// main.cxx -- top level construction routines // // Written by Curtis Olson, started March 1999. // // Copyright (C) 1999 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include // for directory reading #include // for directory reading #include #include #include #include #include #include #include // load regular grid of elevation data (dem based), return list of // fitted nodes int load_dem(const string& work_base, FGBucket& b, FGArray& array) { point_list result; string base = b.gen_base_path(); string dem_path = work_base + ".dem" + "/Scenery/" + base + "/" + b.gen_index_str() + ".dem"; cout << "dem_path = " << dem_path << endl; if ( ! array.open(dem_path) ) { cout << "ERROR: cannot open " << dem_path << endl; } array.parse( b ); return 1; } // fit dem nodes, return number of fitted nodes int fit_dem(FGArray& array, int error) { return array.fit( error ); } // do actual scan of directory and loading of files int actual_load_polys( const string& dir, FGBucket& b, FGClipper& clipper ) { int counter = 0; string base = b.gen_base_path(); string tile_str = b.gen_index_str(); string ext; DIR *d; struct dirent *de; if ( (d = opendir( dir.c_str() )) == NULL ) { cout << "cannot open directory " << dir << "\n"; return 0; } // load all matching polygon files string file, f_index, full_path; int pos; while ( (de = readdir(d)) != NULL ) { file = de->d_name; pos = file.find("."); f_index = file.substr(0, pos); if ( tile_str == f_index ) { ext = file.substr(pos + 1); cout << file << " " << f_index << " '" << ext << "'" << endl; full_path = dir + "/" + file; if ( (ext == "dem") || (ext == "dem.gz") ) { // skip } else { cout << "ext = '" << ext << "'" << endl; clipper.load_polys( full_path ); ++counter; } } } return counter; } // load all 2d polygons matching the specified base path and clip // against each other to resolve any overlaps int load_polys( const string& work_base, FGBucket& b, FGClipper& clipper) { string base = b.gen_base_path(); int result; // initialize clipper clipper.init(); // load airports string poly_path = work_base + ".apt" + "/Scenery/" + base; cout << "poly_path = " << poly_path << endl; result = actual_load_polys( poly_path, b, clipper ); cout << " loaded " << result << " polys" << endl; // load hydro poly_path = work_base + ".hydro" + "/Scenery/" + base; cout << "poly_path = " << poly_path << endl; result = actual_load_polys( poly_path, b, clipper ); cout << " loaded " << result << " polys" << endl; point2d min, max; min.x = b.get_center_lon() - 0.5 * b.get_width(); min.y = b.get_center_lat() - 0.5 * b.get_height(); max.x = b.get_center_lon() + 0.5 * b.get_width(); max.y = b.get_center_lat() + 0.5 * b.get_height(); // do clipping cout << "clipping polygons" << endl; clipper.clip_all(min, max); return 1; } // triangulate the data for each polygon void do_triangulate( const FGArray& array, const FGClipper& clipper, FGTriangle& t ) { // first we need to consolidate the points of the DEM fit list and // all the polygons into a more "Triangle" friendly format point_list corner_list = array.get_corner_node_list(); point_list fit_list = array.get_fit_node_list(); FGgpcPolyList gpc_polys = clipper.get_polys_clipped(); cout << "ready to build node list and polygons" << endl; t.build( corner_list, fit_list, gpc_polys ); cout << "done building node list and polygons" << endl; cout << "ready to do triangulation" << endl; t.run_triangulate(); cout << "finished triangulation" << endl; } // generate the flight gear scenery file void do_output( const string& base, const FGBucket &b, const FGTriangle& t, const FGArray& array, FGGenOutput& output ) { output.build( array, t ); output.write( base, b ); } void construct_tile( const string& work_base, const string& output_base, FGBucket& b ) { cout << "Construct tile, bucket = " << b << endl; // fit with ever increasing error tolerance until we produce <= // 80% of max nodes. We should really have the sim end handle // arbitrarily complex tiles. const int min_nodes = 50; const int max_nodes = (int)(MAX_NODES * 0.8); bool acceptable = false; double error = 200.0; int count = 0; // load and clip 2d polygon data FGClipper clipper; load_polys( work_base, b, clipper ); // load grid of elevation data (dem) FGArray array; load_dem( work_base, b, array ); FGTriangle t; while ( ! acceptable ) { // do a least squares fit of the (dem) data with the given // error tolerance array.fit( error ); // triangulate the data for each polygon do_triangulate( array, clipper, t ); acceptable = true; count = t.get_out_nodes_size(); if ( (count < min_nodes) && (error >= 25.0) ) { // reduce error tolerance until number of points exceeds the // minimum threshold cout << "produced too few nodes ..." << endl; acceptable = false; error /= 1.5; cout << "Setting error to " << error << " and retrying fit." << endl; } if ( (count > max_nodes) && (error <= 1000.0) ) { // increase error tolerance until number of points drops below // the maximum threshold cout << "produced too many nodes ..." << endl; acceptable = false; error *= 1.5; cout << "Setting error to " << error << " and retrying fit." << endl; } } cout << "finished fit with error = " << error << " node count = " << count << endl; // generate the output FGGenOutput output; do_output( output_base, b, t, array, output ); } main(int argc, char **argv) { double lon, lat; fglog().setLogLevels( FG_ALL, FG_DEBUG ); if ( argc != 3 ) { cout << "Usage: " << argv[0] << " " << endl; exit(-1); } string work_base = argv[1]; string output_base = argv[2]; // lon = -146.248360; lat = 61.133950; // PAVD (Valdez, AK) // lon = -110.664244; lat = 33.352890; // P13 // lon = -93.211389; lat = 45.145000; // KANE // lon = -92.486188; lat = 44.590190; // KRGK // lon = -89.744682312011719; lat= 29.314495086669922; // lon = -122.488090; lat = 42.743183; // 64S // lon = -114.861097; lat = 35.947480; // 61B // lon = -112.012175; lat = 41.195944; // KOGD // lon = -90.757128; lat = 46.790212; // WI32 // lon = -122.220717; lat = 37.721291; // KOAK // lon = -111.721477; lat = 40.215641; // KPVU // lon = -122.309313; lat = 47.448982; // KSEA // lon = -148.798131; lat = 63.645099; // AK06 (Danali, AK) // lon = -92.5; lat = 47.5; // Marsh test (northern MN) // lon = -111.977773; lat = 40.788388; // KSLC // lon = -121.914; lat = 42.5655; // TEST (Oregon SW of Crater) lon = -76.201239; lat = 36.894606; // KORF (Norfolk, Virginia) double min_x = lon - 3; double min_y = lat - 1; FGBucket b_min( min_x, min_y ); FGBucket b_max( lon + 3, lat + 1 ); FGBucket b_start(1662962L); bool do_tile = false; // FGBucket b_omit(-1L); // FGBucket b(1122504L); FGBucket b(-146.248360, 61.133950); construct_tile( work_base, output_base, b ); exit(0); if ( b_min == b_max ) { construct_tile( work_base, output_base, b_min ); } else { FGBucket b_cur; int dx, dy, i, j; fgBucketDiff(b_min, b_max, &dx, &dy); cout << " construction area spans tile boundaries" << endl; cout << " dx = " << dx << " dy = " << dy << endl; for ( j = 0; j <= dy; j++ ) { for ( i = 0; i <= dx; i++ ) { b_cur = fgBucketOffset(min_x, min_y, i, j); if ( b_cur == b_start ) { do_tile = true; } if ( do_tile ) { construct_tile( work_base, output_base, b_cur ); } else { cout << "skipping " << b_cur << endl; } } } // string answer; cin >> answer; } }