diff --git a/Tools/Areas/Makefile.am b/Tools/Areas/Makefile.am
new file mode 100644
index 000000000..7c6106189
--- /dev/null
+++ b/Tools/Areas/Makefile.am
@@ -0,0 +1,62 @@
+#---------------------------------------------------------------------------
+# Makefile
+#
+# Written by Curtis Olson, started January 1998.
+#
+# Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+bin_PROGRAMS = areas
+
+areas_SOURCES = area.cxx area.hxx main.cxx
+
+areas_LDADD = \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(base_LIBS)
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.3  1998/11/04 23:01:43  curt
+# Changes to the automake/autoconf system to reduce the number of libraries
+# that are unnecessarily linked into the various executables.
+#
+# Revision 1.2  1998/07/30 23:49:18  curt
+# Removed libtool support.
+#
+# Revision 1.1  1998/07/20 12:54:53  curt
+# Whoops, need to commit Makefile.am, not Makefile.
+#
+# Revision 1.2  1998/04/14 02:25:59  curt
+# Code reorganizations.  Added a Lib/ directory for more general libraries.
+#
+# Revision 1.1  1998/04/08 22:54:57  curt
+# Adopted Gnu automake/autoconf system.
+#
+# Revision 1.2  1998/01/21 02:55:46  curt
+# Incorporated new make system from Bob Kuehne <rpk@sgi.com>.
+#
+# Revision 1.1  1998/01/15 02:45:25  curt
+# Initial revision.
+#
+
diff --git a/Tools/Areas/area.cxx b/Tools/Areas/area.cxx
new file mode 100644
index 000000000..2dabe331d
--- /dev/null
+++ b/Tools/Areas/area.cxx
@@ -0,0 +1,161 @@
+// area.c -- routines to assist with inserting "areas" into FG terrain
+//
+// Written by Curtis Olson, started March 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#include <math.h>
+#include <stdio.h>
+
+#include <Include/fg_constants.h>
+
+#include "area.hxx"
+
+
+// calc new x, y for a rotation
+double rot_x(double x, double y, double theta) {
+    return ( x * cos(theta) + y * sin(theta) );
+}
+
+
+// calc new x, y for a rotation
+double rot_y(double x, double y, double theta) {
+    return ( -x * sin(theta) + y * cos(theta) );
+}
+
+
+// calc new lon/lat given starting lon/lat, and offset radial, and
+// distance.  NOTE: distance is specified in meters (and converted
+// internally to radians)
+point2d calc_lon_lat( point2d orig, point2d offset ) {
+    point2d result;
+
+    offset.dist *= METER_TO_NM * NM_TO_RAD;
+
+    result.lat = asin( sin(orig.lat) * cos(offset.dist) + 
+		       cos(orig.lat) * sin(offset.dist) * cos(offset.theta) );
+
+    if ( cos(result.lat) < FG_EPSILON ) {
+        result.lon = orig.lon;      // endpoint a pole
+    } else {
+        result.lon = 
+	    fmod(orig.lon - asin( sin(offset.theta) * sin(offset.dist) / 
+				  cos(result.lat) ) + FG_PI, FG_2PI) - FG_PI;
+    }
+
+    return(result);
+}
+
+
+point2d cart_to_polar_2d(point2d in) {
+    point2d result;
+    result.dist = sqrt( in.x * in.x + in.y * in.y );
+    result.theta = atan2(in.y, in.x);    
+
+    return(result);
+}
+
+
+void batch_cart_to_polar_2d(point2d *in, point2d *out, int size) {
+    int i;
+
+    for ( i = 0; i < size; i++ ) {
+	out[i] = cart_to_polar_2d( in[i] );
+    }
+}
+
+
+// given a set of 2d coordinates relative to a center point, and the
+// lon, lat of that center point, as well as a potential orientation
+// angle, generate the corresponding lon and lat of the original 2d
+// verticies.
+void make_area(point2d orig, point2d *cart, point2d *result, 
+	       int size, double angle ) {
+    point2d rad[size];
+    int i;
+
+    // convert to polar coordinates
+    batch_cart_to_polar_2d(cart, rad, size);
+    for ( i = 0; i < size; i++ ) {
+	printf("(%.2f, %.2f)\n", rad[i].dist, rad[i].theta);
+    }
+    printf("\n");
+
+    // rotate by specified angle
+    for ( i = 0; i < size; i++ ) {
+	rad[i].theta += angle;
+	while ( rad[i].theta > FG_2PI ) {
+	    rad[i].theta -= FG_2PI;
+	}
+	printf("(%.2f, %.2f)\n", rad[i].dist, rad[i].theta);
+    }
+    printf("\n");
+
+    for ( i = 0; i < size; i++ ) {
+	result[i] = calc_lon_lat(orig, rad[i]);
+	printf("(%.8f, %.8f)\n", result[i].lon, result[i].lat);
+    }
+    printf("\n");
+}
+
+
+// generate an area for a runway
+void gen_runway_area( double lon, double lat, double heading, 
+		      double length, double width,
+		      point2d *result, int *count) 
+{
+    point2d cart[4];
+    point2d orig;
+    double l, w;
+    int i;
+
+    orig.lon = lon;
+    orig.lat = lat;
+    l = (length / 2.0) + (length * 0.1);
+    w = (width / 2.0) + (width * 0.1);
+
+    // generate untransformed runway area vertices
+    cart[0].x =  l; cart[0].y =  w;
+    cart[1].x =  l; cart[1].y = -w;
+    cart[2].x = -l; cart[2].y = -w;
+    cart[3].x = -l; cart[3].y =  w;
+    for ( i = 0; i < 4; i++ ) {
+	printf("(%.2f, %.2f)\n", cart[i].x, cart[i].y);
+    }
+    printf("\n");
+
+    make_area(orig, cart, result, 4, heading);
+
+    for ( i = 0; i < 4; i++ ) {
+	printf("(%.8f, %.8f)\n", result[i].lon, result[i].lat);
+    }
+    printf("\n");
+
+    *count = 4;
+}
+
+
+// $Log$
+// Revision 1.1  1998/07/20 12:54:05  curt
+// Initial revision.
+//
+//
diff --git a/Tools/Areas/area.hxx b/Tools/Areas/area.hxx
new file mode 100644
index 000000000..584e5f6a0
--- /dev/null
+++ b/Tools/Areas/area.hxx
@@ -0,0 +1,57 @@
+// area.h -- routines to assist with inserting "areas" into FG terrain
+//
+// Written by Curtis Olson, started February 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#ifndef _AREA_H
+#define _AREA_H
+
+
+typedef struct {
+    union {
+	double x;
+	double dist;
+	double lon;
+    };
+    union {
+	double y;
+	double theta;
+	double lat;
+    };
+} point2d;
+
+
+// generate an area for a runway
+void gen_runway_area( double lon, double lat, double heading, 
+		      double length, double width,
+		      point2d *result, int *count );
+
+
+#endif // _AREA_H
+
+
+// $Log$
+// Revision 1.1  1998/07/20 12:54:05  curt
+// Initial revision.
