YASim performance optimization
Several functions of YASim's math wrapper are hotspots. Allow compiler optimization/inlining.
This commit is contained in:
parent
5f1435b4fd
commit
ed1ec90287
3 changed files with 157 additions and 301 deletions
|
@ -13,7 +13,6 @@ set(COMMON
|
|||
Integrator.cpp
|
||||
Jet.cpp
|
||||
Launchbar.cpp
|
||||
Math.cpp
|
||||
Model.cpp
|
||||
PistonEngine.cpp
|
||||
PropEngine.cpp
|
||||
|
|
|
@ -1,264 +0,0 @@
|
|||
#include <math.h>
|
||||
|
||||
#include "Math.hpp"
|
||||
namespace yasim {
|
||||
|
||||
float Math::clamp(float val, float min, float max)
|
||||
{
|
||||
if(val < min) return min;
|
||||
if(val > max) return max;
|
||||
return val;
|
||||
}
|
||||
|
||||
float Math::abs(float f)
|
||||
{
|
||||
return (float)::fabs(f);
|
||||
}
|
||||
|
||||
float Math::sqrt(float f)
|
||||
{
|
||||
return (float)::sqrt(f);
|
||||
}
|
||||
|
||||
float Math::ceil(float f)
|
||||
{
|
||||
return (float)::ceil(f);
|
||||
}
|
||||
|
||||
float Math::acos(float f)
|
||||
{
|
||||
return (float)::acos(f);
|
||||
}
|
||||
|
||||
float Math::asin(float f)
|
||||
{
|
||||
return (float)::asin(f);
|
||||
}
|
||||
|
||||
float Math::cos(float f)
|
||||
{
|
||||
return (float)::cos(f);
|
||||
}
|
||||
|
||||
float Math::sin(float f)
|
||||
{
|
||||
return (float)::sin(f);
|
||||
}
|
||||
|
||||
float Math::tan(float f)
|
||||
{
|
||||
return (float)::tan(f);
|
||||
}
|
||||
|
||||
float Math::atan(float f)
|
||||
{
|
||||
return (float)::atan(f);
|
||||
}
|
||||
|
||||
float Math::atan2(float y, float x)
|
||||
{
|
||||
return (float)::atan2(y, x);
|
||||
}
|
||||
|
||||
double Math::floor(double x)
|
||||
{
|
||||
return ::floor(x);
|
||||
}
|
||||
|
||||
double Math::abs(double f)
|
||||
{
|
||||
return ::fabs(f);
|
||||
}
|
||||
|
||||
double Math::sqrt(double f)
|
||||
{
|
||||
return ::sqrt(f);
|
||||
}
|
||||
|
||||
float Math::pow(double base, double exp)
|
||||
{
|
||||
return (float)::pow(base, exp);
|
||||
}
|
||||
|
||||
float Math::exp(float f)
|
||||
{
|
||||
return (float)::exp(f);
|
||||
}
|
||||
|
||||
double Math::ceil(double f)
|
||||
{
|
||||
return ::ceil(f);
|
||||
}
|
||||
|
||||
double Math::cos(double f)
|
||||
{
|
||||
return ::cos(f);
|
||||
}
|
||||
|
||||
double Math::sin(double f)
|
||||
{
|
||||
return ::sin(f);
|
||||
}
|
||||
|
||||
double Math::tan(double f)
|
||||
{
|
||||
return ::tan(f);
|
||||
}
|
||||
|
||||
double Math::atan2(double y, double x)
|
||||
{
|
||||
return ::atan2(y, x);
|
||||
}
|
||||
|
||||
