1
0
Fork 0

Extend yasim-test.cpp; add print mass distribution, add plot with different configs

This commit is contained in:
Henning Stahlke 2017-02-02 10:29:34 +01:00
parent 6f1f850c11
commit f14cc3be33
4 changed files with 124 additions and 56 deletions

View file

@ -839,6 +839,17 @@ void Airplane::setupWeights(bool isApproach)
} }
} }
/// load values for controls as defined in cruise configuration
void Airplane::loadCruiseControls()
{
_controls.reset();
for(int i=0; i<_cruiseControls.size(); i++) {
Control* c = (Control*)_cruiseControls.get(i);
_controls.setInput(c->control, c->val);
}
_controls.applyControls();
}
void Airplane::runCruise() void Airplane::runCruise()
{ {
setupState(_cruiseAoA, _cruiseSpeed,_cruiseGlideAngle, &_cruiseState); setupState(_cruiseAoA, _cruiseSpeed,_cruiseGlideAngle, &_cruiseState);
@ -847,14 +858,8 @@ void Airplane::runCruise()
Atmosphere::calcStdDensity(_cruiseP, _cruiseT)); Atmosphere::calcStdDensity(_cruiseP, _cruiseT));
// The control configuration // The control configuration
_controls.reset(); loadCruiseControls();
int i;
for(i=0; i<_cruiseControls.size(); i++) {
Control* c = (Control*)_cruiseControls.get(i);
_controls.setInput(c->control, c->val);
}
_controls.applyControls(1000000); // Huge dt value
// The local wind // The local wind
float wind[3]; float wind[3];
Math::mul3(-1, _cruiseState.v, wind); Math::mul3(-1, _cruiseState.v, wind);
@ -865,7 +870,7 @@ void Airplane::runCruise()
// Set up the thruster parameters and iterate until the thrust // Set up the thruster parameters and iterate until the thrust
// stabilizes. // stabilizes.
for(i=0; i<_thrusters.size(); i++) { for(int i=0; i<_thrusters.size(); i++) {
Thruster* t = ((ThrustRec*)_thrusters.get(i))->thruster; Thruster* t = ((ThrustRec*)_thrusters.get(i))->thruster;
t->setWind(wind); t->setWind(wind);
t->setAir(_cruiseP, _cruiseT, t->setAir(_cruiseP, _cruiseT,
@ -882,6 +887,17 @@ void Airplane::runCruise()
_model.calcForces(&_cruiseState); _model.calcForces(&_cruiseState);
} }
/// load values for controls as defined in approach configuration
void Airplane::loadApproachControls()
{
_controls.reset();
for(int i=0; i<_approachControls.size(); i++) {
Control* c = (Control*)_approachControls.get(i);
_controls.setInput(c->control, c->val);
}
_controls.applyControls();
}
void Airplane::runApproach() void Airplane::runApproach()
{ {
setupState(_approachAoA, _approachSpeed,_approachGlideAngle, &_approachState); setupState(_approachAoA, _approachSpeed,_approachGlideAngle, &_approachState);
@ -890,14 +906,8 @@ void Airplane::runApproach()
Atmosphere::calcStdDensity(_approachP, _approachT)); Atmosphere::calcStdDensity(_approachP, _approachT));
// The control configuration // The control configuration
_controls.reset(); loadApproachControls();
int i;
for(i=0; i<_approachControls.size(); i++) {
Control* c = (Control*)_approachControls.get(i);
_controls.setInput(c->control, c->val);
}
_controls.applyControls(1000000);
// The local wind // The local wind
float wind[3]; float wind[3];
Math::mul3(-1, _approachState.v, wind); Math::mul3(-1, _approachState.v, wind);
@ -909,7 +919,7 @@ void Airplane::runApproach()
// Run the thrusters until they get to a stable setting. FIXME: // Run the thrusters until they get to a stable setting. FIXME:
// this is lots of wasted work. // this is lots of wasted work.
for(i=0; i<_thrusters.size(); i++) { for(int i=0; i<_thrusters.size(); i++) {
Thruster* t = ((ThrustRec*)_thrusters.get(i))->thruster; Thruster* t = ((ThrustRec*)_thrusters.get(i))->thruster;
t->setWind(wind); t->setWind(wind);
t->setAir(_approachP, _approachT, t->setAir(_approachP, _approachT,

View file

@ -95,6 +95,8 @@ public:
const char* getFailureMsg(); const char* getFailureMsg();
static void setupState(float aoa, float speed, float gla, State* s); // utility static void setupState(float aoa, float speed, float gla, State* s); // utility
void loadApproachControls();
void loadCruiseControls();
private: private:
struct Tank { float pos[3]; float cap; float fill; struct Tank { float pos[3]; float cap; float fill;

