// views.cxx -- data structures and routines for managing and view // parameters. // // Written by Curtis Olson, started August 1997. // // Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ // (Log is kept at end of this file) #ifdef HAVE_CONFIG_H # include <config.h> #endif #include <Debug/fg_debug.h> #include <Flight/flight.h> #include <Include/fg_constants.h> #include <Math/mat3.h> #include <Math/polar3d.hxx> #include <Math/vector.hxx> #include <Scenery/scenery.hxx> #include <Time/fg_time.hxx> #include "options.hxx" #include "views.hxx" // This is a record containing current view parameters fgVIEW current_view; // Constructor fgVIEW::fgVIEW( void ) { } // Initialize a view structure void fgVIEW::Init( void ) { fgPrintf( FG_VIEW, FG_INFO, "Initializing View parameters\n"); view_offset = 0.0; goal_view_offset = 0.0; winWidth = 640; // FG_DEFAULT_WIN_WIDTH winHeight = 480; // FG_DEFAULT_WIN_HEIGHT win_ratio = (double) winWidth / (double) winHeight; update_fov = TRUE; } // Update the field of view parameters void fgVIEW::UpdateFOV( fgOPTIONS *o ) { double theta_x, theta_y; // printf("win_ratio = %.2f\n", win_ratio); // calculate sin() and cos() of fov / 2 in X direction; theta_x = (o->fov * win_ratio * DEG_TO_RAD) / 2.0; // printf("theta_x = %.2f\n", theta_x); sin_fov_x = sin(theta_x); cos_fov_x = cos(theta_x); slope_x = - cos_fov_x / sin_fov_x; // printf("slope_x = %.2f\n", slope_x); // calculate sin() and cos() of fov / 2 in Y direction; theta_y = (o->fov * DEG_TO_RAD) / 2.0; // printf("theta_y = %.2f\n", theta_y); sin_fov_y = sin(theta_y); cos_fov_y = cos(theta_y); slope_y = cos_fov_y / sin_fov_y; // printf("slope_y = %.2f\n", slope_y); } // Update the view parameters void fgVIEW::Update( fgFLIGHT *f ) { fgOPTIONS *o; fgPoint3d p; MAT3vec vec, forward, v0, minus_z; MAT3mat R, TMP, UP, LOCAL, VIEW; double ntmp; o = ¤t_options; if(update_fov == TRUE) { // printf("Updating fov\n"); UpdateFOV(o); update_fov = FALSE; } scenery.center.x = scenery.next_center.x; scenery.center.y = scenery.next_center.y; scenery.center.z = scenery.next_center.z; // calculate the cartesion coords of the current lat/lon/0 elev p.lon = FG_Longitude; p.lat = FG_Lat_geocentric; p.radius = FG_Sea_level_radius * FEET_TO_METER; cur_zero_elev = fgPolarToCart3d(p); cur_zero_elev.x -= scenery.center.x; cur_zero_elev.y -= scenery.center.y; cur_zero_elev.z -= scenery.center.z; // calculate view position in current FG view coordinate system // p.lon & p.lat are already defined earlier p.radius = FG_Radius_to_vehicle * FEET_TO_METER + 1.0; abs_view_pos = fgPolarToCart3d(p); view_pos.x = abs_view_pos.x - scenery.center.x; view_pos.y = abs_view_pos.y - scenery.center.y; view_pos.z = abs_view_pos.z - scenery.center.z; fgPrintf( FG_VIEW, FG_DEBUG, "Absolute view pos = %.4f, %.4f, %.4f\n", abs_view_pos.x, abs_view_pos.y, abs_view_pos.z); fgPrintf( FG_VIEW, FG_DEBUG, "Relative view pos = %.4f, %.4f, %.4f\n", view_pos.x, view_pos.y, view_pos.z); // Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw) // from FG_T_local_to_body[3][3] // Question: Why is the LaRCsim matrix arranged so differently // than the one we need??? LOCAL[0][0] = FG_T_local_to_body_33; LOCAL[0][1] = -FG_T_local_to_body_32; LOCAL[0][2] = -FG_T_local_to_body_31; LOCAL[0][3] = 0.0; LOCAL[1][0] = -FG_T_local_to_body_23; LOCAL[1][1] = FG_T_local_to_body_22; LOCAL[1][2] = FG_T_local_to_body_21; LOCAL[1][3] = 