // Written by Mathias Froehlich, started Nov 2004. // // Copyright (C) 2004, 2009 Mathias Froehlich - Mathias.Froehlich@web.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include
#include #include #include "flight.hxx" #include "groundcache.hxx" using namespace simgear; class FGGroundCache::CacheFill : public osg::NodeVisitor { public: CacheFill(const SGVec3d& center, const double& radius, const double& startTime, const double& endTime) : osg::NodeVisitor(osg::NodeVisitor::TRAVERSE_ACTIVE_CHILDREN), _center(center), _radius(radius), _startTime(startTime), _endTime(endTime) { setTraversalMask(SG_NODEMASK_TERRAIN_BIT); } virtual void apply(osg::Node& node) { if (!testBoundingSphere(node.getBound())) return; addBoundingVolume(node); } virtual void apply(osg::Group& group) { if (!testBoundingSphere(group.getBound())) return; simgear::BVHSubTreeCollector::NodeList parentNodeList; mSubTreeCollector.pushNodeList(parentNodeList); traverse(group); addBoundingVolume(group); mSubTreeCollector.popNodeList(parentNodeList); } virtual void apply(osg::Transform& transform) { handleTransform(transform); } virtual void apply(osg::Camera& camera) { if (camera.getRenderOrder() != osg::Camera::NESTED_RENDER) return; handleTransform(camera); } virtual void apply(osg::CameraView& transform) { handleTransform(transform); } virtual void apply(osg::MatrixTransform& transform) { handleTransform(transform); } virtual void apply(osg::PositionAttitudeTransform& transform) { handleTransform(transform); } void handleTransform(osg::Transform& transform) { // Hmm, may be this needs to be refined somehow ... if (transform.getReferenceFrame() != osg::Transform::RELATIVE_RF) return; if (!testBoundingSphere(transform.getBound())) return; osg::Matrix inverseMatrix; if (!transform.computeWorldToLocalMatrix(inverseMatrix, this)) return; osg::Matrix matrix; if (!transform.computeLocalToWorldMatrix(matrix, this)) return; // Look for a velocity note const SGSceneUserData::Velocity* velocity = getVelocity(transform); SGVec3d center = _center; _center = SGVec3d(inverseMatrix.preMult(_center.osg())); double radius = _radius; if (velocity) _radius += (_endTime - _startTime)*norm(velocity->linear); simgear::BVHSubTreeCollector::NodeList parentNodeList; mSubTreeCollector.pushNodeList(parentNodeList); addBoundingVolume(transform); traverse(transform); if (mSubTreeCollector.haveChildren()) { if (velocity) { simgear::BVHMotionTransform* bvhTransform; bvhTransform = new simgear::BVHMotionTransform; bvhTransform->setToWorldTransform(SGMatrixd(matrix.ptr())); bvhTransform->setLinearVelocity(velocity->linear); bvhTransform->setAngularVelocity(velocity->angular); bvhTransform->setReferenceTime(_startTime); bvhTransform->setEndTime(_endTime); bvhTransform->setId(velocity->id); mSubTreeCollector.popNodeList(parentNodeList, bvhTransform); } else { simgear::BVHTransform* bvhTransform; bvhTransform = new simgear::BVHTransform; bvhTransform->setToWorldTransform(SGMatrixd(matrix.ptr())); mSubTreeCollector.popNodeList(parentNodeList, bvhTransform); } } else { mSubTreeCollector.popNodeList(parentNodeList); } _center = center; _radius = radius; } const SGSceneUserData::Velocity* getVelocity(osg::Node& node) { SGSceneUserData* userData = SGSceneUserData::getSceneUserData(&node); if (!userData) return 0; return userData->getVelocity(); } simgear::BVHNode* getNodeBoundingVolume(osg::Node& node) { SGSceneUserData* userData = SGSceneUserData::getSceneUserData(&node); if (!userData) return 