Removed dos line endings.
This commit is contained in:
parent
7cdcfcafb8
commit
e9dba2caa1
2 changed files with 204 additions and 204 deletions
|
@ -1,93 +1,93 @@
|
|||
//#include <ansi_c.h>
|
||||
//#include <math.h>
|
||||
//#include <stdio.h>
|
||||
//#include <stdlib.h>
|
||||
#include "uiuc_ice_rates.h"
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Calculates shed rate depending on current aero loads, eta, temp, and freezing fraction
|
||||
// Code by Leia Blumenthal
|
||||
//
|
||||
// 13 Feb 02 - Created basic program with dummy variables and a constant shed rate (no dependency)
|
||||
//
|
||||
// Inputs:
|
||||
// aero_load - aerodynamic load
|
||||
// eta
|
||||
// T - Temperature in Farenheit
|
||||
// ff - freezing fraction
|
||||
//
|
||||
// Output:
|
||||
// rate - %eta shed/time
|
||||
//
|
||||
// Right now this is just a constant shed rate until we learn more...
|
||||
|
||||
|
||||
double shed(double aero_load, double eta, double T, double ff, double time_step)
|
||||
{
|
||||
double rate, eta_new;
|
||||
|
||||
if (eta <= 0.0)
|
||||
rate = 0.0;
|
||||
else
|
||||
rate = 0.2;
|
||||
|
||||
eta_new = eta-rate*eta*time_step;
|
||||
if (eta_new <= 0.0)
|
||||
eta_new = 0.0;
|
||||
|
||||
return(eta_new);
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Currently a simple linear approximation based on temperature and eta, but for next version,
|
||||
// should have so that it calculates sublimation rate depending on current temp,pressure,
|
||||
// dewpoint, radiation, and eta
|
||||
//
|
||||
// Code by Leia Blumenthal
|
||||
// 12 Feb 02 - Created basic program with linear rate for values when sublimation will occur
|
||||
// 16 May 02 - Modified so that outputs new eta as opposed to rate
|
||||
// Inputs:
|
||||
// T - temperature and must be input in Farenheit
|
||||
// P - pressure
|
||||
// Tdew - Dew point Temperature
|
||||
// rad - radiation
|
||||
// time_step- increment since last run
|
||||
//
|
||||
// Intermediate:
|
||||
// rate - sublimation rate (% eta change/time)
|
||||
//
|
||||
// Output:
|
||||
// eta_new- eta after sublimation has occurred
|
||||
//
|
||||
// This takes a simple approximation that the rate of sublimation will decrease
|
||||
// linearly with temperature increase.
|
||||
//
|
||||
// This code should be run every time step to every couple time steps
|
||||
//
|
||||
// If eta is less than zero, than there should be no sublimation
|
||||
|
||||
double sublimation(double T, double eta, double time_step)
|
||||
{
|
||||
double rate, eta_new;
|
||||
|
||||
if (eta <= 0.0) rate = 0;
|
||||
|
||||
else{
|
||||
// According to the Smithsonian Meteorological tables sublimation occurs
|
||||
// between -40 deg F < T < 32 deg F and between pressures of 0 atm < P < 0.00592 atm
|
||||
if (T < -40) rate = 0;
|
||||
else if (T >= -40 && T < 32)
|
||||
{
|
||||
// For a simple linear approximation, assume largest value is a rate of .2% per sec
|
||||
rate = 0.0028 * T + 0.0889;
|
||||
}
|
||||
else if (T >= 32) rate = 0;
|
||||
}
|
||||
|
||||
eta_new = eta-rate*eta*time_step;
|
||||
if (eta_new <= 0.0)
|
||||
eta_new = 0.0;
|
||||
|
||||
return(eta_new);
|
||||
}
|
||||
//#include <ansi_c.h>
|
||||
//#include <math.h>
|
||||
//#include <stdio.h>
|
||||
//#include <stdlib.h>
|
||||
#include "uiuc_ice_rates.h"
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Calculates shed rate depending on current aero loads, eta, temp, and freezing fraction
|
||||
// Code by Leia Blumenthal
|
||||
//
|
||||
// 13 Feb 02 - Created basic program with dummy variables and a constant shed rate (no dependency)
|
||||
//
|
||||
// Inputs:
|
||||
// aero_load - aerodynamic load
|
||||
// eta
|
||||
// T - Temperature in Farenheit
|
||||
// ff - freezing fraction
|
||||
//
|
||||
// Output:
|
||||
// rate - %eta shed/time
|
||||
//
|
||||
// Right now this is just a constant shed rate until we learn more...
