// rnav_waypt_controller.cxx - Waypoint-specific behaviours for RNAV systems
// Written by James Turner, started 2009.
//
// Copyright (C) 2009  Curtis L. Olson
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

#include "rnav_waypt_controller.hxx"

#include <cassert>

#include <simgear/sg_inlines.h>
#include <simgear/structure/exception.hxx>

#include <Airports/runways.hxx>

namespace flightgear
{

const double KNOTS_TO_METRES_PER_SECOND = SG_NM_TO_METER / 3600.0;

double pmod(double x, double y)
{
  if (x < 0.0) {
    return -fmod(x, y);
  } else {
    return fmod(x,y);
  }
}

// implementation of
// http://williams.best.vwh.net/avform.htm#Intersection
bool geocRadialIntersection(const SGGeoc& a, double r1, const SGGeoc& b, double r2, SGGeoc& result)
{
  double crs13 = r1 * SG_DEGREES_TO_RADIANS;
  double crs23 = r2 * SG_DEGREES_TO_RADIANS;
  double dst12 = SGGeodesy::distanceRad(a, b);
  
  //IF sin(lon2-lon1)<0
  // crs12=acos((sin(lat2)-sin(lat1)*cos(dst12))/(sin(dst12)*cos(lat1)))
  // crs21=2.*pi-acos((sin(lat1)-sin(lat2)*cos(dst12))/(sin(dst12)*cos(lat2)))
  // ELSE
  // crs12=2.*pi-acos((sin(lat2)-sin(lat1)*cos(dst12))/(sin(dst12)*cos(lat1)))
  // crs21=acos((sin(lat1)-sin(lat2)*cos(dst12))/(sin(dst12)*cos(lat2)))
  // ENDIF
  
  
 // double diffLon = b.getLongitudeRad() - a.getLongitudeRad();
  
  double sinLat1 = sin(a.getLatitudeRad());
  double cosLat1 = cos(a.getLatitudeRad());
 // double sinLat2 = sin(b.getLatitudeRad());
  //double cosLat2 = cos(b.getLatitudeRad());
  double sinDst12 = sin(dst12);
  double cosDst12 = cos(dst12);
  
  double crs12 = SGGeodesy::courseRad(a, b),
    crs21 = SGGeodesy::courseRad(b, a);
    
  //double degCrs12 = crs12 * SG_RADIANS_TO_DEGREES;
  //double degCrs21 = crs21 * SG_RADIANS_TO_DEGREES;
    
 /* 
  if (sin(diffLon) < 0.0) {
    crs12 = acos((sinLat2 - sinLat1 * cosDst12) / (sinDst12 * cosLat1));
    crs21 = SGMiscd::twopi() - acos((sinLat1 - sinLat2*cosDst12)/(sinDst12*cosLat2));
  } else {
    crs12 = SGMiscd::twopi() - acos((sinLat2 - sinLat1 * cosDst12)/(sinDst12 * cosLat1));
    crs21 = acos((sinLat1 - sinLat2 * cosDst12)/(sinDst12 * cosLat2));
  }
  */
  
  double ang1 = SGMiscd::normalizeAngle2(crs13-crs12);
  double ang2 = SGMiscd::normalizeAngle2(crs21-crs23);
    
  if ((sin(ang1) == 0.0) && (sin(ang2) == 0.0)) {
    SG_LOG(SG_GENERAL, SG_WARN, "geocRadialIntersection: infinity of intersections");
    return false;
  }
  
  if ((sin(ang1)*sin(ang2))<0.0) {
    SG_LOG(SG_GENERAL, SG_WARN, "geocRadialIntersection: intersection ambiguous");
    return false;
  }
  
  ang1 = fabs(ang1);
  ang2 = fabs(ang2);

  //ang3=acos(-cos(ang1)*cos(ang2)+sin(ang1)*sin(ang2)*cos(dst12)) 
  //dst13=atan2(sin(dst12)*sin(ang1)*sin(ang2),cos(ang2)+cos(ang1)*cos(ang3))
  //lat3=asin(sin(lat1)*cos(dst13)+cos(lat1)*sin(dst13)*cos(crs13))
  
