joystick input, and then will ignore the actual position of that input
until the user places it in the proper position to match the trimmed position.
At that point the joystick input captures control over the value and the
value will match the joystick position from then on. This is primarily set
up so that the FDM can trim in an initial throttle position.
Added fuel-flow and total fuel to the LaRCSim model. Its still a bit
rough for now but it works, except the engine dosn't stop when fuel runs
out at the moment since there's no refuelling capability in the sim just
now. It takes about 4 gallons use before you see the fuel guages begin
to drop since there's 28 gal per tank but the guages go to 26.
DG heading bug initializes to a random setting.
Activating heading hold doesn't touch the DG heading bug any more.
Max autopilot decent rate is now -1000.
Basically I've rewritten the prop model along similar lines to how
Jon has done his - using published efficiency and coefficient of
power data. It works *much* better - try pulling the throttle back
to idle and putting the plane into a dive before and after updating
and you'll see what I mean. It doesn't require a fudge factor either
:-)
good as we can get" until we find a data source with actual VOR magnetic
offsets. We can use VOR offsets from some fixed date, but not all VOR's
were installed on the same day so no matter what date we pick we will be off on most of them.
restoreInitialState methods to FGGlobals, as well as the two-stage
commit described above for loading saved files. fgInit now takes a
snapshot of the initial state before handing off to the main loop, and
the GUI reInit function restores that state explicitly before calling
fgReInit.
The FlightGear patches also modify fg_props.hxx to add optional
useDefault arguments to all of the fgTie functions -- that lets you
choose whether you want to pick up any default value in the property
tree when you tie the property (the default is true).
FGOptions is history, and the modules are (starting) to use the property
manager directly. Let me know if I left any files out.
Inevitably, there will be some problems with broken options, etc.,
that I haven't found in my tests, but I'll try to fix them quickly.
We also need to stress that the property names currently in use are
not stable -- we need to reorganize them a bit for clarity.
FlightGear subsystems -- it isolates some of the config and #ifdef
stuff in a single place.
2. Added a new FGSubsystem interface, defined in fgfs.hxx; so far,
only FGControls implements it, but if that works, we can start letting
it propagate through the system and simplify the code in main.cxx and
fg_init.cxx (which is terrifyingly complex for anyone new to the
project).
3. Added new src/Main/fgfs_props.[hc]xx files with convenience
functions for tying properties under FlightGear.
4. Experimentally modified src/Controls/controls.cxx to tie properties
directly (rather than tying to BFI functions). I'd appreciate it if
you could get this into CVS as soon as possible, so we can see if the
template stuff causes trouble for any other platforms before I add
properties to the other subsystems.
5. Miscellaneous superficial modifications to other files.
In addition, I've made a couple of further changes:
6. Modified BFI to add support for setting the view axes (i.e. with a
joystick hat).
7. Cleaned up bfi.cxx and removed all cout statements.
====================================
Cockpit.cxx
-----------
Commented #ifdef FIGHTER_HUD.
Hud.cxx
-------
Included code to read the xml file and draw the corresponding instrument.
Hud.hxx, Hud_ladr.cxx, Hud_card.cxx and Hud_labl.cxx
---------------------------------------------------
Integrated code to draw any kind of hud.
Preference.xml
---------------
Included XML file path in the sim/hud property.
ReadMe.xmlhud
-------------
The Readme.xmlhud describes the reconfigurable HUD implemented thru XML
files.
Save/restore seems to be working now, thanks to a couple of
unspeakable kludges:
1. Every time the altitude changes, pause the flight simulator for
five frames and then change it a second time.
2. Every time the latitude or longitude changes, wait five frames,
then invoke fgUpdateSkyAndLightingParams() a second time.
structure. The new approach is simpler, more flexible, and more dynamics.
We can now dynamically size the tile cache up and down. Also, the range
of tiles to load is now dependent on visibility and is calculated to always
bring in enough tiles.
bring EGT down to a more reasonable range. EGT is now returned in
deg Fahrenheit (yuk!!) by the accessor function since that is what
the guage is calibrated in, and the absolute max value that can be
output (max power mixture at max power) is about 750 deg F. Dave, I
suggest that you set the guage to run from 450 - 750 deg F between
the four big marker ticks. What do the offset and scale actually
refer to in the .xml config file BTW?