0.0; LOCAL[2][0] = -FG_T_local_to_body_13; LOCAL[2][1] = FG_T_local_to_body_12; LOCAL[2][2] = FG_T_local_to_body_11; LOCAL[2][3] = 0.0; LOCAL[3][0] = LOCAL[3][1] = LOCAL[3][2] = LOCAL[3][3] = 0.0; LOCAL[3][3] = 1.0; // printf("LaRCsim LOCAL matrix\n"); // MAT3print(LOCAL, stdout); #ifdef OLD_LOCAL_TO_BODY_CODE // old code to calculate LOCAL matrix calculated from Phi, // Theta, and Psi (roll, pitch, yaw) MAT3_SET_VEC(vec, 0.0, 0.0, 1.0); MAT3rotate(R, vec, FG_Phi); /* printf("Roll matrix\n"); */ /* MAT3print(R, stdout); */ MAT3_SET_VEC(vec, 0.0, 1.0, 0.0); /* MAT3mult_vec(vec, vec, R); */ MAT3rotate(TMP, vec, FG_Theta); /* printf("Pitch matrix\n"); */ /* MAT3print(TMP, stdout); */ MAT3mult(R, R, TMP); MAT3_SET_VEC(vec, 1.0, 0.0, 0.0); /* MAT3mult_vec(vec, vec, R); */ /* MAT3rotate(TMP, vec, FG_Psi - FG_PI_2); */ MAT3rotate(TMP, vec, -FG_Psi); /* printf("Yaw matrix\n"); MAT3print(TMP, stdout); */ MAT3mult(LOCAL, R, TMP); // printf("FG derived LOCAL matrix\n"); // MAT3print(LOCAL, stdout); #endif // OLD_LOCAL_TO_BODY_CODE // Derive the local UP transformation matrix based on *geodetic* // coordinates MAT3_SET_VEC(vec, 0.0, 0.0, 1.0); MAT3rotate(R, vec, FG_Longitude); // R = rotate about Z axis // printf("Longitude matrix\n"); // MAT3print(R, stdout); MAT3_SET_VEC(vec, 0.0, 1.0, 0.0); MAT3mult_vec(vec, vec, R); MAT3rotate(TMP, vec, -FG_Latitude); // TMP = rotate about X axis // printf("Latitude matrix\n"); // MAT3print(TMP, stdout); MAT3mult(UP, R, TMP); // printf("Local up matrix\n"); // MAT3print(UP, stdout); MAT3_SET_VEC(local_up, 1.0, 0.0, 0.0); MAT3mult_vec(local_up, local_up, UP); // printf( "Local Up = (%.4f, %.4f, %.4f)\n", // local_up[0], local_up[1], local_up[2]); // Alternative method to Derive local up vector based on // *geodetic* coordinates // alt_up = fgPolarToCart(FG_Longitude, FG_Latitude, 1.0); // printf( " Alt Up = (%.4f, %.4f, %.4f)\n", // alt_up.x, alt_up.y, alt_up.z); // Calculate the VIEW matrix MAT3mult(VIEW, LOCAL, UP); // printf("VIEW matrix\n"); // MAT3print(VIEW, stdout); // generate the current up, forward, and fwrd-view vectors MAT3_SET_VEC(vec, 1.0, 0.0, 0.0); MAT3mult_vec(view_up, vec, VIEW); MAT3_SET_VEC(vec, 0.0, 0.0, 1.0); MAT3mult_vec(forward, vec, VIEW); // printf( "Forward vector is (%.2f,%.2f,%.2f)\n", forward[0], forward[1], // forward[2]); MAT3rotate(TMP, view_up, view_offset); MAT3mult_vec(view_forward, forward, TMP); // make a vector to the current view position MAT3_SET_VEC(v0, view_pos.x, view_pos.y, view_pos.z); // Given a vector pointing straight down (-Z), map into onto the // local plane representing "horizontal". This should give us the // local direction for moving "south". MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0); map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south); MAT3_NORMALIZE_VEC(surface_south, ntmp); // printf( "Surface direction directly south %.2f %.2f %.2f\n", // surface_south[0], surface_south[1], surface_south[2]); // now calculate the surface east vector MAT3rotate(TMP, view_up, FG_PI_2); MAT3mult_vec(surface_east, surface_south, TMP); // printf( "Surface direction directly east %.2f %.2f %.2f\n", // surface_east[0], surface_east[1], surface_east[2]); // printf( "Should be close to zero = %.2f\n", // MAT3_DOT_PRODUCT(surface_south, surface_east)); } // Update the "World to Eye" transformation matrix // This is most useful for view frustum culling