+//
+//
diff --git a/Tools/Areas/main.cxx b/Tools/Areas/main.cxx
new file mode 100644
index 000000000..1f6d635b8
--- /dev/null
+++ b/Tools/Areas/main.cxx
@@ -0,0 +1,130 @@
+// main.c -- main loop
+//
+// Written by Curtis Olson, started March 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#include <stdio.h>
+#include <string.h>
+
+#include "area.hxx"
+
+#include <Bucket/bucketutils.h>
+#include <Include/fg_constants.h>
+
+
+int main( int argc, char **argv ) {
+    fgBUCKET b;
+    point2d nodes[4];
+    FILE *fd;
+    char base[256], path[256], command[256], file[256], exfile[256];
+    double lon, lat, elevation, heading;
+    double length, width;
+    long int index;
+    int i, count;
+
+    if ( argc != 2 ) {
+	printf("Usage %s <work dir>\n", argv[0]);
+	exit(0);
+    }
+
+    // P13 (Globe, AZ)
+    // lon = -110.6642442;
+    // lat = 33.3528903;
+    // heading = 102.0 * DEG_TO_RAD;
+    // length = 1769;
+    // width = 23;
+
+    // KANE
+    lon = -93.2113889;
+    lat = 45.145;
+    elevation = 912 * FEET_TO_METER;
+    heading = 270.0 * DEG_TO_RAD;
+    length = 1220;
+    width = 23;
+
+    gen_runway_area( lon * DEG_TO_RAD, lat * DEG_TO_RAD, 
+		     heading, length, width, nodes, &count );
+
+    fgBucketFind(lon, lat, &b);
+    printf( "Bucket = lon,lat = %d,%d  x,y index = %d,%d\n", 
+	    b.lon, b.lat, b.x, b.y);
+
+    index = fgBucketGenIndex(&b);
+    fgBucketGenBasePath(&b, base);
+    sprintf(path, "%s/Scenery/%s", argv[1], base);
+    sprintf(command, "mkdir -p %s\n", path);
+    system(command);
+    
+    sprintf(exfile, "%s/%ld.node.ex", path, index);
+    sprintf(file, "%s/%ld.poly", path, index);
+    printf( "extra node file = %s\n", exfile);
+    printf( "poly file = %s\n", file);
+
+    // output extra nodes
+    if ( (fd = fopen(exfile, "w")) == NULL ) {
+        printf("Cannot open file: %s\n", exfile);
+        exit(-1);
+    }
+
+    fprintf(fd, "%d 2 0 0\n", count);
+    for ( i = 0; i < count; i++ ) {
+	fprintf( fd, "%d %.2f %.2f %.2f\n", i + 1, 
+		 nodes[i].lon * RAD_TO_ARCSEC, nodes[i].lat * RAD_TO_ARCSEC, 
+		 elevation);
+    }
+    fclose(fd);
+
+    // output poly
+    if ( (fd = fopen(file, "w")) == NULL ) {
+        printf("Cannot open file: %s\n", file);
+        exit(-1);
+    }
+
+    // output empty node list
+    fprintf(fd, "0 2 0 0\n");
+
+    // output segments
+    fprintf(fd, "%d 0\n", count);
+    for ( i = 0; i < count - 1; i++ ) {
+	fprintf( fd, "%d %d %d\n", i + 1, i + 1, i + 2 );
+    }
+    fprintf( fd, "%d %d %d\n", count, count, 1 );
+
+    // output hole center
+    fprintf( fd, "1\n");
+    fprintf( fd, "1 %.2f %.2f\n", lon * 3600.0, lat * 3600);
+
+    fclose(fd);
+}
+
+
+// $Log: main.c,v
+//
diff --git a/Tools/Array/Makefile.am b/Tools/Array/Makefile.am
new file mode 100644
index 000000000..a62648005
--- /dev/null
+++ b/Tools/Array/Makefile.am
@@ -0,0 +1,25 @@
+noinst_LIBRARIES = libArray.a
+
+libArray_a_SOURCES = array.cxx array.hxx
+
+bin_PROGRAMS = testarray
+
+testarray_SOURCES = testarray.cxx
+
+testarray_LDADD = \
+	$(top_builddir)/Tools/Construct/Array/libArray.a \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(top_builddir)/Lib/Math/libMath.a \
+	$(top_builddir)/Lib/Misc/libMisc.a \
+	$(top_builddir)/Lib/zlib/libz.a
+
+INCLUDES += \
+	-I$(top_builddir) \
+	-I$(top_builddir)/Lib \
+	-I$(top_builddir)/Tools/Construct
+
+# We can't build this with "-O2" (optimization) since this causes a seg fault
+# I haven't found a way to strip this out of the CXXFLAGS, so I'm just
+# setting it to "-g"
+# CXXFLAGS = -g
+
diff --git a/Tools/Array/array.cxx b/Tools/Array/array.cxx
new file mode 100644
index 000000000..2b7d2a625
--- /dev/null
+++ b/Tools/Array/array.cxx
@@ -0,0 +1,607 @@
+// array.cxx -- Array management class
+//
+// Written by Curtis Olson, started March 1998.
+//
+// Copyright (C) 1998 - 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifdef HAVE_CONFIG_H
+#  include <config.h>
+#endif
+
+#include <Include/compiler.h>
+
+// #include <ctype.h>    // isspace()
+// #include <stdlib.h>   // atoi()
+// #include <math.h>     // rint()
+// #include <stdio.h>
+// #include <string.h>
+// #ifdef HAVE_SYS_STAT_H
+// #  include <sys/stat.h> // stat()
+// #endif
+// #ifdef FG_HAVE_STD_INCLUDES
+// #  include <cerrno>
+// #else
+// #  include <errno.h>
+// #endif
+// #ifdef HAVE_UNISTD_H
+// # include <unistd.h>   // stat()
+// #endif
+
+#include STL_STRING
+
+#include <Include/fg_constants.h>
+#include <Misc/fgstream.hxx>
+#include <Misc/strutils.hxx>
+#include <Math/leastsqs.hxx>
+
+#include "array.hxx"
+
+FG_USING_STD(string);
+
+
+FGArray::FGArray( void ) {
+    // cout << "class FGArray CONstructor called." << endl;
+    in_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
+    // out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
+}
+
+
+FGArray::FGArray( const string &file ) {
+    // cout << "class FGArray CONstructor called." << endl;
+    in_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
+    // out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
+
+    FGArray::open(file);
+}
+
+
+// open an Array file
+int
+FGArray::open( const string& file ) {
+    // open input file (or read from stdin)
+    if ( file ==  "-" ) {
+	cout << "  Opening array data pipe from stdin" << endl;
+	// fd = stdin;
+	// fd = gzdopen(STDIN_FILENO, "r");
+	cout << "  Not yet ported ..." << endl;
+	return 0;
+    } else {
+	in = new fg_gzifstream( file );
+	if ( ! in->is_open() ) {
+	    cout << "  Cannot open " << file << endl;
+	    return 0;
+	}
+	cout << "  Opening array data file: " << file << endl;
+    }
+
+    return 1;
+}
+
+
+// close an Array file
+int
+FGArray::close() {
+    // the fg_gzifstream doesn't seem to have a close()
+
+    delete in;
+
+    return 1;
+}
+
+
+// parse Array file, pass in the bucket so we can make up values when
+// the file wasn't found.
+int
+FGArray::parse( FGBucket& b ) {
+    if ( in->is_open() ) {
+	// file open, parse
+	*in >> originx >> originy;
+	*in >> cols >> col_step;
+	*in >> rows >> row_step;
+
+	cout << "    origin  = " << originx << "  " << originy << endl;
+	cout << "    cols = " << cols << "  rows = " << rows << endl;
+	cout << "    col_step = " << col_step 
+	     << "  row_step = " << row_step <<endl;
+
+	for ( int i = 0; i < cols; i++ ) {
+	    for ( int j = 0; j < rows; j++ ) {
+		*in >> in_data[i][j];
+	    }
+	}
+
+	cout << "    Done parsing\n";
+    } else {
+	// file not open (not found?), fill with zero'd data
+
+	originx = ( b.get_center_lon() - 0.5 * b.get_width() ) * 3600.0;
+	originy = ( b.get_center_lat() - 0.5 * b.get_height() ) * 3600.0;
+
+	double max_x = ( b.get_center_lon() + 0.5 * b.get_width() ) * 3600.0;
+	double max_y = ( b.get_center_lat() + 0.5 * b.get_height() ) * 3600.0;
+
+	cols = 3;
+	col_step = (max_x - originx) / (cols - 1);
+	rows = 3;
+	row_step = (max_y - originy) / (rows - 1);
+
+	cout << "    origin  = " << originx << "  " << originy << endl;
+	cout << "    cols = " << cols << "  rows = " << rows << endl;
+	cout << "    col_step = " << col_step 
+	     << "  row_step = " << row_step <<endl;
+
+	for ( int i = 0; i < cols; i++ ) {
+	    for ( int j = 0; j < rows; j++ ) {
+		in_data[i][j] = 0.0;
+	    }
+	}
+
+	cout << "    File not open, so using zero'd data" << endl;
+    }
+
+    return 1;
+}
+
+
+// add a node to the output corner node list
+void FGArray::add_corner_node( int i, int j, double val ) {
+    
+    double x = (originx + i * col_step) / 3600.0;
+    double y = (originy + j * row_step) / 3600.0;
+    // cout << "originx = " << originx << "  originy = " << originy << endl;
+    // cout << "corner = " << Point3D(x, y, val) << endl;
+    corner_list.push_back( Point3D(x, y, val) );
+}
+
+
+// add a node to the output fitted node list
+void FGArray::add_fit_node( int i, int j, double val ) {
+    double x = (originx + i * col_step) / 3600.0;
+    double y = (originy + j * row_step) / 3600.0;
+    // cout << Point3D(x, y, val) << endl;
+    node_list.push_back( Point3D(x, y, val) );
+}
+
+
+// Use least squares to fit a simpler data set to dem data.  Return
+// the number of fitted nodes
+int FGArray::fit( double error ) {
+    double x[ARRAY_SIZE_1], y[ARRAY_SIZE_1];
+    double m, b, max_error, error_sq;
+    double x1, y1;
+    // double ave_error;
+    double cury, lasty;
+    int n, row, start, end;
+    int colmin, colmax, rowmin, rowmax;
