1
0
Fork 0

First baby steps towards restructuring the view architecture. I've

created a new class, FGViewPoint (declared in viewer.hxx) that holds a
single position in FlightGear coordinates, and have used it to factor
a lot of the common code out of viewer_lookat.cxx and viewer_rph.cxx.

I don't know whether this new class will stay or not; it might just be
a temporary step, or it might end up taking over much of the current
viewer functionality.  It would be a bad idea to code against it right
now.
This commit is contained in:
david 2002-03-06 16:03:33 +00:00
parent bdbd69effd
commit efe559ead4
4 changed files with 179 additions and 247 deletions

View file

@ -30,10 +30,110 @@
#include <simgear/debug/logstream.hxx>
#include <simgear/constants.h>
#include <simgear/math/point3d.hxx>
#include <simgear/math/polar3d.hxx>
#include <simgear/math/sg_geodesy.hxx>
#include <Scenery/scenery.hxx>
#include "viewer.hxx"
////////////////////////////////////////////////////////////////////////
// Implementation of FGViewPoint.
////////////////////////////////////////////////////////////////////////
FGViewPoint::FGViewPoint ()
: _dirty(true),
_lon_deg(0),
_lat_deg(0),
_alt_ft(0)
{
}
FGViewPoint::~FGViewPoint ()
{
}
void
FGViewPoint::setPosition (double lon_deg, double lat_deg, double alt_ft)
{
_dirty = true;
_lon_deg = lon_deg;
_lat_deg = lat_deg;
_alt_ft = alt_ft;
}
const double *
FGViewPoint::getAbsoluteViewPos () const
{
if (_dirty)
recalc();
return _absolute_view_pos;
}
const float *
FGViewPoint::getRelativeViewPos () const
{
if (_dirty)
recalc();
return _relative_view_pos;
}
const float *
FGViewPoint::getZeroElevViewPos () const
{
if (_dirty)
recalc();
return _zero_elev_view_pos;
}
void
FGViewPoint::recalc () const
{
double sea_level_radius_m;
double lat_geoc_rad;
// Convert from geodetic to geocentric
// coordinates.
sgGeodToGeoc(_lat_deg * SGD_DEGREES_TO_RADIANS,
_alt_ft * SG_FEET_TO_METER,
&sea_level_radius_m,
&lat_geoc_rad);
// Calculate the cartesian coordinates
// of point directly below at sea level.
Point3D p = Point3D(_lon_deg * SG_DEGREES_TO_RADIANS,
lat_geoc_rad,
sea_level_radius_m);
Point3D tmp = sgPolarToCart3d(p) - scenery.get_center();
sgSetVec3(_zero_elev_view_pos, tmp[0], tmp[1], tmp[2]);
// Calculate the absolute view position
// in fgfs coordinates.
p.setz(p.radius() + _alt_ft * SG_FEET_TO_METER);
tmp = sgPolarToCart3d(p);
sgdSetVec3(_absolute_view_pos, tmp[0], tmp[1], tmp[2]);
// Calculate the relative view position
// from the scenery center.
sgdVec3 scenery_center;
sgdSetVec3(scenery_center,
scenery.get_center().x(),
scenery.get_center().y(),
scenery.get_center().z());
sgdVec3 view_pos;
sgdSubVec3(view_pos, _absolute_view_pos, scenery_center);
sgSetVec3(_relative_view_pos, view_pos);
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGViewer.
////////////////////////////////////////////////////////////////////////
// Constructor
FGViewer::FGViewer( void ):
scalingType(FG_SCALING_MAX),