Fuel flow, better handling of manifold pressure wrt engine speed, and
proper consideration of altitude effects next, hopefully.
- removed Toggle Clouds menu item
src/Main/options.cxx:
- (minor) added some code to sync up options with properties
src/Main/bfi.[ch]xx:
- removed (get|set)Clouds(ASL)?
- removed setSpeedNorth, setSpeedEast, and setSpeedDown -- these are
all read-only now
- added setAirspeed (for calibrated kt)
- extensive rewrite to support Tony's FDM changes
- rearranged everything in bfi.hxx to mess up Curt's ediff examination
- added properties for setting initial panel position
src/Main/save.cxx:
- reinit the tile cache after restore
temperature. The cylinder head is assumed to be at uniform
temperature. Obviously this is incorrect, but it simplifies things a
lot, and we're just looking for the behaviour of CHT to be correct.
Energy transfer to the cylinder head is assumed to be one third of the
energy released by combustion at all conditions. This is a reasonable
estimate, although obviously in real life it varies with different
conditions and possibly with CHT itself. I've split energy transfer
from the cylinder head into 2 terms - free convection - ie convection
to stationary air, and forced convection, ie convection into flowing
air. The basic free convection equation is: dqdt = -hAdT Since we
don't know A and are going to set h quite arbitarily anyway I've
knocked A out and just wrapped it up in h - the only real significance
is that the units of h will be different but that dosn't really matter
to us anyway. In addition, we have the problem that the prop model
I'm currently using dosn't model the backwash from the prop which will
add to the velocity of the cooling air when the prop is turning, so
I've added an extra term to try and cope with this.
In real life, forced convection equations are genarally empirically
derived, and are quite complicated and generally contain such things
as the Reynolds and Nusselt numbers to various powers. The best
course of action would probably to find an empirical correlation from
the literature for a similar situation and try and get it to fit well.
However, for now I am using my own made up very simple correlation
for the energy transfer from the cylinder head:
dqdt = -(h1.dT) -(h2.m_dot.dT) -(h3.rpm.dT)
where dT is the temperature different between the cylinder head and
the surrounding air, m_dot is the mass flow rate of cooling air
through an arbitary volume, rpm is the engine speed in rpm (this is
the backwash term), and h1, h2, h3 are co-efficients which we can play
with to attempt to get the CHT behaviour to match real life.
In order to change the values of CHT that the engine settles down at
at various conditions, have a play with h1, h2 and h3. In order to
change the rate of heating/cooling without affecting equilibrium
values alter the cylinder head mass, which is really quite arbitary.
Bear in mind that altering h1, h2 and h3 will also alter the rate of
heating or cooling as well as equilibrium values, but altering the
cylinder head mass will only alter the rate. It would I suppose be
better to read the values from file to avoid the necessity for
re-compilation every time I change them.
derive specific viewer classes from it. Here's what I currently have in mind:
FGViewer
|
|-> FGViewerPRH (current system with orientation specified in
| LaRCsim Euler angle convention)
|
|-> FGViewerLookAt Feed in a position, view direction, and up vector
|
|-> FGViewerHPR (similar to PRH, but using ssg hpr euler angle
| convention)
|-> others?
LaRCsim c172 on-ground and in-air starts, reset: all work
UIUC Cessna172 on-ground and in-air starts work as expected, reset
results in an aircraft that is upside down but does not crash FG. I
don't know what it was like before, so it may well be no change.
JSBSim c172 and X15 in-air starts work fine, resets now work (and are
trimmed), on-ground starts do not -- the c172 ends up on its back. I
suspect this is no worse than before.
I did not test:
Balloon (the weather code returns nan's for the atmosphere data --this
is in the weather module and apparently is a linux only bug)
ADA (don't know how)
MagicCarpet (needs work yet)
External (don't know how)
known to be broken:
LaRCsim c172 on-ground starts with a negative terrain altitude (this
happens at KPAO when the scenery is not present). The FDM inits to
about 50 feet AGL and the model falls to the ground. It does stay
upright, however, and seems to be fine once it settles out, FWIW.