void fgVIEW::UpdateWorldToEye( fgFLIGHT *f ) { MAT3mat R_Phi, R_Theta, R_Psi, R_Lat, R_Lon, T_view; MAT3mat TMP; MAT3hvec vec; // if we have a view offset use slow way for now if(fabs(view_offset)>FG_EPSILON){ // Roll Matrix MAT3_SET_HVEC(vec, 0.0, 0.0, -1.0, 1.0); MAT3rotate(R_Phi, vec, FG_Phi); // printf("Roll matrix (Phi)\n"); // MAT3print(R_Phi, stdout); // Pitch Matrix MAT3_SET_HVEC(vec, 1.0, 0.0, 0.0, 1.0); MAT3rotate(R_Theta, vec, FG_Theta); // printf("\nPitch matrix (Theta)\n"); // MAT3print(R_Theta, stdout); // Yaw Matrix MAT3_SET_HVEC(vec, 0.0, -1.0, 0.0, 1.0); MAT3rotate(R_Psi, vec, FG_Psi + FG_PI - view_offset ); // printf("\nYaw matrix (Psi)\n"); // MAT3print(R_Psi, stdout); // aircraft roll/pitch/yaw MAT3mult(TMP, R_Phi, R_Theta); MAT3mult(AIRCRAFT, TMP, R_Psi); } else { // JUST USE LOCAL_TO_BODY NHV 5/25/98 // hey this is even different then LOCAL[][] above ?? AIRCRAFT[0][0] = -FG_T_local_to_body_22; AIRCRAFT[0][1] = -FG_T_local_to_body_23; AIRCRAFT[0][2] = FG_T_local_to_body_21; AIRCRAFT[0][3] = 0.0; AIRCRAFT[1][0] = FG_T_local_to_body_32; AIRCRAFT[1][1] = FG_T_local_to_body_33; AIRCRAFT[1][2] = -FG_T_local_to_body_31; AIRCRAFT[1][3] = 0.0; AIRCRAFT[2][0] = FG_T_local_to_body_12; AIRCRAFT[2][1] = FG_T_local_to_body_13; AIRCRAFT[2][2] = -FG_T_local_to_body_11; AIRCRAFT[2][3] = 0.0; AIRCRAFT[3][0] = AIRCRAFT[3][1] = AIRCRAFT[3][2] = AIRCRAFT[3][3] = 0.0; AIRCRAFT[3][3] = 1.0; // ??? SOMETHING LIKE THIS SHOULD WORK NHV // Rotate about LOCAL_UP (AIRCRAFT[2][]) // MAT3_SET_HVEC(vec, AIRCRAFT[2][0], AIRCRAFT[2][1], // AIRCRAFT[2][2], AIRCRAFT[2][3]); // MAT3rotate(TMP, vec, FG_PI - view_offset ); // MAT3mult(AIRCRAFT, AIRCRAFT, TMP); } // printf("\naircraft roll pitch yaw\n"); // MAT3print(AIRCRAFT, stdout); // View position in scenery centered coordinates MAT3_SET_HVEC(vec, view_pos.x, view_pos.y, view_pos.z, 1.0); MAT3translate(T_view, vec); // printf("\nTranslation matrix\n"); // MAT3print(T_view, stdout); // Latitude MAT3_SET_HVEC(vec, 1.0, 0.0, 0.0, 1.0); // R_Lat = rotate about X axis MAT3rotate(R_Lat, vec, FG_Latitude); // printf("\nLatitude matrix\n"); // MAT3print(R_Lat, stdout); // Longitude MAT3_SET_HVEC(vec, 0.0, 0.0, 1.0, 1.0); // R_Lon = rotate about Z axis MAT3rotate(R_Lon, vec, FG_Longitude - FG_PI_2 ); // printf("\nLongitude matrix\n"); // MAT3print(R_Lon, stdout); #ifdef THIS_IS_OLD_CODE // View position in scenery centered coordinates MAT3_SET_HVEC(vec, view_pos.x, view_pos.y, view_pos.z, 1.0); MAT3translate(T_view, vec); // printf("\nTranslation matrix\n"); // MAT3print(T_view, stdout); // aircraft roll/pitch/yaw MAT3mult(TMP, R_Phi, R_Theta); MAT3mult(AIRCRAFT, TMP, R_Psi); // printf("\naircraft roll pitch yaw\n"); // MAT3print(AIRCRAFT, stdout); #endif THIS_IS_OLD_CODE // lon/lat MAT3mult(WORLD, R_Lat, R_Lon); // printf("\nworld\n"); // MAT3print(WORLD, stdout); MAT3mult(EYE_TO_WORLD, AIRCRAFT, WORLD); MAT3mult(EYE_TO_WORLD, EYE_TO_WORLD, T_view); // printf("\nEye to world\n"); // MAT3print(EYE_TO_WORLD, stdout); MAT3invert(WORLD_TO_EYE, EYE_TO_WORLD); // printf("\nWorld to eye\n"); // MAT3print(WORLD_TO_EYE, stdout); // printf( "\nview_pos = %.2f %.2f %.2f\n", // view_pos.x, view_pos.y, view_pos.z ); // MAT3_SET_HVEC(eye, 0.0, 0.0, 0.0, 1.0); // MAT3mult_vec(vec, eye, EYE_TO_WORLD); // printf("\neye -> world = %.2f %.2f %.2f\n", vec[0], vec[1], vec[2]); // MAT3_SET_HVEC(vec1, view_pos.x, view_pos.y, view_pos.z, 