|
||||
|
||||
|
||||
double shed(double aero_load, double eta, double T, double ff, double time_step)
|
||||
{
|
||||
double rate, eta_new;
|
||||
|
||||
if (eta <= 0.0)
|
||||
rate = 0.0;
|
||||
else
|
||||
rate = 0.2;
|
||||
|
||||
eta_new = eta-rate*eta*time_step;
|
||||
if (eta_new <= 0.0)
|
||||
eta_new = 0.0;
|
||||
|
||||
return(eta_new);
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Currently a simple linear approximation based on temperature and eta, but for next version,
|
||||
// should have so that it calculates sublimation rate depending on current temp,pressure,
|
||||
// dewpoint, radiation, and eta
|
||||
//
|
||||
// Code by Leia Blumenthal
|
||||
// 12 Feb 02 - Created basic program with linear rate for values when sublimation will occur
|
||||
// 16 May 02 - Modified so that outputs new eta as opposed to rate
|
||||
// Inputs:
|
||||
// T - temperature and must be input in Farenheit
|
||||
// P - pressure
|
||||
// Tdew - Dew point Temperature
|
||||
// rad - radiation
|
||||
// time_step- increment since last run
|
||||
//
|
||||
// Intermediate:
|
||||
// rate - sublimation rate (% eta change/time)
|
||||
//
|
||||
// Output:
|
||||
// eta_new- eta after sublimation has occurred
|
||||
//
|
||||
// This takes a simple approximation that the rate of sublimation will decrease
|
||||
// linearly with temperature increase.
|
||||
//
|
||||
// This code should be run every time step to every couple time steps
|
||||
//
|
||||
// If eta is less than zero, than there should be no sublimation
|
||||
|
||||
double sublimation(double T, double eta, double time_step)
|
||||
{
|
||||
double rate, eta_new;
|
||||
|
||||
if (eta <= 0.0) rate = 0;
|
||||
|
||||
else{
|
||||
// According to the Smithsonian Meteorological tables sublimation occurs
|
||||
// between -40 deg F < T < 32 deg F and between pressures of 0 atm < P < 0.00592 atm
|
||||
if (T < -40) rate = 0;
|
||||
else if (T >= -40 && T < 32)
|
||||
{
|
||||
// For a simple linear approximation, assume largest value is a rate of .2% per sec
|
||||
rate = 0.0028 * T + 0.0889;
|
||||
}
|
||||
else if (T >= 32) rate = 0;
|
||||
}
|
||||
|
||||
eta_new = eta-rate*eta*time_step;
|
||||
if (eta_new <= 0.0)
|
||||
eta_new = 0.0;
|
||||
|
||||
return(eta_new);
|
||||
}
|
||||
|
|
|
@ -1,111 +1,111 @@
|
|||
// SIS Twin Otter Iced aircraft Nonlinear model
|
||||
// Version 020409
|
||||
// read readme_020212.doc for information
|
||||
|
||||
#include "uiuc_iced_nonlin.h"
|
||||
|
||||
void Calc_Iced_Forces()
|
||||
{
|
||||
// alpha in deg
|
||||
double alpha;
|
||||
double de;
|
||||
double eta_ref_wing = 0.08; // eta of iced data used for curve fit
|
||||
double eta_ref_tail = 0.12;
|
||||
double eta_wing;
|
||||
//double delta_CL; // CL_clean - CL_iced;
|
||||
//double delta_CD; // CD_clean - CD_iced;
|
||||
//double delta_Cm; // CM_clean - CM_iced;
|
||||
double delta_Cm_a; // (Cm_clean - Cm_iced) as a function of AoA;
|
||||
double delta_Cm_de; // (Cm_clean - Cm_iced) as a function of de;