To do:
--implement set_Model on the bus
--bring Christian's weather data into JSBSim
-- add default method to bus for updating things like the sin and cos of
latitude (for Balloon, MagicCarpet)
-- lots of cleanup
The files:
src/FDM/flight.cxx
src/FDM/flight.hxx
-- all data members now declared protected instead of private.
-- eliminated all but a small set of 'setters', no change to getters.
-- that small set is declared virtual, the default implementation
provided preserves the old behavior
-- all of the vector data members are now initialized.
-- added busdump() method -- FG_LOG's all the bus data when called,
useful for diagnostics.
src/FDM/ADA.cxx
-- bus data members now directly assigned to
src/FDM/Balloon.cxx
-- bus data members now directly assigned to
-- changed V_equiv_kts to V_calibrated_kts
src/FDM/JSBSim.cxx
src/FDM/JSBSim.hxx
-- bus data members now directly assigned to
-- implemented the FGInterface virtual setters with JSBSim specific
logic
-- changed the static FDMExec to a dynamic fdmex (needed so that the
JSBSim object can be deleted when a model change is called for)
-- implemented constructor and destructor, moved some of the logic
formerly in init() to constructor
-- added logic to bring up FGEngInterface objects and set the RPM and
throttle values.
src/FDM/LaRCsim.cxx
src/FDM/LaRCsim.hxx
-- bus data members now directly assigned to
-- implemented the FGInterface virtual setters with LaRCsim specific
logic, uses LaRCsimIC
-- implemented constructor and destructor, moved some of the logic
formerly in init() to constructor
-- moved default inertias to here from fg_init.cxx
-- eliminated the climb rate calculation. The equivalent, climb_rate =
-1*vdown, is now in copy_from_LaRCsim().
src/FDM/LaRCsimIC.cxx
src/FDM/LaRCsimIC.hxx
-- similar to FGInitialCondition, this class has all the logic needed to
turn data like Vc and Mach into the more fundamental quantities LaRCsim
needs to initialize.
-- put it in src/FDM since it is a class
src/FDM/MagicCarpet.cxx
-- bus data members now directly assigned to
src/FDM/Makefile.am
-- adds LaRCsimIC.hxx and cxx
src/FDM/JSBSim/FGAtmosphere.h
src/FDM/JSBSim/FGDefs.h
src/FDM/JSBSim/FGInitialCondition.cpp
src/FDM/JSBSim/FGInitialCondition.h
src/FDM/JSBSim/JSBSim.cpp
-- changes to accomodate the new bus
src/FDM/LaRCsim/atmos_62.h
src/FDM/LaRCsim/ls_geodesy.h
-- surrounded prototypes with #ifdef __cplusplus ... #endif , functions
here are needed in LaRCsimIC
src/FDM/LaRCsim/c172_main.c
src/FDM/LaRCsim/cherokee_aero.c
src/FDM/LaRCsim/ls_aux.c
src/FDM/LaRCsim/ls_constants.h
src/FDM/LaRCsim/ls_geodesy.c
src/FDM/LaRCsim/ls_geodesy.h
src/FDM/LaRCsim/ls_step.c
src/FDM/UIUCModel/uiuc_betaprobe.cpp
-- changed PI to LS_PI, eliminates preprocessor naming conflict with
weather module
src/FDM/LaRCsim/ls_interface.c
src/FDM/LaRCsim/ls_interface.h
-- added function ls_set_model_dt()
src/Main/bfi.cxx
-- eliminated calls that set the NED speeds to body components. They
are no longer needed and confuse the new bus.
src/Main/fg_init.cxx
-- eliminated calls that just brought the bus data up-to-date (e.g.
set_sin_cos_latitude). or set default values. The bus now handles the
defaults and updates itself when the setters are called (for LaRCsim and
JSBSim). A default method for doing this needs to be added to the bus.
