1
0
Fork 0

Move aircraft-performance code into a public API

Upcoming flight-planning changes want to use the perf computation code
in route-path, so move it to a public class, and implement some of the
missing functionality, especially correct GS computation for altitude.
This commit is contained in:
James Turner 2018-08-16 19:43:09 -07:00
parent e425f74a7d
commit e3d032942e
10 changed files with 659 additions and 159 deletions

View file

@ -0,0 +1,390 @@
// AircraftPerformance.cxx - compute data about planned acft performance
//
// Copyright (C) 2018 James Turner <james@flightgear.org>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#include "AircraftPerformance.hxx"
#include <cassert>
#include <simgear/constants.h>
#include <Main/fg_props.hxx>
using namespace flightgear;
double distanceForTimeAndSpeeds(double tSec, double v1, double v2)
{
return tSec * 0.5 * (v1 + v2);
}
AircraftPerformance::AircraftPerformance()
{
// read aircraft supplied performance data
if (fgGetNode("/aircraft/performance/bracket")) {
readPerformanceData();
} else {
// falls back to heuristic determination of the category,
// and a plausible default
icaoCategoryData();
}
}
double AircraftPerformance::groundSpeedForAltitudeKnots(int altitudeFt) const
{
auto bracket = bracketForAltitude(altitudeFt);
return bracket->gsForAltitude(altitudeFt);
}
int AircraftPerformance::computePreviousAltitude(double distanceM, int targetAltFt) const
{
auto bracket = bracketForAltitude(targetAltFt);
auto d = bracket->descendDistanceM(bracket->atOrBelowAltitudeFt, targetAltFt);
if (d < distanceM) {
// recurse to previous bracket
return computePreviousAltitude(distanceM - d, bracket->atOrBelowAltitudeFt+1);
}
// work out how far we travel laterally per foot change in altitude
// this value is in metres, we have to map FPM and GS in Knots to make
// everything work out
const double gsMPS = bracket->gsForAltitude(targetAltFt) * SG_KT_TO_MPS;
const double t = distanceM / gsMPS;
return targetAltFt + bracket->descentRateFPM * (t / 60.0);
}
int AircraftPerformance::computeNextAltitude(double distanceM, int initialAltFt) const
{
auto bracket = bracketForAltitude(initialAltFt);
auto d = bracket->climbDistanceM(initialAltFt, bracket->atOrBelowAltitudeFt);
if (d < distanceM) {
// recurse to next bracket
return computeNextAltitude(distanceM - d, bracket->atOrBelowAltitudeFt+1);
}
// work out how far we travel laterally per foot change in altitude
// this value is in metres, we have to map FPM and GS in Knots to make
// everything work out
const double gsMPS = bracket->gsForAltitude(initialAltFt) * SG_KT_TO_MPS;
const double t = distanceM / gsMPS;
return initialAltFt + bracket->climbRateFPM * (t / 60.0);
}
static string_list readTags()
{
string_list r;
const auto tagsNode = fgGetNode("/sim/tags");
if (!tagsNode)
return r;
for (auto t : tagsNode->getChildren("tag")) {
r.push_back(t->getStringValue());
}
return r;
}
static bool stringListContains(const string_list& t, const std::string& s)
{
auto it = std::find(t.begin(), t.end(), s);
return it != t.end();
}
std::string AircraftPerformance::heuristicCatergoryFromTags() const
{
const auto tags(readTags());
if (stringListContains(tags, "turboprop"))
return {ICAO_AIRCRAFT_CATEGORY_C};
// any way we could distuinguish fast and slow GA aircraft?
if (stringListContains(tags, "ga")) {
return {ICAO_AIRCRAFT_CATEGORY_A};
}
if (stringListContains(tags, "jet")) {
return {ICAO_AIRCRAFT_CATEGORY_E};
}
return {ICAO_AIRCRAFT_CATEGORY_C};
}
void AircraftPerformance::icaoCategoryData()
{
std::string propCat = fgGetString("/aircraft/performance/icao-category");
if (propCat.empty()) {
propCat = heuristicCatergoryFromTags();
}
const char aircraftCategory = propCat.front();
// pathTurnRate = 3.0; // 3 deg/sec = 180deg/min = standard rate turn
switch (aircraftCategory) {
case ICAO_AIRCRAFT_CATEGORY_A:
_perfData.push_back(Bracket(4000, 600, 1200, 75));
_perfData.push_back(Bracket(10000, 600, 1200, 140));
break;
