"""
- ground properties (e.g. feel bumpiness and the reduced friction of
grass or go swimming with the beaver)
- initial load for yasim gears (to get rid of the jitter the beaver has
on ground)
- glider/winch/aerotow (do winch start with YASim glider or do aerotow
over the net) I will place a how-to on the wiki soon, here very short:
use the sgs233y (or the bocian if you have AJ (up ot now) non-GPL
bocian)
winch start: Ctrl-w for placing the winch, hold w to winch, press
Shift-w to release the tow
aerotow: Place the glider within 60m to a MP-aircraft, press
Ctrl-t to tow to this aircraft. If the MP-aircraft is the
J3 and the patch is installed on both sides, the J3 feels the
forces, too. The J3-pilot has to taxi very slow up to the
moment, the glider starts moving. Increase the throttle gently.
Don't lift the J3 early, wait for the glider being lifted,
lift gently.
"""
src/FDM/groundcache.cxx src/FDM/groundcache.hxx: Store the material
that was used to get the croase agl level and return that material
in case we need to make use of that croase value.
utils/Modeller/Makefile.am src/FDM/YASim/Makefile.am:
Remove -lssg from the linker lines.
Do no longer build threedconvert. A very similar functionality
is available with osgvconv. But leave threedconvert in place
if somebody will need that ...
I found a small conspicuity in YASim. The destructor of the fdm was
never called, therefore a modification of the heli fdm (not in cvs) did
not work after reset (I tie some properties and untie them in the
destructor, but the destructor was not called and the tieing failed
after reset. I don't know if any other parts of YASim need their
destructors, at least it wastes memory.
Another small fix I have made to the turbulence.cpp. The code needed,
that (a-floor(a)) is >=0 and <1. This is analytical correct, but
numerical only for "small" values. In normal fg-operation a in this
function is always small, but with unrealistic parameters in the
aircraft config file it is not and then fg crashes (instead a crash of
the aircraft or cataputling it far away).
More realistic calculation of vortices at the blades and therefore
real airfoil parameters can be used now (not to be mixed up with the
vortex ring state which is still not simulated), ground effect is now
continuous e. g. at buildings, calculating of the rotor in more than 4
directions, better documentation of the airfoil parameters.
values that were angles between the aircraft's orientation and the
global velocity vector, not the airflow velocity. So the HUD velocity
vector was wrong when the wind was non-zero. Fix that.
generates a data file of aerodynamic lift and drag (and L/D) against
AoA at a specified speed and altitude through a full circle. Wrote it
to track down the YF-23 superthrust issue, but it wasn't any help.
All the forces look fine.
state. The only really obvious problem was a giant negative engine
RPM, which happened because of a lack of clamping in the engine code
combined with the YF-23's ability to actually reach speeds near the
engines _vMax value. It's not clear to me that this will fix the
superthrust issue at high AoA's, but it's an obvious bug nonetheless.
+ The wing compilation step was accidentally omitting regions that lie
between the tips and the first/last control object. That's a real
problem for wings that contain no controls, and a significant issue
for those that contain only a few. I'm stunned that this went
undetected for so long.
+ The Surface::flapLift() function was oddly returning 1.0 Newtons as
a minimum, instead of zero.
calculations. We run the FDM at 120hz and compute how many loops can fit into each FG loop.
Floating point rounding could lead to a situation where we could end up running
1, 3, 1, 3, 1, 3... loops of the FDM when in fact we want to run 2, 2, 2, 2, 2...
If we artificially inflate ml above by a tiny amount to get the
closest integer, then subtract the integer from the original
slightly smaller value, we can get a negative remainder.
Logically this should never happen, and we definitely don't want
to carry a negative remainder over to the next iteration, so
never let the remainder go below zero.
src/AIModel/AIAircraft.cxx src/ATC/AILocalTraffic.cxx
src/FDM/flight.cxx src/FDM/flight.hxx src/FDM/groundcache.cxx
src/FDM/groundcache.hxx src/Main/fg_init.cxx src/Main/main.cxx
src/Scenery/hitlist.cxx src/Scenery/hitlist.hxx
src/Scenery/scenery.cxx src/Scenery/scenery.hxx
Make use of the attached SGMaterial reference userdata on scenegraph
leafs. Make the SGMaterial pointer available to the ground query
routines.
SGPropertyNode to guarded ones. This is also done for JSBSim/JSBSim.hxx,
for which JSB had given explicit permission a while ago. I postponed that
back then, but now is the time.
I had inadvertently terminated a data line when reaching a tab character after
initial data was supplied. I tested the lightning file and it now appears to
read in correctly.
bunch of memory leaks that had accumulated over the years. FlightGear
doesn't currently bother to destroy and recreate a YASim context, but
at least it can do so now without worry.
groundcache addition -- the ground callback doesn't do anything at
solution time, so the ground plane was unset. Valgrind was whining
about this; it's not clear that it was actually causing a problem.
and in the calculation of the launchbar angle (by Vivian).
It also calculates the holdback angle, and sets a Boolean value which
can be used to initiate the release of the catapult strop submodel at
the appropriate moment (new code by Vivian).
control to piston engines that allows external scripts to control the
turbo/supercharger boost programatically by setting this axis to
values in the range [0:1]. It also adds a "turbo-lag" attribute (a
time in seconds) to engines implementing turbocharger spooling delays.
This isn't terribly well tested, but doesn't seem to have broken
anything.
propeller pitch stops for constant speed propellers. The default
values are the same as the previous hard-coded values. The new
attributes, "fine-stop" and "coarse-stop", are documented in the base
package, Docs/README.yasim.
This patch makes use of the vectors now available in simgear with that past
patch. And using that it simplyfies the carrier code somehow.
- Small additional factory's to the quaternion code are done in the simgear
part. Also more explicit unit names in the factory functions.
- The flightgear part makes use of them and simplyfies some computations
especially in the carrier code.
- The data part fixes the coordinate frames I used for the park positions in
the carrier to match the usual ones. I believed that I had done so, but it
was definitly different. Also there are more parking positions avaliable now.
Jon Stockill wrote:
> I've just discovered that when using the null fdm I'm not getting
> updates to /position/ground-elev-m any more. So I can't actually
> retrieve the terrain elevation. Is there somewhere else in the property
> tree I could read this from?
The attached patch fixes this problem.
Erik Hofman:
This patch contains an update to net_ctrls.hxx that adds an extra 100 bytes
(or an equivalent of 25 (u)int32_t types) of reserved space. This could be
used to make the protocol forward and backward compatibel within a certain
scope. Be sure to read the instructions at the begining of the header file
when addinf new variables.