0; return userData->getBVHNode(); } void addBoundingVolume(osg::Node& node) { simgear::BVHNode* bvNode = getNodeBoundingVolume(node); if (!bvNode) return; // Get that part of the local bv tree that intersects our sphere // of interrest. mSubTreeCollector.setSphere(SGSphered(_center, _radius)); bvNode->accept(mSubTreeCollector); } bool testBoundingSphere(const osg::BoundingSphere& bound) const { if (!bound.valid()) return false; double maxDist = bound._radius + _radius; return distSqr(SGVec3d(bound._center), _center) <= maxDist*maxDist; } SGSharedPtr getBVHNode() const { return mSubTreeCollector.getNode(); } private: SGVec3d _center; double _radius; double _startTime; double _endTime; simgear::BVHSubTreeCollector mSubTreeCollector; }; FGGroundCache::FGGroundCache() : _altitude(0), _material(0), cache_ref_time(0), _wire(0), reference_wgs84_point(SGVec3d(0, 0, 0)), reference_vehicle_radius(0), down(0.0, 0.0, 0.0), found_ground(false) { } FGGroundCache::~FGGroundCache() { } bool FGGroundCache::prepare_ground_cache(double ref_time, const SGVec3d& pt, double rad) { // Empty cache. found_ground = false; SGGeod geodPt = SGGeod::fromCart(pt); // Don't blow away the cache ground_radius and stuff if there's no // scenery if (!globals->get_tile_mgr()->scenery_available(geodPt.getLatitudeDeg(), geodPt.getLongitudeDeg(), rad)) return false; _altitude = 0; // If we have an active wire, get some more area into the groundcache if (_wire) rad = SGMiscd::max(200, rad); // Store the parameters we used to build up that cache. reference_wgs84_point = pt; reference_vehicle_radius = rad; // Store the time reference used to compute movements of moving triangles. cache_ref_time = ref_time; // Get a normalized down vector valid for the whole cache SGQuatd hlToEc = SGQuatd::fromLonLat(geodPt); down = hlToEc.rotate(SGVec3d(0, 0, 1)); // Get the ground cache, that is a local collision tree of the environment double endTime = cache_ref_time + 1; //FIXME?? CacheFill subtreeCollector(pt, rad, cache_ref_time, endTime); globals->get_scenery()->get_scene_graph()->accept(subtreeCollector); _localBvhTree = subtreeCollector.getBVHNode(); // Try to get a croase altitude value for the ground cache SGLineSegmentd line(pt, pt + 2*reference_vehicle_radius*down); simgear::BVHLineSegmentVisitor lineSegmentVisitor(line, ref_time); if (_localBvhTree) _localBvhTree->accept(lineSegmentVisitor); // If this is successful, store this altitude for croase altitude values if (!lineSegmentVisitor.empty()) { SGGeod geodPt = SGGeod::fromCart(lineSegmentVisitor.getPoint()); _altitude = geodPt.getElevationM(); _material = lineSegmentVisitor.getMaterial(); found_ground = true; } else { // Else do a crude scene query for the current point found_ground = globals->get_scenery()-> get_cart_elevation_m(pt, rad, _altitude, &_material); } // Still not sucessful?? if (!found_ground) SG_LOG(SG_FLIGHT, SG_WARN, "prepare_ground_cache(): trying to build " "cache without any scenery below the aircraft"); return found_ground; } bool FGGroundCache::is_valid(double& ref_time, SGVec3d& pt, double& rad) { pt = reference_wgs84_point; rad = reference_vehicle_radius; ref_time = cache_ref_time; return found_ground; } class FGGroundCache::BodyFinder : public BVHVisitor { public: BodyFinder(BVHNode::Id id, const double& t) : _id(id), _bodyToWorld(SGMatrixd::unit()), _linearVelocity(0, 0, 0), _angularVelocity(0, 0, 0), _time(t) { } virtual void apply(BVHGroup& leaf) { if (_foundId) return; leaf.traverse(*this); } virtual