  //lon3=mod(lon1-dlon+pi,2*pi)-pi

  double ang3 = acos(-cos(ang1) * cos(ang2) + sin(ang1) * sin(ang2) * cosDst12);
  double dst13 = atan2(sinDst12 * sin(ang1) * sin(ang2), cos(ang2) + cos(ang1)*cos(ang3));

  SGGeoc pt3;
  SGGeodesy::advanceRadM(a, crs13, dst13 * SG_RAD_TO_NM * SG_NM_TO_METER, pt3);

  double lat3 = asin(sinLat1 * cos(dst13) + cosLat1 * sin(dst13) * cos(crs13));
  
  //dlon=atan2(sin(crs13)*sin(dst13)*cos(lat1),cos(dst13)-sin(lat1)*sin(lat3))
  double dlon = atan2(sin(crs13)*sin(dst13)*cosLat1, cos(dst13)- (sinLat1 * sin(lat3)));
  double lon3 = SGMiscd::normalizeAngle(-a.getLongitudeRad()-dlon);
  
  result = SGGeoc::fromRadM(-lon3, lat3, a.getRadiusM());
  //result = pt3;
  return true;
}

////////////////////////////////////////////////////////////////////////////

WayptController::~WayptController()
{
}

void WayptController::init()
{
}

void WayptController::setDone()
{
  if (_isDone) {
    SG_LOG(SG_AUTOPILOT, SG_WARN, "already done @ WayptController::setDone");
  }
  
  _isDone = true;
}

double WayptController::timeToWaypt() const
{
  double gs = _rnav->groundSpeedKts();
  if (gs < 1.0) {
    return -1.0; // stationary
  }
  
  gs*= KNOTS_TO_METRES_PER_SECOND;
  return (distanceToWayptM() / gs);
}

//////////////

class BasicWayptCtl : public WayptController
{
public:
  BasicWayptCtl(RNAV* aRNAV, const WayptRef& aWpt) :
    WayptController(aRNAV, aWpt),
    _distanceM(0.0),
    _courseDev(0.0)
  {
    if (aWpt->flag(WPT_DYNAMIC)) {
      throw sg_exception("BasicWayptCtrl doesn't work with dynamic waypoints");
    }
  }
  
  virtual void init()
  {
    _targetTrack = SGGeodesy::courseDeg(_rnav->position(), _waypt->position());
  }

  virtual void update()
  {
    double brg, az2;
    SGGeodesy::inverse(_rnav->position(), _waypt->position(), brg, az2, _distanceM); 
    _courseDev = brg - _targetTrack;
    SG_NORMALIZE_RANGE(_courseDev, -180.0, 180.0);
    
    if ((fabs(_courseDev) > 90.0) && (_distanceM < _rnav->overflightArmDistanceM())) {
      setDone();
    }
  } 

  virtual double distanceToWayptM() const
  {
    return _distanceM;
  }
  
  virtual double xtrackErrorNm() const
  {
    double x = sin(courseDeviationDeg() * SG_DEGREES_TO_RADIANS) * _distanceM;
    return x * SG_METER_TO_NM;
  }
  
  virtual bool toFlag() const
  {
    return (fabs(_courseDev) < 90.0);
  }
  
  virtual double courseDeviationDeg() const
  {
    return _courseDev;
  }
  
  virtual double trueBearingDeg() const
  {
    return SGGeodesy::courseDeg(_rnav->position(), _waypt->position());
  }
  
  virtual SGGeod position() const
  {
    return _waypt->position();
  }

private:
  double _distanceM;
  double _courseDev;
};

/**
 * Special controller for runways. For runways, we want very narrow deviation
 * contraints, and to understand that any point along the paved area is
 * equivalent to being 'at' the runway.
 */
class RunwayCtl : public WayptController
{
public:
  RunwayCtl(RNAV* aRNAV, const WayptRef& aWpt) :
    WayptController(aRNAV, aWpt),
    _runway(NULL),
    _distanceM(0.0),
    _courseDev(0.0)
  {
  }
  
  virtual void init()
  {
    _runway = static_cast<RunwayWaypt*>(_waypt.get())->runway();
    _targetTrack = _runway->headingDeg();
  }