+    bool good_fit;
+    // FILE *dem, *fit, *fit1;
+
+    error_sq = error * error;
+
+    cout << "  Initializing fitted node list" << endl;
+    corner_list.clear();
+    node_list.clear();
+
+    // determine dimensions
+    colmin = 0;
+    colmax = cols;
+    rowmin = 0;
+    rowmax = rows;
+    cout << "  Fitting region = " << colmin << "," << rowmin << " to " 
+	 << colmax << "," << rowmax << endl;;
+    
+    // generate corners list
+    add_corner_node( colmin, rowmin, in_data[colmin][rowmin] );
+    add_corner_node( colmin, rowmax-1, in_data[colmin][rowmax] );
+    add_corner_node( colmax-1, rowmin, in_data[colmax][rowmin] );
+    add_corner_node( colmax-1, rowmax-1, in_data[colmax][rowmax] );
+
+    cout << "  Beginning best fit procedure" << endl;
+    lasty = 0;
+
+    for ( row = rowmin; row < rowmax; row++ ) {
+	// fit  = fopen("fit.dat",  "w");
+	// fit1 = fopen("fit1.dat", "w");
+
+	start = colmin;
+
+	// cout << "    fitting row = " << row << endl;
+
+	while ( start < colmax - 1 ) {
+	    end = start + 1;
+	    good_fit = true;
+
+	    x[0] = start * col_step;
+	    y[0] = in_data[start][row];
+
+	    x[1] = end * col_step;
+	    y[1] = in_data[end][row];
+
+	    n = 2;
+
+	    // cout << "Least square of first 2 points" << endl;
+	    least_squares(x, y, n, &m, &b);
+
+	    end++;
+
+	    while ( (end < colmax) && good_fit ) {
+		++n;
+		// cout << "Least square of first " << n << " points" << endl;
+		x[n-1] = x1 = end * col_step;
+		y[n-1] = y1 = in_data[end][row];
+		least_squares_update(x1, y1, &m, &b);
+		// ave_error = least_squares_error(x, y, n, m, b);
+		max_error = least_squares_max_error(x, y, n, m, b);
+
+		/*
+		printf("%d - %d  ave error = %.2f  max error = %.2f  y = %.2f*x + %.2f\n", 
+		start, end, ave_error, max_error, m, b);
+		
+		f = fopen("gnuplot.dat", "w");
+		for ( j = 0; j <= end; j++) {
+		    fprintf(f, "%.2f %.2f\n", 0.0 + ( j * col_step ), 
+			    in_data[row][j]);
+		}
+		for ( j = start; j <= end; j++) {
+		    fprintf(f, "%.2f %.2f\n", 0.0 + ( j * col_step ), 
+			    in_data[row][j]);
+		}
+		fclose(f);
+
+		printf("Please hit return: "); gets(junk);
+		*/
+
+		if ( max_error > error_sq ) {
+		    good_fit = false;
+		}
+		
+		end++;
+	    }
+
+	    if ( !good_fit ) {
+		// error exceeded the threshold, back up
+		end -= 2;  // back "end" up to the last good enough fit
+		n--;       // back "n" up appropriately too
+	    } else {
+		// we popped out of the above loop while still within
+		// the error threshold, so we must be at the end of
+		// the data set
+		end--;
+	    }
+	    
+	    least_squares(x, y, n, &m, &b);
+	    // ave_error = least_squares_error(x, y, n, m, b);
+	    max_error = least_squares_max_error(x, y, n, m, b);
+
+	    /*
+	    printf("\n");
+	    printf("%d - %d  ave error = %.2f  max error = %.2f  y = %.2f*x + %.2f\n", 
+		   start, end, ave_error, max_error, m, b);
+	    printf("\n");
+
+	    fprintf(fit1, "%.2f %.2f\n", x[0], m * x[0] + b);
+	    fprintf(fit1, "%.2f %.2f\n", x[end-start], m * x[end-start] + b);
+	    */
+
+	    if ( start > colmin ) {
+		// skip this for the first line segment
+		cury = m * x[0] + b;
+		add_fit_node( start, row, (lasty + cury) / 2 );
+		// fprintf(fit, "%.2f %.2f\n", x[0], (lasty + cury) / 2);
+	    }
+
+	    lasty = m * x[end-start] + b;
+	    start = end;
+	}
+
+	/*
+	fclose(fit);
+	fclose(fit1);
+
+	dem = fopen("gnuplot.dat", "w");
+	for ( j = 0; j < ARRAY_SIZE_1; j++) {
+	    fprintf(dem, "%.2f %.2f\n", 0.0 + ( j * col_step ), 
+		    in_data[j][row]);
+	} 
+	fclose(dem);
+	*/
+
+	// NOTICE, this is for testing only.  This instance of
+        // output_nodes should be removed.  It should be called only
+        // once at the end once all the nodes have been generated.
+	// newmesh_output_nodes(&nm, "mesh.node");
+	// printf("Please hit return: "); gets(junk);
+    }
+
+    // outputmesh_output_nodes(fg_root, p);
+
+    // return fit nodes + 4 corners
+    return node_list.size() + 4;
+}
+
+
+// return the current altitude based on grid data.  We should rewrite
+// this to interpolate exact values, but for now this is good enough
+double FGArray::interpolate_altitude( double lon, double lat ) const {
+    // we expect incoming (lon,lat) to be in arcsec for now
+
+    double xlocal, ylocal, dx, dy, zA, zB, elev;
+    int x1, x2, x3, y1, y2, y3;
+    float z1, z2, z3;
+    int xindex, yindex;
+
+    /* determine if we are in the lower triangle or the upper triangle 
+       ______
+       |   /|
+       |  / |
+       | /  |
+       |/   |
+       ------
+
+       then calculate our end points
+     */
+
+    xlocal = (lon - originx) / col_step;
+    ylocal = (lat - originy) / row_step;
+
+    xindex = (int)(xlocal);
+    yindex = (int)(ylocal);
+
+    // printf("xindex = %d  yindex = %d\n", xindex, yindex);
+
+    if ( xindex + 1 == cols ) {
+	xindex--;
+    }
+
+    if ( yindex + 1 == rows ) {
+	yindex--;
+    }
+
+    if ( (xindex < 0) || (xindex + 1 >= cols) ||
+	 (yindex < 0) || (yindex + 1 >= rows) ) {
+	cout << "WARNING: Attempt to interpolate value outside of array!!!" 
+	     << endl;
+	return 0;
+    }
+
+    dx = xlocal - xindex;
+    dy = ylocal - yindex;
+
+    if ( dx > dy ) {
+	// lower triangle
+	// printf("  Lower triangle\n");
+
+	x1 = xindex; 
+	y1 = yindex; 
+	z1 = in_data[x1][y1];
+
+	x2 = xindex + 1; 
+	y2 = yindex; 
+	z2 = in_data[x2][y2];
+				  
+	x3 = xindex + 1; 
+	y3 = yindex + 1; 
+	z3 = in_data[x3][y3];
+
+	// printf("  dx = %.2f  dy = %.2f\n", dx, dy);
+	// printf("  (x1,y1,z1) = (%d,%d,%d)\n", x1, y1, z1);
+	// printf("  (x2,y2,z2) = (%d,%d,%d)\n", x2, y2, z2);
+	// printf("  (x3,y3,z3) = (%d,%d,%d)\n", x3, y3, z3);
+
+	zA = dx * (z2 - z1) + z1;
+	zB = dx * (z3 - z1) + z1;
+	
+	// printf("  zA = %.2f  zB = %.2f\n", zA, zB);
+
+	if ( dx > FG_EPSILON ) {
+	    elev = dy * (zB - zA) / dx + zA;
+	} else {
+	    elev = zA;
+	}
+    } else {
+	// upper triangle
+	// printf("  Upper triangle\n");
+
+	x1 = xindex; 
+	y1 = yindex; 
+	z1 = in_data[x1][y1];
+
+	x2 = xindex; 
+	y2 = yindex + 1; 
+	z2 = in_data[x2][y2];
+				  
+	x3 = xindex + 1; 
+	y3 = yindex + 1; 
+	z3 = in_data[x3][y3];
+
+	// printf("  dx = %.2f  dy = %.2f\n", dx, dy);
+	// printf("  (x1,y1,z1) = (%d,%d,%d)\n", x1, y1, z1);
+	// printf("  (x2,y2,z2) = (%d,%d,%d)\n", x2, y2, z2);
+	// printf("  (x3,y3,z3) = (%d,%d,%d)\n", x3, y3, z3);
+ 
+	zA = dy * (z2 - z1) + z1;
+	zB = dy * (z3 - z1) + z1;
+	
+	// printf("  zA = %.2f  zB = %.2f\n", zA, zB );
+	// printf("  xB - xA = %.2f\n", col_step * dy / row_step);
+
+	if ( dy > FG_EPSILON ) {
+	    elev = dx * (zB - zA) / dy    + zA;
+	} else {
+	    elev = zA;
+	}
+    }
+
+    return(elev);
+}
+
+
+#if 0
+// Write out a node file that can be used by the "triangle" program.
+// Check for an optional "index.node.ex" file in case there is a .poly
+// file to go along with this node file.  Include these nodes first
+// since they are referenced by position from the .poly file.
+void FGArray::outputmesh_output_nodes( const string& fg_root, FGBucket& p )
+{
+    double exnodes[MAX_EX_NODES][3];
+    struct stat stat_buf;
+    string dir, file;
+    char exfile[256];
+#ifdef WIN32
+    char tmp_path[256];
+#endif
+    string command;
+    FILE *fd;
+    int colmin, colmax, rowmin, rowmax;
+    int i, j, count, excount, result;
+
+    // determine dimensions
+    colmin = p.get_x() * ( (cols - 1) / 8);
+    colmax = colmin + ( (cols - 1) / 8);
+    rowmin = p.get_y() * ( (rows - 1) / 8);
+    rowmax = rowmin + ( (rows - 1) / 8);
+    cout << "  dumping region = " << colmin << "," << rowmin << " to " <<
+	colmax << "," << rowmax << "\n";
+
+    // generate the base directory
+    string base_path = p.gen_base_path();
+    cout << "  fg_root = " << fg_root << "  Base Path = " << base_path << endl;
+    dir = fg_root + "/Scenery/" + base_path;
+    cout << "  Dir = " << dir << endl;
+    
+    // stat() directory and create if needed
+    errno = 0;
+    result = stat(dir.c_str(), &stat_buf);
+    if ( result != 0 && errno == ENOENT ) {
+	cout << "  Creating directory\n";
+
+	command = "mkdir -p " + dir + "\n";
+	system( command.c_str() );
+    } else {
+	// assume directory exists
+    }
+
+    // get index and generate output file name
+    file = dir + "/" + p.gen_index_str() + ".node";
+
+    // get (optional) extra node file name (in case there is matching
+    // .poly file.
+    exfile = file + ".ex";
+
+    // load extra nodes if they exist
+    excount = 0;
+    if ( (fd = fopen(exfile, "r")) != NULL ) {
+	int junki;
+	fscanf(fd, "%d %d %d %d", &excount, &junki, &junki, &junki);
+
+	if ( excount > MAX_EX_NODES - 1 ) {
+	    printf("Error, too many 'extra' nodes, increase array size\n");
+	    exit(-1);
+	} else {
+	    printf("    Expecting %d 'extra' nodes\n", excount);
+	}
+
+	for ( i = 1; i <= excount; i++ ) {
+	    fscanf(fd, "%d %lf %lf %lf\n", &junki, 
+		   &exnodes[i][0], &exnodes[i][1], &exnodes[i][2]);
+	    printf("(extra) %d %.2f %.2f %.2f\n", 
+		    i, exnodes[i][0], exnodes[i][1], exnodes[i][2]);
+	}
+	fclose(fd);
+    }
+
+    printf("Creating node file:  %s\n", file);
+    fd = fopen(file, "w");
+
+    // first count regular nodes to generate header
+    count = 0;
+    for ( j = rowmin; j <= rowmax; j++ ) {
+	for ( i = colmin; i <= colmax; i++ ) {
+	    if ( out_data[i][j] > -9000.0 ) {
+		count++;
+	    }
+	}
+	// printf("    count = %d\n", count);
+    }
+    fprintf(fd, "%d 2 1 0\n", count + excount);
+
+    // now write out extra node data
+    for ( i = 1; i <= excount; i++ ) {
+	fprintf(fd, "%d %.2f %.2f %.2f\n", 
+		i, exnodes[i][0], exnodes[i][1], exnodes[i][2]);
+    }
+
+    // write out actual node data
+    count = excount + 1;
+    for ( j = rowmin; j <= rowmax; j++ ) {
+	for ( i = colmin; i <= colmax; i++ ) {
+	    if ( out_data[i][j] > -9000.0 ) {
+		fprintf(fd, "%d %.2f %.2f %.2f\n", 
+			count++, 
+			originx + (double)i * col_step, 
+			originy + (double)j * row_step,
+			out_data[i][j]);
+	    }
+	}
+	// printf("    count = %d\n", count);
+    }
+
+    fclose(fd);
+}
+#endif
+
+
+FGArray::~FGArray( void ) {
+    // printf("class FGArray DEstructor called.\n");
+    delete [] in_data;
+    // delete [] out_data;
+}
+
+
+// $Log$
+// Revision 1.8  1999/04/05 02:15:23  curt
+// Make dem fitting more robust in cases when no dem file available.
+//
+// Revision 1.7  1999/03/27 14:05:10  curt
+// More sensible handling of the case where no dem file for this tile exists
+// (or has been generated).
+//
+// Revision 1.6  1999/03/27 05:20:13  curt
+// Handle corner nodes separately from the rest of the fitted nodes.
+// Fixed some "const" related warnings.
+//
+// Revision 1.5  1999/03/25 19:03:50  curt
+// Minor tweaks related to FGBucket usage.
+//
+// Revision 1.4  1999/03/20 20:32:51  curt
+// First mostly successful tile triangulation works.  There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
+// Revision 1.3  1999/03/17 23:48:17  curt
+// Removed forced -g compile flag.
+// Fixed a couple compiler warnings.
+//
+// Revision 1.2  1999/03/13 23:50:26  curt
+// Tweaked output formatting a bit.
+//
+// Revision 1.1  1999/03/13 18:45:02  curt
+// Initial revision. (derived from libDEM.a code.)
+//
diff --git a/Tools/Array/array.hxx b/Tools/Array/array.hxx
new file mode 100644
index 000000000..2ec9e2a51
--- /dev/null
+++ b/Tools/Array/array.hxx
@@ -0,0 +1,146 @@
+// array.hxx -- Array management class
+//
+// Written by Curtis Olson, started March 1998.
+//
+// Copyright (C) 1998 - 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _ARRAY_HXX
+#define _ARRAY_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Include/compiler.h>
+
+#include <vector>
+
+#include <Bucket/newbucket.hxx>
+#include <Math/point3d.hxx>
+#include <Misc/fgstream.hxx>
+
+#include <Main/construct_types.hxx>
+
+FG_USING_STD(vector);
+
+
+#define ARRAY_SIZE 1200
+#define ARRAY_SIZE_1 1201
+
+
+class FGArray {
+
+private:
+
+    // file pointer for input
+    // gzFile fd;
+    fg_gzifstream *in;
+
+    // coordinates (in arc seconds) of south west corner
+    double originx, originy;
+    
+    // number of columns and rows
+    int cols, rows;
+    
+    // Distance between column and row data points (in arc seconds)
+    double col_step, row_step;
+    
+    // pointers to the actual grid data allocated here
+    float (*in_data)[ARRAY_SIZE_1];
+    // float (*out_data)[ARRAY_SIZE_1];
+
+    // output nodes
+    point_list corner_list;
+    point_list node_list;
+
+public:
+
+    // Constructor
+    FGArray( void );
+    FGArray( const string& file );
+
+    // Destructor
+    ~FGArray( void );
+
+    // open an Array file (use "-" if input is coming from stdin)
+    int open ( const string& file );
+
+    // close a Array file
+    int close();
+
+    // parse a Array file
+    int parse( FGBucket& b );
+
+    // Use least squares to fit a simpler data set to dem data.
+    // Return the number of fitted nodes
+    int fit( double error );
+
+    // add a node to the output corner node list
+    void add_corner_node( int i, int j, double val );
+
+    // add a node to the output fitted node list
+    void add_fit_node( int i, int j, double val );
+
+    // return the current altitude based on grid data.  We should
+    // rewrite this to interpolate exact values, but for now this is
+    // good enough
+    double interpolate_altitude( double lon, double lat ) const;
+
+    // Informational methods
+    inline double get_originx() const { return originx; }
+    inline double get_originy() const { return originy; }
+    inline int get_cols() const { return cols; }
+    inline int get_rows() const { return rows; }
+    inline double get_col_step() const { return col_step; }
+    inline double get_row_step() const { return row_step; }
+
+    inline point_list get_corner_node_list() const { return corner_list; }
+    inline point_list get_fit_node_list() const { return node_list; }
+};
+
+
+#endif // _ARRAY_HXX
+
+
+// $Log$
+// Revision 1.6  1999/04/05 02:15:24  curt
+// Make dem fitting more robust in cases when no dem file available.
+//
+// Revision 1.5  1999/03/29 13:11:02  curt
+// Shuffled stl type names a bit.
+// Began adding support for tri-fanning (or maybe other arrangments too.)
+//
+// Revision 1.4  1999/03/27 05:20:14  curt
+// Handle corner nodes separately from the rest of the fitted nodes.
+// Fixed some "const" related warnings.
+//
+// Revision 1.3  1999/03/20 20:32:52  curt
+// First mostly successful tile triangulation works.  There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
+// Revision 1.2  1999/03/13 23:50:27  curt
+// Tweaked output formatting a bit.
+//
+// Revision 1.1  1999/03/13 18:45:02  curt
+// Initial revision. (derived from libDEM.a code.)
+//
diff --git a/Tools/Array/testarray.cxx b/Tools/Array/testarray.cxx
new file mode 100644
index 000000000..1a0a4d55c
--- /dev/null
+++ b/Tools/Array/testarray.cxx
@@ -0,0 +1,33 @@
+#include <Bucket/newbucket.hxx>
+
+#include "array.hxx"
+
+main(int argc, char **argv) {
+    double lon, lat;
+
+    if ( argc != 2 ) {
+	cout << "Usage: " << argv[0] << " work_dir" << endl;
+	exit(-1);
+    }
+
+    string work_dir = argv[1];
+   
+    lon = -146.248360; lat = 61.133950;  // PAVD (Valdez, AK)
+    lon = -110.664244; lat = 33.352890;  // P13
+
+    FGBucket b( lon, lat );
+    string base = b.gen_base_path();
+    string path = work_dir + "/Scenery/" + base;
+
+    string arrayfile = path + "/" + b.gen_index_str() + ".dem";
+    cout << "arrayfile = " << arrayfile << endl;
+    
+    FGArray a(arrayfile);
+    a.parse( b );
+
+    lon *= 3600;
+    lat *= 3600;
+    cout << "  " << a.interpolate_altitude(lon, lat) << endl;
+
+    a.fit( 100 );
+}
diff --git a/Tools/AssemTris/Makefile.am b/Tools/AssemTris/Makefile.am
new file mode 100644
index 000000000..5e830c88b
--- /dev/null
+++ b/Tools/AssemTris/Makefile.am
@@ -0,0 +1,62 @@
+#---------------------------------------------------------------------------
+# Makefile
+#
+# Written by Curtis Olson, started January 1998.
+#
+# Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+bin_PROGRAMS = assemtris
+
+assemtris_SOURCES = assemtris.cxx assemtris.hxx
+
+assemtris_LDADD = \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(base_LIBS)
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.5  1998/11/04 23:01:45  curt
+# Changes to the automake/autoconf system to reduce the number of libraries
+# that are unnecessarily linked into the various executables.
+#
+# Revision 1.4  1998/09/25 19:35:25  curt
+# Renamed assemtris.[ch] to assemtris.[ch]xx
+#
+# Revision 1.3  1998/07/30 23:49:23  curt
+# Removed libtool support.
+#
+# Revision 1.2  1998/04/14 02:25:59  curt
+# Code reorganizations.  Added a Lib/ directory for more general libraries.
+#
+# Revision 1.1  1998/04/08 22:54:57  curt
+# Adopted Gnu automake/autoconf system.
+#
+# Revision 1.2  1998/01/21 02:55:46  curt
+# Incorporated new make system from Bob Kuehne <rpk@sgi.com>.
+#
+# Revision 1.1  1998/01/15 02:45:25  curt
+# Initial revision.
+#
+
diff --git a/Tools/AssemTris/assemtris.cxx b/Tools/AssemTris/assemtris.cxx
new file mode 100644
index 000000000..1c87851e3
--- /dev/null
+++ b/Tools/AssemTris/assemtris.cxx
@@ -0,0 +1,600 @@
+// assemtris.cxx -- reassemble the pieces produced by splittris
+//
+// Written by Curtis Olson, started January 1998.
+//
+// Copyright (C) 1997  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>   // for atoi()
+#include <string.h>
+#include <sys/stat.h> // for stat()
+#include <unistd.h>   // for stat()
+
+#include "assemtris.hxx"
+
+#include <Include/fg_constants.h>
+#include <Bucket/bucketutils.h>
+
+
+// #define OFFSET_LON 0.1
+// #define OFFSET_LAT 0.1
+
+#define OFFSET_LON 0.0
+#define OFFSET_LAT 0.0
+
+int nodecount = 0;
+int excount = 0;
+
+static double nodes[MAX_NODES][3];
+static double exnodes[MAX_NODES][3];
+
+
+fgBUCKET my_index;
+fgBUCKET ne_index, nw_index, sw_index, se_index;
+fgBUCKET north_index, south_index, east_index, west_index;
+
+
+// return the file base name ( foo/bar/file.ext = file.ext )
+void extract_file(char *in, char *base) {
+    int len, i;
+
+    len = strlen(in);
+
+    i = len - 1;
+    while ( (i >= 0) && (in[i] != '/') ) {
+	i--;
+    }
+
+    in += (i + 1);
+    strcpy(base, in);
+}
+
+
+// return the file path name ( foo/bar/file.ext = foo/bar )
+void extract_path(char *in, char *base) {
+    int len, i;
+
+    len = strlen(in);
+    strcpy(base, in);
+
+    i = len - 1;
+    while ( (i >= 0) && (in[i] != '/') ) {
+	i--;
+    }
+
+    base[i] = '\0';
+}
+
+
+// check to see if specified node is in the extra list
+int is_extra_node(double *n) {
+    int i;
+
+    for ( i = 1; i <= excount; i++ ) {
+	// we only check lon/lat in case the height got fooled with
+	// along the way
+	if ( (fabs(n[0] - exnodes[i][0]) < FG_EPSILON) &&
+	     (fabs(n[1] - exnodes[i][1]) < FG_EPSILON) ) {
+	    return(i);
+	}
+    }
+
+    return(0);
+}
+
+// Read all the extra nodes.  These typically define inner areas to
+// exclude from triangulations.  There will be a .poly file that
+// refers to these by position number which assumes all the extra
+// nodes come first in the generated .node file.
+void read_extra_nodes(char *exfile) {
+    FILE *fd;
+    int i, junk1, junk2, junk3;
+
+    // load extra nodes if they exist
+    excount = 0;
+    if ( (fd = fopen(exfile, "r")) != NULL ) {
+	printf("Found and 'extra' node file = %s\n", exfile);
+	fscanf(fd, "%d %d %d %d", &excount, &junk1, &junk2, &junk3);
+
+	if ( excount > MAX_NODES - 1 ) {
+	    printf("Error, too many 'extra' nodes, increase array size\n");
+	    exit(-1);
+	} else {
+	    printf("    Expecting %d 'extra' nodes\n", excount);
+	}
+
+	for ( i = 1; i <= excount; i++ ) {
+	    fscanf(fd, "%d %lf %lf %lf\n", &junk1, 
+		   &exnodes[i][0], &exnodes[i][1], &exnodes[i][2]);
+	    printf("(extra) %d %.2f %.2f %.2f\n", 
+		    i, exnodes[i][0], exnodes[i][1], exnodes[i][2]);
+	}
+        fclose(fd);
+    }
+}
+
+
+// check if a file exists
+int file_exists(char *file) {
+    struct stat stat_buf;
+    int result;
+
+    printf("checking %s ... ", file);
+
+    result = stat(file, &stat_buf);
+
+    if ( result != 0 ) {
+	// stat failed, no file
+	printf("not found.\n");
+	return(0);
+    } else {
+	// stat succeeded, file exists
+	printf("exists.\n");
+	return(1);
+    }
+}
+
+
+// check to see if a shared object exists
+int shared_object_exists(char *basepath, char *ext, char *file) {
+    char scene_path[256];
+    long int index;
+
+    if ( strcmp(ext, ".sw") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&west_index, scene_path);
+	index = fgBucketGenIndex(&west_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&sw_index, scene_path);
+	index = fgBucketGenIndex(&sw_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&south_index, scene_path);
+	index = fgBucketGenIndex(&south_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".se") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&east_index, scene_path);
+	index = fgBucketGenIndex(&east_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&se_index, scene_path);
+	index = fgBucketGenIndex(&se_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&south_index, scene_path);
+	index = fgBucketGenIndex(&south_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".ne") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&east_index, scene_path);
+	index = fgBucketGenIndex(&east_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&ne_index, scene_path);
+	index = fgBucketGenIndex(&ne_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&north_index, scene_path);
+	index = fgBucketGenIndex(&north_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".nw") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&west_index, scene_path);
+	index = fgBucketGenIndex(&west_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&nw_index, scene_path);
+	index = fgBucketGenIndex(&nw_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&north_index, scene_path);
+	index = fgBucketGenIndex(&north_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".south") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.south", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&south_index, scene_path);
+	index = fgBucketGenIndex(&south_index);
+	sprintf(file, "%s/%s/%ld.1.north", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".north") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.north", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&north_index, scene_path);
+	index = fgBucketGenIndex(&north_index);
+	sprintf(file, "%s/%s/%ld.1.south", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".west") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.west", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&west_index, scene_path);
+	index = fgBucketGenIndex(&west_index);
+	sprintf(file, "%s/%s/%ld.1.east", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".east") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.east", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&east_index, scene_path);
+	index = fgBucketGenIndex(&east_index);
+	sprintf(file, "%s/%s/%ld.1.west", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".body") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.body", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    return(0);
+}
+
+
+// my custom file opening routine ... don't open if a shared edge or
+// vertex alread exists
+FILE *my_open(char *basename, char *basepath, char *ext) {
+    FILE *fp;
+    char filename[256];
+
+    // check if a shared object already exists
+    if ( shared_object_exists(basepath, ext, filename) ) {
+	// not an actual file open error, but we've already got the
+        // shared edge, so we don't want to create another one
+	fp = fopen(filename, "r");
+	printf("Opening %s\n", filename);
+	return(fp);
+    } else {
+	// open the file
+	printf("not opening\n");
+	return(NULL);
+    }
+}
+
+
+// given a file pointer, read all the gdn (geodetic nodes from it.)
+// The specified offset values (in arcsec) are used to overlap the
+// edges of the tile slightly to cover gaps induced by floating point
+// precision problems.  1 arcsec == about 100 feet so 0.01 arcsec ==
+// about 1 foot
+void read_nodes(FILE *fp, double offset_lon, double offset_lat) {
+    double n[3];
+    char line[256];
+    int ex_index;
+
+    offset_lon = offset_lat = 0.0;
+
+    while ( fgets(line, 250, fp) != NULL ) {
+	if ( strncmp(line, "gdn ", 4) == 0 ) {
+	    sscanf(line, "gdn %lf %lf %lf\n", &n[0], &n[1], &n[2]);
+
+	    ex_index = is_extra_node(n);
+
+	    if ( ex_index == 0 ) {
+		// not an extra node
+		nodes[nodecount][0] = n[0] + offset_lon;
+		nodes[nodecount][1] = n[1] + offset_lat;
+		nodes[nodecount][2] = n[2];
+
+		// printf("read_nodes(%d) %.2f %.2f %.2f %s", nodecount, 
+		//        nodes[nodecount][0], nodes[nodecount][1], 
+		//        nodes[nodecount][2], line);
+		     
+
+		nodecount++;
+	    } else {
+		// is an extra node
+		printf("found extra node %.2f %.2f %.2f\n", n[0], n[1], n[2]);
+		// preserve the DEM altitude for now
+		exnodes[ex_index][2] = n[2];
+	    }
+	}
+    }
+}
+
+
+// load in nodes from the various split and shared pieces to
+// reconstruct a tile
+void build_node_list(char *basename, char *basepath) {
+    char exfile[256];
+    FILE *ne, *nw, *se, *sw, *north, *south, *east, *west, *body;
+
+    // load extra nodes if they exist
+    strcpy(exfile, basename);
+    strcat(exfile, ".node.ex");
+    read_extra_nodes(exfile);
+
+    ne = my_open(basename, basepath, ".ne");
+    read_nodes(ne, OFFSET_LON, OFFSET_LAT);
+    fclose(ne);
+
+    nw = my_open(basename, basepath, ".nw");
+    read_nodes(nw, -1.0 * OFFSET_LON, OFFSET_LAT);
+    fclose(nw);
+
+    se = my_open(basename, basepath, ".se");
+    read_nodes(se, OFFSET_LON, -1.0 * OFFSET_LAT);
+    fclose(se);
+
+    sw = my_open(basename, basepath, ".sw");
+    read_nodes(sw, -1.0 * OFFSET_LON, -1.0 * OFFSET_LAT);
+    fclose(sw);
+
+    north = my_open(basename, basepath, ".north");
+    read_nodes(north, 0.0, OFFSET_LAT);
+    fclose(north);
+
+    south = my_open(basename, basepath, ".south");
+    read_nodes(south, 0.0, -1.0 * OFFSET_LAT);
+    fclose(south);
+
+    east = my_open(basename, basepath, ".east");
+    read_nodes(east, OFFSET_LON, 0.0);
+    fclose(east);
+
+    west = my_open(basename, basepath, ".west");
+    read_nodes(west, -1.0 * OFFSET_LON, 0.0);
+    fclose(west);
+
+    body = my_open(basename, basepath, ".body");
+    read_nodes(body, 0.0, 0.0);
+    fclose(body);
+}
+
+
+// dump in WaveFront .obj format
+void dump_nodes(char *basename) {
+    char file[256];
+    FILE *fd;
+    int i;
+
+    // generate output file name
+    strcpy(file, basename);
+    // len = strlen(file);
+    // file[len-2] = '\0';
+    strcat(file, ".node");
+    
+    // dump vertices
+    printf("Creating node file:  %s\n", file);
+    printf("  writing vertices in .node format.\n");
+    fd = fopen(file, "w");
+
+    fprintf(fd, "%d 2 1 0\n", excount + nodecount);
+
+    // now write out extra node data
+    for ( i = 1; i <= excount; i++ ) {
+	fprintf(fd, "%d %.2f %.2f %.2f 0\n", 
+		i, exnodes[i][0], exnodes[i][1], exnodes[i][2]);
+    }
+
+    // now write out actual node data
+    for ( i = 0; i < nodecount; i++ ) {
+	fprintf(fd, "%d %.2f %.2f %.2f 0\n", excount + i + 1,
+	       nodes[i][0], nodes[i][1], nodes[i][2]);
+    }
+
+    fclose(fd);
+}
+
+
+int main(int argc, char **argv) {
+    char basename[256], basepath[256], temp[256];
+    long int tmp_index;
+    int len;
+
+    // derive base name
+    strcpy(basename, argv[1]);
+    len = strlen(basename);
+
+    // find the base path of the file
+    extract_path(basename, basepath);
+    extract_path(basepath, basepath);
+    extract_path(basepath, basepath);
+    printf("%s\n", basepath);
+
+    // find the index of the current file
+    extract_file(basename, temp);
+    // len = strlen(temp);
+    // if ( len >= 2 ) {
+    //    temp[len-2] = '\0';
+    // }
+    tmp_index = atoi(temp);
+    printf("%ld\n", tmp_index);
+    fgBucketParseIndex(tmp_index, &my_index);
+
+    printf("bucket = %d %d %d %d\n", 
+	   my_index.lon, my_index.lat, my_index.x, my_index.y);
+    // generate the indexes of the neighbors
+    fgBucketOffset(&my_index, &ne_index,  1,  1);
+    fgBucketOffset(&my_index, &nw_index, -1,  1);
+    fgBucketOffset(&my_index, &se_index,  1, -1);
+    fgBucketOffset(&my_index, &sw_index, -1, -1);
+
+    fgBucketOffset(&my_index, &north_index,  0,  1);
+    fgBucketOffset(&my_index, &south_index,  0, -1);
+    fgBucketOffset(&my_index, &east_index,  1,  0);
+    fgBucketOffset(&my_index, &west_index, -1,  0);
+
+    // printf("Corner indexes = %ld %ld %ld %ld\n", 
+    //        ne_index, nw_index, sw_index, se_index);
+    // printf("Edge indexes = %ld %ld %ld %ld\n",
+    //        north_index, south_index, east_index, west_index);
+	  
+
+    // load the input data files
+    build_node_list(basename, basepath);
+
+    // dump in WaveFront .obj format
+    dump_nodes(basename);
+
+    return(0);
+}
+
+
+// $Log$
+// Revision 1.3  1998/11/02 18:25:40  curt
+// Check for __CYGWIN__ (b20) as well as __CYGWIN32__ (pre b20 compilers)
+// Other misc. tweaks.
+//
+// Revision 1.2  1998/09/25 19:38:01  curt
+// Minor tweaks so that this actually compiles.
+//
+// Revision 1.1  1998/09/25 19:35:29  curt
+// Renamed assemtris.[ch] to assemtris.[ch]xx
+//
+// Revision 1.13  1998/09/21 20:56:30  curt
+// Changes to avoid setting airport area nodes back to their original
+// elevations if they have been changed.
+//
+//
+// Revision 1.12  1998/09/09 16:24:51  curt
+// Fixed a bug in the handling of exclude files which was causing
+//   a crash by calling fclose() on an invalid file handle.
+// Removed overlapping offsets.
+//
+// Revision 1.11  1998/08/06 12:47:59  curt
+// Removed overlap in tiles as a test.
+//
+// Revision 1.10  1998/07/21 04:34:20  curt
+// Mods to handle extra nodes (i.e. preserve cutouts).
+//
+// Revision 1.9  1998/07/04 00:55:39  curt
+// typedef'd struct fgBUCKET.
+//
+// Revision 1.8  1998/06/01 17:58:19  curt
+// Added a slight border overlap to try to minimize pixel wide gaps between
+// tiles due to round off error.  This is not a perfect solution, but helps.
+//
+// Revision 1.7  1998/04/14 02:26:00  curt
+// Code reorganizations.  Added a Lib/ directory for more general libraries.
+//
+// Revision 1.6  1998/04/08 22:54:58  curt
+// Adopted Gnu automake/autoconf system.
+//
+// Revision 1.5  1998/03/03 16:00:52  curt
+// More c++ compile tweaks.
+//
+// Revision 1.4  1998/01/31 00:41:23  curt
+// Made a few changes converting floats to doubles.
+//
+// Revision 1.3  1998/01/27 18:37:00  curt
+// Lots of updates to get back in sync with changes made over in .../Src/
+//
+// Revision 1.2  1998/01/15 21:33:36  curt
+// Assembling triangles and building a new .node file with the proper shared
+// vertices now works.  Now we just have to use the shared normals and we'll
+// be all set.
+//
+// Revision 1.1  1998/01/15 02:45:26  curt
+// Initial revision.
+//
+
diff --git a/Tools/AssemTris/assemtris.hxx b/Tools/AssemTris/assemtris.hxx
new file mode 100644
index 000000000..3c96881f4
--- /dev/null
+++ b/Tools/AssemTris/assemtris.hxx
@@ -0,0 +1,51 @@
+// splittris.hxx -- reassemble the pieces produced by splittris
+//
+// Written by Curtis Olson, started January 1998.
+//
+// Copyright (C) 1997  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+
+#ifndef ASSEMTRIS_H
+#define ASSEMTRIS_H
+
+
+#include <stdio.h>
+#include <string.h>
+
+
+#define MAX_NODES 200000
+#define MAX_TRIS  400000
+
+
+#endif // SPLITTRIS_H
+
+
+// $Log$
+// Revision 1.2  1998/09/25 19:38:03  curt
+// Minor tweaks so that this actually compiles.
+//
+// Revision 1.1  1998/09/25 19:35:31  curt
+// Renamed assemtris.[ch] to assemtris.[ch]xx
+//
+// Revision 1.1  1998/01/15 02:45:26  curt
+// Initial revision.
+//
+
diff --git a/Tools/CVSROOT/checkoutlist b/Tools/CVSROOT/checkoutlist
new file mode 100644
index 000000000..b04b3501f
--- /dev/null
+++ b/Tools/CVSROOT/checkoutlist
@@ -0,0 +1,13 @@
+# The "checkoutlist" file is used to support additional version controlled
+# administrative files in $CVSROOT/CVSROOT, such as template files.
+#
+# The first entry on a line is a filename which will be checked out from
+# the corresponding RCS file in the $CVSROOT/CVSROOT directory.
+# The remainder of the line is an error message to use if the file cannot
+# be checked out.
+#
+# File format:
+#
+#	[<whitespace>]<filename><whitespace><error message><end-of-line>
+#
+# comment lines begin with '#'
diff --git a/Tools/CVSROOT/commitinfo b/Tools/CVSROOT/commitinfo
new file mode 100644
index 000000000..b19e7b7a6
--- /dev/null
+++ b/Tools/CVSROOT/commitinfo
@@ -0,0 +1,15 @@
+# The "commitinfo" file is used to control pre-commit checks.
+# The filter on the right is invoked with the repository and a list 
+# of files to check.  A non-zero exit of the filter program will 
+# cause the commit to be aborted.
+#
+# The first entry on a line is a regular expression which is tested
+# against the directory that the change is being committed to, relative
+# to the $CVSROOT.  For the first match that is found, then the remainder
+# of the line is the name of the filter to run.