|
||||
double delta_Ch_a;
|
||||
double delta_Ch_e;
|
||||
double KCL;
|
||||
double KCD;
|
||||
double KCm_alpha;
|
||||
double KCm_de;
|
||||
double KCh;
|
||||
double CL_diff;
|
||||
|
||||
|
||||
|
||||
alpha = Alpha*RAD_TO_DEG;
|
||||
de = elevator*RAD_TO_DEG;
|
||||
// lift fits
|
||||
if (alpha < 16)
|
||||
{
|
||||
delta_CL = (0.088449 + 0.004836*alpha - 0.0005459*alpha*alpha +
|
||||
4.0859e-5*pow(alpha,3));
|
||||
}
|
||||
else
|
||||
{
|
||||
delta_CL = (-11.838 + 1.6861*alpha - 0.076707*alpha*alpha +
|
||||
0.001142*pow(alpha,3));
|
||||
}
|
||||
KCL = -delta_CL/eta_ref_wing;
|
||||
eta_wing = 0.5*(eta_wing_left + eta_wing_right);
|
||||
delta_CL = eta_wing*KCL;
|
||||
|
||||
|
||||
// drag fit
|
||||
delta_CD = (-0.0089 + 0.001578*alpha - 0.00046253*pow(alpha,2) +
|
||||
-4.7511e-5*pow(alpha,3) + 2.3384e-6*pow(alpha,4));
|
||||
KCD = -delta_CD/eta_ref_wing;
|
||||
delta_CD = eta_wing*KCD;
|
||||
|
||||
// pitching moment fit
|
||||
delta_Cm_a = (-0.01892 - 0.0056476*alpha + 1.0205e-5*pow(alpha,2)
|
||||
- 4.0692e-5*pow(alpha,3) + 1.7594e-6*pow(alpha,4));
|
||||
|
||||
delta_Cm_de = (-0.014928 - 0.0037783*alpha + 0.00039086*pow(de,2)
|
||||
- 1.1304e-5*pow(de,3) - 1.8439e-6*pow(de,4));
|
||||
|
||||
delta_Cm = delta_Cm_a + delta_Cm_de;
|
||||
KCm_alpha = delta_Cm_a/eta_ref_wing;
|
||||
KCm_de = delta_Cm_de/eta_ref_tail;
|
||||
delta_Cm = (0.75*eta_wing + 0.25*eta_tail)*KCm_alpha + (eta_tail)*KCm_de;
|
||||
|
||||
// hinge moment
|
||||
if (alpha < 13)
|
||||
{
|
||||
delta_Ch_a = (-0.0012862 - 0.00022705*alpha + 1.5911e-5*pow(alpha,2)
|
||||
+ 5.4536e-7*pow(alpha,3));
|
||||
}
|
||||
else
|
||||
{
|
||||
delta_Ch_a = 0;
|
||||
}
|
||||
delta_Ch_e = -0.0011851 - 0.00049924*de;
|
||||
delta_Ch = -(delta_Ch_a + delta_Ch_e);
|
||||
KCh = -delta_Ch/eta_ref_tail;
|
||||
delta_Ch = eta_tail*KCh;
|
||||
|
||||
// rolling moment
|
||||
CL_diff = (eta_wing_left - eta_wing_right)*KCL;
|
||||
delta_Cl = CL_diff/4;
|
||||
|
||||
}
|
||||
|
||||
void add_ice_effects()
|
||||
{
|
||||
CL_clean = -1*CZ*cos(Alpha) + CX*sin(Alpha); //Check later
|
||||
CD_clean = -1*CZ*sin(Alpha) - CX*cos(Alpha);
|
||||
Cm_clean = Cm;
|
||||
Cl_clean = Cl;
|
||||
Ch_clean = Ch;
|
||||
|
||||
CL_iced = CL_clean + delta_CL;
|
||||
CD_iced = CD_clean + delta_CD;
|
||||
Cm_iced = Cm_clean + delta_Cm;
|
||||
Cl_iced = Cl_clean + delta_Cl;
|
||||
//Ch_iced = Ch_clean + delta_Ch;
|
||||
|
||||
CL = CL_iced;
|
||||
CD = CD_iced;
|
||||
Cm = Cm_iced;
|
||||
Cl = Cl_iced;
|
||||
//Ch = Ch_iced;
|
||||
|
||||
CZ = -1*CL*cos(Alpha) - CD*sin(Alpha);
|
||||
CX = CL*sin(Alpha) - CD*cos(Alpha);
|
||||
|
||||
}
|
||||
// SIS Twin Otter Iced aircraft Nonlinear model
|
||||
// Version 020409
|
||||
// read readme_020212.doc for information
|
||||
|
||||
#include "uiuc_iced_nonlin.h"
|
||||
|
||||
void Calc_Iced_Forces()
|
||||
{
|
||||
// alpha in deg
|
||||
double alpha;
|
||||
double de;
|
||||
double eta_ref_wing = 0.08; // eta of iced data used for curve fit
|
||||