void Math::set3(float* v, float* out)
|
||||
{
|
||||
out[0] = v[0];
|
||||
out[1] = v[1];
|
||||
out[2] = v[2];
|
||||
}
|
||||
|
||||
float Math::dot3(float* a, float* b)
|
||||
{
|
||||
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
|
||||
}
|
||||
|
||||
void Math::mul3(float scalar, float* v, float* out)
|
||||
{
|
||||
out[0] = scalar * v[0];
|
||||
out[1] = scalar * v[1];
|
||||
out[2] = scalar * v[2];
|
||||
}
|
||||
|
||||
void Math::add3(float* a, float* b, float* out)
|
||||
{
|
||||
out[0] = a[0] + b[0];
|
||||
out[1] = a[1] + b[1];
|
||||
out[2] = a[2] + b[2];
|
||||
}
|
||||
|
||||
void Math::sub3(float* a, float* b, float* out)
|
||||
{
|
||||
out[0] = a[0] - b[0];
|
||||
out[1] = a[1] - b[1];
|
||||
out[2] = a[2] - b[2];
|
||||
}
|
||||
|
||||
float Math::mag3(float* v)
|
||||
{
|
||||
return sqrt(dot3(v, v));
|
||||
}
|
||||
|
||||
void Math::unit3(float* v, float* out)
|
||||
{
|
||||
float imag = 1/mag3(v);
|
||||
mul3(imag, v, out);
|
||||
}
|
||||
|
||||
void Math::cross3(float* a, float* b, float* out)
|
||||
{
|
||||
float ax=a[0], ay=a[1], az=a[2];
|
||||
float bx=b[0], by=b[1], bz=b[2];
|
||||
out[0] = ay*bz - by*az;
|
||||
out[1] = az*bx - bz*ax;
|
||||
out[2] = ax*by - bx*ay;
|
||||
}
|
||||
|
||||
void Math::mmul33(float* a, float* b, float* out)
|
||||
{
|
||||
float tmp[9];
|
||||
tmp[0] = a[0]*b[0] + a[1]*b[3] + a[2]*b[6];
|
||||
tmp[3] = a[3]*b[0] + a[4]*b[3] + a[5]*b[6];
|
||||
tmp[6] = a[6]*b[0] + a[7]*b[3] + a[8]*b[6];
|
||||
|
||||
tmp[1] = a[0]*b[1] + a[1]*b[4] + a[2]*b[7];
|
||||
tmp[4] = a[3]*b[1] + a[4]*b[4] + a[5]*b[7];
|
||||
tmp[7] = a[6]*b[1] + a[7]*b[4] + a[8]*b[7];
|
||||
|
||||
tmp[2] = a[0]*b[2] + a[1]*b[5] + a[2]*b[8];
|
||||
tmp[5] = a[3]*b[2] + a[4]*b[5] + a[5]*b[8];
|
||||
tmp[8] = a[6]*b[2] + a[7]*b[5] + a[8]*b[8];
|
||||
|
||||
int i;
|
||||
for(i=0; i<9; i++)
|
||||
out[i] = tmp[i];
|
||||
}
|
||||
|
||||
void Math::vmul33(float* m, float* v, float* out)
|
||||
{
|
||||
float x = v[0], y = v[1], z = v[2];
|
||||
out[0] = x*m[0] + y*m[1] + z*m[2];
|
||||
out[1] = x*m[3] + y*m[4] + z*m[5];
|
||||
out[2] = x*m[6] + y*m[7] + z*m[8];
|
||||
}
|
||||
|
||||
void Math::tmul33(float* m, float* v, float* out)
|
||||
{
|
||||
float x = v[0], y = v[1], z = v[2];
|
||||
out[0] = x*m[0] + y*m[3] + z*m[6];
|
||||
out[1] = x*m[1] + y*m[4] + z*m[7];
|
||||
out[2] = x*m[2] + y*m[5] + z*m[8];
|
||||
}
|
||||
|
||||
void Math::invert33(float* m, float* out)
|
||||
{
|
||||
// Compute the inverse as the adjoint matrix times 1/(det M).