  virtual void update()
  {
    double brg, az2;
    // use the far end of the runway for course deviation calculations. 
    // this should do the correct thing both for takeoffs (including entering 
    // the runway at a taxiway after the threshold) and also landings.
    // seperately compute the distance to the threshold for timeToWaypt calc
    SGGeodesy::inverse(_rnav->position(), _runway->end(), brg, az2, _distanceM); 
    double _courseDev = brg - _targetTrack;
    SG_NORMALIZE_RANGE(_courseDev, -180.0, 180.0);
    
    if (fabs(_courseDev) > 90.0) {
      setDone();
    }
  } 
  
  virtual double distanceToWayptM() const
  {
    return SGGeodesy::distanceM(_rnav->position(), _runway->threshold());
  }
  
  virtual double xtrackErrorNm() const
  {
    double x = sin(_courseDev * SG_RADIANS_TO_DEGREES) * _distanceM;
    return x * SG_METER_TO_NM;
  }

  virtual double courseDeviationDeg() const
  {
    return _courseDev;
  }

  virtual double trueBearingDeg() const
  {
    // as in update(), use runway->end here, so the value remains
    // sensible whether taking off or landing.
    return SGGeodesy::courseDeg(_rnav->position(), _runway->end());
  }
  
  virtual SGGeod position() const
  {
    return _runway->threshold();
  }
private:
  FGRunway* _runway;
  double _distanceM;
  double _courseDev;
};

class ConstHdgToAltCtl : public WayptController
{
public:
  ConstHdgToAltCtl(RNAV* aRNAV, const WayptRef& aWpt) :
    WayptController(aRNAV, aWpt)
    
  {
    if (_waypt->type() != "hdgToAlt") {
      throw sg_exception("invalid waypoint type", "ConstHdgToAltCtl ctor");
    }
    
    if (_waypt->altitudeRestriction() == RESTRICT_NONE) {
      throw sg_exception("invalid waypoint alt restriction", "ConstHdgToAltCtl ctor");
    }
  }

  virtual void init()
  {
    HeadingToAltitude* w = (HeadingToAltitude*) _waypt.get();
    _targetTrack = w->headingDegMagnetic() + _rnav->magvarDeg();
  }
  
  virtual void update()
  {
    double curAlt = _rnav->position().getElevationFt();
    
    switch (_waypt->altitudeRestriction()) {
    case RESTRICT_AT: {
      double d = curAlt - _waypt->altitudeFt();
      if (fabs(d) < 50.0) {
        SG_LOG(SG_GENERAL, SG_INFO, "ConstHdgToAltCtl, reached target altitude " << _waypt->altitudeFt());
        setDone();
      }
    } break;
      
    case RESTRICT_ABOVE:
      if (curAlt >= _waypt->altitudeFt()) {
        SG_LOG(SG_GENERAL, SG_INFO, "ConstHdgToAltCtl, above target altitude " << _waypt->altitudeFt());
        setDone();
      }
      break;
      
    case RESTRICT_BELOW:
      if (curAlt <= _waypt->altitudeFt()) {
        SG_LOG(SG_GENERAL, SG_INFO, "ConstHdgToAltCtl, below target altitude " << _waypt->altitudeFt());
        setDone();
      }
      break;
    
    case RESTRICT_NONE:
      assert(false);
      break;
    }
  }
  
  virtual double timeToWaypt() const
  {
    double d = fabs(_rnav->position().getElevationFt() - _waypt->altitudeFt());
    return (d / _rnav->vspeedFPM()) * 60.0; // low pass filter here, probably
  }
  
  virtual double distanceToWayptM() const
  {
    double gsMsec = _rnav->groundSpeedKts() * KNOTS_TO_METRES_PER_SECOND;
    return timeToWaypt() * gsMsec;
  }
  
  virtual SGGeod position() const
  {
    SGGeod p;
    double az2;
    SGGeodesy::direct(_rnav->position(), _targetTrack, distanceToWayptM(), p, az2);
    return p;
  }
};

class InterceptCtl : public WayptController
{
public:
  InterceptCtl(RNAV* aRNAV, const WayptRef& aWpt) :
    WayptController(aRNAV, aWpt),
    _trueRadial(0.0)
  {
    if (_waypt->type() != "radialIntercept") {
      throw sg_exception("invalid waypoint type", "InterceptCtl ctor");
    }
  }

  virtual void init()
  {
    RadialIntercept* w = (RadialIntercept*) _waypt.get();
    _trueRadial = w->radialDegMagnetic() + _rnav->magvarDeg();
    _targetTrack = w->courseDegMagnetic() + _rnav->magvarDeg();
  }
  