1.0); // MAT3mult_vec(vec, vec1, WORLD_TO_EYE); // printf( "\nabs_view_pos -> eye = %.2f %.2f %.2f\n", // vec[0], vec[1], vec[2]); } // Destructor fgVIEW::~fgVIEW( void ) { } // Basically, this is a modified version of the Mesa gluLookAt() // function that's been modified slightly so we can capture the result // before sending it off to OpenGL land. void fg_gluLookAt( GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz ) { GLdouble *m; GLdouble x[3], y[3], z[3]; GLdouble mag; m = current_view.MODEL_VIEW; /* Make rotation matrix */ /* Z vector */ z[0] = eyex - centerx; z[1] = eyey - centery; z[2] = eyez - centerz; mag = sqrt( z[0]*z[0] + z[1]*z[1] + z[2]*z[2] ); if (mag) { /* mpichler, 19950515 */ z[0] /= mag; z[1] /= mag; z[2] /= mag; } /* Y vector */ y[0] = upx; y[1] = upy; y[2] = upz; /* X vector = Y cross Z */ x[0] = y[1]*z[2] - y[2]*z[1]; x[1] = -y[0]*z[2] + y[2]*z[0]; x[2] = y[0]*z[1] - y[1]*z[0]; /* Recompute Y = Z cross X */ y[0] = z[1]*x[2] - z[2]*x[1]; y[1] = -z[0]*x[2] + z[2]*x[0]; y[2] = z[0]*x[1] - z[1]*x[0]; /* mpichler, 19950515 */ /* cross product gives area of parallelogram, which is < 1.0 for * non-perpendicular unit-length vectors; so normalize x, y here */ mag = sqrt( x[0]*x[0] + x[1]*x[1] + x[2]*x[2] ); if (mag) { x[0] /= mag; x[1] /= mag; x[2] /= mag; } mag = sqrt( y[0]*y[0] + y[1]*y[1] + y[2]*y[2] ); if (mag) { y[0] /= mag; y[1] /= mag; y[2] /= mag; } #define M(row,col) m[col*4+row] M(0,0) = x[0]; M(0,1) = x[1]; M(0,2) = x[2]; M(0,3) = 0.0; M(1,0) = y[0]; M(1,1) = y[1]; M(1,2) = y[2]; M(1,3) = 0.0; M(2,0) = z[0]; M(2,1) = z[1]; M(2,2) = z[2]; M(2,3) = 0.0; M(3,0) = 0.0; M(3,1) = 0.0; M(3,2) = 0.0; M(3,3) = 1.0; #undef M // Translate Eye to Origin // replaces: glTranslated( -eyex, -eyey, -eyez ); m[12] = m[0] * -eyex + m[4] * -eyey + m[8] * -eyez + m[12]; m[13] = m[1] * -eyex + m[5] * -eyey + m[9] * -eyez + m[13]; m[14] = m[2] * -eyex + m[6] * -eyey + m[10] * -eyez + m[14]; m[15] = m[3] * -eyex + m[7] * -eyey + m[11] * -eyez + m[15]; // xglMultMatrixd( m ); xglLoadMatrixd( m ); } // $Log$ // Revision 1.14 1998/07/08 14:45:08 curt // polar3d.h renamed to polar3d.hxx // vector.h renamed to vector.hxx // updated audio support so it waits to create audio classes (and tie up // /dev/dsp) until the mpg123 player is finished. // // Revision 1.13 1998/07/04 00:52:27 curt // Add my own version of gluLookAt() (which is nearly identical to the // Mesa/glu version.) But, by calculating the Model View matrix our selves // we can save this matrix without having to read it back in from the video // card. This hopefully allows us to save a few cpu cycles when rendering // out the fragments because we can just use glLoadMatrixd() with the // precalculated matrix for each tile rather than doing a push(), translate(), // pop() for every fragment. // // Panel status defaults to off for now until it gets a bit more developed. // // Extract OpenGL driver info on initialization. // // Revision 1.12 1998/06/03 00:47:15 curt // Updated to compile in audio support if OSS available. // Updated for new version of Steve's audio library. // STL includes don't use .h // Small view optimizations. // // Revision 1.11 1998/05/27 02:24:05 curt // View optimizations by Norman Vine. // // Revision 1.10 1998/05/17 16:59:03 curt // First pass at view frustum culling now operational. // // Revision 1.9 1998/05/16 13:08:37 curt // C++ - ified views.