View file

@ -42,6 +42,71 @@
#define FG_FOV_MAX 179.9
/**
* Representation of a single viewpoint in the FlightGear world.
*/
class FGViewPoint
{
public:
FGViewPoint ();
virtual ~FGViewPoint ();
/**
* Set the geodetic position for the view point.
*/
virtual void setPosition (double lon_deg, double lat_deg, double alt_ft);
/**
* Get the longitude in degrees.
*/
virtual double getLongitude_deg () const { return _lon_deg; }
/**
* Get the latitude in degrees.
*/
virtual double getLatitude_deg () const { return _lat_deg; }
/**
* Get the altitude in feet ASL.
*/
virtual double getAltitudeASL_ft () const { return _alt_ft; }
/**
* Get the absolute view position in fgfs coordinates.
*/
virtual const double * getAbsoluteViewPos () const;
/**
* Get the relative view position in fgfs coordinates.
*
* The position is relative to the scenery centre.
*/
virtual const float * getRelativeViewPos () const;
/**
* Get the absolute zero-elevation view position in fgfs coordinates.
*/
virtual const float * getZeroElevViewPos () const;
private:
void recalc () const;
mutable sgdVec3 _absolute_view_pos;
mutable sgVec3 _relative_view_pos;
mutable sgVec3 _zero_elev_view_pos;
bool _dirty;
double _lon_deg;
double _lat_deg;
double _alt_ft;
};
// Define a structure containing view information
class FGViewer {
@ -70,6 +135,8 @@ protected:
fgViewType _type;
fgScalingType scalingType;
FGViewPoint view_point;
// the nominal field of view (angle, in degrees)
double fov;

View file

@ -89,57 +89,16 @@ void fgMakeLookAtMat4 ( sgMat4 dst, const sgVec3 eye, const sgVec3 center,
}
#if 0
// convert sgMat4 to MAT3 and print
static void print_sgMat4( sgMat4 &in) {
int i, j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
printf("%10.4f ", in[i][j]);
}
cout << endl;
}
}
#endif
// Update the view parameters
void FGViewerLookAt::update() {
Point3D tmp;
sgVec3 minus_z;
// convert to geocentric coordinates
double geoc_lat;
sgGeodToGeoc( geod_view_pos[1], geod_view_pos[2],
&sea_level_radius, &geoc_lat );
// calculate the cartesion coords of the current lat/lon/0 elev
Point3D p = Point3D( geod_view_pos[0], geoc_lat, sea_level_radius );
tmp = sgPolarToCart3d(p) - scenery.get_center();
sgSetVec3( zero_elev, tmp[0], tmp[1], tmp[2] );
// calculate view position in current FG view coordinate system
// p.lon & p.lat are already defined earlier, p.radius was set to
// the sea level radius, so now we add in our altitude.
if ( geod_view_pos[2] > (scenery.get_cur_elev() + 0.5 * SG_METER_TO_FEET) ) {
p.setz( p.radius() + geod_view_pos[2] );
} else {
p.setz( p.radius() + scenery.get_cur_elev() + 0.5 * SG_METER_TO_FEET );
}
tmp = sgPolarToCart3d(p);
sgdSetVec3( abs_view_pos, tmp[0], tmp[1], tmp[2] );
// view_pos = abs_view_pos - scenery.center;
sgdVec3 sc;
sgdSetVec3( sc,
scenery.get_center().x(),
scenery.get_center().y(),
scenery.get_center().z() );
sgdVec3 vp;
sgdSubVec3( vp, abs_view_pos, sc );
sgSetVec3( view_pos, vp );