  virtual void update()
  {
    // note we want the outbound radial from the waypt, hence the ordering
    // of arguments to courseDeg
    double r = SGGeodesy::courseDeg(_waypt->position(), _rnav->position());
    SG_LOG(SG_AUTOPILOT, SG_INFO, "current radial=" << r);
    if (fabs(r - _trueRadial) < 0.5) {
      SG_LOG(SG_GENERAL, SG_INFO, "InterceptCtl, intercepted radial " << _trueRadial);
      setDone();
    }
  }
  
  virtual double distanceToWayptM() const
  {
    return SGGeodesy::distanceM(_rnav->position(), position());
  }

  virtual SGGeod position() const
  {
    SGGeoc c;
    geocRadialIntersection(SGGeoc::fromGeod(_rnav->position()), _rnav->trackDeg(), 
      SGGeoc::fromGeod(_waypt->position()), _trueRadial, c);
    return SGGeod::fromGeoc(c);
  }
private:
  double _trueRadial;
};

class DMEInterceptCtl : public WayptController
{
public:
  DMEInterceptCtl(RNAV* aRNAV, const WayptRef& aWpt) :
    WayptController(aRNAV, aWpt),
    _dme(NULL),
    _distanceNm(0.0)
  {
    if (_waypt->type() != "dmeIntercept") {
      throw sg_exception("invalid waypoint type", "DMEInterceptCtl ctor");
    }
  }

  virtual void init()
  {
    _dme  = (DMEIntercept*) _waypt.get();
    _targetTrack = _dme->courseDegMagnetic() + _rnav->magvarDeg();
  }
  
  virtual void update()
  {
    _distanceNm = SGGeodesy::distanceNm(_rnav->position(), _dme->position());
    double d = fabs(_distanceNm - _dme->dmeDistanceNm());
    if (d < 0.1) {
      SG_LOG(SG_GENERAL, SG_INFO, "DMEInterceptCtl, intercepted DME " << _dme->dmeDistanceNm());
      setDone();
    }
  }
  
  virtual double distanceToWayptM() const
  {
    return fabs(_distanceNm - _dme->dmeDistanceNm()) * SG_NM_TO_METER;
  }
  
  virtual SGGeod position() const
  {
    SGGeod p;
    double az2;
    SGGeodesy::direct(_rnav->position(), _targetTrack, distanceToWayptM(), p, az2);
    return p;
  }

private:
  DMEIntercept* _dme;
  double _distanceNm;
};

class HoldCtl : public WayptController
{
public:
  HoldCtl(RNAV* aRNAV, const WayptRef& aWpt) :
    WayptController(aRNAV, aWpt)
    
  {

  }

  virtual void init()
  {
  }
  
  virtual void update()
  {
    // fly inbound / outbound sides, or execute the turn
  #if 0
    if (inTurn) {
    
      targetTrack += dt * turnRateSec * turnDirection;
      if (inbound) {
        if .. targetTrack has passed inbound radial, doen with this turn
      } else {
        if target track has passed reciprocal radial done with turn
      }
    } else {
      check time / distance elapsed
      
      if (sideDone) {
        inTurn = true;
        inbound = !inbound;
        nextHeading = inbound;
        if (!inbound) {
          nextHeading += 180.0;
          SG_NORMALIZE_RANGE(nextHeading, 0.0, 360.0);
        }
      }
    
    }
  
  #endif
    setDone();
  }
  
  virtual double distanceToWayptM() const
  {
    return -1.0;
  }

  virtual SGGeod position() const
  {
    return _waypt->position();
  }
};

class VectorsCtl : public WayptController
{
public:
  VectorsCtl(RNAV* aRNAV, const WayptRef& aWpt) :
    WayptController(aRNAV, aWpt)
    
  {
  }

  virtual void init()
  {
 
  }
  
  virtual void update()
  {
    setDone();
  }
  
  virtual double distanceToWayptM() const
  {
    return -1.0;
  }
  
  virtual SGGeod position() const
  {
    return _waypt->position();
  }

private:
};