case ICAO_AIRCRAFT_CATEGORY_B:
_perfData.push_back(Bracket(4000, 100, 1200, 100));
_perfData.push_back(Bracket(10000, 800, 1200, 160));
_perfData.push_back(Bracket(18000, 600, 1800, 200));
break;
case ICAO_AIRCRAFT_CATEGORY_C:
_perfData.push_back(Bracket(4000, 1800, 1800, 150));
_perfData.push_back(Bracket(10000, 1800, 1800, 200));
_perfData.push_back(Bracket(18000, 1200, 1800, 270));
_perfData.push_back(Bracket(60000, 800, 1200, 0.80, true /* is Mach */));
break;
case ICAO_AIRCRAFT_CATEGORY_D:
case ICAO_AIRCRAFT_CATEGORY_E:
default:
_perfData.push_back(Bracket(4000, 1800, 1800, 180));
_perfData.push_back(Bracket(10000, 1800, 1800, 230));
_perfData.push_back(Bracket(18000, 1200, 1800, 270));
_perfData.push_back(Bracket(60000, 800, 1200, 0.87, true /* is Mach */));
break;
}
}
void AircraftPerformance::readPerformanceData()
{
for (auto nd : fgGetNode("/aircraft/performance/")->getChildren("bracket")) {
const int atOrBelowAlt = nd->getIntValue("at-or-below-ft");
const int climbFPM = nd->getIntValue("climb-rate-fpm");
const int descentFPM = nd->getIntValue("descent-rate-fpm");
bool isMach = nd->hasChild("speed-mach");
double speed;
if (isMach) {
speed = nd->getDoubleValue("speed-mach");
} else {
speed = nd->getIntValue("speed-ias-knots");
}
Bracket b(atOrBelowAlt, climbFPM, descentFPM, speed, isMach);
_perfData.push_back(b);
}
}
auto AircraftPerformance::bracketForAltitude(int altitude) const
-> PerformanceVec::const_iterator
{
assert(!_perfData.empty());
if (_perfData.front().atOrBelowAltitudeFt >= altitude)
return _perfData.begin();
for (auto it = _perfData.begin(); it != _perfData.end(); ++it) {
if (it->atOrBelowAltitudeFt > altitude) {
return it;
}
}
return _perfData.end() - 1;
}
auto AircraftPerformance::rangeForAltitude(int lowAltitude, int highAltitude) const
-> BracketRange
{
return {bracketForAltitude(lowAltitude), bracketForAltitude(highAltitude)};
}
void AircraftPerformance::traverseAltitudeRange(int initialElevationFt, int targetElevationFt,
TraversalFunc tf) const
{
auto r = rangeForAltitude(initialElevationFt, targetElevationFt);
if (r.first == r.second) {
tf(*r.first, initialElevationFt, targetElevationFt);
return;
}
if (initialElevationFt < targetElevationFt) {
tf(*r.first, initialElevationFt, r.first->atOrBelowAltitudeFt);
int previousBracketCapAltitude = r.first->atOrBelowAltitudeFt;
for (auto bracket = r.first + 1; bracket != r.second; ++bracket) {
tf(*bracket, previousBracketCapAltitude, bracket->atOrBelowAltitudeFt);
previousBracketCapAltitude = bracket->atOrBelowAltitudeFt;
}
tf(*r.second, previousBracketCapAltitude, targetElevationFt);
} else {
int nextBracketCapAlt = (r.first - 1)->atOrBelowAltitudeFt;
tf(*r.first, initialElevationFt, nextBracketCapAlt);
for (auto bracket = r.first - 1; bracket != r.second; --bracket) {
nextBracketCapAlt = (r.first - 1)->atOrBelowAltitudeFt;
tf(*bracket, bracket->atOrBelowAltitudeFt, nextBracketCapAlt);
}
tf(*r.second, nextBracketCapAlt, targetElevationFt);
}
}
double AircraftPerformance::distanceNmBetween(int initialElevationFt, int targetElevationFt) const
{
double result = 0.0;
TraversalFunc tf = [&result](const Bracket& bk, int alt1, int alt2) {
result += (alt1 > alt2) ? bk.descendDistanceM(alt1, alt2) : bk.climbDistanceM(alt1, alt2);
};
traverseAltitudeRange(initialElevationFt, targetElevationFt, tf);
return result * SG_METER_TO_NM;
}
double AircraftPerformance::timeBetween(int initialElevationFt, int targetElevationFt) const
{
double result = 0.0;
TraversalFunc tf = [&result](const Bracket& bk, int alt1, int alt2) {
SG_LOG(SG_GENERAL, SG_INFO, "Range:" << alt1 << " " << alt2);
result += (alt1 > alt2) ? bk.descendTime(alt1, alt2) : bk.climbTime(alt1, alt2);
};
traverseAltitudeRange(initialElevationFt, targetElevationFt, tf);
return result;
}
double AircraftPerformance::timeToCruise(double cruiseDistanceNm, int cruiseAltitudeFt) const
{
auto b = bracketForAltitude(cruiseAltitudeFt);
return (cruiseDistanceNm / b->gsForAltitude(cruiseAltitudeFt)) * 3600.0;
