/* * sunsolver.cxx - given a location on earth and a time of day/date, * find the number of seconds to various sun positions. * * Written by Curtis Olson, started September 2003. * * Copyright (C) 2003 Curtis L. Olson - http://www.flightgear.org/~curt * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $Id$ */ #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include
#include "tmp.hxx" #include "sunsolver.hxx" static const time_t day_secs = 86400; static const time_t half_day_secs = day_secs / 2; static const time_t step_secs = 60; /* given a particular time expressed in side real time at prime * meridian (GST), compute position on the earth (lat, lon) such that * sun is directly overhead. (lat, lon are reported in radians */ void fgSunPositionGST(double gst, double *lon, double *lat) { /* time_t ssue; seconds since unix epoch */ /* double *lat; (return) latitude */ /* double *lon; (return) longitude */ double alpha, delta; double tmp; double beta = globals->get_ephem()->get_sun()->getLat(); double r = globals->get_ephem()->get_sun()->getDistance(); double xs = globals->get_ephem()->get_sun()->getxs(); double ys = globals->get_ephem()->get_sun()->getys(); double ye = globals->get_ephem()->get_sun()->getye(); double ze = globals->get_ephem()->get_sun()->getze(); alpha = atan2(ys - tan(beta)*ze/ys, xs); delta = asin(sin(beta)*ye/ys + cos(beta)*ze); tmp = alpha - (SGD_2PI/24)*gst; if (tmp < -SGD_PI) { do tmp += SGD_2PI; while (tmp < -SGD_PI); } else if (tmp > SGD_PI) { do tmp -= SGD_2PI; while (tmp < -SGD_PI); } *lon = tmp; *lat = delta; } static double sun_angle( const SGTime &t, const SGVec3d& world_up, double lon_rad, double lat_rad ) { SG_LOG( SG_EVENT, SG_DEBUG, " Updating Sun position" ); SG_LOG( SG_EVENT, SG_DEBUG, " Gst = " << t.getGst() ); double sun_lon, sun_gd_lat; fgSunPositionGST( t.getGst(), &sun_lon, &sun_gd_lat ); SGVec3d sunpos = SGVec3d::fromGeod(SGGeod::fromRad(sun_lon, sun_gd_lat)); SG_LOG( SG_EVENT, SG_DEBUG, " t.cur_time = " << t.get_cur_time() ); SG_LOG( SG_EVENT, SG_DEBUG, " Sun Geodetic lat = " << sun_gd_lat ); // calculate the sun's relative angle to local up SGVec3f nup = normalize(toVec3f(world_up)); SGVec3f nsun = normalize(toVec3f(sunpos)); // cout << "nup = " << nup[0] << "," << nup[1] << "," // << nup[2] << endl; // cout << "nsun = " << nsun[0] << "," << nsun[1] << "," // << nsun[2] << endl; double sun_angle = acos( dot( nup, nsun ) ); double sun_angle_deg = sun_angle * SG_RADIANS_TO_DEGREES; while ( sun_angle_deg < -180 ) { sun_angle += 360; } SG_LOG( SG_EVENT, SG_DEBUG, "sun angle relative to current location = " << sun_angle_deg ); return sun_angle_deg; } /** * Given the current unix time in seconds, calculate seconds to the * specified sun angle (relative to straight up.) Also specify if we * want the angle while the sun is ascending or descending. For * instance noon is when the sun angle is 0 (or the closest it can * get.) Dusk is when the sun angle is 90 and descending. Dawn is * when the sun angle is 90 and ascending. */ time_t fgTimeSecondsUntilSunAngle( time_t cur_time, double lon_rad, double lat_rad, double target_angle_deg, bool ascending ) { // cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", " // << lat_rad * SG_RADIANS_TO_DEGREES << endl; SGVec3d world_up = SGVec3d::fromGeod(SGGeod::fromRad(lon_rad, lat_rad)); SGTime t = SGTime( lon_rad, lat_rad, "", 0 ); double best_diff = 180.0; double last_angle = -99999.0; time_t best_time = cur_time; for ( time_t secs = cur_time - half_day_secs; secs < cur_time + half_day_secs; secs += step_secs ) { t.update( lon_rad, lat_rad, secs, 0 ); double angle_deg = sun_angle( t, world_up, lon_rad, lat_rad ); double diff = fabs( angle_deg - target_angle_deg ); if ( diff < best_diff ) { if ( last_angle <= 180.0 && ascending && ( last_angle > angle_deg ) ) { // cout << "best angle = " << angle << " offset = " // << secs - cur_time << endl; best_diff = diff; best_time = secs; } else if ( last_angle <= 180.0 && !ascending && ( last_angle < angle_deg ) ) { // cout << "best angle = " << angle << " offset = " // << secs - cur_time << endl; best_diff = diff; best_time = secs; } } last_angle = angle_deg; } return best_time - cur_time; }