|
||||
// A, B ... I are the cofactors of a b c
|
||||
// d e f
|
||||
// g h i
|
||||
float a=m[0], b=m[1], c=m[2];
|
||||
float d=m[3], e=m[4], f=m[5];
|
||||
float g=m[6], h=m[7], i=m[8];
|
||||
|
||||
float A = (e*i - h*f);
|
||||
float B = -(d*i - g*f);
|
||||
float C = (d*h - g*e);
|
||||
float D = -(b*i - h*c);
|
||||
float E = (a*i - g*c);
|
||||
float F = -(a*h - g*b);
|
||||
float G = (b*f - e*c);
|
||||
float H = -(a*f - d*c);
|
||||
float I = (a*e - d*b);
|
||||
|
||||
float id = 1/(a*A + b*B + c*C);
|
||||
|
||||
out[0] = id*A; out[1] = id*D; out[2] = id*G;
|
||||
out[3] = id*B; out[4] = id*E; out[5] = id*H;
|
||||
out[6] = id*C; out[7] = id*F; out[8] = id*I;
|
||||
}
|
||||
|
||||
void Math::trans33(float* m, float* out)
|
||||
{
|
||||
// 0 1 2 Elements 0, 4, and 8 are the same
|
||||
// 3 4 5 Swap elements 1/3, 2/6, and 5/7
|
||||
// 6 7 8
|
||||
out[0] = m[0];
|
||||
out[4] = m[4];
|
||||
out[8] = m[8];
|
||||
|
||||
float tmp = m[1];
|
||||
out[1] = m[3];
|
||||
out[3] = tmp;
|
||||
|
||||
tmp = m[2];
|
||||
out[2] = m[6];
|
||||
out[6] = tmp;
|
||||
|
||||
tmp = m[5];
|
||||
out[5] = m[7];
|
||||
out[7] = tmp;
|
||||
}
|
||||
|
||||
void Math::ortho33(float* x, float* y,
|
||||
float* xOut, float* yOut, float* zOut)
|
||||
{
|
||||
float x0[3], y0[3];
|
||||
set3(x, x0);
|
||||
set3(y, y0);
|
||||
|
||||
unit3(x0, xOut);
|
||||
cross3(xOut, y0, zOut);
|
||||
unit3(zOut, zOut);
|
||||
cross3(zOut, xOut, yOut);
|
||||
}
|
||||
|
||||
}; // namespace yasim
|
|
@ -1,79 +1,200 @@
|
|||
#ifndef _MATH_HPP
|
||||
#define _MATH_HPP
|
||||
|
||||
#include <math.h>
|
||||
|
||||
namespace yasim {
|
||||
|
||||
class Math
|
||||
{
|
||||
public:
|
||||
// Dumb utilities
|
||||
static float clamp(float val, float min, float max);
|
||||
static inline float clamp(float val, float min, float max) {
|
||||
if(val < min) return min;
|
||||
if(val > max) return max;
|
||||
return val;
|
||||
}
|
||||
|
||||
// Simple wrappers around library routines
|
||||
static float abs(float f);
|
||||
static float sqrt(float f);
|
||||
static float ceil(float f);
|
||||
static float sin(float f);
|
||||
static float cos(float f);
|
||||
static float tan(float f);
|
||||
static float atan(float f);
|
||||
static float atan2(float y, float x);
|
||||
static float asin(float f);
|
||||
static float acos(float f);
|
||||
static float exp(float f);
|
||||
static float sqr(float f) {return f*f;}
|
||||
static inline float abs(float f) { return (float)::fabs(f); }
|
||||
static inline float sqrt(float f) { return (float)::sqrt(f); }
|
||||
static inline float ceil(float f) { return (float)::ceil(f); }
|
||||
static inline float sin(float f) { return (float)::sin(f); }
|
||||
static inline float cos(float f) { return (float)::cos(f); }
|
||||
static inline float tan(float f) { return (float)::tan(f); }
|
||||
static inline float atan(float f) { return (float)::atan(f); }
|
||||
static inline float atan2(float y, float x) { return (float)::atan2(y,x); }
|
||||
static inline float asin(float f) { return (float)::asin(f); }
|
||||
static inline float acos(float f) { return (float)::acos(f); }
|
||||
static inline float exp(float f) { return (float)::exp(f); }
|
||||
static inline float sqr(float f) { return f*f; }
|
||||
|
||||
// Takes two args and runs afoul of the Koenig rules.
|
||||
static float pow(double base, double exp);
|
||||
static inline float pow(double base, double exp) { return (float)::pow(base, exp); }
|
||||
|
||||
// double variants of the above
|
||||
static double abs(double f);
|
||||
static double sqrt(double f);
|
||||
static double ceil(double f);
|
||||
static double sin(double f);
|
||||
static double cos(double f);
|
||||
static double tan(double f);
|
||||
static double atan2(double y, double x);
|
||||
static double floor(double x);
|
||||
static inline double abs(double f) { return ::fabs(f); }
|
||||
static inline double sqrt(double f) { return ::sqrt(f); }
|
||||
static inline double ceil(double f) { return ::ceil(f); }
|
||||
static inline double sin(double f) { return ::sin(f); }
|
||||
static inline double cos(double f) { return ::cos(f); }
|
||||
static inline double tan(double f) { return ::tan(f); }
|
||||
static inline double atan2(double y, double x) { return ::atan2(y,x); }
|
||||
static inline double floor(double x) { return ::floor(x); }
|
||||
|
||||
// Some 3D vector stuff. In all cases, it is permissible for the
|
||||
// "out" vector to be the same as one of the inputs.