[ch]xx // Shuffled some additional view parameters into the fgVIEW class. // Changed tile-radius to tile-diameter because it is a much better // name. // Added a WORLD_TO_EYE transformation to views.cxx. This allows us // to transform world space to eye space for view frustum culling. // // Revision 1.8 1998/05/02 01:51:01 curt // Updated polartocart conversion routine. // // Revision 1.7 1998/04/30 12:34:20 curt // Added command line rendering options: // enable/disable fog/haze // specify smooth/flat shading // disable sky blending and just use a solid color // enable wireframe drawing mode // // Revision 1.6 1998/04/28 01:20:23 curt // Type-ified fgTIME and fgVIEW. // Added a command line option to disable textures. // // Revision 1.5 1998/04/26 05:10:04 curt // "struct fgLIGHT" -> "fgLIGHT" because fgLIGHT is typedef'd. // // Revision 1.4 1998/04/25 22:04:53 curt // Use already calculated LaRCsim values to create the roll/pitch/yaw // transformation matrix (we call it LOCAL) // // Revision 1.3 1998/04/25 20:24:02 curt // Cleaned up initialization sequence to eliminate interdependencies // between sun position, lighting, and view position. This creates a // valid single pass initialization path. // // Revision 1.2 1998/04/24 00:49:22 curt // Wrapped "#include <config.h>" in "#ifdef HAVE_CONFIG_H" // Trying out some different option parsing code. // Some code reorganization. // // Revision 1.1 1998/04/22 13:25:45 curt // C++ - ifing the code. // Starting a bit of reorganization of lighting code. // // Revision 1.16 1998/04/18 04:11:29 curt // Moved fg_debug to it's own library, added zlib support. // // Revision 1.15 1998/02/20 00:16:24 curt // Thursday's tweaks. // // Revision 1.14 1998/02/09 15:07:50 curt // Minor tweaks. // // Revision 1.13 1998/02/07 15:29:45 curt // Incorporated HUD changes and struct/typedef changes from Charlie Hotchkiss // <chotchkiss@namg.us.anritsu.com> // // Revision 1.12 1998/01/29 00:50:28 curt // Added a view record field for absolute x, y, z position. // // Revision 1.11 1998/01/27 00:47:58 curt // Incorporated Paul Bleisch's <pbleisch@acm.org> new debug message // system and commandline/config file processing code. // // Revision 1.10 1998/01/19 19:27:09 curt // Merged in make system changes from Bob Kuehne <rpk@sgi.com> // This should simplify things tremendously. // // Revision 1.9 1998/01/13 00:23:09 curt // Initial changes to support loading and management of scenery tiles. Note, // there's still a fair amount of work left to be done. // // Revision 1.8 1997/12/30 22:22:33 curt // Further integration of event manager. // // Revision 1.7 1997/12/30 20:47:45 curt // Integrated new event manager with subsystem initializations. // // Revision 1.6 1997/12/22 04:14:32 curt // Aligned sky with sun so dusk/dawn effects can be correct relative to the sun. // // Revision 1.5 1997/12/18 04:07:02 curt // Worked on properly translating and positioning the sky dome. // // Revision 1.4 1997/12/17 23:13:36 curt // Began working on rendering a sky. // // Revision 1.3 1997/12/15 23:54:50 curt // Add xgl wrappers for debugging. // Generate terrain normals on the fly. // // Revision 1.2 1997/12/10 22:37:48 curt // Prepended "fg" on the name of all global structures that didn't have it yet. // i.e. "struct WEATHER {}" became "struct fgWEATHER {}" // // Revision 1.1 1997/08/27 21:31:17 curt // Initial revision. //