-- added fgVelocityInit() to set the speed the user asked for. Both
JSBSim and LaRCsim can now be initialized using any of:
vc,mach, NED components, UVW components.
src/Main/main.cxx
--eliminated call to fgFDMSetGroundElevation, this data is now 'pulled'
onto the bus every update()
src/Main/options.cxx
src/Main/options.hxx
-- added enum to keep track of the speed requested by the user
-- eliminated calls to set NED velocity properties to body speeds, they
are no longer needed.
-- added options for the NED components.
src/Network/garmin.cxx
src/Network/nmea.cxx
--eliminated calls that just brought the bus data up-to-date (e.g.
set_sin_cos_latitude). The bus now updates itself when the setters are
called (for LaRCsim and JSBSim). A default method for doing this needs
to be added to the bus.
-- changed set_V_equiv_kts to set_V_calibrated_kts. set_V_equiv_kts no
longer exists ( get_V_equiv_kts still does, though)
src/WeatherCM/FGLocalWeatherDatabase.cpp
-- commented out the code to put the weather data on the bus, a
different scheme for this is needed.
ing features:
a) ADA Flight model - ADA.cxx, ADA.hxx, flight.hxx
b) Fighter a/c HUD - flight.hxx, hud.hxx, hud.cxx, cockpit.cxx, hud_ladr.c
xx, hud_card.cxx
c) 3-window display - options.hxx, options.cxx, viewer.cxx
d) Moving objects (ship) - main.cxx
e) Patches - main.cxx
ADA.cxx, ADA.hxx
--------------------------
Interface to the external ADA flight dynamics package.
flight.hxx
----------
Included prototypes for accepting additional data fron the External flight
model for fighter aircraft HUD
Hud.hxx
-------
Included prototypes for accepting additional data for fighter HUD from Exernal F
light model.
Defined FIGHTER_HUD pre-processor directive to enable compilation of fighter hud
code.
hud.cxx, cockpit.cxx, hud_ladr.cxx, hud_card.cxx
---------------------------------------
Included code to initialise additional reticles/text for fighter HUD which is co
nditionally
compiled if FIGHTER_HUD is defined.
options.hxx
-----------
Added window_offset, and function to retrieve its value for 3 windows
options.cxx
-----------
Changed few options to suit ADA/CEF projection system/screens and checks for win
dow offset.
views.cxx
---------
Added code to retrieve view offset for window.
Main.cxx
--------
Added code to load and move an aircraft carrier.
Patch to enable clouds from command line until Curtis fixes it. By default cloud
s are disabled.
with jsbsim since no engine is currently created. This will all have to be
revamped in the future, but jsbsim has the structure for doing engines so
that is good.
I have a scrollable panel working (it didn't take long in the end). A
panel can now be much wider or higher than the available area, and the
user can scroll around using [Shift]F5, [Shift]F6, [Shift]F7, and
[Shift]F8. The user can also scroll the panel down to get a bigger
external view. Mouse clicks seem still to be working correctly.
To set the panel's (virtual) height and width, use the panel file's /w
and /h properties in a panel XML file; to set the initial x- and y-
offsets (untested), use the panel file's /x-offset and /y-offset
properties; to set the initial height of the external view (untested
and optional), use the panel file's /view-height property. Note that
none of these show up in the regular FGFS property manager.
Unfortunately, these patches will not affect your initialization
problems with the property manager -- I'm having a hard time tracking
them down because I cannot reproduce them.
I have also made some patches to main.cxx and views.cxx to do two
things:
1. Expand or shrink the external view as the panel moves up and down.
2. Set the window ratio correctly, so that we don't get an oval sun
and flat clouds when the panel is visible (the problem before was
integer division, so I added casts).
Unfortunately, the window ratio is not set properly at start-up --
there are too many dependencies, and I haven't figured that part out
yet. As soon as you hide and redisplay the panel or move it
vertically (i.e. force fgReshape to be called), you'll see the correct
ratio.
