Unfortunately, we don't have an easy way to access the puObjects
only by knowing the respective XML property node, because the
menu structure was built by plib from string lists. That's why
we walk the puMenuBar tree and store {property node}->{puObject*}
pairs in a map. With this infrastructure in place we can now
easily enable/disable entries, but we can also make other changes
to menu buttons as we see need. The structure of puMenuBar is
described in the pui documentation, so it's less of a hack than
it looks. :-)
remove a hack and do it properly: if the requested elevation is for some
reason below the surface and the intersection test fails (as it appears
to be the case in EGLL), try again from 10000m ASL
mf: typos
Insert empty string as marker between FG_SCENERY path elements.
FG_SCENERY=A:B expands to [A/Terrain, A/Objects, "", B/Terrain, B/Objects, ""]
(assuming that both A/ and B/ have Terrain/ and Objects/ subdirs).
tileentry.cxx -- FGTileEntry::load():
Check all tile dirs in FG_SCENERY from left to right: add all objects
to the scenery until a terrain tile was found: In this case read the
rest of that group (i.e. the Objects/ twin dir) and then stop scanning.
Better structuring of log messages & fix warnings.
sea tile, and finally process the objects. This guarantees that all objects
are placed relative to a valid tile center, rather than to the origin (0/0/0).
This is important for objects in sea tiles, and allows to display objects
of *.stg files that came sooner in FG_SCENERY.
This was the reason why some people (especially SuSE10.0/gcc 4.0.2
users) couldn't see others in MP. I don't even know why I'm committing
that. It's less important than taxi lights ...
metar fetcher. Effectively this caused the metar thread and the main
thread to both attempt to fetch weather data. This could lead to long pauses
when the main thread decided to fetch the weather, and introduced a race
condition that could cause a segfault/crash.
Investigating this issue, I discovered that even longer ago, someone confused
#defines and #ifdef symbols with C/C++ variables. If I #define XYZ 0 it is
defined so #ifdef XYZ is true, not false like a variable. Our thread
detection made this mistake and there were follow up patches to work around
it.
So I fixed the configure script (ahhh, reading the autoconf manual is highly
recommended excercise for people editing the configure.ac file.) I also
discovered that we were hardwiring with_threads=yes with no way via configure
options to disable threads from the build so I fixed that.
Then I patched up the #ifdef's scattered through the code to match the
configure script changes, oh and by the way, I stumbled upon a past typo
that led to the race condition in the metar fetching thread and fixed that.