// panel_io.cxx - I/O for 2D panel. // // Written by David Megginson, started January 2000. // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // $Id: panel_io.cxx,v 1.26 2006/08/10 11:12:39 mfranz Exp $ #ifdef HAVE_CONFIG_H # include #endif #ifdef HAVE_WINDOWS_H # include #endif #include // for strcmp() #include #include #include #include #include #include #include #include "panel.hxx" #include "panel_io.hxx" #include "ApplicationProperties.hxx" //////////////////////////////////////////////////////////////////////// // Read and construct a panel. // // The panel is specified as a regular property list, and each of the // instruments is its own, separate property list (and thus, a separate // XML document). The functions in this section read in the files // as property lists, then extract properties to set up the panel // itself. // // A panel contains zero or more instruments. // // An instrument contains one or more layers and zero or more actions. // // A layer contains zero or more transformations. // // Some special types of layers also contain other objects, such as // chunks of text or other layers. // // There are currently four types of layers: // // 1. Textured Layer (type="texture"), the default // 2. Text Layer (type="text") // 3. Switch Layer (type="switch") // 4. Built-in Layer (type="built-in", must also specify class) // // The only built-in layer so far is the ribbon for the magnetic compass // (class="compass-ribbon"). // // There are three types of actions: // // 1. Adjust (type="adjust"), the default // 2. Swap (type="swap") // 3. Toggle (type="toggle") // // There are three types of transformations: // // 1. X shift (type="x-shift"), the default // 2. Y shift (type="y-shift") // 3. Rotation (type="rotation") // // Each of these may be associated with a property, so that a needle // will rotate with the airspeed, for example, or may have a fixed // floating-point value. //////////////////////////////////////////////////////////////////////// /** * Read a cropped texture from the instrument's property list. * * The x1 and y1 properties give the starting position of the texture * (between 0.0 and 1.0), and the the x2 and y2 properties give the * ending position. For example, to use the bottom-left quarter of a * texture, x1=0.0, y1=0.0, x2=0.5, y2=0.5. */ static FGCroppedTexture_ptr readTexture (const SGPropertyNode * node) { return new FGCroppedTexture(node->getStringValue("path"), node->getFloatValue("x1"), node->getFloatValue("y1"), node->getFloatValue("x2", 1.0), node->getFloatValue("y2", 1.0)); SG_LOG(SG_COCKPIT, SG_DEBUG, "Read texture " << node->getName()); } /** * Test for a condition in the current node. */ //////////////////////////////////////////////////////////////////////// // Read a condition and use it if necessary. //////////////////////////////////////////////////////////////////////// static void readConditions (SGConditional *component, const SGPropertyNode *node) { const SGPropertyNode * conditionNode = node->getChild("condition"); if (conditionNode != 0) // The top level is implicitly AND component->setCondition(sgReadCondition(ApplicationProperties::Properties, conditionNode) ); ; } /** * Read a transformation from the instrument's property list. * * The panel module uses the transformations to slide or spin needles, * knobs, and other indicators, and to place layers in the correct * positions. Every layer starts centered exactly on the x,y co-ordinate, * and many layers need to be moved or rotated simply to display the * instrument correctly. * * There are three types of transformations: * * "x-shift" - move the layer horizontally. * * "y-shift" - move the layer vertically. * * "rotation" - rotate the layer. * * Each transformation may have a fixed offset, and may also have * a floating-point property value to add to the offset. The * floating-point property may be clamped to a minimum and/or * maximum range and scaled (after clamping). * * Note that because of the way OpenGL works, transformations will * appear to be applied backwards. */ static FGPanelTransformation * readTransformation (const SGPropertyNode * node, float w_scale, float h_scale) { FGPanelTransformation * t = new FGPanelTransformation; string name = node->getName(); string type = node->getStringValue("type"); string propName = node->getStringValue("property", ""); const SGPropertyNode * target = 0; if (type.empty()) { SG_LOG( SG_COCKPIT, SG_INFO, "No type supplied for transformation " << name << " assuming \"rotation\"" ); type = "rotation"; } if (!propName.empty()) target = ApplicationProperties::Properties->getNode(propName.c_str(), true); t->node = target; t->min = node->getFloatValue("min", -9999999); t->max = node->getFloatValue("max", 99999999); t->has_mod = node->hasChild("modulator"); if (t->has_mod) t->mod = node->getFloatValue("modulator"); t->factor = node->getFloatValue("scale", 1.0); t->offset = node->getFloatValue("offset", 0.0); // Check for an interpolation table const SGPropertyNode * trans_table = node->getNode("interpolation"); if (trans_table != 0) { SG_LOG( SG_COCKPIT, SG_INFO, "Found interpolation table with " << trans_table->nChildren() << " children" ); t->table = new SGInterpTable(); for (int i = 0; i < trans_table->nChildren(); i++) { const SGPropertyNode * node = trans_table->getChild(i); if (!strcmp(node->getName(), "entry")) { double ind = node->getDoubleValue("ind", 0.0); double dep = node->getDoubleValue("dep", 0.0); SG_LOG( SG_COCKPIT, SG_INFO, "Adding interpolation entry " << ind << "==>" << dep ); t->table->addEntry(ind, dep); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in interpolation" ); } } } else { t->table = 0; } // Move the layer horizontally. if (type == "x-shift") { t->type = FGPanelTransformation::XSHIFT; // t->min *= w_scale; //removed by Martin Dressler // t->max *= w_scale; //removed by Martin Dressler t->offset *= w_scale; t->factor *= w_scale; //Added by Martin Dressler } // Move the layer vertically. else if (type == "y-shift") { t->type = FGPanelTransformation::YSHIFT; //t->min *= h_scale; //removed //t->max *= h_scale; //removed t->offset *= h_scale; t->factor *= h_scale; //Added } // Rotate the layer. The rotation // is in degrees, and does not need // to scale with the instrument size. else if (type == "rotation") { t->type = FGPanelTransformation::ROTATION; } else { SG_LOG( SG_COCKPIT, SG_ALERT, "Unrecognized transformation type " << type ); delete t; return 0; } readConditions(t, node); SG_LOG( SG_COCKPIT, SG_DEBUG, "Read transformation " << name ); return t; } /** * Read a chunk of text from the instrument's property list. * * A text layer consists of one or more chunks of text. All chunks * share the same font size and color (and eventually, font), but * each can come from a different source. There are three types of * text chunks: * * "literal" - a literal text string (the default) * * "text-value" - the current value of a string property * * "number-value" - the current value of a floating-point property. * * All three may also include a printf-style format string. */ FGTextLayer::Chunk * readTextChunk (const SGPropertyNode * node) { FGTextLayer::Chunk * chunk; string name = node->getStringValue("name"); string type = node->getStringValue("type"); string format = node->getStringValue("format"); // Default to literal text. if (type.empty()) { SG_LOG( SG_COCKPIT, SG_INFO, "No type provided for text chunk " << name << " assuming \"literal\""); type = "literal"; } // A literal text string. if (type == "literal") { string text = node->getStringValue("text"); chunk = new FGTextLayer::Chunk(text, format); } // The value of a string property. else if (type == "text-value") { SGPropertyNode * target = ApplicationProperties::Properties->getNode( node->getStringValue("property"), true); chunk = new FGTextLayer::Chunk(FGTextLayer::TEXT_VALUE, target, format); } // The value of a float property. else if (type == "number-value") { string propName = node->getStringValue("property"); float scale = node->getFloatValue("scale", 1.0); float offset = node->getFloatValue("offset", 0.0); bool truncation = node->getBoolValue("truncate", false); SGPropertyNode * target = ApplicationProperties::Properties->getNode(propName.c_str(), true); chunk = new FGTextLayer::Chunk(FGTextLayer::DOUBLE_VALUE, target, format, scale, offset, truncation); } // Unknown type. else { SG_LOG( SG_COCKPIT, SG_ALERT, "Unrecognized type " << type << " for text chunk " << name ); return 0; } readConditions(chunk, node); return chunk; } /** * Read a single layer from an instrument's property list. * * Each instrument consists of one or more layers stacked on top * of each other; the lower layers show through only where the upper * layers contain an alpha component. Each layer can be moved * horizontally and vertically and rotated using transformations. * * This module currently recognizes four kinds of layers: * * "texture" - a layer containing a texture (the default) * * "text" - a layer containing text * * "switch" - a layer that switches between two other layers * based on the current value of a boolean property. * * "built-in" - a hard-coded layer supported by C++ code in FlightGear. * * Currently, the only built-in layer class is "compass-ribbon". */ static FGInstrumentLayer * readLayer (const SGPropertyNode * node, float w_scale, float h_scale) { FGInstrumentLayer * layer = NULL; string name = node->getStringValue("name"); string type = node->getStringValue("type"); int w = node->getIntValue("w", -1); int h = node->getIntValue("h", -1); bool emissive = node->getBoolValue("emissive", false); if (w != -1) w = int(w * w_scale); if (h != -1) h = int(h * h_scale); if (type.empty()) { SG_LOG( SG_COCKPIT, SG_INFO, "No type supplied for layer " << name << " assuming \"texture\"" ); type = "texture"; } // A textured instrument layer. if (type == "texture") { FGCroppedTexture_ptr texture = readTexture(node->getNode("texture")); layer = new FGTexturedLayer(texture, w, h); if (emissive) { FGTexturedLayer *tl=(FGTexturedLayer*)layer; tl->setEmissive(true); } } // A group of sublayers. else if (type == "group") { layer = new FGGroupLayer(); for (int i = 0; i < node->nChildren(); i++) { const SGPropertyNode * child = node->getChild(i); if (!strcmp(child->getName(), "layer")) ((FGGroupLayer *)layer)->addLayer(readLayer(child, w_scale, h_scale)); } } // A textual instrument layer. else if (type == "text") { FGTextLayer * tlayer = new FGTextLayer(w, h); // FIXME // Set the text color. float red = node->getFloatValue("color/red", 0.0); float green = node->getFloatValue("color/green", 0.0); float blue = node->getFloatValue("color/blue", 0.0); tlayer->setColor(red, green, blue); // Set the point size. float pointSize = node->getFloatValue("point-size", 10.0) * w_scale; tlayer->setPointSize(pointSize); // Set the font. string fontName = node->getStringValue("font", "Helvetica"); tlayer->setFontName(fontName); const SGPropertyNode * chunk_group = node->getNode("chunks"); if (chunk_group != 0) { int nChunks = chunk_group->nChildren(); for (int i = 0; i < nChunks; i++) { const SGPropertyNode * node = chunk_group->getChild(i); if (!strcmp(node->getName(), "chunk")) { FGTextLayer::Chunk * chunk = readTextChunk(node); if (chunk != 0) tlayer->addChunk(chunk); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in chunks" ); } } layer = tlayer; } } // A switch instrument layer. else if (type == "switch") { layer = new FGSwitchLayer(); for (int i = 0; i < node->nChildren(); i++) { const SGPropertyNode * child = node->getChild(i); if (!strcmp(child->getName(), "layer")) ((FGGroupLayer *)layer)->addLayer(readLayer(child, w_scale, h_scale)); } } // An unknown type. else { SG_LOG( SG_COCKPIT, SG_ALERT, "Unrecognized layer type " << type ); delete layer; return 0; } // // Get the transformations for each layer. // const SGPropertyNode * trans_group = node->getNode("transformations"); if (trans_group != 0) { int nTransformations = trans_group->nChildren(); for (int i = 0; i < nTransformations; i++) { const SGPropertyNode * node = trans_group->getChild(i); if (!strcmp(node->getName(), "transformation")) { FGPanelTransformation * t = readTransformation(node, w_scale, h_scale); if (t != 0) layer->addTransformation(t); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in transformations" ); } } } readConditions(layer, node); SG_LOG( SG_COCKPIT, SG_DEBUG, "Read layer " << name ); return layer; } /** * Read an instrument from a property list. * * The instrument consists of a preferred width and height * (the panel may override these), together with a list of layers * and a list of actions to be performed when the user clicks * the mouse over the instrument. All co-ordinates are relative * to the instrument's position, so instruments are fully relocatable; * likewise, co-ordinates for actions and transformations will be * scaled automatically if the instrument is not at its preferred size. */ static FGPanelInstrument * readInstrument (const SGPropertyNode * node) { const string name = node->getStringValue("name"); int x = node->getIntValue("x", -1); int y = node->getIntValue("y", -1); int real_w = node->getIntValue("w", -1); int real_h = node->getIntValue("h", -1); int w = node->getIntValue("w-base", -1); int h = node->getIntValue("h-base", -1); if (x == -1 || y == -1) { SG_LOG( SG_COCKPIT, SG_ALERT, "x and y positions must be specified and > 0" ); return 0; } float w_scale = 1.0; float h_scale = 1.0; if (real_w != -1) { w_scale = float(real_w) / float(w); w = real_w; } if (real_h != -1) { h_scale = float(real_h) / float(h); h = real_h; } SG_LOG( SG_COCKPIT, SG_DEBUG, "Reading instrument " << name ); FGLayeredInstrument * instrument = new FGLayeredInstrument(x, y, w, h); // // Get the layers for the instrument. // const SGPropertyNode * layer_group = node->getNode("layers"); if (layer_group != 0) { int nLayers = layer_group->nChildren(); for (int i = 0; i < nLayers; i++) { const SGPropertyNode * node = layer_group->getChild(i); if (!strcmp(node->getName(), "layer")) { FGInstrumentLayer * layer = readLayer(node, w_scale, h_scale); if (layer != 0) instrument->addLayer(layer); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in layers" ); } } } readConditions(instrument, node); SG_LOG( SG_COCKPIT, SG_DEBUG, "Done reading instrument " << name ); return instrument; } /** * Construct the panel from a property tree. */ SGSharedPtr FGReadablePanel::read(SGPropertyNode_ptr root) { SG_LOG( SG_COCKPIT, SG_INFO, "Reading properties for panel " << root->getStringValue("name", "[Unnamed Panel]") ); FGPanel * panel = new FGPanel(root); panel->setWidth(root->getIntValue("w", 1024)); panel->setHeight(root->getIntValue("h", 443)); SG_LOG( SG_COCKPIT, SG_INFO, "Size=" << panel->getWidth() << "x" << panel->getHeight() ); // Assign the background texture, if any, or a bogus chequerboard. // string bgTexture = root->getStringValue("background"); if( !bgTexture.empty() ) panel->setBackground( new FGCroppedTexture( bgTexture ) ); panel->setBackgroundWidth( root->getDoubleValue( "background-width", 1.0 ) ); panel->setBackgroundHeight( root->getDoubleValue( "background-height", 1.0 ) ); SG_LOG( SG_COCKPIT, SG_INFO, "Set background texture to " << bgTexture ); // // Get multibackground if any... // for( int i = 0; i < 8; i++ ) { SGPropertyNode * mbgNode = root->getChild( "multibackground", i ); string mbgTexture; if( mbgNode != NULL ) mbgTexture = mbgNode->getStringValue(); if( mbgTexture.empty() ) { if( i == 0 ) break; // if first texture is missing, ignore the rest else mbgTexture = "FOO"; // if others are missing - set default texture } panel->setMultiBackground( new FGCroppedTexture(mbgTexture), i ); SG_LOG( SG_COCKPIT, SG_INFO, "Set multi-background texture" << i << " to " << mbgTexture ); } // // Create each instrument. // SG_LOG( SG_COCKPIT, SG_INFO, "Reading panel instruments" ); const SGPropertyNode * instrument_group = root->getChild("instruments"); if (instrument_group != 0) { int nInstruments = instrument_group->nChildren(); for (int i = 0; i < nInstruments; i++) { const SGPropertyNode * node = instrument_group->getChild(i); if (!strcmp(node->getName(), "instrument")) { FGPanelInstrument * instrument = readInstrument(node); if (instrument != 0) panel->addInstrument(instrument); } else { SG_LOG( SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in instruments section" ); } } } SG_LOG( SG_COCKPIT, SG_INFO, "Done reading panel instruments" ); // // Return the new panel. // return panel; } // end of panel_io.cxx