view_point.setPosition(geod_view_pos[0] * SGD_RADIANS_TO_DEGREES,
geod_view_pos[1] * SGD_RADIANS_TO_DEGREES,
geod_view_pos[2] * SG_METER_TO_FEET);
sgCopyVec3(zero_elev, view_point.getZeroElevViewPos());
sgdCopyVec3(abs_view_pos, view_point.getAbsoluteViewPos());
sgCopyVec3(view_pos, view_point.getRelativeViewPos());
sgVec3 tmp_offset;
sgCopyVec3( tmp_offset, pilot_offset );
@ -159,30 +118,8 @@ void FGViewerLookAt::update() {
sgAddVec3( view_pos, tmp_offset );
// !!!!!!!!!! testing
// sgAddVec3( view_pos, pilot_offset );
SG_LOG( SG_VIEW, SG_DEBUG, "sea level radius = " << sea_level_radius );
SG_LOG( SG_VIEW, SG_DEBUG, "Polar view pos = " << p );
SG_LOG( SG_VIEW, SG_DEBUG, "Absolute view pos = "
<< abs_view_pos[0] << ","
<< abs_view_pos[1] << ","
<< abs_view_pos[2] );
SG_LOG( SG_VIEW, SG_DEBUG, "Relative view pos = "
<< view_pos[0] << "," << view_pos[1] << "," << view_pos[2] );
SG_LOG( SG_VIEW, SG_DEBUG, "pilot offset = "
<< pilot_offset[0] << "," << pilot_offset[1] << ","
<< pilot_offset[2] );
SG_LOG( SG_VIEW, SG_DEBUG, "view forward = "
<< view_forward[0] << "," << view_forward[1] << ","
<< view_forward[2] );
SG_LOG( SG_VIEW, SG_DEBUG, "view up = "
<< view_up[0] << "," << view_up[1] << ","
<< view_up[2] );
// Make the VIEW matrix.
fgMakeLookAtMat4( VIEW, view_pos, view_forward, view_up );
// cout << "VIEW matrix" << endl;
// print_sgMat4( VIEW );
// the VIEW matrix includes both rotation and translation. Let's
// knock out the translation part to make the VIEW_ROT matrix
@ -198,9 +135,6 @@ void FGViewerLookAt::update() {
// use a clever observation into the nature of our tranformation
// matrix to grab the world_up vector
sgSetVec3( world_up, UP[0][0], UP[0][1], UP[0][2] );
// cout << "World Up = " << world_up[0] << "," << world_up[1] << ","
// << world_up[2] << endl;
// Given a vector pointing straight down (-Z), map into onto the
// local plane representing "horizontal". This should give us the
@ -210,25 +144,11 @@ void FGViewerLookAt::update() {
sgmap_vec_onto_cur_surface_plane(world_up, view_pos, minus_z,
surface_south);
sgNormalizeVec3(surface_south);
// cout << "Surface direction directly south " << surface_south[0] << ","
// << surface_south[1] << "," << surface_south[2] << endl;
// now calculate the surface east vector
#define USE_FAST_SURFACE_EAST
#ifdef USE_FAST_SURFACE_EAST
sgVec3 world_down;
sgNegateVec3(world_down, world_up);
sgVectorProductVec3(surface_east, surface_south, world_down);
#else
sgMakeRotMat4( TMP, SGD_PI_2 * SGD_RADIANS_TO_DEGREES, world_up );
// cout << "sgMat4 TMP" << endl;
// print_sgMat4( TMP );
sgXformVec3(surface_east, surface_south, TMP);
#endif // USE_FAST_SURFACE_EAST
// cout << "Surface direction directly east " << surface_east[0] << ","
// << surface_east[1] << "," << surface_east[2] << endl;
// cout << "Should be close to zero = "
// << sgScalarProductVec3(surface_south, surface_east) << endl;
set_clean();
}