|
||||
static void set3(float* v, float* out);
|
||||
static float dot3(float* a, float* b);
|
||||
static void cross3(float* a, float* b, float* out);
|
||||
static void mul3(float scalar, float* v, float* out);
|
||||
static void add3(float* a, float* b, float* out);
|
||||
static void sub3(float* a, float* b, float* out);
|
||||
static float mag3(float* v);
|
||||
static void unit3(float* v, float* out);
|
||||
static inline void set3(float* v, float* out) {
|
||||
out[0] = v[0];
|
||||
out[1] = v[1];
|
||||
out[2] = v[2];
|
||||
}
|
||||
|
||||
static inline float dot3(float* a, float* b) {
|
||||
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
|
||||
}
|
||||
|
||||
static inline void cross3(float* a, float* b, float* out) {
|
||||
float ax=a[0], ay=a[1], az=a[2];
|
||||
float bx=b[0], by=b[1], bz=b[2];
|
||||
out[0] = ay*bz - by*az;
|
||||
out[1] = az*bx - bz*ax;
|
||||
out[2] = ax*by - bx*ay;
|
||||
}
|
||||
|
||||
static inline void mul3(float scalar, float* v, float* out)
|
||||
{
|
||||
out[0] = scalar * v[0];
|
||||
out[1] = scalar * v[1];
|
||||
out[2] = scalar * v[2];
|
||||
}
|
||||
|
||||
static inline void add3(float* a, float* b, float* out){
|
||||
out[0] = a[0] + b[0];
|
||||
out[1] = a[1] + b[1];
|
||||
out[2] = a[2] + b[2];
|
||||
}
|
||||
|
||||
static inline void sub3(float* a, float* b, float* out) {
|
||||
out[0] = a[0] - b[0];
|
||||
out[1] = a[1] - b[1];
|
||||
out[2] = a[2] - b[2];
|
||||
}
|
||||
|
||||
static inline float mag3(float* v) {
|
||||
return sqrt(dot3(v, v));
|
||||
}
|
||||
|
||||
static inline void unit3(float* v, float* out) {
|
||||
float imag = 1/mag3(v);
|
||||
mul3(imag, v, out);
|
||||
}
|
||||
|
||||
// Matrix array convention: 0 1 2
|
||||
// 3 4 5
|
||||
// 6 7 8
|
||||
|
||||
// Multiply two matrices
|
||||
static void mmul33(float* a, float* b, float* out);
|
||||
static void mmul33(float* a, float* b, float* out) {
|
||||
float tmp[9];
|
||||
tmp[0] = a[0]*b[0] + a[1]*b[3] + a[2]*b[6];
|
||||
tmp[3] = a[3]*b[0] + a[4]*b[3] + a[5]*b[6];
|
||||
tmp[6] = a[6]*b[0] + a[7]*b[3] + a[8]*b[6];
|
||||
|
||||
tmp[1] = a[0]*b[1] + a[1]*b[4] + a[2]*b[7];
|
||||
tmp[4] = a[3]*b[1] + a[4]*b[4] + a[5]*b[7];
|
||||
tmp[7] = a[6]*b[1] + a[7]*b[4] + a[8]*b[7];
|
||||
|
||||
tmp[2] = a[0]*b[2] + a[1]*b[5] + a[2]*b[8];
|
||||
tmp[5] = a[3]*b[2] + a[4]*b[5] + a[5]*b[8];
|
||||
tmp[8] = a[6]*b[2] + a[7]*b[5] + a[8]*b[8];
|
||||
|
||||
for(int i=0; i<9; ++i)
|
||||
out[i] = tmp[i];
|
||||
}
|
||||
|
||||
// Multiply by vector
|
||||
static void vmul33(float* m, float* v, float* out);
|
||||
static inline void vmul33(float* m, float* v, float* out) {
|
||||
float x = v[0], y = v[1], z = v[2];
|
||||
out[0] = x*m[0] + y*m[1] + z*m[2];
|
||||
out[1] = x*m[3] + y*m[4] + z*m[5];
|
||||
out[2] = x*m[6] + y*m[7] + z*m[8];
|
||||
}
|
||||
|
||||
// Multiply the vector by the matrix transpose. Or pre-multiply the
|
||||
// matrix by v as a row vector. Same thing.
|
||||
static void tmul33(float* m, float* v, float* out);
|
||||
static inline void tmul33(float* m, float* v, float* out) {
|
||||
float x = v[0], y = v[1], z = v[2];
|
||||
out[0] = x*m[0] + y*m[3] + z*m[6];
|
||||
out[1] = x*m[1] + y*m[4] + z*m[7];
|
||||
out[2] = x*m[2] + y*m[5] + z*m[8];
|
||||
}
|
||||
|
||||
// Invert matrix
|
||||
static void invert33(float* m, float* out);
|
||||
static void invert33(float* m, float* out) {
|
||||
// Compute the inverse as the adjoint matrix times 1/(det M).
|
||||
// A, B ... I are the cofactors of a b c
|
||||
// d e f
|
||||
// g h i
|
||||
float a=m[0], b=m[1], c=m[2];
|
||||
float d=m[3], e=m[4], f=m[5];
|
||||
float g=m[6], h=m[7], i=m[8];
|
||||
|
||||
float A = (e*i - h*f);
|
||||
float B = -(d*i - g*f);
|
||||
float C = (d*h - g*e);
|
||||
float D = -(b*i - h*c);
|
||||
float E = (a*i - g*c);
|
||||
float F = -(a*h - g*b);
|
||||
float G = (b*f - e*c);
|
||||
float H = -(a*f - d*c);
|
||||
float I = (a*e - d*b);
|
||||
|
||||
float id = 1/(a*A + b*B + c*C);
|
||||
|
||||
out[0] = id*A; out[1] = id*D; out[2] = id*G;
|
||||
out[3] = id*B; out[4] = id*E; out[5] = id*H;
|
||||
out[6] = id*C; out[7] = id*F; out[8] = id*I;
|
||||
}
|
||||
|
||||
// Transpose matrix (for an orthonormal orientation matrix, this
|
||||
// is the same as the inverse).
|
||||
static void trans33(float* m, float* out);
|
||||
static inline void trans33(float* m, float* out) {
|
||||
// 0 1 2 Elements 0, 4, and 8 are the same
|
||||
// 3 4 5 Swap elements 1/3, 2/6, and 5/7
|
||||
// 6 7 8
|
||||
out[0] = m[0];
|
||||
out[4] = m[4];
|
||||
out[8] = m[8];
|
||||
|
||||
float tmp = m[1];
|
||||
out[1] = m[3];
|
||||
out[3] = tmp;
|
||||
|
||||
tmp = m[2];
|
||||
out[2] = m[6];
|
||||
out[6] = tmp;
|
||||
|
||||
tmp = m[5];
|
||||
out[5] = m[7];
|
||||
out[7] = tmp;
|
||||
}
|
||||
|
||||
// Generates an orthonormal basis:
|
||||
// xOut becomes the unit vector in the direction of x
|
||||
// yOut is perpendicular to xOut in the x/y plane
|
||||
// zOut becomes the unit vector: (xOut cross yOut)
|
||||
static void ortho33(float* x, float* y,
|
||||
float* xOut, float* yOut, float* zOut);
|
||||
float* xOut, float* yOut, float* zOut) {
|
||||
float x0[3], y0[3];
|
||||
set3(x, x0);
|
||||
set3(y, y0);
|
||||
|
||||
unit3(x0, xOut);
|
||||
cross3(xOut, y0, zOut);
|
||||
unit3(zOut, zOut);
|
||||
cross3(zOut, xOut, yOut);
|
||||
}
|
||||
};
|
||||
|
||||
}; // namespace yasim
|
||||
|
|
Loading…
Add table
Reference in a new issue