// LaRCsim.cxx -- interface to the LaRCsim flight model // // Written by Curtis Olson, started October 1998. // // Copyright (C) 1998 Curtis L. Olson - curt@me.umn.edu // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include #include #include #include #include /* #include */ #include #include #include #include //simple "one-at-a-time" longitudinal trimming routine typedef struct { double latitude,longitude,altitude; double vc,alpha,beta,gamma; double theta,phi,psi; double weight,cg; int use_gamma_tmg; }InitialConditions; // Units for setIC // vc knots (calibrated airspeed, close to indicated) // altitude ft // all angles in degrees // weight lbs // cg %MAC // if use_gamma_tmg =1 then theta will be computed // from theta=alpha+gamma and the value given will // be ignored. Otherwise gamma is computed from // gamma=theta-alpha void setIC(InitialConditions IC) { SCALAR vtfps,u,v,w,vt_east; SCALAR vnu,vnv,vnw,vteu,vtev,vtew,vdu,vdv,vdw; SCALAR alphar,betar,thetar,phir,psir,gammar; SCALAR sigma,ps,Ts,a; Mass=IC.weight*INVG; Dx_cg=(IC.cg-0.25)*4.9; Latitude=IC.latitude*DEG_TO_RAD; Longitude=IC.longitude*DEG_TO_RAD; Altitude=IC.altitude; ls_geod_to_geoc( Latitude, Altitude, &Sea_level_radius, &Lat_geocentric); ls_atmos(IC.altitude,&sigma,&a,&Ts,&ps); vtfps=sqrt(1/sigma*IC.vc*IC.vc)*1.68781; alphar=IC.alpha*DEG_TO_RAD; betar=IC.beta*DEG_TO_RAD; gammar=IC.gamma*DEG_TO_RAD; phir=IC.phi*DEG_TO_RAD; psir=IC.psi*DEG_TO_RAD; if(IC.use_gamma_tmg == 1) { thetar=alphar+gammar; } else { thetar=IC.theta*DEG_TO_RAD; gammar=thetar-alphar; } u=vtfps*cos(alphar)*cos(betar); v=vtfps*sin(betar); w=vtfps*sin(alphar)*cos(betar); vnu=u*cos(thetar)*cos(psir); vnv=v*(-sin(psir)*cos(phir)+sin(phir)*sin(thetar)*cos(psir)); vnw=w*(sin(phir)*sin(psir)+cos(phir)*sin(thetar)*cos(psir)); V_north=vnu+vnv+vnw; vteu=u*cos(thetar)*sin(psir); vtev=v*(cos(phir)*cos(psir)+sin(phir)*sin(thetar)*sin(psir)); vtew=w*(-sin(phir)*cos(psir)+cos(phir)*sin(thetar)*sin(psir)); vt_east=vteu+vtev+vtew; V_east=vt_east+ OMEGA_EARTH*Sea_level_radius*cos(Lat_geocentric); vdu=u*-sin(thetar); vdv=v*cos(thetar)*sin(phir); vdw=w*cos(thetar)*cos(phir); V_down=vdu+vdv+vdw; Theta=thetar; Phi=phir; Psi=psir; } int trim_long(int kmax, InitialConditions IC) { double elevator,alpha; double tol=1E-3; double a_tol=tol/10; double alpha_step=0.001; int k=0,i,j=0,jmax=10,sum=0; ls_loop(0.0,-1); do{ //printf("k: %d\n",k); while((fabs(W_dot_body) > tol) && (j < jmax)) { IC.alpha+=W_dot_body*0.05; if((IC.alpha < -5) || (IC.alpha > 21)) j=jmax; setIC(IC); ls_loop(0.0,-1); /* printf("IC.alpha: %g, Alpha: %g, wdot: %g\n",IC.alpha,Alpha*RAD_TO_DEG,W_dot_body); */ j++; } sum+=j; /* printf("\tTheta: %7.4f, Alpha: %7.4f, wdot: %10.6f, j: %d\n",Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,W_dot_body,j); */ j=0; while((fabs(U_dot_body) > tol) && (j < jmax)) { Throttle_pct-=U_dot_body*0.005; if((Throttle_pct < 0) || (Throttle_pct > 1)) Throttle_pct=0.2; setIC(IC); ls_loop(0.0,-1); j++; } sum+=j; /* printf("\tThrottle_pct: %7.4f, udot: %10.6f, j: %d\n",Throttle_pct,U_dot_body,j); */ j=0; while((fabs(Q_dot_body) > a_tol) && (j < jmax)) { Long_control+=Q_dot_body*0.001; if((Long_control < -1) || (Long_control > 1)) j=jmax; setIC(IC); ls_loop(0.0,-1); j++; } sum+=j; if(Long_control >= 0) elevator=Long_control*23; else elevator=Long_control*28; /* printf("\televator: %7.4f, qdot: %10.6f, j: %d\n",elevator,Q_dot_body,j); */ k++;j=0; }while(((fabs(W_dot_body) > tol) || (fabs(U_dot_body) > tol) || (fabs(Q_dot_body) > tol)) && (k < kmax)); /* printf("Total Iterations: %d\n",sum); */ return k; } int trim_ground(int kmax, InitialConditions IC) { double elevator,alpha,qdot_prev,alt_prev,step; double tol=1E-3; double a_tol=tol/10; double alpha_step=0.001; int k=0,i,j=0,jmax=40,sum=0,m=0; Throttle_pct=0; Brake_pct=1; Theta=5*DEG_TO_RAD; IC.altitude=Runway_altitude; printf("udot: %g\n",U_dot_body); setIC(IC); printf("Altitude: %g, Runway_altitude: %g\n",Altitude,Runway_altitude); qdot_prev=1.0E6; ls_loop(0.0,-1); do{ //printf("k: %d\n",k); step=1; printf("IC.altitude: %g, Altitude: %g, Runway_altitude: %g,wdot: %g,F_Z_gear: %g, M_m_gear: %g,F_Z: %g\n",IC.altitude,Altitude,Runway_altitude,W_dot_body,F_Z_gear,M_m_gear,F_Z); m=0; while((fabs(W_dot_body) > tol) && (m < 10)) { j=0; do{ alt_prev=IC.altitude; IC.altitude+=step; setIC(IC); ls_loop(0.0,-1); printf("IC.altitude: %g, Altitude: %g, Runway_altitude: %g,wdot: %g,F_Z: %g\n",IC.altitude,Altitude,Runway_altitude,W_dot_body,F_Z); j++; }while((W_dot_body < 0) && (j < jmax)); IC.altitude-=step; step/=10; printf("step: %g\n",step); m++; } sum+=j; printf("IC.altitude: %g, Altitude: %g, Runway_altitude: %g,wdot: %g,F_Z_gear: %g, M_m_gear: %g,F_Z: %g\n",IC.altitude,Altitude,Runway_altitude,W_dot_body,F_Z_gear,M_m_gear,F_Z); j=0; while((Q_dot_body <= qdot_prev) && (j < jmax)) { qdot_prev=Q_dot_body; IC.theta+=Q_dot_body; setIC(IC); ls_loop(0.0,-1); j++; printf("\tTheta: %7.4f, qdot: %10.6f, qdot_prev: %10.6f, j: %d\n",Theta*RAD_TO_DEG,Q_dot_body,qdot_prev,j); } IC.theta-=qdot_prev; sum+=j; printf("\tTheta: %7.4f, qdot: %10.6f, W_dot_body: %g\n",Theta,Q_dot_body,W_dot_body); j=0; if(W_dot_body > tol) { step=1; while((W_dot_body > 0) && (j tol) || (fabs(Q_dot_body) > tol)) && (k < kmax)); printf("Total Iterations: %d\n",sum); return k; } void do_trims(int kmax,FILE *out,InitialConditions IC) { int k=0,i; double speed,elevator,cmcl; out=fopen("trims.out","w"); speed=55; for(i=1;i<=5;i++) { switch(i) { case 1: IC.weight=1500;IC.cg=0.155;break; case 2: IC.weight=1500;IC.cg=0.364;break; case 3: IC.weight=1950;IC.cg=0.155;break; case 4: IC.weight=2550;IC.cg=0.257;break; case 5: IC.weight=2550;IC.cg=0.364;break; } speed=50; while(speed <= 150) { IC.vc=speed; Long_control=0;Theta=0;Throttle_pct=0.0; k=trim_long(kmax,IC); if(Long_control <= 0) elevator=Long_control*28; else elevator=Long_control*23; if(fabs(CL) > 1E-3) { cmcl=cm / CL; } if(k < kmax) { fprintf(out,"%g,%g,%g,%g,%g,%d",V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control,Throttle_pct,Gamma_vert_rad,k); fprintf(out,",%g,%g,%g,%g,%g\n",CL,cm,cmcl,Weight,Cg); /* printf("%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n",V_calibrated_kts,Alpha*RAD_TO_DEG,elevator,CL,cm,Cmo,Cma,Cmde,Mass*32.174,Dx_cg); */ } else { printf("kmax exceeded at: %g knots, %g lbs, %g %%MAC\n",V_calibrated_kts,Weight,Cg); printf("wdot: %g, udot: %g, qdot: %g\n\n",W_dot_body,U_dot_body,Q_dot_body); } speed+=10; } } fclose(out); } void do_stick_pull(int kmax, SCALAR tmax,FILE *out,InitialConditions IC) { SCALAR htarget,hgain,hdiffgain,herr,herr_diff,herrprev; SCALAR theta_trim,elev_trim,time; int k; k=trim_long(kmax,IC); printf("Trim:\n\tAlpha: %10.6f, elev: %10.6f, Throttle: %10.6f\n\twdot: %10.6f, qdot: %10.6f, udot: %10.6f\n",Alpha*RAD_TO_DEG,Long_control,Throttle_pct,W_dot_body,U_dot_body,Q_dot_body); htarget=0; hgain=1; hdiffgain=1; elev_trim=Long_control; out=fopen("stick_pull.out","w"); herr=Q_body-htarget; //fly steady-level for 2 seconds, well, zero pitch rate anyway while(time < 2.0) { herrprev=herr; ls_update(1); herr=Q_body-htarget; herr_diff=herr-herrprev; Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff); time+=0.01; /* printf("Time: %7.4f, Alt: %7.4f, Alpha: %7.4f, pelev: %7.4f, qdot: %7.4f, udot: %7.4f, Phi: %7.4f, Psi: %7.4f\n",time,Altitude,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,U_dot_body,Phi,Psi); printf("Mcg: %7.4f, Mrp: %7.4f, Maero: %7.4f, Meng: %7.4f, Mgear: %7.4f, Dx_cg: %7.4f, Dz_cg: %7.4f\n\n",M_m_cg,M_m_rp,M_m_aero,M_m_engine,M_m_gear,Dx_cg,Dz_cg); */ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_true_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG); fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude); } //begin untrimmed climb at theta_trim + 2 degrees hgain=4; hdiffgain=2; theta_trim=Theta; htarget=theta_trim; herr=Theta-htarget; while(time < tmax) { //ramp in the target theta if(htarget < (theta_trim + 2*DEG_TO_RAD)) { htarget+= 0.01*DEG_TO_RAD; } herrprev=herr; ls_update(1); herr=Theta-htarget; herr_diff=herr-herrprev; Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff); time+=0.01; /* printf("Time: %7.4f, Alt: %7.4f, Alpha: %7.4f, pelev: %7.4f, qdot: %7.4f, udot: %7.4f, Phi: %7.4f, Psi: %7.4f\n",time,Altitude,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,U_dot_body,Phi,Psi); printf("Mcg: %7.4f, Mrp: %7.4f, Maero: %7.4f, Meng: %7.4f, Mgear: %7.4f, Dx_cg: %7.4f, Dz_cg: %7.4f\n\n",M_m_cg,M_m_rp,M_m_aero,M_m_engine,M_m_gear,Dx_cg,Dz_cg); */ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_true_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG); fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude); } printf("%g,%g\n",theta_trim*RAD_TO_DEG,htarget*RAD_TO_DEG); fclose(out); } void do_takeoff(FILE *out) { SCALAR htarget,hgain,hdiffgain,elev_trim,elev_trim_save,herr; SCALAR time,herrprev,herr_diff; htarget=0; hgain=1; hdiffgain=1; elev_trim=Long_control; elev_trim_save=elev_trim; out=fopen("takeoff.out","w"); herr=Q_body-htarget; //attempt to maintain zero pitch rate during the roll while((V_calibrated_kts < 61) && (time < 30.0)) { /* herrprev=herr;*/ ls_update(1); /*herr=Q_body-htarget; herr_diff=herr-herrprev; Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff); */ time+=0.01; printf("Time: %7.4f, Vc: %7.4f, Alpha: %7.4f, pelev: %7.4f, qdot: %7.4f, udot: %7.4f, U: %7.4f, W: %7.4f\n",time,V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,U_dot_body,U_body,W_body); // printf("Mcg: %7.4f, Mrp: %7.4f, Maero: %7.4f, Meng: %7.4f, Mgear: %7.4f, Dx_cg: %7.4f, Dz_cg: %7.4f\n\n",M_m_cg,M_m_rp,M_m_aero,M_m_engine,M_m_gear,Dx_cg,Dz_cg); // fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_calibrated_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG); fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude); } //At Vr, ramp in 10% nose up elevator in 0.5 seconds elev_trim_save=0; printf("At Vr, rotate...\n"); while((Q_body < 3.0*RAD_TO_DEG) && (time < 30.0)) { Long_control-=0.01; ls_update(1); printf("Time: %7.4f, Vc: %7.4f, Alpha: %7.4f, pelev: %7.4f, q: %7.4f, cm: %7.4f, U: %7.4f, W: %7.4f\n",time,V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,cm,U_body,W_body); fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_calibrated_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG); fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude); time +=0.01; } //Maintain 15 degrees theta for the climbout htarget=15*DEG_TO_RAD; herr=Theta-htarget; hgain=10; hdiffgain=1; elev_trim=Long_control; while(time < 30.0) { herrprev=herr; ls_update(1); herr=Theta-htarget; herr_diff=herr-herrprev; Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff); time+=0.01; printf("Time: %7.4f, Alt: %7.4f, Speed: %7.4f, Theta: %7.4f\n",time,Altitude,V_calibrated_kts,Theta*RAD_TO_DEG); fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_calibrated_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG); fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude); } fclose(out); printf("Speed: %7.4f, Alt: %7.4f, Alpha: %7.4f, pelev: %7.4f, q: %7.4f, udot: %7.4f\n",V_true_kts,Altitude,Alpha*RAD_TO_DEG,Long_control,Q_body*RAD_TO_DEG,U_dot_body); printf("F_down_total: %7.4f, F_Z_aero: %7.4f, F_X: %7.4f, M_m_cg: %7.4f\n\n",F_down+Mass*Gravity,F_Z_aero,F_X,M_m_cg); } // Initialize the LaRCsim flight model, dt is the