- /engines/engine0/rpm changed to read-only
- /engines/engine0/egt added (read-only)
- /controls/mixture added
- /controls/propellor-pitch added (not used for C172)
BFI:
- getEGT() added
- getMixture() and setMixture() added
- getPropAdvance() and setPropAdvance() added (= pitch)
- cleaned up reinit function a bit
- force reinit only when values are actually changed; for example,
setting the flight model to the current flight model will not cause
a reinit
LaRCSim:
- hook up mixture and pitch to FGControls (they were hard-coded
before)
- /engines/engine0/rpm changed to read-only
- /engines/engine0/egt added (read-only)
- /controls/mixture added
- /controls/propellor-pitch added (not used for C172)
BFI:
- getEGT() added
- getMixture() and setMixture() added
- getPropAdvance() and setPropAdvance() added (= pitch)
- cleaned up reinit function a bit
- force reinit only when values are actually changed; for example,
setting the flight model to the current flight model will not cause
a reinit
LaRCSim:
- hook up mixture and pitch to FGControls (they were hard-coded
before)
and prop inertia and passed the timestep from LaRCsim in order to have
the engine rpm behaving according to the applied torque and the laws of
physics.
Added an initial freeze on startup so that we can try to avoid bouncing the
plane on it's back during the very low frame rate / scenery loading startup
conditions.
src/Cockpit/radiostack.cxx
- extended VOR ranges to make them slightly more usable (pending some
real radio code)
src/Cockpit/sp_panel.cxx
- fixed heading bug on gyro compass (sort-of -- the AP still doesn't
work quite as expected)
- skid ball moves the right direction
- moved whiskey compass more to the co-pilot's side, as suggested by
Alex a while back
src/Joystick/joystick.cxx
- included Norm's Windows patches
- renamed brake properties (see bfi.cxx, below)
src/Main/bfi.cxx
src/Main/bfi.hxx
- renamed getBrake and setBrake to getBrakes and setBrakes
- added getCenterBrake and setCenterBrake
- added getAPHeading (without mag correction, needed for the panel)
- renamed property /controls/brake to /controls/brakes/all
- renamed property /controls/left-brake to /controls/brakes/left (as
requested by Alex)
- renamed property /controls/right-brake to /controls/brakes/right (as
requested by Alex)
- added property /controls/brakes/center
- added property /autopilot/settings/heading
- fixed bug in setAltitude so that altitude will be property restored
from a save file
- fixed getBrakes to return the highest of the three brake settings
src/Main/save.cxx
- call FGBFI::getBrakes instead of FGBFI::getBrake
Cleaned a bit of cruft out of gui.[ch]xx
Cleaned up win_ratio() and fov code to make more sense and be a bit more
consistant and robust and less buggy and less susceptible to screw ups.
Panel is activated now by default, HUD is off by default.
from the pre-ssg / render everything ourselves days. Replaced with a
material library manager that is much better suited for working in the
context of ssg. This simplified and cleaned up a ton of old junk.
1. I've modified src/Time/fg_time.cxx so that the --start-date-gmt
option works correctly, at least on my system.
2. I've modified src/Main/bfi.cxx to return the correct time from
FGBFI::getTimeGMT(), so that saving and reloading now keeps the time set
correctly again.
3. I've modified src/Main/main.cxx so that the engine still makes a
noise when it's idling (it sounded very strange when the engine simply
turned off at idle then magically turned on again with a little
throttle).
I've done some substantial reengineering of the 2D panel: except for the
radios, the whole panel is built from a large table now. I'd be
grateful if you could add these changes to the main distribution.
Since I always like to provide some eye-candy with my updates, I've
fixed the ADF gauge to be more usable by slimming the needle and adding
markings every 45 deg (you'll need to use the attached textures).
This set of changes cleans up my previous ones quite a bit:
[tony@valkyrie FlightGear]$ tar -ztf tp_changes.tgz
src/Controls/controls.cxx
src/Controls/controls.hxx
src/FDM/JSBsim.cxx
src/Main/fg_init.cxx
src/Main/options.cxx
src/Main/options.hxx
src/Joystick/joystick.cxx
controls.[ch]xx: removed the trimmed_throttle stuff. This undoes the
changes I submitted last time.