+#
+# If the repository name does not match any of the regular expressions in this
+# file, the "DEFAULT" line is used, if it is specified.
+#
+# If the name "ALL" appears as a regular expression it is always used
+# in addition to the first matching regex or "DEFAULT".
diff --git a/Tools/CVSROOT/cvswrappers b/Tools/CVSROOT/cvswrappers
new file mode 100644
index 000000000..5047bf1c5
--- /dev/null
+++ b/Tools/CVSROOT/cvswrappers
@@ -0,0 +1,22 @@
+# This file describes wrappers and other binary files to CVS.
+#
+# Wrappers are the concept where directories of files are to be
+# treated as a single file.  The intended use is to wrap up a wrapper
+# into a single tar such that the tar archive can be treated as a
+# single binary file in CVS.
+#
+# To solve the problem effectively, it was also necessary to be able to
+# prevent rcsmerge from merging these files.
+#
+# Format of wrapper file ($CVSROOT/CVSROOT/cvswrappers or .cvswrappers)
+#
+#  wildcard	[option value][option value]...
+#
+#  where option is one of
+#  -f		from cvs filter		value: path to filter
+#  -t		to cvs filter		value: path to filter
+#  -m		update methodology	value: MERGE or COPY
+#
+#  and value is a single-quote delimited value.
+#
+# For example:
diff --git a/Tools/CVSROOT/editinfo b/Tools/CVSROOT/editinfo
new file mode 100644
index 000000000..d78886c15
--- /dev/null
+++ b/Tools/CVSROOT/editinfo
@@ -0,0 +1,21 @@
+# The "editinfo" file is used to allow verification of logging
+# information.  It works best when a template (as specified in the
+# rcsinfo file) is provided for the logging procedure.  Given a
+# template with locations for, a bug-id number, a list of people who
+# reviewed the code before it can be checked in, and an external
+# process to catalog the differences that were code reviewed, the
+# following test can be applied to the code:
+#
+#   Making sure that the entered bug-id number is correct.
+#   Validating that the code that was reviewed is indeed the code being
+#       checked in (using the bug-id number or a seperate review
+#       number to identify this particular code set.).
+#
+# If any of the above test failed, then the commit would be aborted.
+#
+# Actions such as mailing a copy of the report to each reviewer are
+# better handled by an entry in the loginfo file.
+#
+# One thing that should be noted is the the ALL keyword is not
+# supported.  There can be only one entry that matches a given
+# repository.
diff --git a/Tools/CVSROOT/loginfo b/Tools/CVSROOT/loginfo
new file mode 100644
index 000000000..226e93771
--- /dev/null
+++ b/Tools/CVSROOT/loginfo
@@ -0,0 +1,19 @@
+# The "loginfo" file is used to control where "cvs commit" log information is
+# sent.  The first entry on a line is a regular expression which is tested
+# against the directory that the change is being made to, relative to the
+# $CVSROOT.  For the first match that is found, the remainder of the line is a
+# filter program that should expect log information on its standard input
+#
+# If the repository name does not match any of the regular expressions in the
+# first field of this file, the "DEFAULT" line is used, if it is specified.
+#
+# If the name "ALL" appears as a regular expression it is always used
+# in addition to the first matching regex or "DEFAULT".
+#
+# The filter program may use one and only one "%s" modifier (ala printf).  If
+# such a "%s" is specified in the filter program, a brief title is included
+# (as one argument, enclosed in single quotes) showing the relative directory
+# name and listing the modified file names.
+#
+# For example:
+#DEFAULT		(echo ""; who am i; echo %s; date; cat) >> $CVSROOT/CVSROOT/commitlog
diff --git a/Tools/CVSROOT/modules b/Tools/CVSROOT/modules
new file mode 100644
index 000000000..cb9e9efc9
--- /dev/null
+++ b/Tools/CVSROOT/modules
@@ -0,0 +1,26 @@
+# Three different line formats are valid:
+#	key	-a    aliases...
+#	key [options] directory
+#	key [options] directory files...
+#
+# Where "options" are composed of:
+#	-i prog		Run "prog" on "cvs commit" from top-level of module.
+#	-o prog		Run "prog" on "cvs checkout" of module.
+#	-e prog		Run "prog" on "cvs export" of module.
+#	-t prog		Run "prog" on "cvs rtag" of module.
+#	-u prog		Run "prog" on "cvs update" of module.
+#	-d dir		Place module in directory "dir" instead of module name.
+#	-l		Top-level directory only -- do not recurse.
+#
+# NOTE:  If you change any of the "Run" options above, you'll have to
+# release and re-checkout any working directories of these modules.
+#
+# And "directory" is a path to a directory relative to $CVSROOT.
+#
+# The "-a" option specifies an alias.  An alias is interpreted as if
+# everything on the right of the "-a" had been typed on the command line.
+#
+# You can encode a module within a module by using the special '&'
+# character to interpose another module into the current module.  This
+# can be useful for creating a module that consists of many directories
+# spread out over the entire source repository.
diff --git a/Tools/CVSROOT/notify b/Tools/CVSROOT/notify
new file mode 100644
index 000000000..34f0bc288
--- /dev/null
+++ b/Tools/CVSROOT/notify
@@ -0,0 +1,12 @@
+# The "notify" file controls where notifications from watches set by
+# "cvs watch add" or "cvs edit" are sent.  The first entry on a line is
+# a regular expression which is tested against the directory that the
+# change is being made to, relative to the $CVSROOT.  If it matches,
+# then the remainder of the line is a filter program that should contain
+# one occurrence of %s for the user to notify, and information on its
+# standard input.
+#
+# "ALL" or "DEFAULT" can be used in place of the regular expression.
+#
+# For example:
+#ALL mail %s -s "CVS notification"
diff --git a/Tools/CVSROOT/rcsinfo b/Tools/CVSROOT/rcsinfo
new file mode 100644
index 000000000..49e59f4d0
--- /dev/null
+++ b/Tools/CVSROOT/rcsinfo
@@ -0,0 +1,13 @@
+# The "rcsinfo" file is used to control templates with which the editor
+# is invoked on commit and import.
+#
+# The first entry on a line is a regular expression which is tested
+# against the directory that the change is being made to, relative to the
+# $CVSROOT.  For the first match that is found, then the remainder of the
+# line is the name of the file that contains the template.
+#
+# If the repository name does not match any of the regular expressions in this
+# file, the "DEFAULT" line is used, if it is specified.
+#
+# If the name "ALL" appears as a regular expression it is always used
+# in addition to the first matching regex or "DEFAULT".
diff --git a/Tools/CVSROOT/taginfo b/Tools/CVSROOT/taginfo
new file mode 100644
index 000000000..274a46dd5
--- /dev/null
+++ b/Tools/CVSROOT/taginfo
@@ -0,0 +1,20 @@
+# The "taginfo" file is used to control pre-tag checks.
+# The filter on the right is invoked with the following arguments:
+#
+# $1 -- tagname
+# $2 -- operation "add" for tag, "mov" for tag -F, and "del" for tag -d
+# $3 -- repository
+# $4->  file revision [file revision ...]
+#
+# A non-zero exit of the filter program will cause the tag to be aborted.
+#
+# The first entry on a line is a regular expression which is tested
+# against the directory that the change is being committed to, relative
+# to the $CVSROOT.  For the first match that is found, then the remainder
+# of the line is the name of the filter to run.
+#
+# If the repository name does not match any of the regular expressions in this
+# file, the "DEFAULT" line is used, if it is specified.
+#
+# If the name "ALL" appears as a regular expression it is always used
+# in addition to the first matching regex or "DEFAULT".