View file

@ -49,8 +49,9 @@ public:
// specified value. // specified value.
void setInput(int input, float value); void setInput(int input, float value);
// Calculates and applies the settings received since the last reset(). /// Calculates and applies the settings received since the last reset().
void applyControls(float dt); /// dt defaults to a large value used at solve time.
void applyControls(float dt=1e6);
// Returns the input/output range appropriate for the given // Returns the input/output range appropriate for the given
// control. Ailerons go from -1 to 1, while throttles are never // control. Ailerons go from -1 to 1, while throttles are never

View file

@ -9,6 +9,7 @@
#include "FGFDM.hpp" #include "FGFDM.hpp"
#include "Atmosphere.hpp" #include "Atmosphere.hpp"
#include "RigidBody.hpp"
#include "Airplane.hpp" #include "Airplane.hpp"
using namespace yasim; using namespace yasim;
@ -30,6 +31,13 @@ static const float DEG2RAD = 0.0174532925199;
static const float KTS2MPS = 0.514444444444; static const float KTS2MPS = 0.514444444444;
enum Config
{
CONFIG_NONE,
CONFIG_APPROACH,
CONFIG_CRUISE,
};
// Generate a graph of lift, drag and L/D against AoA at the specified // Generate a graph of lift, drag and L/D against AoA at the specified
// speed and altitude. The result is a space-separated file of // speed and altitude. The result is a space-separated file of
// numbers: "aoa lift drag LD" (aoa in degrees, lift and drag in // numbers: "aoa lift drag LD" (aoa in degrees, lift and drag in
@ -40,15 +48,29 @@ static const float KTS2MPS = 0.514444444444;
"dat" using 1:3 with lines title 'drag', \ "dat" using 1:3 with lines title 'drag', \
"dat" using 1:4 with lines title 'LD' "dat" using 1:4 with lines title 'LD'
*/ */
void yasim_graph(Airplane* a, float alt, float kts) void yasim_graph(Airplane* a, float alt, float kts, int cfg = CONFIG_NONE)
{ {
Model* m = a->getModel(); Model* m = a->getModel();
State s; State s;
m->setAir(Atmosphere::getStdPressure(alt), m->setAir(Atmosphere::getStdPressure(alt),
Atmosphere::getStdTemperature(alt), Atmosphere::getStdTemperature(alt),
Atmosphere::getStdDensity(alt)); Atmosphere::getStdDensity(alt));
m->getBody()->recalc();
switch (cfg) {
case CONFIG_APPROACH:
a->loadApproachControls();
break;
case CONFIG_CRUISE:
a->loadCruiseControls();
break;
case CONFIG_NONE:
break;
}
//if we fake the properties we could also use FGFDM::getExternalInput()
m->getBody()->recalc();
for(int deg=-179; deg<=179; deg++) { for(int deg=-179; deg<=179; deg++) {
float aoa = deg * DEG2RAD; float aoa = deg * DEG2RAD;
@ -58,7 +80,7 @@ void yasim_graph(Airplane* a, float alt, float kts)
m->calcForces(&s); m->calcForces(&s);
float acc[3]; float acc[3];
m->getBody()->getAccel(acc); m->getBody()->getAccel(acc);
Math::tmul33(s.orient, acc, acc); Math::tmul33(s.orient, acc, acc);
float drag = acc[0] * (-1/9.8); float drag = acc[0] * (-1/9.8);
@ -68,19 +90,39 @@ void yasim_graph(Airplane* a, float alt, float kts)
} }
} }
void yasim_masses(Airplane* a)
{
RigidBody* body = a->getModel()->getBody();
int i, N = body->numMasses();
float pos[3];
float m, mass = 0;
printf("id posx posy posz mass\n");
for (i = 0; i < N; i++)
{
body->getMassPosition(i, pos);
m = body->getMass(i);
printf("%d %.3f %.3f %.3f %.3f\n", i, pos[0], pos[1], pos[2], m);
mass += m;
}
printf("Total mass: %g", mass);
}
int usage() int usage()
{ {
fprintf(stderr, "Usage: yasim <ac.xml> [-g [-a alt] [-s kts]]\n"); fprintf(stderr, "Usage: yasim <ac.xml> [-g [-a alt] [-s kts] [-approach | -cruise] ]\n");
fprintf(stderr, " yasim <ac.xml> [-m]\n");
fprintf(stderr, " -g print lift/drag table: aoa, lift, drag, lift/drag \n");
fprintf(stderr, " -m print mass distribution table: id, x, y, z, mass \n");
return 1; return 1;
} }
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
FGFDM* fdm = new FGFDM(); FGFDM* fdm = new FGFDM();
Airplane* a = fdm->getAirplane(); Airplane* a = fdm->getAirplane();
if(argc < 2) return usage(); if(argc < 2) return usage();
// Read // Read
try { try {
string file = argv[1]; string file = argv[1];
@ -94,38 +136,51 @@ int main(int argc, char** argv)
a->compile(); a->compile();
if(a->getFailureMsg()) if(a->getFailureMsg())
printf("SOLUTION FAILURE: %s\n", a->getFailureMsg()); printf("SOLUTION FAILURE: %s\n", a->getFailureMsg());
if(!a->getFailureMsg() && argc > 2 ) {
if(!a->getFailureMsg() && argc > 2 && strcmp(argv[2], "-g") == 0) { if(strcmp(argv[2], "-g") == 0) {
float alt = 5000, kts = 100; float alt = 5000, kts = 100;
for(int i=3; i<argc; i++) { int cfg = CONFIG_NONE;
if (std::strcmp(argv[i], "-a") == 0) alt = std::atof(argv[++i]); for(int i=3; i<argc; i++) {
else if(std::strcmp(argv[i], "-s") == 0) kts = std::atof(argv[++i]); if (std::strcmp(argv[i], "-a") == 0) {
else return usage(); if (i+1 < argc) alt = std::atof(argv[++i]);
} }
yasim_graph(a, alt, kts); else if(std::strcmp(argv[i], "-s") == 0) {
} else { if(i+1 < argc) kts = std::atof(argv[++i]);
float aoa = a->getCruiseAoA() * RAD2DEG; }
float tail = -1 * a->getTailIncidence() * RAD2DEG; else if(std::strcmp(argv[i], "-approach") == 0) cfg = CONFIG_APPROACH;
float drag = 1000 * a->getDragCoefficient(); else if(std::strcmp(argv[i], "-cruise") == 0) cfg = CONFIG_CRUISE;
float cg[3]; else return usage();
a->getModel()->getBody()->getCG(cg); }
a->getModel()->getBody()->recalc(); yasim_graph(a, alt, kts, cfg);
}
else if(strcmp(argv[2], "-m") == 0) {
yasim_masses(a);
}
}
else {
printf("Solution results:");
float aoa = a->getCruiseAoA() * RAD2DEG;
float tail = -1 * a->getTailIncidence() * RAD2DEG;
float drag = 1000 * a->getDragCoefficient();
float cg[3];
a->getModel()->getBody()->getCG(cg);
a->getModel()->getBody()->recalc();
float SI_inertia[9]; float SI_inertia[9];
a->getModel()->getBody()->getInertiaMatrix(SI_inertia); a->getModel()->getBody()->getInertiaMatrix(SI_inertia);
printf("Solution results:"); printf(" Iterations: %d\n", a->getSolutionIterations());
printf(" Iterations: %d\n", a->getSolutionIterations()); printf(" Drag Coefficient: %f\n", drag);
printf(" Drag Coefficient: %f\n", drag); printf(" Lift Ratio: %f\n", a->getLiftRatio());
printf(" Lift Ratio: %f\n", a->getLiftRatio()); printf(" Cruise AoA: %f\n", aoa);
printf(" Cruise AoA: %f\n", aoa); printf(" Tail Incidence: %f\n", tail);
printf(" Tail Incidence: %f\n", tail); printf("Approach Elevator: %f\n", a->getApproachElevator());
printf("Approach Elevator: %f\n", a->getApproachElevator()); printf(" CG: x:%.3f, y:%.3f, z:%.3f\n\n", cg[0], cg[1], cg[2]);
printf(" CG: x:%.3f, y:%.3f, z:%.3f\n\n", cg[0], cg[1], cg[2]); printf("Inertia tensor [kg*m^2], origo at CG:\n");
printf(" Inertia tensor : %.3f, %.3f, %.3f\n", SI_inertia[0], SI_inertia[1], SI_inertia[2]); printf(" %7.3f, %7.3f, %7.3f\n", SI_inertia[0], SI_inertia[1], SI_inertia[2]);
printf(" [kg*m^2] %.3f, %.3f, %.3f\n", SI_inertia[3], SI_inertia[4], SI_inertia[5]); printf(" %7.3f, %7.3f, %7.3f\n", SI_inertia[3], SI_inertia[4], SI_inertia[5]);
printf(" Origo at CG %.3f, %.3f, %.3f\n", SI_inertia[6], SI_inertia[7], SI_inertia[8]); printf(" %7.3f, %7.3f, %7.3f\n", SI_inertia[6], SI_inertia[7], SI_inertia[8]);
} }
delete fdm; delete fdm;
return 0; return 0;
} }