View file

@ -48,33 +48,9 @@
FGViewerRPH::FGViewerRPH( void )
{
set_reverse_view_offset(false);
#ifndef USE_FAST_VIEWROT
// This never changes -- NHV
LARC_TO_SSG[0][0] = 0.0;
LARC_TO_SSG[0][1] = 1.0;
LARC_TO_SSG[0][2] = -0.0;
LARC_TO_SSG[0][3] = 0.0;
LARC_TO_SSG[1][0] = 0.0;
LARC_TO_SSG[1][1] = 0.0;
LARC_TO_SSG[1][2] = 1.0;
LARC_TO_SSG[1][3] = 0.0;
LARC_TO_SSG[2][0] = 1.0;
LARC_TO_SSG[2][1] = -0.0;
LARC_TO_SSG[2][2] = 0.0;
LARC_TO_SSG[2][3] = 0.0;
LARC_TO_SSG[3][0] = 0.0;
LARC_TO_SSG[3][1] = 0.0;
LARC_TO_SSG[3][2] = 0.0;
LARC_TO_SSG[3][3] = 1.0;
#endif // USE_FAST_VIEWROT
}
#define USE_FAST_VIEWROT
#ifdef USE_FAST_VIEWROT
// VIEW_ROT = LARC_TO_SSG * ( VIEWo * VIEW_OFFSET )
// This takes advantage of the fact that VIEWo and VIEW_OFFSET
// only have entries in the upper 3x3 block
@ -102,11 +78,8 @@ inline static void fgMakeViewRot( sgMat4 dst, const sgMat4 m1, const sgMat4 m2 )
dst[3][2] = SG_ZERO;
dst[3][3] = SG_ONE;
}
#endif
#define USE_FAST_LOCAL
#ifdef USE_FAST_LOCAL
inline static void fgMakeLOCAL( sgMat4 dst, const double Theta,
const double Phi, const double Psi)
{
@ -137,145 +110,39 @@ inline static void fgMakeLOCAL( sgMat4 dst, const double Theta,
dst[3][2] = SG_ZERO;
dst[3][3] = SG_ONE ;
}
#endif
#if 0
// convert sgMat4 to MAT3 and print
static void print_sgMat4( sgMat4 &in) {
int i, j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
printf("%10.4f ", in[i][j]);
}
cout << endl;
}
}
#endif
// Update the view parameters
void FGViewerRPH::update() {
Point3D tmp;
sgVec3 minus_z, right, forward, tilt;
sgMat4 VIEWo;
// convert to geocentric coordinates
double geoc_lat;
sgGeodToGeoc( geod_view_pos[1], geod_view_pos[2],
&sea_level_radius, &geoc_lat );
// calculate the cartesion coords of the current lat/lon/0 elev
Point3D p = Point3D( geod_view_pos[0], geoc_lat, sea_level_radius );
tmp = sgPolarToCart3d(p) - scenery.get_center();
sgSetVec3( zero_elev, tmp[0], tmp[1], tmp[2] );
// calculate view position in current FG view coordinate system
// p.lon & p.lat are already defined earlier, p.radius was set to
// the sea level radius, so now we add in our altitude.
if ( geod_view_pos[2] > (scenery.get_cur_elev() + 0.5 * SG_METER_TO_FEET) ) {
p.setz( p.radius() + geod_view_pos[2] );
} else {
p.setz( p.radius() + scenery.get_cur_elev() + 0.5 * SG_METER_TO_FEET );
}
tmp = sgPolarToCart3d(p);
sgdSetVec3( abs_view_pos, tmp[0], tmp[1], tmp[2] );
// view_pos = abs_view_pos - scenery.center;
sgdVec3 sc;
sgdSetVec3( sc,
scenery.get_center().x(),
scenery.get_center().y(),
scenery.get_center().z() );
sgdVec3 vp;
sgdSubVec3( vp, abs_view_pos, sc );
sgSetVec3( view_pos, vp );
SG_LOG( SG_VIEW, SG_DEBUG, "sea level radius = " << sea_level_radius );
SG_LOG( SG_VIEW, SG_DEBUG, "Polar view pos = " << p );
SG_LOG( SG_VIEW, SG_DEBUG, "Absolute view pos = "
<< abs_view_pos[0] << ","
<< abs_view_pos[1] << ","
<< abs_view_pos[2] );
SG_LOG( SG_VIEW, SG_DEBUG, "Scenery center = "
<< sc[0] << "," << sc[1] << "," << sc[2] );
SG_LOG( SG_VIEW, SG_DEBUG, "(RPH) Relative view pos = "
<< view_pos[0] << "," << view_pos[1] << "," << view_pos[2] );
view_point.setPosition(geod_view_pos[0] * SGD_RADIANS_TO_DEGREES,
geod_view_pos[1] * SGD_RADIANS_TO_DEGREES,
geod_view_pos[2] * SG_METER_TO_FEET);
sgCopyVec3(zero_elev, view_point.getZeroElevViewPos());
sgdCopyVec3(abs_view_pos, view_point.getAbsoluteViewPos());
sgCopyVec3(view_pos, view_point.getRelativeViewPos());
// code to calculate LOCAL matrix calculated from Phi, Theta, and
// Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our
// flight model
#ifdef USE_FAST_LOCAL
fgMakeLOCAL( LOCAL, rph[1], rph[0], -rph[2] );
#else // USE_TEXT_BOOK_METHOD
sgVec3 rollvec;
sgSetVec3( rollvec, 0.0, 0.0, 1.0 );
sgMat4 PHI; // roll
sgMakeRotMat4( PHI, rph[0] * SGD_RADIANS_TO_DEGREES, rollvec );
sgVec3 pitchvec;
sgSetVec3( pitchvec, 0.0, 1.0, 0.0 );
sgMat4 THETA; // pitch
sgMakeRotMat4( THETA, rph[1] * SGD_RADIANS_TO_DEGREES, pitchvec );
// ROT = PHI * THETA
sgMat4 ROT;
// sgMultMat4( ROT, PHI, THETA );
sgCopyMat4( ROT, PHI );
sgPostMultMat4( ROT, THETA );
sgVec3 yawvec;
sgSetVec3( yawvec, 1.0, 0.0, 0.0 );
sgMat4 PSI; // heading
sgMakeRotMat4( PSI, -rph[2] * SGD_RADIANS_TO_DEGREES, yawvec );
// LOCAL = ROT * PSI
// sgMultMat4( LOCAL, ROT, PSI );
sgCopyMat4( LOCAL, ROT );
sgPostMultMat4( LOCAL, PSI );
#endif // USE_FAST_LOCAL
// cout << "LOCAL matrix" << endl;
// print_sgMat4( LOCAL );
sgMakeRotMat4( UP,
geod_view_pos[0] * SGD_RADIANS_TO_DEGREES,
0.0,
-geod_view_pos[1] * SGD_RADIANS_TO_DEGREES );
sgSetVec3( world_up, UP[0][0], UP[0][1], UP[0][2] );
// sgXformVec3( world_up, UP );
// cout << "World Up = " << world_up[0] << "," << world_up[1] << ","
// << world_up[2] << endl;
// Alternative method to Derive world up vector based on
// *geodetic* coordinates
// alt_up = sgPolarToCart(FG_Longitude, FG_Latitude, 1.0);
// printf( " Alt Up = (%.4f, %.4f, %.4f)\n",
// alt_up.x, alt_up.y, alt_up.z);
// VIEWo = LOCAL * UP
// sgMultMat4( VIEWo, LOCAL, UP );
sgCopyMat4( VIEWo, LOCAL );
sgPostMultMat4( VIEWo, UP );
// cout << "VIEWo matrix" << endl;
// print_sgMat4( VIEWo );
// generate the sg view up and forward vectors
sgSetVec3( view_up, VIEWo[0][0], VIEWo[0][1], VIEWo[0][2] );
// cout << "view = " << view[0] << ","
// << view[1] << "," << view[2] << endl;
sgSetVec3( right, VIEWo[1][0], VIEWo[1][1], VIEWo[1][2] );
sgSetVec3( forward, VIEWo[2][0], VIEWo[2][1], VIEWo[2][2] );
// cout << "forward = " << forward[0] << ","
// << forward[1] << "," << forward[2] << endl;
// generate the pilot offset vector in world coordinates
sgVec3 pilot_offset_world;
@ -297,17 +164,7 @@ void FGViewerRPH::update() {
<< view_forward[2] );
// VIEW_ROT = LARC_TO_SSG * ( VIEWo * VIEW_OFFSET )
#ifdef USE_FAST_VIEWROT
fgMakeViewRot( VIEW_ROT, VIEW_OFFSET, VIEWo );
#else
// sgMultMat4( VIEW_ROT, VIEW_OFFSET, VIEWo );
// sgPreMultMat4( VIEW_ROT, LARC_TO_SSG );
sgCopyMat4( VIEW_ROT, VIEWo );
sgPostMultMat4( VIEW_ROT, VIEW_OFFSET );
sgPreMultMat4( VIEW_ROT, LARC_TO_SSG );
#endif
// cout << "VIEW_ROT matrix" << endl;
// print_sgMat4( VIEW_ROT );
sgVec3 trans_vec;
sgAddVec3( trans_vec, view_pos, pilot_offset_world );
@ -336,21 +193,9 @@ void FGViewerRPH::update() {
// << surface_south[1] << "," << surface_south[2] << endl;
// now calculate the surface east vector
#define USE_FAST_SURFACE_EAST
#ifdef USE_FAST_SURFACE_EAST
sgVec3 world_down;
sgNegateVec3(world_down, world_up);
sgVectorProductVec3(surface_east, surface_south, world_down);
#else
sgMakeRotMat4( TMP, SGD_PI_2 * SGD_RADIANS_TO_DEGREES, world_up );
// cout << "sgMat4 TMP" << endl;
// print_sgMat4( TMP );
sgXformVec3(surface_east, surface_south, TMP);
#endif // USE_FAST_SURFACE_EAST
// cout << "Surface direction directly east " << surface_east[0] << ","
// << surface_east[1] << "," << surface_east[2] << endl;
// cout << "Should be close to zero = "
// << sgScalarProductVec3(surface_south, surface_east) << endl;
set_clean();
}