JSBsim.cxx: updates for the removal of the trimmed_throttle stuff
fg_init.cxx: removed the autothrottle logic. The autothrottle is now
off
by default.
options.[ch]xx: Sets trim_mode to false by default. It is enabled only
when --notrim is not used and JSBsim is the FDM.
joystick.cxx: Added logic for syncing the throttle lever. This is
only enabled when trim_mode is enabled. The way I
did it is, I hope, a good way of going about it.
I tested:
fgfs --fdm=larcsim
fgfs --fdm=jsb --aircraft=c172 --vc=100 --altitude=500
fgfs --notrim --fdm=jsb --aircraft=c172 --vc=100 --altitude=500
All work as intended, at least for me.
Make sure your joystick is calibrated and give:
fgfs --fdm=jsb --aircraft=c172 --vc=100 --altitude=500
a try, I think you just might be impressed.
I am. ;-)
Tony submitted:
JSBsim:
Added trimming routine, it is longitudinal & in-air only at this point
Added support for taking wind & weather data from external source
Added support for flaps.
Added independently settable pitch trim
Added alphamin and max to config file, stall modeling and warning to
follow
c172.cfg:
Flaps!
Adjusted Cmo, model should be speed stable now
FG:
Hooked up Christian's weather code, should be using it soon.
Hooked up the trimming routine. Note that the X-15 will not trim.
This is not a model or trimming routine deficiency, just the
nature of the X-15
The trimming routine sets the pitch trim and and throttle at startup.
The throttle is set using Norman's code for the autothrottle so the
autothrottle is on by default. --notrim will turn it off.
Added --vc, --mach, and --notrim switches
(vc is airspeed in knots)
uBody, vBody, and wBody are still supported, last one entered
on the command line counts, i.e. you can set vc or mach or u,v,
and w but any combination will be ignored.
- the panel uses much, much less texture memory, and draws much
faster, at least on my hardware
- there is a wet (magnetic) compass at the top of the panel
- the gyro compass shows true heading again, but don't get used to it:
we're going to set it up to drift soon
- there are TO/FROM flags on NAV1 and NAV2 (but no GS flag yet)
- the ADF looks a little more realistic (if you can forgive the ugly
needle)
- when the HUD is not open, the framerate is moved to the right side
of the screen so that it won't be obscured by the mag compass
- knobs now continue to rotate when you hold down the mouse
- the middle mouse button makes knobs rotate much faster
- there are NAV1, NAV2, and ADF radios that can be tuned using the mouse
- there are standby frequencies for NAV1 and NAV2, and buttons to swap
- there is a crude, rather silly-looking DME, hard-wired to NAV1
- there is a crude, rather silly-looking autopilot that can lock
the heading (to the bug on the gyro), can lock to NAV1, and can lock
the current altitude
- the knobs for changing the radials on NAV1 and NAV2 look much better
and are in the right place
- tuning into an ILS frequency doesn't change the displayed radial for
NAV1
Code
- I've created a new module, sp_panel.[ch]xx, that constructs the
default single-prop panel; this works entirely outside of FGPanel,
so it is possible to construct similar modules for other sorts of
panels; all code specific to the default panel has been removed from
panel.cxx
- current_panel is now a pointer
- radiostack.[ch]xx keeps track both of the actual radial and of the
selected radial (they will differ with ILS); the NAV gauges should
not spin around automatically to show the actual radial (we need to
do something similar with the autopilot)
- the panel is initialized fairly early
- make sure that standby frequencies also get initialized
- I've started combining and clipping small textures to save texture
memory; there's a lot more to do, but at least I've made a start
it's now possible to choose the LaRCsim model at runtime, as in
fgfs --aircraft=c172
or
fgfs --aircraft=uiuc --aircraft-dir=Aircraft-uiuc/Boeing747
I did this so that I could play with the UIUC stuff without losing
Tony's C172 with its flaps, etc. I did my best to respect the design
of the LaRCsim code by staying in C, making only minimal changes, and
not introducing any dependencies on the rest of FlightGear. The
modified files are attached.
the NAV face, and one for a NAV needle (just a thin, slightly blurry red
line for now). I'm attaching my two new textures, together with my newest
panel.cxx (modified from Alex's to use the new textures). Obviously,
there's a lot more to do, including TO/FROM indicators, but this is a
start, and it's fun.