void apply(BVHTransform& transform) { if (_foundId) return; transform.traverse(*this); if (_foundId) { _linearVelocity = transform.vecToWorld(_linearVelocity); _angularVelocity = transform.vecToWorld(_angularVelocity); _bodyToWorld = transform.getToWorldTransform()*_bodyToWorld; } } virtual void apply(BVHMotionTransform& transform) { if (_foundId) return; if (_id == transform.getId()) { _foundId = true; return; } transform.traverse(*this); if (_foundId) { SGMatrixd toWorld = transform.getToWorldTransform(_time); SGVec3d referencePoint = _bodyToWorld.xformPt(SGVec3d::zeros()); _linearVelocity += transform.getLinearVelocityAt(referencePoint); _angularVelocity += transform.getAngularVelocity(); _linearVelocity = toWorld.xformVec(_linearVelocity); _angularVelocity = toWorld.xformVec(_angularVelocity); _bodyToWorld = toWorld*_bodyToWorld; } } virtual void apply(BVHLineGeometry& node) { } virtual void apply(BVHStaticGeometry& node) { } virtual void apply(const BVHStaticBinary&, const BVHStaticData&) { } virtual void apply(const BVHStaticTriangle&, const BVHStaticData&) { } const SGMatrixd& getBodyToWorld() const { return _bodyToWorld; } const SGVec3d& getLinearVelocity() const { return _linearVelocity; } const SGVec3d& getAngularVelocity() const { return _angularVelocity; } bool empty() const { return !_foundId; } protected: simgear::BVHNode::Id _id; SGMatrixd _bodyToWorld; SGVec3d _linearVelocity; SGVec3d _angularVelocity; bool _foundId; double _time; }; bool FGGroundCache::get_body(double t, SGMatrixd& bodyToWorld, SGVec3d& linearVel, SGVec3d& angularVel, simgear::BVHNode::Id id) { // Get the transform matrix and velocities of a moving body with id at t. if (!_localBvhTree) return false; BodyFinder bodyFinder(id, t); _localBvhTree->accept(bodyFinder); if (bodyFinder.empty()) return false; bodyToWorld = bodyFinder.getBodyToWorld(); linearVel = bodyFinder.getLinearVelocity(); angularVel = bodyFinder.getAngularVelocity(); return true; } class FGGroundCache::CatapultFinder : public BVHVisitor { public: CatapultFinder(const SGSphered& sphere, const double& t) : _sphere(sphere), _time(t), _haveLineSegment(false) { } virtual void apply(BVHGroup& leaf) { if (!intersects(_sphere, leaf.getBoundingSphere())) return; leaf.traverse(*this); } virtual void apply(BVHTransform& transform) { if (!intersects(_sphere, transform.getBoundingSphere())) return; SGSphered sphere = _sphere; _sphere = transform.sphereToLocal(sphere); bool haveLineSegment = _haveLineSegment; _haveLineSegment = false; transform.traverse(*this); if (_haveLineSegment) { _lineSegment = transform.lineSegmentToWorld(_lineSegment); _linearVelocity = transform.vecToWorld(_linearVelocity); _angularVelocity = transform.vecToWorld(_angularVelocity); } _haveLineSegment |= haveLineSegment; _sphere.setCenter(sphere.getCenter()); } virtual void apply(BVHMotionTransform& transform) { if (!intersects(_sphere, transform.getBoundingSphere())) return; SGSphered sphere = _sphere; _sphere = transform.sphereToLocal(sphere, _time); bool haveLineSegment = _haveLineSegment; _haveLineSegment = false; transform.traverse(*this); if (_haveLineSegment) { SGMatrixd toWorld = transform.getToWorldTransform(_time); _linearVelocity += transform.getLinearVelocityAt(_lineSegment.getStart()); _angularVelocity += transform.getAngularVelocity(); _linearVelocity = toWorld.xformVec(_linearVelocity); _angularVelocity = toWorld.xformVec(_angularVelocity); _lineSegment = _lineSegment.transform(toWorld); } _haveLineSegment |= haveLineSegment; _sphere.setCenter(sphere.getCenter()); } virtual void apply(BVHLineGeometry& node) { if (node.getType() != BVHLineGeometry::CarrierCatapult) return; SGLineSegmentd lineSegment(node.getLineSegment()); if (!intersects(_sphere, lineSegment)) return; _lineSegment = lineSegment; double dist = distSqr(lineSegment, getSphere().getCenter()); _sphere.setRadius(sqrt(dist)); _linearVelocity = SGVec3d::zeros(); _angularVelocity = SGVec3d::zeros(); _haveLineSegment = true; } virtual void apply(BVHStaticGeometry& node) { } virtual void apply(const BVHStaticBinary&, const BVHStaticData&) { } virtual void apply(const BVHStaticTriangle&, const BVHStaticData&) { } void setSphere(const SGSphered& sphere) { _sphere = sphere; } const SGSphered& getSphere() const { return _sphere; } const SGLineSegmentd& getLineSegment() const { return _lineSegment; } const SGVec3d& getLinearVelocity() const { return _linearVelocity; } const SGVec3d& getAngularVelocity() const { return _angularVelocity; } bool getHaveLineSegment() const { return _haveLineSegment; } protected: SGLineSegmentd _lineSegment; SGVec3d _linearVelocity; SGVec3d _angularVelocity; bool _haveLineSegment; SGSphered _sphere; double _time; }; double FGGroundCache::get_cat(double t, const SGVec3d& pt, SGVec3d end[2], SGVec3d vel[2]) { double maxDistance = 1000; // Get the wire in question CatapultFinder catapultFinder(SGSphered(pt, maxDistance), t); if (_localBvhTree) _localBvhTree->accept(catapultFinder); if (!catapultFinder.getHaveLineSegment()) return maxDistance; // prepare the returns end[0] = catapultFinder.getLineSegment().getStart(); end[1] = catapultFinder.getLineSegment().getEnd(); // The linear velocity is the one at the start of the line segment ... vel[0] = catapultFinder.getLinearVelocity(); // ... so the end point has the additional cross product. vel[1] = catapultFinder.getLinearVelocity(); vel[1] += cross(catapultFinder.getAngularVelocity(), catapultFinder.getLineSegment().getDirection()); // Return the distance to the cat return sqrt(distSqr(catapultFinder.getLineSegment(), pt)); } bool FGGroundCache::get_agl(double t, const SGVec3d& pt, SGVec3d& contact, SGVec3d& normal, SGVec3d& linearVel, SGVec3d& angularVel, simgear::BVHNode::Id& id, const SGMaterial*& material) { // Just set up a ground intersection query for the given point SGLineSegmentd line(pt, pt + 10*reference_vehicle_radius*down); simgear::BVHLineSegmentVisitor lineSegmentVisitor(line, t); if (_localBvhTree) _localBvhTree->accept(lineSegmentVisitor); if (!lineSegmentVisitor.empty()) { // Have an intersection contact = lineSegmentVisitor.getPoint(); normal = lineSegmentVisitor.getNormal(); if (0 < dot(normal, down)) normal = -normal; linearVel = lineSegmentVisitor.getLinearVelocity(); angularVel = lineSegmentVisitor.getAngularVelocity(); material = lineSegmentVisitor.getMaterial(); id = lineSegmentVisitor.getId(); return true; } else { // Whenever we did not have a ground triangle for the requested point, // take the ground level we found during the current cache build. // This is as good as what we had before for agl. SGGeod geodPt = SGGeod::fromCart(pt); geodPt.setElevationM(_altitude); contact = SGVec3d::fromGeod(geodPt); normal = -down; linearVel = SGVec3d(0, 0, 0); angularVel = SGVec3d(0, 0, 0); material = _material; id = 0; return found_ground; } } bool FGGroundCache::get_nearest(double t, const SGVec3d& pt, double maxDist, SGVec3d& contact, SGVec3d& linearVel, SGVec3d& angularVel, simgear::BVHNode::Id& id, const SGMaterial*& material) { if (!