}
double oatCForAltitudeFt(int altitudeFt)
{
if (altitudeFt > 36089)
return -56.5;
// lapse rate in C per ft
const double T_r = .0019812;
return 15.0 - (altitudeFt * T_r);
}
double oatKForAltitudeFt(int altitudeFt)
{
return oatCForAltitudeFt(altitudeFt) + 273.15;
}
double pressureAtAltitude(int altitude)
{
#if 0
p= P_0*(1-6.8755856*10^-6 h)^5.2558797 h<36,089.24ft
p_Tr= 0.2233609*P_0
p=p_Tr*exp(-4.806346*10^-5(h-36089.24)) h>36,089.24ft
magic numbers
6.8755856*10^-6 = T'/T_0, where T' is the standard temperature lapse rate and T_0 is the standard sea-level temperature.
5.2558797 = Mg/RT', where M is the (average) molecular weight of air, g is the acceleration of gravity and R is the gas constant.
4.806346*10^-5 = Mg/RT_tr, where T_tr is the temperature at the tropopause.
#endif
const double k = 6.8755856e-6;
const double MgRT = 5.2558797;
const double MgRT_tr = 4.806346e-5;
const double P_0 = 29.92126; // (standard) sea-level pressure
if (altitude > 36089) {
const double P_Tr = 0.2233609 * P_0;
const double altAboveTr = altitude - 36089;
return P_Tr * exp(MgRT_tr * altAboveTr);
} else {
return P_0 * pow(1.0 - (k * altitude), MgRT);
}
}
double computeMachFromIAS(int iasKnots, int altitudeFt)
{
#if 0
// from the aviation formulary
DP=P_0*((1 + 0.2*(IAS/CS_0)^2)^3.5 -1)
M=(5*( (DP/P + 1)^(2/7) -1) )^0.5 (*)
#endif
const double Cs_0 = 661.4786; // speed of sound at sea level, knots
const double P_0 = 29.92126; // (standard) sea-level pressure
const double iasCsRatio = iasKnots / Cs_0;
const double P = pressureAtAltitude(altitudeFt);
// differential pressure
const double DP = P_0 * (pow(1.0 + 0.2 * pow(iasCsRatio, 2.0), 3.5) - 1.0);
const double pressureRatio = DP / P + 1.0;
const double M = pow(5.0 * (pow(pressureRatio, 2.0 / 7.0) - 1.0), 0.5);
if (M > 1.0) {
SG_LOG(SG_GENERAL, SG_INFO, "computeMachFromIAS: computed Mach is supersonic, fix for shock wave");
}
return M;
}
int AircraftPerformance::Bracket::gsForAltitude(int altitude) const
{
double M = 0.0;
if (speedIsMach) {
M = speedIASOrMach; // simple
} else {
M = computeMachFromIAS(speedIASOrMach, altitude);
}
// CS = sound speed= 38.967854*sqrt(T+273.15) where T is the OAT in celsius.
const double CS = 38.967854 * sqrt(oatKForAltitudeFt(altitude));
const double TAS = M * CS;
return TAS;
}
double AircraftPerformance::Bracket::climbTime(int alt1, int alt2) const
{
return (alt2 - alt1) / static_cast<double>(climbRateFPM) * 60.0;
}
double AircraftPerformance::Bracket::climbDistanceM(int alt1, int alt2) const
{
const double t = climbTime(alt1, alt2);
return distanceForTimeAndSpeeds(t,
SG_KT_TO_MPS * gsForAltitude(alt1),
SG_KT_TO_MPS * gsForAltitude(alt2));
}
double AircraftPerformance::Bracket::descendTime(int alt1, int alt2) const
{
return (alt1 - alt2) / static_cast<double>(descentRateFPM) * 60.0;
}
double AircraftPerformance::Bracket::descendDistanceM(int alt1, int alt2) const
{
const double t = descendTime(alt1, alt2);
return distanceForTimeAndSpeeds(t,
SG_KT_TO_MPS * gsForAltitude(alt1),
SG_KT_TO_MPS * gsForAltitude(alt2));
}
double AircraftPerformance::turnRadiusMForAltitude(int altitudeFt) const
{
#if 0
From the aviation formulary again
In a steady turn, in no wind, with bank angle, b at an airspeed v
tan(b)= v^2/(R g)
With R in feet, v in knots, b in degrees and w in degrees/sec (inconsistent units!), numerical constants are introduced:
R =v^2/(11.23*tan(0.01745*b))
(Example) At 100 knots, with a 45 degree bank, the radius of turn is 100^2/(11.23*tan(0.01745*45))= 891 feet.
The bank angle b_s for a standard rate turn is given by:
b_s = 57.3*atan(v/362.1)
(Example) for 100 knots, b_s = 57.3*atan(100/362.1) = 15.4 degrees
Working in meter-per-second and radians removes a bunch of constants again.
#endif
const double gsKts = groundSpeedForAltitudeKnots(altitudeFt);
const double gs = gsKts * SG_KT_TO_MPS;
const double bankAngleRad = atan(gsKts/362.1);
const double r = (gs * gs)/(SG_g0_m_p_s2 * tan(bankAngleRad));
return r;
}

View file

@ -0,0 +1,112 @@
// AircraftPerformance.hxx - compute data about planned acft performance
//
// Copyright (C) 2018 James Turner <james@flightgear.org>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifndef AIRCRAFTPERFORMANCE_HXX
#define AIRCRAFTPERFORMANCE_HXX
#include <vector>
#include <functional>
namespace flightgear
{
const char ICAO_AIRCRAFT_CATEGORY_A = 'A';
const char ICAO_AIRCRAFT_CATEGORY_B = 'B';
const char ICAO_AIRCRAFT_CATEGORY_C = 'C';
const char ICAO_AIRCRAFT_CATEGORY_D = 'D';
const char ICAO_AIRCRAFT_CATEGORY_E = 'E';
/**
* Calculate flight parameter based on aircraft performance data.
* This is based on simple rules: it does not (yet) include data
* such as winds aloft, payload or temperature impact on engine
* performance. */
class AircraftPerformance
{
public:
AircraftPerformance();
double turnRateDegSec() const;
double turnRadiusMForAltitude(int altitudeFt) const;
double groundSpeedForAltitudeKnots(int altitudeFt) const;
int computePreviousAltitude(double distanceM, int targetAltFt) const;
int computeNextAltitude(double distanceM, int initialAltFt) const;
double distanceNmBetween(int initialElevationFt, int targetElevationFt) const;
double timeBetween(int initialElevationFt, int targetElevationFt) const;
double timeToCruise(double cruiseDistanceNm, int cruiseAltitudeFt) const;
private:
void readPerformanceData();
void icaoCategoryData();
/**
* @brief heuristicCatergoryFromTags - based on the aircraft tags, figure
* out a plausible ICAO category. Returns cat A if nothing better could
* be determined.
* @return a string containing a single ICAO category character A..E
*/
std::string heuristicCatergoryFromTags() const;
class Bracket
{
public:
Bracket(int atOrBelow, int climb, int descent, double speed, bool isMach = false) :
atOrBelowAltitudeFt(atOrBelow),
climbRateFPM(climb),
descentRateFPM(descent),
speedIASOrMach(speed),
speedIsMach(isMach)
{ }
int gsForAltitude(int altitude) const;
double climbTime(int alt1, int alt2) const;
double climbDistanceM(int alt1, int alt2) const;
double descendTime(int alt1, int alt2) const;
double descendDistanceM(int alt1, int alt2) const;
int atOrBelowAltitudeFt;
int climbRateFPM;
int descentRateFPM;
double speedIASOrMach;
bool speedIsMach = false;
};
using PerformanceVec = std::vector<Bracket>;
using BracketRange = std::pair<PerformanceVec::const_iterator, PerformanceVec::const_iterator>;
PerformanceVec::const_iterator bracketForAltitude(int altitude) const;
BracketRange rangeForAltitude(int lowAltitude, int highAltitude) const;
using TraversalFunc = std::function<void(const Bracket& bk, int alt1, int alt2)>;
void traverseAltitudeRange(int initialElevationFt, int targetElevationFt, TraversalFunc tf) const;
PerformanceVec _perfData;
};
}
#endif // AIRCRAFTPERFORMANCE_HXX

View file

@ -6,6 +6,7 @@ set(SOURCES
flightrecorder.cxx
FlightHistory.cxx
initialstate.cxx
AircraftPerformance.cxx
)
set(HEADERS
@ -14,6 +15,7 @@ set(HEADERS
flightrecorder.hxx
FlightHistory.hxx
initialstate.hxx
AircraftPerformance.hxx
)

View file

@ -49,6 +49,7 @@
#include <Navaids/routePath.hxx>
#include <Navaids/airways.hxx>
#include <Autopilot/route_mgr.hxx>
#include <Aircraft/AircraftPerformance.hxx>
using std::string;
using std::vector;

View file

@ -35,12 +35,6 @@ class FlightPlan;
typedef SGSharedPtr<FlightPlan> FlightPlanRef;
const char ICAO_AIRCRAFT_CATEGORY_A = 'A';
const char ICAO_AIRCRAFT_CATEGORY_B = 'B';
const char ICAO_AIRCRAFT_CATEGORY_C = 'C';
const char ICAO_AIRCRAFT_CATEGORY_D = 'D';
const char ICAO_AIRCRAFT_CATEGORY_E = 'E';
class FlightPlan : public RouteBase
{
public:

View file

@ -1,7 +1,21 @@
// routePath.hxx - compute data about planned route
//
// Copyright (C) 2018 James Turner <james@flightgear.org>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "config.h"
#include <algorithm>
@ -16,6 +30,7 @@
#include <Navaids/waypoint.hxx>
#include <Navaids/FlightPlan.hxx>
#include <Navaids/positioned.hxx>
#include <Aircraft/AircraftPerformance.hxx>
namespace flightgear {
@ -589,26 +604,6 @@ public:
typedef std::vector<WayptData> WayptDataVec;
class PerformanceBracket
{
public:
PerformanceBracket(double atOrBelow, double climb, double descent, double speed, bool isMach = false) :
atOrBelowAltitudeFt(atOrBelow),
climbRateFPM(climb),
descentRateFPM(descent),
speedIASOrMach(speed),
speedIsMach(isMach)
{ }
double atOrBelowAltitudeFt;
double climbRateFPM;
double descentRateFPM;
double speedIASOrMach;
bool speedIsMach;
};
typedef std::vector<PerformanceBracket> PerformanceBracketVec;
bool isDescentWaypoint(const WayptRef& wpt)
{
return (wpt->flag(WPT_APPROACH) && !wpt->flag(WPT_MISS)) || wpt->flag(WPT_ARRIVAL);
@ -619,28 +614,9 @@ class RoutePath::RoutePathPrivate
public:
WayptDataVec waypoints;
char aircraftCategory;
PerformanceBracketVec perf;
double pathTurnRate;
AircraftPerformance perf;
bool constrainLegCourses;
PerformanceBracketVec::const_iterator
findPerformanceBracket(double altFt) const
{
PerformanceBracketVec::const_iterator r;
PerformanceBracketVec::const_iterator result = perf.begin();
for (r = perf.begin(); r != perf.end(); ++r) {
if (r->atOrBelowAltitudeFt > altFt) {
break;
}
result = r;
} // of brackets iteration
return result;
}
void computeDynamicPosition(int index)
{
auto previous(previousValidWaypoint(index));
@ -653,18 +629,7 @@ public:
HeadingToAltitude* h = (HeadingToAltitude*) wpt.get();
double altFt = computeVNAVAltitudeFt(index - 1);
double altChange = h->altitudeFt() - altFt;
PerformanceBracketVec::const_iterator it = findPerformanceBracket(altFt);
double speedMSec = groundSpeedForAltitude(altFt) * SG_KT_TO_MPS;
double timeToChangeSec;
if (isDescentWaypoint(wpt)) {
timeToChangeSec = (altChange / it->descentRateFPM) * 60.0;
} else {
timeToChangeSec = (altChange / it->climbRateFPM) * 60.0;
}
double distanceM = timeToChangeSec * speedMSec;
double distanceM = perf.distanceNmBetween(altFt, h->altitudeFt()) * SG_NM_TO_METER;
double hdg = h->headingDegMagnetic() + magVarFor(previous->pos);
waypoints[index].pos = SGGeodesy::direct(previous->turnExitPos, hdg, distanceM);
waypoints[index].posValid = true;
@ -742,12 +707,7 @@ public:
double fixedAlt = altitudeForIndex(next);
double distanceM = distanceBetweenIndices(index, next);
double speedMSec = groundSpeedForAltitude(fixedAlt) * SG_KT_TO_MPS;
double minutes = (distanceM / speedMSec) / 60.0;
PerformanceBracketVec::const_iterator it = findPerformanceBracket(fixedAlt);
return fixedAlt + (it->descentRateFPM * minutes);
return perf.computePreviousAltitude(distanceM, fixedAlt);
} else {
// climb
int prev = findPreceedingKnownAltitude(index);
@ -757,13 +717,8 @@ public:
double fixedAlt = altitudeForIndex(prev);
double distanceM = distanceBetweenIndices(prev, index);
double speedMSec = groundSpeedForAltitude(fixedAlt) * SG_KT_TO_MPS;
double minutes = (distanceM / speedMSec) / 60.0;
PerformanceBracketVec::const_iterator it = findPerformanceBracket(fixedAlt);
return fixedAlt + (it->climbRateFPM * minutes);
return perf.computeNextAltitude(distanceM, fixedAlt);
}
}
int findPreceedingKnownAltitude(int index) const
@ -831,47 +786,6 @@ public:
return 0.0;
}
double groundSpeedForAltitude(double altitude) const
{
PerformanceBracketVec::const_iterator it = findPerformanceBracket(altitude);
if (it->speedIsMach) {
return 300.0;
} else {
// FIXME - convert IAS to ground-speed, using standard atmosphere / temperature model
return it->speedIASOrMach;
}
#if 0
if (0) {
double mach;
if (it->speedIsMach) {
mach = it->speedIASOrMach; // easy
} else {
const double Cs_0 = 661.4786; // speed of sound at sea level, knots
const double P_0 = 29.92126;
const double P = P_0 * pow(, );
// convert IAS (which we will treat as CAS) to Mach based on altitude
}
double oatK;
double Cs = sqrt(SG_gamma * SG_R_m2_p_s2_p_K * oatK);
double tas = mach * Cs;
/*
P_0= 29.92126 "Hg = 1013.25 mB = 2116.2166 lbs/ft^2
P= P_0*(1-6.8755856*10^-6*PA)^5.2558797, pressure altitude, PA<36,089.24ft
CS= 38.967854*sqrt(T+273.15) where T is the (static/true) OAT in Celsius.
DP=P_0*((1 + 0.2*(IAS/CS_0)^2)^3.5 -1)
M=(5*( (DP/P + 1)^(2/7) -1) )^0.5 (*)
TAS= M*CS
*/
}
#endif
}
double distanceBetweenIndices(int from, int to) const
{
double total = 0.0;
@ -883,40 +797,6 @@ public:
return total;
}
void initPerfData()
{
pathTurnRate = 3.0; // 3 deg/sec = 180deg/min = standard rate turn
switch (aircraftCategory) {
case ICAO_AIRCRAFT_CATEGORY_A:
perf.push_back(PerformanceBracket(4000, 600, 1200, 75));
perf.push_back(PerformanceBracket(10000, 600, 1200, 140));
break;
case ICAO_AIRCRAFT_CATEGORY_B:
perf.push_back(PerformanceBracket(4000, 100, 1200, 100));
perf.push_back(PerformanceBracket(10000, 800, 1200, 160));
perf.push_back(PerformanceBracket(18000, 600, 1800, 200));
break;
case ICAO_AIRCRAFT_CATEGORY_C:
perf.push_back(PerformanceBracket(4000, 1800, 1800, 150));
perf.push_back(PerformanceBracket(10000, 1800, 1800, 200));
perf.push_back(PerformanceBracket(18000, 1200, 1800, 270));
perf.push_back(PerformanceBracket(60000, 800, 1200, 0.80, true /* is Mach */));
break;
case ICAO_AIRCRAFT_CATEGORY_D:
case ICAO_AIRCRAFT_CATEGORY_E:
default:
perf.push_back(PerformanceBracket(4000, 1800, 1800, 180));
perf.push_back(PerformanceBracket(10000, 1800, 1800, 230));
perf.push_back(PerformanceBracket(18000, 1200, 1800, 270));
perf.push_back(PerformanceBracket(60000, 800, 1200, 0.87, true /* is Mach */));
break;
}
}
WayptDataVec::iterator previousValidWaypoint(unsigned int index)
{
if (index == 0) {
@ -968,7 +848,6 @@ RoutePath::RoutePath(const flightgear::FlightPlan* fp) :
d->waypoints.push_back(WayptData(wpt));
}
d->aircraftCategory = fp->icaoAircraftCategory()[0];
d->constrainLegCourses = fp->followLegTrackToFixes();
commonInit();
}
@ -978,16 +857,14 @@ RoutePath::~RoutePath()
}
void RoutePath::commonInit()
{
d->initPerfData();
{
WayptDataVec::iterator it;
for (it = d->waypoints.begin(); it != d->waypoints.end(); ++it) {
it->initPass0();
}
for (unsigned int i=1; i<d->waypoints.size(); ++i) {
WayptData* nextPtr = ((i + 1) < d->waypoints.size()) ? &d->waypoints[i+1] : 0;
WayptData* nextPtr = ((i + 1) < d->waypoints.size()) ? &d->waypoints[i+1] : nullptr;
d->waypoints[i].initPass1(d->waypoints[i-1], nextPtr);
}
@ -997,8 +874,7 @@ void RoutePath::commonInit()
}
double alt = 0.0; // FIXME
double gs = d->groundSpeedForAltitude(alt);
double radiusM = ((360.0 / d->pathTurnRate) * gs * SG_KT_TO_MPS) / SGMiscd::twopi();
double radiusM = d->perf.turnRadiusMForAltitude(alt);
if (i > 0) {
auto prevIt = d->previousValidWaypoint(i);
@ -1142,12 +1018,12 @@ SGGeodVec RoutePath::pathForHold(Hold* hold) const
double hdg = hold->inboundRadial();
double turnDelta = 180.0 / turnSteps;
double altFt = 0.0; // FIXME
double gsKts = d->groundSpeedForAltitude(altFt);
double gsKts = d->perf.groundSpeedForAltitudeKnots(altFt);
SGGeodVec r;
double az2;
double stepTime = turnDelta / d->pathTurnRate; // in seconds
double stepDist = gsKts * (stepTime / 3600.0) * SG_NM_TO_METER;
double stepTime = turnDelta / 3.0; // 3.0 is degrees/sec for standard rate turn
double stepDist = gsKts * SG_KT_TO_MPS * stepTime;
double legDist = hold->isDistance() ?
hold->timeOrDistance()
: gsKts * (hold->timeOrDistance() / 3600.0);

View file

@ -3,11 +3,13 @@ set(TESTSUITE_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/TestSuite.cxx
${CMAKE_CURRENT_SOURCE_DIR}/test_flightplan.cxx
${CMAKE_CURRENT_SOURCE_DIR}/test_navaids2.cxx
${CMAKE_CURRENT_SOURCE_DIR}/test_aircraftPerformance.cxx
PARENT_SCOPE
)
set(TESTSUITE_HEADERS
${TESTSUITE_HEADERS}
${CMAKE_CURRENT_SOURCE_DIR}/test_flightplan.hxx
${CMAKE_CURRENT_SOURCE_DIR}/test_aircraftPerformance.hxx
PARENT_SCOPE
)

View file

@ -19,8 +19,9 @@
#include "test_flightplan.hxx"
#include "test_navaids2.hxx"
#include "test_aircraftPerformance.hxx"
// Set up the unit tests.
CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(FlightplanTests, "Unit tests");
CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(NavaidsTests, "Unit tests");
CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(AircraftPerformanceTests, "Unit tests");

View file

@ -0,0 +1,73 @@
#include "test_aircraftPerformance.hxx"
#include "test_suite/FGTestApi/globals.hxx"
#include "test_suite/FGTestApi/NavDataCache.hxx"
#include <simgear/misc/strutils.hxx>
#include <Main/fg_props.hxx>
#include <Aircraft/AircraftPerformance.hxx>
using namespace flightgear;
// Set up function for each test.
void AircraftPerformanceTests::setUp()
{
FGTestApi::setUp::initTestGlobals("aircraft-perf");
FGTestApi::setUp::initNavDataCache();
}
// Clean up after each test.
void AircraftPerformanceTests::tearDown()
{
FGTestApi::tearDown::shutdownTestGlobals();
}
void AircraftPerformanceTests::testBasic()
{
fgSetString("/aircraft/performance/icao-category", "C");
AircraftPerformance ap;
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.groundSpeedForAltitudeKnots(1000), 152, 1e-3);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.groundSpeedForAltitudeKnots(8000), 224, 1e-3);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.groundSpeedForAltitudeKnots(20000), 491, 1e-3);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.groundSpeedForAltitudeKnots(35000), 461, 1e-3);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.groundSpeedForAltitudeKnots(38000), 458, 1e-3);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.groundSpeedForAltitudeKnots(40000), 458, 1e-3);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.timeBetween(3000, 6000), 100, 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.distanceNmBetween(3000, 6000), 5.430, 1e-3);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.timeBetween(36000, 34000), 100, 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.distanceNmBetween(36000, 34000), 12.805, 1e-1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.timeBetween(15000, 20000), 300, 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.distanceNmBetween(15000, 18000), 14.270, 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.timeBetween(2000, 25000), 1191.6, 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.distanceNmBetween(2000, 25000), 123.06, 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.timeBetween(36000, 3000), 1666.6, 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ap.distanceNmBetween(36000, 3000), 162.02, 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(251.5, ap.timeToCruise(32.0, 350000), 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(503.0, ap.timeToCruise(64.0, 380000), 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(1553.7, ap.turnRadiusMForAltitude(4000), 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(3322.4, ap.turnRadiusMForAltitude(16000), 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(4602.6, ap.turnRadiusMForAltitude(30000), 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(4475.5, ap.turnRadiusMForAltitude(38000), 1);
}
void AircraftPerformanceTests::testAltitudeGradient()
{
fgSetString("/aircraft/performance/icao-category", "E");
AircraftPerformance ap;
CPPUNIT_ASSERT_DOUBLES_EQUAL(8332, ap.computePreviousAltitude(10000, 6000), 1);
CPPUNIT_ASSERT_DOUBLES_EQUAL(3260, ap.computeNextAltitude(4000, 2000), 1);
}

View file

@ -0,0 +1,49 @@
/*
* Copyright (C) 2018 James Turner
*
* This file is part of the program FlightGear.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _FG_AIRCRAFT_PERFORMANCE_UNIT_TESTS_HXX
#define _FG_AIRCRAFT_PERFORMANCE_UNIT_TESTS_HXX
#include <cppunit/extensions/HelperMacros.h>
#include <cppunit/TestFixture.h>
class AircraftPerformanceTests : public CppUnit::TestFixture
{
// Set up the test suite.
CPPUNIT_TEST_SUITE(AircraftPerformanceTests);
CPPUNIT_TEST(testBasic);
CPPUNIT_TEST(testAltitudeGradient);
CPPUNIT_TEST_SUITE_END();
public:
// Set up function for each test.
void setUp();
// Clean up after each test.
void tearDown();
// The tests.
void testBasic();
void testAltitudeGradient();
};
#endif // AircraftPerformanceTests