NAV2 is now the VOR radial 068 from MZB,
ADF is now the Compass locator on the outer marker.
This combination is more than the legally required to
fly any of KMYF-ILS-28R, KMYF-LOC-28R KMYF-NDB28.
If you don't have access to the approach plates
and would like them, let me know and I'll scan them
(and put them on the webpage area).
The approaches do work; I've checked them all out in
terms of altitude profile, centerlines and other stuff.
In real life, the radar vectoring will basically abandon you
overhead KSEE airport at 4000 ft heading 210 or so. Sometime
later you'll be turned to a heading of 260 if the controller
doesn't have too much else to do, just before you hit the
extended centerline. You can't rely on that though.
Maintain 3500ft until established, 2100 ft until the outer marker,
If non-precision, maintain 1340 until crossing the radial,
then 900 thereafter until you miss, based on time from the NDB.
The miss takes you heading 270 to intercept a radial which this
hacky implementation will not let you set up the computer for.
The hacky math implementation does not take range and/or signal
strength into account, so you can fly to San Diego from England
by following the needle indication on the ADF. It is also
fairly inaccurate math; about as accurate as the real-life signals.
When we have a _real_ radio module, I will be very happy to
throw all that code away. For now, it makes it demonstratable.
Please notice the nastiness involving the "VARY_E" constant.
This is _not_ something that will go away with the radio module.
As far as I know, we don't have a routine that calculates
magnetic variation as a function of global position.
We will need one, probably within the next two months.
Externally: added a chronometer and a control-position indicator a la
MSFS, along with dummies for the radio-nav gauges.
Internally, substantially reworked the code so that the individual gauges
can be table- (and eventually, file-) driven.
old routines from SRGP. Steve's plib/sg.h does a nice job of completely
replacing this (and since plib is already around) and is a nice clean design
so it just makes sense.
above terrain check so when the view position and the aircraft model collided
the current altitude kept getting pushed up to compensate, but of course the
aircraft model would get pushed up as well because it tracks the current
aircraft position and orientation. Thus you had a never ending cycle ...
much less so due to returning the aero reference point stuff to the config
files. Don't know what happened there ...
Additionally, I have added a new field to the config file: CFG_VERSION. A
version number, currently 1.1, is assigned to the config file and a matching
definition is found in FGDefs.h. The two need to match. Tony has also added
code into FGAircraft.cpp to handle if aero reference point is not specified.
I've reorganized the code in panel.cxx and panel.hxx so that it will
be a little easier to extend the panel later if someone wants to.
It's still basically Friedemann's code at the core, but I've
repackaged it into a saner class hierarchy and encapsulated as much as
I could (there are still a couple of circular dependencies that need
swatting). If someone wants to modify it to use SSG or to add new
gauges, it should be a lot easier now.
There are no user-visible changes.
Dave Eberly's spherical interpolation code (found in the Lib/Math
directory). So it would be great if you could give him also a place
in the thanks file. Changing the WeatherDatabse made actually a heavy
internal redesign necessary but no code outside the database is
affected (isn't code hiding great?).
Added Simulator/Clouds/
Durk fixed a problem in gui.cxx with cursor type.
Durk updated his time zone / time-offset command line parameters
Curt added a cheezy fade in/out as we transition through the cloud layer.
We really need to fog the sky dome, sun, moon, stars as well.
Curt added --enable/disable-clouds and --clouds-asl= to control clouds.
Joystick auto-coordination tweaks.
Additional debuging output when pausing and resuming the sim.
Window resizing tweaks by David Megginson (and Norman Vine).
options.cxx: reorder option initializations to match declaration order.
views.cxx: much cleanup of stuff that was depricated by the move to ssg.
I now use ssg to do all the projection/modelview matrix calculation
and setup. (mostly)
vies.hxx: also added the view pan offset to the view matrix calcs.
Better handling of missing tiles.
Added a range selector so we can completely ignore tiles that are beyond
our visibility range.
Added a routine to prep the ssg nodes before rendering by updating the
transform and range selector values.