_localBvhTree) return false; // Just set up a ground intersection query for the given point SGSphered sphere(pt, maxDist); simgear::BVHNearestPointVisitor nearestPointVisitor(sphere, t); _localBvhTree->accept(nearestPointVisitor); if (nearestPointVisitor.empty()) return false; // Have geometry in the range of maxDist contact = nearestPointVisitor.getPoint(); linearVel = nearestPointVisitor.getLinearVelocity(); angularVel = nearestPointVisitor.getAngularVelocity(); material = nearestPointVisitor.getMaterial(); id = nearestPointVisitor.getId(); return true; } class FGGroundCache::WireIntersector : public BVHVisitor { public: WireIntersector(const SGVec3d pt[4], const double& t) : _linearVelocity(SGVec3d::zeros()), _angularVelocity(SGVec3d::zeros()), _wire(0), _time(t) { // Build the two triangles spanning the area where the hook has moved // during the past step. _triangles[0].set(pt[0], pt[1], pt[2]); _triangles[1].set(pt[0], pt[2], pt[3]); } virtual void apply(BVHGroup& leaf) { if (!_intersects(leaf.getBoundingSphere())) return; leaf.traverse(*this); } virtual void apply(BVHTransform& transform) { if (!_intersects(transform.getBoundingSphere())) return; SGTriangled triangles[2] = { _triangles[0], _triangles[1] }; _triangles[0] = triangles[0].transform(transform.getToLocalTransform()); _triangles[1] = triangles[1].transform(transform.getToLocalTransform()); transform.traverse(*this); if (_wire) { _lineSegment = transform.lineSegmentToWorld(_lineSegment); _linearVelocity = transform.vecToWorld(_linearVelocity); _angularVelocity = transform.vecToWorld(_angularVelocity); } _triangles[0] = triangles[0]; _triangles[1] = triangles[1]; } virtual void apply(BVHMotionTransform& transform) { if (!_intersects(transform.getBoundingSphere())) return; SGMatrixd toLocal = transform.getToLocalTransform(_time); SGTriangled triangles[2] = { _triangles[0], _triangles[1] }; _triangles[0] = triangles[0].transform(toLocal); _triangles[1] = triangles[1].transform(toLocal); transform.traverse(*this); if (_wire) { SGMatrixd toWorld = transform.getToWorldTransform(_time); _linearVelocity += transform.getLinearVelocityAt(_lineSegment.getStart()); _angularVelocity += transform.getAngularVelocity(); _linearVelocity = toWorld.xformVec(_linearVelocity); _angularVelocity = toWorld.xformVec(_angularVelocity); _lineSegment = _lineSegment.transform(toWorld); } _triangles[0] = triangles[0]; _triangles[1] = triangles[1]; } virtual void apply(BVHLineGeometry& node) { if (node.getType() != BVHLineGeometry::CarrierWire) return; SGLineSegmentd lineSegment(node.getLineSegment()); if (!_intersects(lineSegment)) return; _lineSegment = lineSegment; _linearVelocity = SGVec3d::zeros(); _angularVelocity = SGVec3d::zeros(); _wire = &node; } virtual void apply(BVHStaticGeometry& node) { } virtual void apply(const BVHStaticBinary&, const BVHStaticData&) { } virtual void apply(const BVHStaticTriangle&, const BVHStaticData&) { } bool _intersects(const SGSphered& sphere) const { if (_wire) return false; if (intersects(_triangles[0], sphere)) return true; if (intersects(_triangles[1], sphere)) return true; return false; } bool _intersects(const SGLineSegmentd& lineSegment) const { if (_wire) return false; if (intersects(_triangles[0], lineSegment)) return true; if (intersects(_triangles[1], lineSegment)) return true; return false; } const SGLineSegmentd& getLineSegment() const { return _lineSegment; } const