///////////////////////////////////////////////////////////////////////////////

DirectToController::DirectToController(RNAV* aRNAV, const WayptRef& aWpt, const SGGeod& aOrigin) :
  WayptController(aRNAV, aWpt),
  _origin(aOrigin),
  _distanceM(0.0),
  _courseDev(0.0)
{
}

void DirectToController::init()
{
  if (_waypt->flag(WPT_DYNAMIC)) {
    throw sg_exception("can't direct-to a dynamic waypoint");
  }
  
  _targetTrack = SGGeodesy::courseDeg(_origin, _waypt->position());
}

void DirectToController::update()
{
  double brg, az2;
  SGGeodesy::inverse(_rnav->position(), _waypt->position(), brg, az2, _distanceM); 
  _courseDev = brg - _targetTrack;
  SG_NORMALIZE_RANGE(_courseDev, -180.0, 180.0);
    
  if ((fabs(_courseDev) > 90.0) && (_distanceM < _rnav->overflightArmDistanceM())) {
    setDone();
  }
}

double DirectToController::distanceToWayptM() const
{
  return _distanceM;
}

double DirectToController::xtrackErrorNm() const
{
  double x = sin(courseDeviationDeg() * SG_DEGREES_TO_RADIANS) * _distanceM;
  return x * SG_METER_TO_NM;
}

double DirectToController::courseDeviationDeg() const
{
  return _courseDev;
}

double DirectToController::trueBearingDeg() const
{
  return SGGeodesy::courseDeg(_rnav->position(), _waypt->position());
}

SGGeod DirectToController::position() const
{
  return _waypt->position();
}

///////////////////////////////////////////////////////////////////////////////

OBSController::OBSController(RNAV* aRNAV, const WayptRef& aWpt) :
  WayptController(aRNAV, aWpt),
  _distanceM(0.0),
  _courseDev(0.0)
{
}

void OBSController::init()
{
  if (_waypt->flag(WPT_DYNAMIC)) {
    throw sg_exception("can't use a dynamic waypoint for OBS mode");
  }
  
  _targetTrack = _rnav->selectedMagCourse() + _rnav->magvarDeg();
}

void OBSController::update()
{
  _targetTrack = _rnav->selectedMagCourse() + _rnav->magvarDeg();
  double brg, az2;
  SGGeodesy::inverse(_rnav->position(), _waypt->position(), brg, az2, _distanceM); 
  _courseDev = brg - _targetTrack;
  SG_NORMALIZE_RANGE(_courseDev, -180.0, 180.0);
}

bool OBSController::toFlag() const
{
  return (fabs(_courseDev) < 90.0);
}

double OBSController::distanceToWayptM() const
{
  return _distanceM;
}

double OBSController::xtrackErrorNm() const
{
  double x = sin(_courseDev * SG_DEGREES_TO_RADIANS) * _distanceM;
  return x * SG_METER_TO_NM;
}

double OBSController::courseDeviationDeg() const
{
//  if (fabs(_courseDev) > 90.0) {
 //   double d = -_courseDev;
 //   SG_NORMALIZE_RANGE(d, -90.0, 90.0);
  //  return d;
  //}
  
  return _courseDev;
}

double OBSController::trueBearingDeg() const
{
  return SGGeodesy::courseDeg(_rnav->position(), _waypt->position());
}

SGGeod OBSController::position() const
{
  return _waypt->position();
}

///////////////////////////////////////////////////////////////////////////////

WayptController* WayptController::createForWaypt(RNAV* aRNAV, const WayptRef& aWpt)
{
  if (!aWpt) {
    throw sg_exception("Passed null waypt", "WayptController::createForWaypt");
  }
  
  const std::string& wty(aWpt->type());
  if (wty == "runway") {
    return new RunwayCtl(aRNAV, aWpt);
  }
  
  if (wty == "radialIntercept") {
    return new InterceptCtl(aRNAV, aWpt);
  }
  
  if (wty == "dmeIntercept") {
    return new DMEInterceptCtl(aRNAV, aWpt);
  }
  
  if (wty == "hdgToAlt") {
    return new ConstHdgToAltCtl(aRNAV, aWpt);
  }
  
  if (wty == "vectors") {
    return new VectorsCtl(aRNAV, aWpt);
  }
  
  if (wty == "hold") {
    return new HoldCtl(aRNAV, aWpt);
  }
  
  return new BasicWayptCtl(aRNAV, aWpt);
}

} // of namespace flightgear