double eta_ref_tail = 0.12;
|
||||
double eta_wing;
|
||||
//double delta_CL; // CL_clean - CL_iced;
|
||||
//double delta_CD; // CD_clean - CD_iced;
|
||||
//double delta_Cm; // CM_clean - CM_iced;
|
||||
double delta_Cm_a; // (Cm_clean - Cm_iced) as a function of AoA;
|
||||
double delta_Cm_de; // (Cm_clean - Cm_iced) as a function of de;
|
||||
double delta_Ch_a;
|
||||
double delta_Ch_e;
|
||||
double KCL;
|
||||
double KCD;
|
||||
double KCm_alpha;
|
||||
double KCm_de;
|
||||
double KCh;
|
||||
double CL_diff;
|
||||
|
||||
|
||||
|
||||
alpha = Alpha*RAD_TO_DEG;
|
||||
de = elevator*RAD_TO_DEG;
|
||||
// lift fits
|
||||
if (alpha < 16)
|
||||
{
|
||||
delta_CL = (0.088449 + 0.004836*alpha - 0.0005459*alpha*alpha +
|
||||
4.0859e-5*pow(alpha,3));
|
||||
}
|
||||
else
|
||||
{
|
||||
delta_CL = (-11.838 + 1.6861*alpha - 0.076707*alpha*alpha +
|
||||
0.001142*pow(alpha,3));
|
||||
}
|
||||
KCL = -delta_CL/eta_ref_wing;
|
||||
eta_wing = 0.5*(eta_wing_left + eta_wing_right);
|
||||
delta_CL = eta_wing*KCL;
|
||||
|
||||
|
||||
// drag fit
|
||||
delta_CD = (-0.0089 + 0.001578*alpha - 0.00046253*pow(alpha,2) +
|
||||
-4.7511e-5*pow(alpha,3) + 2.3384e-6*pow(alpha,4));
|
||||
KCD = -delta_CD/eta_ref_wing;
|
||||
delta_CD = eta_wing*KCD;
|
||||
|
||||
// pitching moment fit
|
||||
delta_Cm_a = (-0.01892 - 0.0056476*alpha + 1.0205e-5*pow(alpha,2)
|
||||
- 4.0692e-5*pow(alpha,3) + 1.7594e-6*pow(alpha,4));
|
||||
|
||||
delta_Cm_de = (-0.014928 - 0.0037783*alpha + 0.00039086*pow(de,2)
|
||||
- 1.1304e-5*pow(de,3) - 1.8439e-6*pow(de,4));
|
||||
|
||||
delta_Cm = delta_Cm_a + delta_Cm_de;
|
||||
KCm_alpha = delta_Cm_a/eta_ref_wing;
|
||||
KCm_de = delta_Cm_de/eta_ref_tail;
|
||||
delta_Cm = (0.75*eta_wing + 0.25*eta_tail)*KCm_alpha + (eta_tail)*KCm_de;
|
||||
|
||||
// hinge moment
|
||||
if (alpha < 13)
|
||||
{
|
||||
delta_Ch_a = (-0.0012862 - 0.00022705*alpha + 1.5911e-5*pow(alpha,2)
|
||||
+ 5.4536e-7*pow(alpha,3));
|
||||
}
|
||||
else
|
||||
{
|
||||
delta_Ch_a = 0;
|
||||
}
|
||||
delta_Ch_e = -0.0011851 - 0.00049924*de;
|
||||
delta_Ch = -(delta_Ch_a + delta_Ch_e);
|
||||
KCh = -delta_Ch/eta_ref_tail;
|
||||
delta_Ch = eta_tail*KCh;
|
||||
|
||||
// rolling moment
|
||||
CL_diff = (eta_wing_left - eta_wing_right)*KCL;
|
||||
delta_Cl = CL_diff/4;
|
||||
|
||||
}
|
||||
|
||||
void add_ice_effects()
|
||||
{
|
||||
CL_clean = -1*CZ*cos(Alpha) + CX*sin(Alpha); //Check later
|
||||
CD_clean = -1*CZ*sin(Alpha) - CX*cos(Alpha);
|
||||
Cm_clean = Cm;
|
||||
Cl_clean = Cl;
|
||||
Ch_clean = Ch;
|
||||
|
||||
CL_iced = CL_clean + delta_CL;
|
||||
CD_iced = CD_clean + delta_CD;
|
||||
Cm_iced = Cm_clean + delta_Cm;
|
||||
Cl_iced = Cl_clean + delta_Cl;
|
||||
//Ch_iced = Ch_clean + delta_Ch;
|
||||
|
||||
CL = CL_iced;
|
||||
CD = CD_iced;
|
||||
Cm = Cm_iced;
|
||||
Cl = Cl_iced;
|
||||
//Ch = Ch_iced;
|
||||
|
||||
CZ = -1*CL*cos(Alpha) - CD*sin(Alpha);
|
||||
CX = CL*sin(Alpha) - CD*cos(Alpha);
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue