1
0
Fork 0
This commit is contained in:
Richard Harrison 2017-02-07 00:37:14 +01:00
parent 5b4e55a9a9
commit ded4ec5ae3

View file

@ -38,58 +38,58 @@ using std::string;
// #define SG_DEBUG SG_ALERT
FGAIMultiplayer::FGAIMultiplayer() :
FGAIBase(otMultiplayer, fgGetBool("/sim/multiplay/hot", false))
FGAIBase(otMultiplayer, fgGetBool("/sim/multiplay/hot", false))
{
no_roll = false;
no_roll = false;
mTimeOffsetSet = false;
mAllowExtrapolation = true;
mLagAdjustSystemSpeed = 10;
mLastTimestamp = 0;
lastUpdateTime = 0;
playerLag = 0.03;
compensateLag = 1;
mTimeOffsetSet = false;
mAllowExtrapolation = true;
mLagAdjustSystemSpeed = 10;
mLastTimestamp = 0;
lastUpdateTime = 0;
playerLag = 0.03;
compensateLag = 1;
}
}
FGAIMultiplayer::~FGAIMultiplayer() {
}
bool FGAIMultiplayer::init(bool search_in_AI_path) {
props->setStringValue("sim/model/path", model_path.c_str());
//refuel_node = fgGetNode("systems/refuel/contact", true);
isTanker = false; // do this until this property is
// passed over the net
props->setStringValue("sim/model/path", model_path.c_str());
//refuel_node = fgGetNode("systems/refuel/contact", true);
isTanker = false; // do this until this property is
// passed over the net
const string& str1 = _getCallsign();
const string str2 = "MOBIL";
const string& str1 = _getCallsign();
const string str2 = "MOBIL";
string::size_type loc1= str1.find( str2, 0 );
if ( (loc1 != string::npos && str2 != "") ){
// cout << " string found " << str2 << " in " << str1 << endl;
isTanker = true;
// cout << "isTanker " << isTanker << " " << mCallSign <<endl;
}
string::size_type loc1 = str1.find(str2, 0);
if ((loc1 != string::npos && str2 != "")) {
// cout << " string found " << str2 << " in " << str1 << endl;
isTanker = true;
// cout << "isTanker " << isTanker << " " << mCallSign <<endl;
}
// load model
bool result = FGAIBase::init(search_in_AI_path);
// propagate installation state (used by MP pilot list)
props->setBoolValue("model-installed", _installed);
return result;
// load model
bool result = FGAIBase::init(search_in_AI_path);
// propagate installation state (used by MP pilot list)
props->setBoolValue("model-installed", _installed);
return result;
}
void FGAIMultiplayer::bind() {
FGAIBase::bind();
FGAIBase::bind();
tie("refuel/contact", SGRawValuePointer<bool>(&contact));
tie("tanker", SGRawValuePointer<bool>(&isTanker));
tie("refuel/contact", SGRawValuePointer<bool>(&contact));
tie("tanker", SGRawValuePointer<bool>(&isTanker));
tie("controls/invisible",
SGRawValuePointer<bool>(&invisible));
tie("controls/invisible",
SGRawValuePointer<bool>(&invisible));
_uBodyNode = props->getNode("velocities/uBody-fps", true);
_vBodyNode = props->getNode("velocities/vBody-fps", true);
_wBodyNode = props->getNode("velocities/wBody-fps", true);
#define AIMPROProp(type, name) \
SGRawValueMethods<FGAIMultiplayer, type>(*this, &FGAIMultiplayer::get##name)
@ -97,16 +97,16 @@ SGRawValueMethods<FGAIMultiplayer, type>(*this, &FGAIMultiplayer::get##name)
SGRawValueMethods<FGAIMultiplayer, type>(*this, \
&FGAIMultiplayer::get##name, &FGAIMultiplayer::set##name)
//tie("callsign", AIMPROProp(const char *, CallSign));
//tie("callsign", AIMPROProp(const char *, CallSign));
tie("controls/allow-extrapolation",
AIMPRWProp(bool, AllowExtrapolation));
tie("controls/lag-adjust-system-speed",
AIMPRWProp(double, LagAdjustSystemSpeed));
tie("controls/player-lag",
AIMPRWProp(double, playerLag));
tie("controls/compensate-lag",
AIMPRWProp(int, compensateLag));
tie("controls/allow-extrapolation",
AIMPRWProp(bool, AllowExtrapolation));
tie("controls/lag-adjust-system-speed",
AIMPRWProp(double, LagAdjustSystemSpeed));
tie("controls/player-lag",
AIMPRWProp(double, playerLag));
tie("controls/compensate-lag",
AIMPRWProp(int, compensateLag));
#undef AIMPROProp
#undef AIMPRWProp
@ -114,450 +114,465 @@ SGRawValueMethods<FGAIMultiplayer, type>(*this, \
void FGAIMultiplayer::update(double dt)
{
using namespace simgear;
using namespace simgear;
if (dt <= 0)
return;
if (dt <= 0)
return;
FGAIBase::update(dt);
FGAIBase::update(dt);
// Check if we already got data
if (mMotionInfo.empty())
return;
// Check if we already got data
if (mMotionInfo.empty())
return;
// The current simulation time we need to update for,
// note that the simulation time is updated before calling all the
// update methods. Thus it contains the time intervals *end* time
double curtime = globals->get_sim_time_sec();
// The current simulation time we need to update for,
// note that the simulation time is updated before calling all the
// update methods. Thus it contains the time intervals *end* time
double curtime = globals->get_sim_time_sec();
// Get the last available time
MotionInfo::reverse_iterator it = mMotionInfo.rbegin();
double curentPkgTime = it->second.time;
// Get the last available time
MotionInfo::reverse_iterator it = mMotionInfo.rbegin();
double curentPkgTime = it->second.time;
// Dynamically optimize the time offset between the feeder and the client
// Well, 'dynamically' means that the dynamic of that update must be very
// slow. You would otherwise notice huge jumps in the multiplayer models.
// The reason is that we want to avoid huge extrapolation times since
// extrapolation is highly error prone. For that we need something
// approaching the average latency of the packets. This first order lag
// component will provide this. We just take the error of the currently
// requested time to the most recent available packet. This is the
// target we want to reach in average.
double lag = it->second.lag;
if (!mTimeOffsetSet) {
mTimeOffsetSet = true;
mTimeOffset = curentPkgTime - curtime - lag;
} else {
double offset = 0.0;
// Dynamically optimize the time offset between the feeder and the client
// Well, 'dynamically' means that the dynamic of that update must be very
// slow. You would otherwise notice huge jumps in the multiplayer models.
// The reason is that we want to avoid huge extrapolation times since
// extrapolation is highly error prone. For that we need something
// approaching the average latency of the packets. This first order lag
// component will provide this. We just take the error of the currently
// requested time to the most recent available packet. This is the
// target we want to reach in average.
double lag = it->second.lag;
if (!mTimeOffsetSet) {
mTimeOffsetSet = true;
mTimeOffset = curentPkgTime - curtime - lag;
}
else {
double offset = 0.0;
//spectator mode, more late to be in the interpolation zone
if (compensateLag == 3) { offset = curentPkgTime -curtime -lag + playerLag;
if (compensateLag == 3) {
offset = curentPkgTime - curtime - lag + playerLag;
// old behaviour
} else if (compensateLag == 1) { offset = curentPkgTime - curtime - lag;
// using the prediction mode to display the mpaircraft in the futur/past with given playerlag value
//currently compensatelag = 2
} else { offset = curentPkgTime - curtime + 0.48*lag + playerLag;
}
if ((!mAllowExtrapolation && offset + lag < mTimeOffset)
|| (offset - 10 > mTimeOffset)) {
mTimeOffset = offset;
SG_LOG(SG_AI, SG_DEBUG, "Resetting time offset adjust system to "
"avoid extrapolation: time offset = " << mTimeOffset);
} else {
// the error of the offset, respectively the negative error to avoid
// a minus later ...
double err = offset - mTimeOffset;
// limit errors leading to shorter lag values somehow, that is late
// arriving packets will pessimize the overall lag much more than
// early packets will shorten the overall lag
double sysSpeed;
//trying to slow the rudderlag phenomenon thus using more the prediction system
//if we are off by less than 1.5s, do a little correction, and bigger step above 1.5s
if (fabs(err) < 1.5) {
if (err < 0) {
sysSpeed = mLagAdjustSystemSpeed*err*0.01;
} else {
sysSpeed = SGMiscd::min(0.5*err*err, 0.05);
// old behaviour
}
} else {
if (err < 0) {
else if (compensateLag == 1) {
offset = curentPkgTime - curtime - lag;
// Ok, we have some very late packets and nothing newer increase the
// lag by the given speedadjust
sysSpeed = mLagAdjustSystemSpeed*err;
} else {
// We have a too pessimistic display delay shorten that a small bit
sysSpeed = SGMiscd::min(0.1*err*err, 0.5);
}
}
// using the prediction mode to display the mpaircraft in the futur/past with given playerlag value
//currently compensatelag = 2
}
else {
offset = curentPkgTime - curtime + 0.48*lag + playerLag;
}
if ((!mAllowExtrapolation && offset + lag < mTimeOffset)
|| (offset - 10 > mTimeOffset)) {
mTimeOffset = offset;
SG_LOG(SG_AI, SG_DEBUG, "Resetting time offset adjust system to "
"avoid extrapolation: time offset = " << mTimeOffset);
}
else {
// the error of the offset, respectively the negative error to avoid
// a minus later ...
double err = offset - mTimeOffset;
// limit errors leading to shorter lag values somehow, that is late
// arriving packets will pessimize the overall lag much more than
// early packets will shorten the overall lag
double sysSpeed;
//trying to slow the rudderlag phenomenon thus using more the prediction system
//if we are off by less than 1.5s, do a little correction, and bigger step above 1.5s
if (fabs(err) < 1.5) {
if (err < 0) {
sysSpeed = mLagAdjustSystemSpeed*err*0.01;
}
else {
sysSpeed = SGMiscd::min(0.5*err*err, 0.05);
}
}
else {
if (err < 0) {
// Ok, we have some very late packets and nothing newer increase the
// lag by the given speedadjust
sysSpeed = mLagAdjustSystemSpeed*err;
}
else {
// We have a too pessimistic display delay shorten that a small bit
sysSpeed = SGMiscd::min(0.1*err*err, 0.5);
}
}
// simple euler integration for that first order system including some
// overshooting guard to prevent to aggressive system speeds
// (stiff systems) to explode the systems state
double systemIncrement = dt*sysSpeed;
if (fabs(err) < fabs(systemIncrement))
systemIncrement = err;
mTimeOffset += systemIncrement;
SG_LOG(SG_AI, SG_DEBUG, "Offset adjust system: time offset = "
<< mTimeOffset << ", expected longitudinal position error due to "
" current adjustment of the offset: "
<< fabs(norm(it->second.linearVel)*systemIncrement));
}
}
// simple euler integration for that first order system including some
// overshooting guard to prevent to aggressive system speeds
// (stiff systems) to explode the systems state
double systemIncrement = dt*sysSpeed;
if (fabs(err) < fabs(systemIncrement))
systemIncrement = err;
mTimeOffset += systemIncrement;
SG_LOG(SG_AI, SG_DEBUG, "Offset adjust system: time offset = "
<< mTimeOffset << ", expected longitudinal position error due to "
" current adjustment of the offset: "
<< fabs(norm(it->second.linearVel)*systemIncrement));
}
}
// Compute the time in the feeders time scale which fits the current time
// we need to
double tInterp = curtime + mTimeOffset;
// Compute the time in the feeders time scale which fits the current time
// we need to
double tInterp = curtime + mTimeOffset;
SGVec3d ecPos;
SGQuatf ecOrient;
SGVec3f ecLinearVel;
SGVec3d ecPos;
SGQuatf ecOrient;
SGVec3f ecLinearVel;
if (tInterp <= curentPkgTime) {
// Ok, we need a time prevous to the last available packet,
// that is good ...
if (tInterp <= curentPkgTime) {
// Ok, we need a time prevous to the last available packet,
// that is good ...
// Find the first packet before the target time
MotionInfo::iterator nextIt = mMotionInfo.upper_bound(tInterp);
if (nextIt == mMotionInfo.begin()) {
SG_LOG(SG_AI, SG_DEBUG, "Taking oldest packet!");
// We have no packet before the target time, just use the first one
MotionInfo::iterator firstIt = mMotionInfo.begin();
ecPos = firstIt->second.position;
ecOrient = firstIt->second.orientation;
ecLinearVel = firstIt->second.linearVel;
speed = norm(ecLinearVel) * SG_METER_TO_NM * 3600.0;
// Find the first packet before the target time
MotionInfo::iterator nextIt = mMotionInfo.upper_bound(tInterp);
if (nextIt == mMotionInfo.begin()) {
SG_LOG(SG_AI, SG_DEBUG, "Taking oldest packet!");
// We have no packet before the target time, just use the first one
MotionInfo::iterator firstIt = mMotionInfo.begin();
ecPos = firstIt->second.position;
ecOrient = firstIt->second.orientation;
ecLinearVel = firstIt->second.linearVel;
speed = norm(ecLinearVel) * SG_METER_TO_NM * 3600.0;
std::vector<FGPropertyData*>::const_iterator firstPropIt;
std::vector<FGPropertyData*>::const_iterator firstPropItEnd;
firstPropIt = firstIt->second.properties.begin();
firstPropItEnd = firstIt->second.properties.end();
while (firstPropIt != firstPropItEnd) {
//cout << " Setting property..." << (*firstPropIt)->id;
PropertyMap::iterator pIt = mPropertyMap.find((*firstPropIt)->id);
if (pIt != mPropertyMap.end())
{
//cout << "Found " << pIt->second->getPath() << ":";
switch ((*firstPropIt)->type) {
case props::INT:
case props::BOOL:
case props::LONG:
pIt->second->setIntValue((*firstPropIt)->int_value);
//cout << "Int: " << (*firstPropIt)->int_value << "\n";
break;
case props::FLOAT:
case props::DOUBLE:
pIt->second->setFloatValue((*firstPropIt)->float_value);
//cout << "Flo: " << (*firstPropIt)->float_value << "\n";
break;
case props::STRING:
case props::UNSPECIFIED:
pIt->second->setStringValue((*firstPropIt)->string_value);
//cout << "Str: " << (*firstPropIt)->string_value << "\n";
break;
default:
// FIXME - currently defaults to float values
pIt->second->setFloatValue((*firstPropIt)->float_value);
//cout << "Unknown: " << (*firstPropIt)->float_value << "\n";
break;
}
}
else
{
SG_LOG(SG_AI, SG_DEBUG, "Unable to find property: " << (*firstPropIt)->id << "\n");
}
++firstPropIt;
}
std::vector<FGPropertyData*>::const_iterator firstPropIt;
std::vector<FGPropertyData*>::const_iterator firstPropItEnd;
firstPropIt = firstIt->second.properties.begin();
firstPropItEnd = firstIt->second.properties.end();
while (firstPropIt != firstPropItEnd) {
//cout << " Setting property..." << (*firstPropIt)->id;
PropertyMap::iterator pIt = mPropertyMap.find((*firstPropIt)->id);
if (pIt != mPropertyMap.end())
{
//cout << "Found " << pIt->second->getPath() << ":";
switch ((*firstPropIt)->type) {
case props::INT:
case props::BOOL:
case props::LONG:
pIt->second->setIntValue((*firstPropIt)->int_value);
//cout << "Int: " << (*firstPropIt)->int_value << "\n";
break;
case props::FLOAT:
case props::DOUBLE:
pIt->second->setFloatValue((*firstPropIt)->float_value);
//cout << "Flo: " << (*firstPropIt)->float_value << "\n";
break;
case props::STRING:
case props::UNSPECIFIED:
pIt->second->setStringValue((*firstPropIt)->string_value);
//cout << "Str: " << (*firstPropIt)->string_value << "\n";
break;
default:
// FIXME - currently defaults to float values
pIt->second->setFloatValue((*firstPropIt)->float_value);
//cout << "Unknown: " << (*firstPropIt)->float_value << "\n";
break;
}
}
else
{
SG_LOG(SG_AI, SG_DEBUG, "Unable to find property: " << (*firstPropIt)->id << "\n");
}
++firstPropIt;
}
} else {
// Ok, we have really found something where our target time is in between
// do interpolation here
MotionInfo::iterator prevIt = nextIt;
--prevIt;
}
else {
// Ok, we have really found something where our target time is in between
// do interpolation here
MotionInfo::iterator prevIt = nextIt;
--prevIt;
// Interpolation coefficient is between 0 and 1
double intervalStart = prevIt->second.time;
double intervalEnd = nextIt->second.time;
double intervalLen = intervalEnd - intervalStart;
double tau = 0.0;
if (intervalLen != 0.0) tau = (tInterp - intervalStart)/intervalLen;
// Interpolation coefficient is between 0 and 1
double intervalStart = prevIt->second.time;
double intervalEnd = nextIt->second.time;
double intervalLen = intervalEnd - intervalStart;
double tau = 0.0;
if (intervalLen != 0.0) tau = (tInterp - intervalStart) / intervalLen;
SG_LOG(SG_AI, SG_DEBUG, "Multiplayer vehicle interpolation: ["
<< intervalStart << ", " << intervalEnd << "], intervalLen = "
<< intervalLen << ", interpolation parameter = " << tau);
SG_LOG(SG_AI, SG_DEBUG, "Multiplayer vehicle interpolation: ["
<< intervalStart << ", " << intervalEnd << "], intervalLen = "
<< intervalLen << ", interpolation parameter = " << tau);
// Here we do just linear interpolation on the position
ecPos = interpolate(tau, prevIt->second.position, nextIt->second.position);
ecOrient = interpolate((float)tau, prevIt->second.orientation,
nextIt->second.orientation);
ecLinearVel = interpolate((float)tau, prevIt->second.linearVel, nextIt->second.linearVel);
speed = norm(ecLinearVel) * SG_METER_TO_NM * 3600.0;
// Here we do just linear interpolation on the position
ecPos = ((1 - tau)*prevIt->second.position + tau*nextIt->second.position);
ecOrient = interpolate((float)tau, prevIt->second.orientation,
nextIt->second.orientation);
ecLinearVel = ((1 - tau)*prevIt->second.linearVel + tau*nextIt->second.linearVel);
speed = norm(ecLinearVel) * SG_METER_TO_NM * 3600.0;
if (prevIt->second.properties.size()
== nextIt->second.properties.size()) {
std::vector<FGPropertyData*>::const_iterator prevPropIt;
std::vector<FGPropertyData*>::const_iterator prevPropItEnd;
std::vector<FGPropertyData*>::const_iterator nextPropIt;
std::vector<FGPropertyData*>::const_iterator nextPropItEnd;
prevPropIt = prevIt->second.properties.begin();
prevPropItEnd = prevIt->second.properties.end();
nextPropIt = nextIt->second.properties.begin();
nextPropItEnd = nextIt->second.properties.end();
while (prevPropIt != prevPropItEnd) {
PropertyMap::iterator pIt = mPropertyMap.find((*prevPropIt)->id);
//cout << " Setting property..." << (*prevPropIt)->id;
if (pIt != mPropertyMap.end())
{
//cout << "Found " << pIt->second->getPath() << ":";
int ival;
float val;
/*
* RJH - 2017-01-25
* During multiplayer operations a series of crashes were encountered that affected all players
* within range of each other and resulting in an exception being thrown at exactly the same moment in time
* (within case props::STRING: ref http://i.imgur.com/y6MBoXq.png)
* Investigation showed that the nextPropIt and prevPropIt were pointing to different properties
* which may be caused due to certain models that have overloaded mp property transmission and
* these craft have their properties truncated due to packet size. However the result of this
* will be different contents in the previous and current packets, so here we protect against
* this by only considering properties where the previous and next id are the same.
* It might be a better solution to search the previous and next lists to locate the matching id's
*/
if (*nextPropIt && (*nextPropIt)->id == (*prevPropIt)->id ) {
switch ((*prevPropIt)->type) {
if (prevIt->second.properties.size()
== nextIt->second.properties.size()) {
std::vector<FGPropertyData*>::const_iterator prevPropIt;
std::vector<FGPropertyData*>::const_iterator prevPropItEnd;
std::vector<FGPropertyData*>::const_iterator nextPropIt;
std::vector<FGPropertyData*>::const_iterator nextPropItEnd;
prevPropIt = prevIt->second.properties.begin();
prevPropItEnd = prevIt->second.properties.end();
nextPropIt = nextIt->second.properties.begin();
nextPropItEnd = nextIt->second.properties.end();
while (prevPropIt != prevPropItEnd) {
PropertyMap::iterator pIt = mPropertyMap.find((*prevPropIt)->id);
//cout << " Setting property..." << (*prevPropIt)->id;
if (pIt != mPropertyMap.end())
{
//cout << "Found " << pIt->second->getPath() << ":";
int ival;
float val;
/*
* RJH - 2017-01-25
* During multiplayer operations a series of crashes were encountered that affected all players
* within range of each other and resulting in an exception being thrown at exactly the same moment in time
* (within case props::STRING: ref http://i.imgur.com/y6MBoXq.png)
* Investigation showed that the nextPropIt and prevPropIt were pointing to different properties
* which may be caused due to certain models that have overloaded mp property transmission and
* these craft have their properties truncated due to packet size. However the result of this
* will be different contents in the previous and current packets, so here we protect against
* this by only considering properties where the previous and next id are the same.
* It might be a better solution to search the previous and next lists to locate the matching id's
*/
if (*nextPropIt && (*nextPropIt)->id == (*prevPropIt)->id) {
switch ((*prevPropIt)->type) {
case props::INT:
case props::BOOL:
case props::LONG:
ival = (int)(0.5 + (1 - tau)*((double)(*prevPropIt)->int_value) +
tau*((double)(*nextPropIt)->int_value));
pIt->second->setIntValue(ival);
//cout << "Int: " << ival << "\n";
break;
case props::FLOAT:
case props::DOUBLE:
val = (1 - tau)*(*prevPropIt)->float_value +
tau*(*nextPropIt)->float_value;
//cout << "Flo: " << val << "\n";
pIt->second->setFloatValue(val);
break;
case props::STRING:
case props::UNSPECIFIED:
//cout << "Str: " << (*nextPropIt)->string_value << "\n";
pIt->second->setStringValue((*nextPropIt)->string_value);
break;
default:
// FIXME - currently defaults to float values
val = (1 - tau)*(*prevPropIt)->float_value +
tau*(*nextPropIt)->float_value;
//cout << "Unk: " << val << "\n";
pIt->second->setFloatValue(val);
break;
}
}
else
{
SG_LOG(SG_AI, SG_WARN, "MP packet mismatch during lag interpolation: " << (*prevPropIt)->id << " != " << (*nextPropIt)->id << "\n");
}
}
else
{
SG_LOG(SG_AI, SG_DEBUG, "Unable to find property: " << (*prevPropIt)->id << "\n");
}
++prevPropIt;
++nextPropIt;
}
}
// Now throw away too old data
if (prevIt != mMotionInfo.begin())
{
--prevIt;
mMotionInfo.erase(mMotionInfo.begin(), prevIt);
}
}
}
else {
// Ok, we need to predict the future, so, take the best data we can have
// and do some eom computation to guess that for now.
FGExternalMotionData& motionInfo = it->second;
// The time to predict, limit to 3 seconds
double t = tInterp - motionInfo.time;
t = SGMisc<double>::min(t, 3);
SG_LOG(SG_AI, SG_DEBUG, "Multiplayer vehicle extrapolation: "
"extrapolation time = " << t);
// using velocity and acceleration to guess a parabolic position...
ecPos = motionInfo.position;
ecOrient = motionInfo.orientation;
ecLinearVel = motionInfo.linearVel;
SGVec3d ecVel = toVec3d(ecOrient.backTransform(ecLinearVel));
SGVec3f angularVel = motionInfo.angularVel;
SGVec3d ecAcc = toVec3d(ecOrient.backTransform(motionInfo.linearAccel));
double normVel = norm(ecVel);
// not doing rotationnal prediction for small speed or rotation rate,
// to avoid agitated parked plane
if ((norm(angularVel) > 0.05) || (normVel > 1.0)) {
ecOrient += t*ecOrient.derivative(angularVel);
}
// not using acceleration for small speed, to have better parked planes
// note that anyway acceleration is not transmit yet by mp
if (normVel > 1.0) {
ecPos += t*(ecVel + 0.5*t*ecAcc);
}
else {
ecPos += t*(ecVel);
}
std::vector<FGPropertyData*>::const_iterator firstPropIt;
std::vector<FGPropertyData*>::const_iterator firstPropItEnd;
speed = norm(ecLinearVel) * SG_METER_TO_NM * 3600.0;
firstPropIt = it->second.properties.begin();
firstPropItEnd = it->second.properties.end();
while (firstPropIt != firstPropItEnd) {
PropertyMap::iterator pIt = mPropertyMap.find((*firstPropIt)->id);
//cout << " Setting property..." << (*firstPropIt)->id;
if (pIt != mPropertyMap.end())
{
switch ((*firstPropIt)->type) {
case props::INT:
case props::BOOL:
case props::LONG:
ival = (int)(0.5 + (1 - tau)*((double)(*prevPropIt)->int_value) +
tau*((double)(*nextPropIt)->int_value));
pIt->second->setIntValue(ival);
//cout << "Int: " << ival << "\n";
pIt->second->setIntValue((*firstPropIt)->int_value);
//cout << "Int: " << (*firstPropIt)->int_value << "\n";
break;
case props::FLOAT:
case props::DOUBLE:
val = (1 - tau)*(*prevPropIt)->float_value +
tau*(*nextPropIt)->float_value;
//cout << "Flo: " << val << "\n";
pIt->second->setFloatValue(val);
pIt->second->setFloatValue((*firstPropIt)->float_value);
//cout << "Flo: " << (*firstPropIt)->float_value << "\n";
break;
case props::STRING:
case props::UNSPECIFIED:
//cout << "Str: " << (*nextPropIt)->string_value << "\n";
pIt->second->setStringValue((*nextPropIt)->string_value);
pIt->second->setStringValue((*firstPropIt)->string_value);
//cout << "Str: " << (*firstPropIt)->string_value << "\n";
break;
default:
// FIXME - currently defaults to float values
val = (1 - tau)*(*prevPropIt)->float_value +
tau*(*nextPropIt)->float_value;
//cout << "Unk: " << val << "\n";
pIt->second->setFloatValue(val);
pIt->second->setFloatValue((*firstPropIt)->float_value);
//cout << "Unk: " << (*firstPropIt)->float_value << "\n";
break;
}
}
else
{
SG_LOG(SG_AI, SG_WARN, "MP packet mismatch during lag interpolation: " << (*prevPropIt)->id << " != " << (*nextPropIt)->id << "\n");
SG_LOG(SG_AI, SG_DEBUG, "Unable to find property: " << (*firstPropIt)->id << "\n");
}
}
else
{
SG_LOG(SG_AI, SG_DEBUG, "Unable to find property: " << (*prevPropIt)->id << "\n");
}
++prevPropIt;
++nextPropIt;
}
}
// Now throw away too old data
if (prevIt != mMotionInfo.begin())
{
--prevIt;
mMotionInfo.erase(mMotionInfo.begin(), prevIt);
}
}
} else {
// Ok, we need to predict the future, so, take the best data we can have
// and do some eom computation to guess that for now.
FGExternalMotionData& motionInfo = it->second;
// The time to predict, limit to 3 seconds
double t = tInterp - motionInfo.time;
t = SGMisc<double>::min(t, 3);
SG_LOG(SG_AI, SG_DEBUG, "Multiplayer vehicle extrapolation: "
"extrapolation time = " << t);
// using velocity and acceleration to guess a parabolic position...
ecPos = motionInfo.position;
ecOrient = motionInfo.orientation;
ecLinearVel = motionInfo.linearVel;
SGVec3d ecVel = toVec3d(ecOrient.backTransform(ecLinearVel));
SGVec3f angularVel = motionInfo.angularVel;
SGVec3d ecAcc = toVec3d(ecOrient.backTransform(motionInfo.linearAccel));
double normVel = norm(ecVel);
// not doing rotationnal prediction for small speed or rotation rate,
// to avoid agitated parked plane
if (( norm(angularVel) > 0.05 ) || ( normVel > 1.0 )) {
ecOrient += t*ecOrient.derivative(angularVel);
++firstPropIt;
}
}
// not using acceleration for small speed, to have better parked planes
// note that anyway acceleration is not transmit yet by mp
if ( normVel > 1.0 ) {
ecPos += t*(ecVel + 0.5*t*ecAcc);
} else {
ecPos += t*(ecVel);
// extract the position
pos = SGGeod::fromCart(ecPos);
double recent_alt_ft = altitude_ft;
altitude_ft = pos.getElevationFt();
// expose a valid vertical speed
if (lastUpdateTime != 0)
{
double dT = curtime - lastUpdateTime;
double Weighting = 1;
if (dt < 1.0)
Weighting = dt;
// simple smoothing over 1 second
vs = (1.0 - Weighting)*vs + Weighting * (altitude_ft - recent_alt_ft) / dT * 60;
}
lastUpdateTime = curtime;
// The quaternion rotating from the earth centered frame to the
// horizontal local frame
SGQuatf qEc2Hl = SGQuatf::fromLonLatRad((float)pos.getLongitudeRad(),
(float)pos.getLatitudeRad());
// The orientation wrt the horizontal local frame
SGQuatf hlOr = conj(qEc2Hl)*ecOrient;
float hDeg, pDeg, rDeg;
hlOr.getEulerDeg(hDeg, pDeg, rDeg);
hdg = hDeg;
roll = rDeg;
pitch = pDeg;
// expose velocities/u,v,wbody-fps in the mp tree
_uBodyNode->setValue(ecLinearVel[0] * SG_METER_TO_FEET);
_vBodyNode->setValue(ecLinearVel[1] * SG_METER_TO_FEET);
_wBodyNode->setValue(ecLinearVel[2] * SG_METER_TO_FEET);
SG_LOG(SG_AI, SG_DEBUG, "Multiplayer position and orientation: "
<< ecPos << ", " << hlOr);
//###########################//
// do calculations for radar //
//###########################//
double range_ft2 = UpdateRadar(manager);
//************************************//
// Tanker code //
//************************************//
if (isTanker) {
//cout << "IS tanker ";
if ((range_ft2 < 250.0 * 250.0) &&
(y_shift > 0.0) &&
(elevation > 0.0)) {
// refuel_node->setBoolValue(true);
//cout << "in contact" << endl;
contact = true;
}
else {
// refuel_node->setBoolValue(false);
//cout << "not in contact" << endl;
contact = false;
}
}
else {
//cout << "NOT tanker " << endl;
contact = false;
}
std::vector<FGPropertyData*>::const_iterator firstPropIt;
std::vector<FGPropertyData*>::const_iterator firstPropItEnd;
speed = norm(ecLinearVel) * SG_METER_TO_NM * 3600.0;
firstPropIt = it->second.properties.begin();
firstPropItEnd = it->second.properties.end();
while (firstPropIt != firstPropItEnd) {
PropertyMap::iterator pIt = mPropertyMap.find((*firstPropIt)->id);
//cout << " Setting property..." << (*firstPropIt)->id;
if (pIt != mPropertyMap.end())
{
switch ((*firstPropIt)->type) {
case props::INT:
case props::BOOL:
case props::LONG:
pIt->second->setIntValue((*firstPropIt)->int_value);
//cout << "Int: " << (*firstPropIt)->int_value << "\n";
break;
case props::FLOAT:
case props::DOUBLE:
pIt->second->setFloatValue((*firstPropIt)->float_value);
//cout << "Flo: " << (*firstPropIt)->float_value << "\n";
break;
case props::STRING:
case props::UNSPECIFIED:
pIt->second->setStringValue((*firstPropIt)->string_value);
//cout << "Str: " << (*firstPropIt)->string_value << "\n";
break;
default:
// FIXME - currently defaults to float values
pIt->second->setFloatValue((*firstPropIt)->float_value);
//cout << "Unk: " << (*firstPropIt)->float_value << "\n";
break;
}
}
else
{
SG_LOG(SG_AI, SG_DEBUG, "Unable to find property: " << (*firstPropIt)->id << "\n");
}
++firstPropIt;
}
}
// extract the position
pos = SGGeod::fromCart(ecPos);
double recent_alt_ft = altitude_ft;
altitude_ft = pos.getElevationFt();
// expose a valid vertical speed
if (lastUpdateTime != 0)
{
double dT = curtime - lastUpdateTime;
double Weighting=1;
if (dt < 1.0)
Weighting = dt;
// simple smoothing over 1 second
vs = (1.0-Weighting)*vs + Weighting * (altitude_ft - recent_alt_ft) / dT * 60;
}
lastUpdateTime = curtime;
// The quaternion rotating from the earth centered frame to the
// horizontal local frame
SGQuatf qEc2Hl = SGQuatf::fromLonLatRad((float)pos.getLongitudeRad(),
(float)pos.getLatitudeRad());
// The orientation wrt the horizontal local frame
SGQuatf hlOr = conj(qEc2Hl)*ecOrient;
float hDeg, pDeg, rDeg;
hlOr.getEulerDeg(hDeg, pDeg, rDeg);
hdg = hDeg;
roll = rDeg;
pitch = pDeg;
// expose velocities/u,v,wbody-fps in the mp tree
_uBodyNode->setValue(ecLinearVel[0] * SG_METER_TO_FEET);
_vBodyNode->setValue(ecLinearVel[1] * SG_METER_TO_FEET);
_wBodyNode->setValue(ecLinearVel[2] * SG_METER_TO_FEET);
SG_LOG(SG_AI, SG_DEBUG, "Multiplayer position and orientation: "
<< ecPos << ", " << hlOr);
//###########################//
// do calculations for radar //
//###########################//
double range_ft2 = UpdateRadar(manager);
//************************************//
// Tanker code //
//************************************//
if ( isTanker) {
//cout << "IS tanker ";
if ( (range_ft2 < 250.0 * 250.0) &&
(y_shift > 0.0) &&
(elevation > 0.0) ){
// refuel_node->setBoolValue(true);
//cout << "in contact" << endl;
contact = true;
} else {
// refuel_node->setBoolValue(false);
//cout << "not in contact" << endl;
contact = false;
}
} else {
//cout << "NOT tanker " << endl;
contact = false;
}
Transform();
Transform();
}
void
FGAIMultiplayer::addMotionInfo(FGExternalMotionData& motionInfo,
long stamp)
long stamp)
{
mLastTimestamp = stamp;
mLastTimestamp = stamp;
if (!mMotionInfo.empty()) {
double diff = motionInfo.time - mMotionInfo.rbegin()->first;
if (!mMotionInfo.empty()) {
double diff = motionInfo.time - mMotionInfo.rbegin()->first;
// packet is very old -- MP has probably reset (incl. his timebase)
if (diff < -10.0)
mMotionInfo.clear();
// packet is very old -- MP has probably reset (incl. his timebase)
if (diff < -10.0)
mMotionInfo.clear();
// drop packets arriving out of order
else if (diff < 0.0)
return;
}
mMotionInfo[motionInfo.time] = motionInfo;
// We just copied the property (pointer) list - they are ours now. Clear the
// properties list in given/returned object, so former owner won't deallocate them.
motionInfo.properties.clear();
// drop packets arriving out of order
else if (diff < 0.0)
return;
}
mMotionInfo[motionInfo.time] = motionInfo;
// We just copied the property (pointer) list - they are ours now. Clear the
// properties list in given/returned object, so former owner won't deallocate them.
motionInfo.properties.clear();
}
void
FGAIMultiplayer::setDoubleProperty(const std::string& prop, double val)
{
SGPropertyNode* pNode = props->getChild(prop.c_str(), true);
pNode->setDoubleValue(val);
SGPropertyNode* pNode = props->getChild(prop.c_str(), true);
pNode->setDoubleValue(val);
}