SGVec3d& getLinearVelocity() const { return _linearVelocity; } const SGVec3d& getAngularVelocity() const { return _angularVelocity; } const BVHLineGeometry* getWire() const { return _wire; } private: SGLineSegmentd _lineSegment; SGVec3d _linearVelocity; SGVec3d _angularVelocity; const BVHLineGeometry* _wire; SGTriangled _triangles[2]; double _time; }; bool FGGroundCache::caught_wire(double t, const SGVec3d pt[4]) { // Get the wire in question WireIntersector wireIntersector(pt, t); if (_localBvhTree) _localBvhTree->accept(wireIntersector); _wire = wireIntersector.getWire(); return _wire; } class FGGroundCache::WireFinder : public BVHVisitor { public: WireFinder(const BVHLineGeometry* wire, const double& t) : _wire(wire), _time(t), _lineSegment(SGVec3d::zeros(), SGVec3d::zeros()), _linearVelocity(SGVec3d::zeros()), _angularVelocity(SGVec3d::zeros()), _haveLineSegment(false) { } virtual void apply(BVHGroup& leaf) { if (_haveLineSegment) return; leaf.traverse(*this); } virtual void apply(BVHTransform& transform) { if (_haveLineSegment) return; transform.traverse(*this); if (_haveLineSegment) { _linearVelocity = transform.vecToWorld(_linearVelocity); _angularVelocity = transform.vecToWorld(_angularVelocity); _lineSegment = transform.lineSegmentToWorld(_lineSegment); } } virtual void apply(BVHMotionTransform& transform) { if (_haveLineSegment) return; transform.traverse(*this); if (_haveLineSegment) { SGMatrixd toWorld = transform.getToWorldTransform(_time); _linearVelocity += transform.getLinearVelocityAt(_lineSegment.getStart()); _angularVelocity += transform.getAngularVelocity(); _linearVelocity = toWorld.xformVec(_linearVelocity); _angularVelocity = toWorld.xformVec(_angularVelocity); _lineSegment = _lineSegment.transform(toWorld); } } virtual void apply(BVHLineGeometry& node) { if (_haveLineSegment) return; if (_wire != &node) return; if (node.getType() != BVHLineGeometry::CarrierWire) return; _lineSegment = SGLineSegmentd(node.getLineSegment()); _linearVelocity = SGVec3d::zeros(); _angularVelocity = SGVec3d::zeros(); _haveLineSegment = true; } virtual void apply(BVHStaticGeometry&) { } virtual void apply(const BVHStaticBinary&, const BVHStaticData&) { } virtual void apply(const BVHStaticTriangle&, const BVHStaticData&) { } const SGLineSegmentd& getLineSegment() const { return _lineSegment; } bool getHaveLineSegment() const { return _haveLineSegment; } const SGVec3d& getLinearVelocity() const { return _linearVelocity; } const SGVec3d& getAngularVelocity() const { return _angularVelocity; } private: const BVHLineGeometry* _wire; double _time; SGLineSegmentd _lineSegment; SGVec3d _linearVelocity; SGVec3d _angularVelocity; bool _haveLineSegment; }; bool FGGroundCache::get_wire_ends(double t, SGVec3d end[2], SGVec3d vel[2]) { // Fast return if we do not have an active wire. if (!_wire) return false; // Get the wire in question WireFinder wireFinder(_wire, t); if (_localBvhTree) _localBvhTree->accept(wireFinder); if (!wireFinder.getHaveLineSegment()) return false; // prepare the returns end[0] = wireFinder.getLineSegment().getStart(); end[1] = wireFinder.getLineSegment().getEnd(); // The linear velocity is the one at the start of the line segment ... vel[0] = wireFinder.getLinearVelocity(); // ... so the end point has the additional cross product. vel[1] = wireFinder.getLinearVelocity(); vel[1] += cross(wireFinder.getAngularVelocity(), wireFinder.getLineSegment().getDirection()); return true; } void FGGroundCache::release_wire(void) { _wire = 0; }