time increment for // each subsequent iteration through the EOM int fgLaRCsimInit(double dt) { ls_toplevel_init(dt); return(1); } // Run an iteration of the EOM (equations of motion) int main(int argc, char *argv[]) { double save_alt = 0.0; int multiloop=1,k=0,i; double time=0,elev_trim,elev_trim_save,elevator,speed,cmcl; FILE *out; double hgain,hdiffgain,herr,herrprev,herr_diff,htarget; InitialConditions IC; if(argc < 6) { printf("Need args: $c172 speed alt alpha elev throttle\n"); exit(1); } IC.latitude=47.5299892; //BFI IC.longitude=122.3019561; Runway_altitude = 18.0; IC.altitude=strtod(argv[2],NULL); IC.vc=strtod(argv[1],NULL); IC.alpha=10; IC.beta=0; IC.theta=strtod(argv[3],NULL); IC.use_gamma_tmg=0; IC.phi=0; IC.psi=0; IC.weight=1500; IC.cg=0.155; Long_control=strtod(argv[4],NULL); setIC(IC); printf("Out setIC\n"); ls_ForceAltitude(IC.altitude); fgLaRCsimInit(0.01); while(IC.alpha < 30.0) { setIC(IC); ls_loop(0.0,-1); printf("CL: %g ,Alpha: %g\n",CL,IC.alpha); IC.alpha+=1.0; } /*trim_ground(10,IC);*/ /* printf("%g,%g\n",Theta,Gamma_vert_rad); printf("trim_long():\n"); k=trim_long(200,IC); Throttle_pct=Throttle_pct-0.2; printf("%g,%g\n",Theta,Gamma_vert_rad); out=fopen("dive.out","w"); time=0; while(time < 30.0) { ls_update(1); cmcl=cm/CL; fprintf(out,"%g,%g,%g,%g,%g,%d",V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control,Throttle_pct,Gamma_vert_rad,k); fprintf(out,",%g,%g,%g\n",CL,cm,cmcl); time+=0.01; } fclose(out); printf("V_rel_wind: %8.2f, Alpha: %8.2f, Beta: %8.2f\n",V_rel_wind,Alpha*RAD_TO_DEG,Beta*RAD_TO_DEG); printf("Theta: %8.2f, Gamma: %8.2f, Alpha_tmg: %8.2f\n",Theta*RAD_TO_DEG,Gamma_vert_rad*RAD_TO_DEG,Theta*RAD_TO_DEG-Gamma_vert_rad*RAD_TO_DEG); printf("V_north: %8.2f, V_east_rel_ground: %8.2f, V_east: %8.2f, V_down: %8.2f\n",V_north,V_east_rel_ground,V_east,V_down); printf("Long_control: %8.2f, Throttle_pct: %8.2f\n",Long_control,Throttle_pct); printf("k: %d, udot: %8.4f, wdot: %8.4f, qdot: %8.5f\n",k,U_dot_body,W_dot_body,Q_dot_body); printf("\nls_update():\n"); ls_update(1); printf("V_rel_wind: %8.2f, Alpha: %8.2f, Beta: %8.2f\n",V_rel_wind,Alpha*RAD_TO_DEG,Beta*RAD_TO_DEG); printf("Theta: %8.2f, Gamma: %8.2f, Alpha_tmg: %8.2f\n",Theta*RAD_TO_DEG,Gamma_vert_rad*RAD_TO_DEG,Theta*RAD_TO_DEG-Gamma_vert_rad*RAD_TO_DEG); */ /* Inform LaRCsim of the local terrain altitude */ return 1; } /*// Convert from the FGInterface struct to the LaRCsim generic_ struct int FGInterface_2_LaRCsim (FGInterface& f) { Mass = f.get_Mass(); I_xx = f.get_I_xx(); I_yy = f.get_I_yy(); I_zz = f.get_I_zz(); I_xz = f.get_I_xz(); // Dx_pilot = f.get_Dx_pilot(); // Dy_pilot = f.get_Dy_pilot(); // Dz_pilot = f.get_Dz_pilot(); Dx_cg = f.get_Dx_cg(); Dy_cg = f.get_Dy_cg(); Dz_cg = f.get_Dz_cg(); // F_X = f.get_F_X(); // F_Y = f.get_F_Y(); // F_Z = f.get_F_Z(); // F_north = f.get_F_north(); // F_east = f.get_F_east(); // F_down = f.get_F_down(); // F_X_aero = f.get_F_X_aero(); // F_Y_aero = f.get_F_Y_aero(); // F_Z_aero = f.get_F_Z_aero(); // F_X_engine = f.get_F_X_engine(); // F_Y_engine = f.get_F_Y_engine(); // F_Z_engine = f.get_F_Z_engine(); // F_X_gear = f.get_F_X_gear(); // F_Y_gear = f.get_F_Y_gear(); // F_Z_gear = f.get_F_Z_gear(); // M_l_rp = f.get_M_l_rp(); // M_m_rp = f.get_M_m_rp(); // M_n_rp = f.get_M_n_rp(); // M_l_cg = f.get_M_l_cg(); // M_m_cg = f.get_M_m_cg(); // M_n_cg = f.get_M_n_cg(); // M_l_aero = f.get_M_l_aero(); // M_m_aero = f.get_M_m_aero(); // M_n_aero = f.get_M_n_aero(); // M_l_engine = f.get_M_l_engine(); // M_m_engine = f.get_M_m_engine(); // M_n_engine = f.get_M_n_engine(); // M_l_gear = f.get_M_l_gear(); // M_m_gear = f.get_M_m_gear(); // M_n_gear = f.get_M_n_gear(); // V_dot_north = f.get_V_dot_north(); // V_dot_east = f.get_V_dot_east(); // V_dot_down = f.get_V_dot_down(); // U_dot_body = f.get_U_dot_body(); // V_dot_body = f.get_V_dot_body(); // W_dot_body = f.get_W_dot_body(); // A_X_cg = f.get_A_X_cg(); // A_Y_cg = f.get_A_Y_cg(); // A_Z_cg = f.get_A_Z_cg(); // A_X_pilot = f.get_A_X_pilot(); // A_Y_pilot = f.get_A_Y_pilot(); // A_Z_pilot = f.get_A_Z_pilot(); // N_X_cg = f.get_N_X_cg(); // N_Y_cg = f.get_N_Y_cg(); // N_Z_cg = f.get_N_Z_cg(); // N_X_pilot = f.get_N_X_pilot(); // N_Y_pilot = f.get_N_Y_pilot(); // N_Z_pilot = f.get_N_Z_pilot(); // P_dot_body = f.get_P_dot_body(); // Q_dot_body = f.get_Q_dot_body(); // R_dot_body = f.get_R_dot_body(); V_north = f.get_V_north(); V_east = f.get_V_east(); V_down = f.get_V_down(); // V_north_rel_ground = f.get_V_north_rel_ground(); // V_east_rel_ground = f.get_V_east_rel_ground(); // V_down_rel_ground = f.get_V_down_rel_ground(); // V_north_airmass = f.get_V_north_airmass(); // V_east_airmass = f.get_V_east_airmass(); // V_down_airmass = f.get_V_down_airmass(); // V_north_rel_airmass = f.get_V_north_rel_airmass(); // V_east_rel_airmass = f.get_V_east_rel_airmass(); // V_down_rel_airmass = f.get_V_down_rel_airmass(); // U_gust = f.get_U_gust(); // V_gust = f.get_V_gust(); // W_gust = f.get_W_gust(); // U_body = f.get_U_body(); // V_body = f.get_V_body(); // W_body = f.get_W_body(); // V_rel_wind = f.get_V_rel_wind(); // V_true_kts = f.get_V_true_kts(); // V_rel_ground = f.get_V_rel_ground(); // V_inertial = f.get_V_inertial(); // V_ground_speed = f.get_V_ground_speed(); // V_equiv = f.get_V_equiv(); // V_equiv_kts = f.get_V_equiv_kts(); // V_calibrated = f.get_V_calibrated(); // V_calibrated_kts = f.get_V_calibrated_kts(); P_body = f.get_P_body(); Q_body = f.get_Q_body(); R_body = f.get_R_body(); // P_local = f.get_P_local(); // Q_local = f.get_Q_local(); // R_local = f.get_R_local(); // P_total = f.get_P_total(); // Q_total = f.get_Q_total(); // R_total = f.get_R_total(); // Phi_dot = f.get_Phi_dot(); // Theta_dot = f.get_Theta_dot(); // Psi_dot = f.get_Psi_dot(); // Latitude_dot = f.get_Latitude_dot(); // Longitude_dot = f.get_Longitude_dot(); // Radius_dot = f.get_Radius_dot(); Lat_geocentric = f.get_Lat_geocentric(); Lon_geocentric = f.get_Lon_geocentric(); Radius_to_vehicle = f.get_Radius_to_vehicle(); Latitude = f.get_Latitude(); Longitude = f.get_Longitude(); Altitude = f.get_Altitude(); Phi = f.get_Phi(); Theta = f.get_Theta(); Psi = f.get_Psi(); // T_local_to_body_11 = f.get_T_local_to_body_11(); // T_local_to_body_12 = f.get_T_local_to_body_12(); // T_local_to_body_13 = f.get_T_local_to_body_13(); // T_local_to_body_21 = f.get_T_local_to_body_21(); // T_local_to_body_22 = f.get_T_local_to_body_22(); // T_local_to_body_23 = f.get_T_local_to_body_23(); // T_local_to_body_31 = f.get_T_local_to_body_31(); // T_local_to_body_32 = f.get_T_local_to_body_32(); // T_local_to_body_33 = f.get_T_local_to_body_33(); // Gravity = f.get_Gravity(); // Centrifugal_relief = f.get_Centrifugal_relief(); // Alpha = f.get_Alpha(); // Beta = f.get_Beta(); // Alpha_dot = f.get_Alpha_dot(); // Beta_dot = f.get_Beta_dot(); // Cos_alpha = f.get_Cos_alpha(); // Sin_alpha = f.get_Sin_alpha(); // Cos_beta = f.get_Cos_beta(); // Sin_beta = f.get_Sin_beta(); // Cos_phi = f.get_Cos_phi(); // Sin_phi = f.get_Sin_phi(); // Cos_theta = f.get_Cos_theta(); // Sin_theta = f.get_Sin_theta(); // Cos_psi = f.get_Cos_psi(); // Sin_psi = f.get_Sin_psi(); // Gamma_vert_rad = f.get_Gamma_vert_rad(); // Gamma_horiz_rad = f.get_Gamma_horiz_rad(); // Sigma = f.get_Sigma(); // Density = f.get_Density(); // V_sound = f.get_V_sound(); // Mach_number = f.get_Mach_number(); // Static_pressure = f.get_Static_pressure(); // Total_pressure = f.get_Total_pressure(); // Impact_pressure = f.get_Impact_pressure(); // Dynamic_pressure = f.get_Dynamic_pressure(); // Static_temperature = f.get_Static_temperature(); // Total_temperature = f.get_Total_temperature(); Sea_level_radius = f.get_Sea_level_radius(); Earth_position_angle = f.get_Earth_position_angle(); Runway_altitude = f.get_Runway_altitude(); // Runway_latitude = f.get_Runway_latitude(); // Runway_longitude = f.get_Runway_longitude(); // Runway_heading = f.get_Runway_heading(); // Radius_to_rwy = f.get_Radius_to_rwy(); // D_cg_north_of_rwy = f.get_D_cg_north_of_rwy(); // D_cg_east_of_rwy = f.get_D_cg_east_of_rwy(); // D_cg_above_rwy = f.get_D_cg_above_rwy(); // X_cg_rwy = f.get_X_cg_rwy(); // Y_cg_rwy = f.get_Y_cg_rwy(); // H_cg_rwy = f.get_H_cg_rwy(); // D_pilot_north_of_rwy = f.get_D_pilot_north_of_rwy(); // D_pilot_east_of_rwy = f.get_D_pilot_east_of_rwy(); // D_pilot_above_rwy = f.get_D_pilot_above_rwy(); // X_pilot_rwy = f.get_X_pilot_rwy(); // Y_pilot_rwy = f.get_Y_pilot_rwy(); // H_pilot_rwy = f.get_H_pilot_rwy(); return( 0 ); } */