diff --git a/Tools/Clipper/Makefile.am b/Tools/Clipper/Makefile.am
new file mode 100644
index 000000000..87a59e28b
--- /dev/null
+++ b/Tools/Clipper/Makefile.am
@@ -0,0 +1,16 @@
+noinst_LIBRARIES = libClipper.a
+
+libClipper_a_SOURCES = clipper.cxx clipper.hxx
+
+bin_PROGRAMS = testclipper
+
+testclipper_SOURCES = testclipper.cxx
+
+testclipper_LDADD = $(top_builddir)/Tools/Construct/Clipper/libClipper.a \
+	$(top_builddir)/Tools/Lib/Polygon/libPolygon.a \
+	$(top_builddir)/Lib/Debug/libDebug.a \
+	$(top_builddir)/Lib/Misc/libMisc.a \
+	$(top_builddir)/Lib/zlib/libz.a \
+	-lgfc -lgpc
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib -I$(top_builddir)/Tools/Lib
diff --git a/Tools/Clipper/clipper.cxx b/Tools/Clipper/clipper.cxx
new file mode 100644
index 000000000..a088f0ffb
--- /dev/null
+++ b/Tools/Clipper/clipper.cxx
@@ -0,0 +1,304 @@
+// clipper.cxx -- top level routines to take a series of arbitrary areas and
+//                produce a tight fitting puzzle pieces that combine to make a
+//                tile
+//
+// Written by Curtis Olson, started February 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+ 
+
+
+#include <Debug/logstream.hxx>
+#include <Include/fg_constants.h>
+#include <Misc/fgstream.hxx>
+#include <Polygon/names.hxx>
+
+#include "clipper.hxx"
+
+
+// Constructor
+FGClipper::FGClipper( void ) {
+}
+
+
+// Destructor
+FGClipper::~FGClipper( void ) {
+}
+
+
+// Initialize Clipper (allocate and/or connect structures)
+bool FGClipper::init() {
+    v_list.num_vertices = 0;
+    v_list.vertex = new gpc_vertex[FG_MAX_VERTICES];;
+
+    return true;
+}
+
+
+// Load a polygon definition file
+bool FGClipper::load_polys(const string& path) {
+    string poly_name;
+    AreaType poly_type = DefaultArea;
+    int contours, count, i, j;
+    double startx, starty, x, y, lastx, lasty;
+
+    FG_LOG( FG_CLIPPER, FG_INFO, "Loading " << path << " ..." );
+
+    fg_gzifstream in( path );
+
+    if ( !in ) {
+        FG_LOG( FG_CLIPPER, FG_ALERT, "Cannot open file: " << path );
+	exit(-1);
+    }
+
+    gpc_polygon *poly = new gpc_polygon;
+    poly->num_contours = 0;
+    poly->contour = NULL;
+
+    in >> skipcomment;
+    while ( !in.eof() ) {
+	in >> poly_name;
+	cout << "poly name = " << poly_name << endl;
+	poly_type = get_area_type( poly_name );
+	cout << "poly type (int) = " << (int)poly_type << endl;
+	in >> contours;
+	cout << "num contours = " << contours << endl;
+
+	for ( i = 0; i < contours; ++i ) {
+	    in >> count;
+
+	    if ( count < 3 ) {
+		FG_LOG( FG_CLIPPER, FG_ALERT, 
+			"Polygon with less than 3 data points." );
+		exit(-1);
+	    }
+
+	    in >> startx;
+	    in >> starty;
+	    v_list.vertex[0].x = startx;
+	    v_list.vertex[0].y = starty;
+	    FG_LOG( FG_CLIPPER, FG_BULK, "0 = " 
+		    << startx << ", " << starty );
+
+	    for ( j = 1; j < count - 1; ++j ) {
+		in >> x;
+		in >> y;
+		v_list.vertex[j].x = x;
+		v_list.vertex[j].y = y;
+		FG_LOG( FG_CLIPPER, FG_BULK, j << " = " << x << ", " << y );
+	    }
+	    v_list.num_vertices = count - 1;
+
+	    in >> lastx;
+	    in >> lasty;
+
+	    if ( (fabs(startx - lastx) < FG_EPSILON) 
+		 && (fabs(starty - lasty) < FG_EPSILON) ) {
+		// last point same as first, discard
+	    } else {
+		v_list.vertex[count - 1].x = lastx;
+		v_list.vertex[count - 1].y = lasty;
+		++v_list.num_vertices;
+		FG_LOG( FG_CLIPPER, FG_BULK, count - 1 << " = " 
+			<< lastx << ", " << lasty );
+	    }
+
+	    gpc_add_contour( poly, &v_list );
+
+	}
+
+	in >> skipcomment;
+    }
+
+    int area = (int)poly_type;
+    if ( area < FG_MAX_AREA_TYPES ) {
+	polys_in.polys[area].push_back(poly);
+    } else {
+	FG_LOG( FG_CLIPPER, FG_ALERT, "Polygon type out of range = " 
+		<< (int)poly_type);
+	exit(-1);
+    }
+
+    // FILE *ofp= fopen("outfile", "w");
+    // gpc_write_polygon(ofp, &polys.landuse);
+
+    return true;
+}
+
+
+// Do actually clipping work
+bool FGClipper::clip_all(const point2d& min, const point2d& max) {
+    gpc_polygon accum, result_union, tmp;
+    gpc_polygon *result_diff, *remains;
+    gpcpoly_iterator current, last;
+
+    FG_LOG( FG_CLIPPER, FG_INFO, "Running master clipper" );
+
+    accum.num_contours = 0;
+
+    cout << "  (" << min.x << "," << min.y << ") (" 
+	 << max.x << "," << max.y << ")" << endl;
+
+    // set up clipping tile
+    v_list.vertex[0].x = min.x;
+    v_list.vertex[0].y = min.y;
+
+    v_list.vertex[1].x = max.x;
+    v_list.vertex[1].y = min.y;
+
+    v_list.vertex[2].x = max.x;
+    v_list.vertex[2].y = max.y;
+
+    v_list.vertex[3].x = min.x;
+    v_list.vertex[3].y = max.y;
+
+    v_list.num_vertices = 4;
+
+    polys_in.safety_base.num_contours = 0;
+    polys_in.safety_base.contour = NULL;
+    gpc_add_contour( &polys_in.safety_base, &v_list );
+
+    // process polygons in priority order
+    for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
+	// cout << "num polys of this type = " 
+	//       << polys_in.polys[i].size() << endl;
+	current = polys_in.polys[i].begin();
+	last = polys_in.polys[i].end();
+	for ( ; current != last; ++current ) {
+	    FG_LOG( FG_CLIPPER, FG_DEBUG, get_area_name( (AreaType)i ) 
+		    << " = " << (*current)->contour->num_vertices );
+
+#ifdef EXTRA_SAFETY_CLIP
+	    // clip to base tile
+	    gpc_polygon_clip(GPC_INT, *current, &polys_in.safety_base, &tmp);
+#else
+	    tmp = *current;
+#endif
+
+	    // clip current polygon against previous higher priority
+	    // stuff
+	    result_diff = new gpc_polygon;
+	    result_diff->num_contours = 0;
+	    result_diff->contour = NULL;
+
+	    if ( accum.num_contours == 0 ) {
+		*result_diff = tmp;
+		result_union = tmp;
+	    } else {
+   		// cout << "DIFF: tmp.num_contours = " << tmp.num_contours
+		//      << " accum.num_contours = " << accum.num_contours
+		//      << endl;
+		// tmp output accum
+		FILE *ofp= fopen("tmp-debug", "w");
+		gpc_write_polygon(ofp, &tmp);
+		fclose(ofp);
+
+		ofp= fopen("accum-debug", "w");
+		gpc_write_polygon(ofp, &accum);
+		fclose(ofp);
+
+		gpc_polygon_clip(GPC_DIFF, &tmp, &accum, result_diff);
+		gpc_polygon_clip(GPC_UNION, &tmp, &accum, &result_union);
+	    }
+
+	    /*
+	    cout << "original contours = " << tmp.num_contours << endl;
+
+	    for ( int j = 0; j < tmp.num_contours; j++ ) {
+		for (int k = 0;k < tmp.contour[j].num_vertices;k++ ) {
+		    cout << tmp.contour[j].vertex[k].x << ","
+			 << tmp.contour[j].vertex[k].y << endl;
+		}
+	    }
+
+	    cout << "clipped contours = " << result_diff->num_contours << endl;
+
+	    for ( int j = 0; j < result_diff->num_contours; j++ ) {
+		for (int k = 0;k < result_diff->contour[j].num_vertices;k++ ) {
+		    cout << result_diff->contour[j].vertex[k].x << ","
+			 << result_diff->contour[j].vertex[k].y << endl;
+		}
+	    }
+	    */
+
+	    // only add to output list if the clip left us with a polygon
+	    if ( result_diff->num_contours > 0 ) {
+		polys_clipped.polys[i].push_back(result_diff);
+	    }
+	    accum = result_union;
+	}
+    }
+
+    // finally, what ever is left over goes to base terrain
+
+    // clip to accum against original base tile
+    remains = new gpc_polygon;
+    remains->num_contours = 0;
+    remains->contour = NULL;
+    gpc_polygon_clip(GPC_DIFF, &polys_in.safety_base, &accum, 
+		     remains);
+    if ( remains->num_contours > 0 ) {
+	polys_clipped.polys[0].push_back(remains);
+    }
+
+    // tmp output accum
+    FILE *ofp= fopen("accum", "w");
+    gpc_write_polygon(ofp, &accum);
+    fclose(ofp);
+
+    // tmp output safety_base
+    ofp= fopen("remains", "w");
+    gpc_write_polygon(ofp, remains);
+    fclose(ofp);
+
+    return true;
+}
+
+
+// $Log$
+// Revision 1.9  1999/03/31 23:46:38  curt
+// Debuggin output tweaks.
+//
+// Revision 1.8  1999/03/30 23:49:22  curt
+// Added some debugging output.
+//
+// Revision 1.7  1999/03/30 13:41:38  curt
+// Working towards better handling of multi-contoured polygons.
+//
+// Revision 1.6  1999/03/27 05:20:53  curt
+// Pass along default area explicitely to triangulator.
+//
+// Revision 1.5  1999/03/19 22:28:46  curt
+// Only add non-null polygons to output list.
+//
+// Revision 1.4  1999/03/19 00:26:18  curt
+// Fixed a clipping bug (polygons specified in wrong order).
+// Touched up a few compiler warnings.
+//
+// Revision 1.3  1999/03/17 23:48:58  curt
+// minor renaming and a bit of rearranging.
+//
+// Revision 1.2  1999/03/13 23:51:33  curt
+// Renamed main.cxx to testclipper.cxx
+// Converted clipper routines to a class FGClipper.
+//
+// Revision 1.1  1999/03/01 15:39:39  curt
+// Initial revision.
+//
diff --git a/Tools/Clipper/clipper.hxx b/Tools/Clipper/clipper.hxx
new file mode 100644
index 000000000..469691a2a
--- /dev/null
+++ b/Tools/Clipper/clipper.hxx
@@ -0,0 +1,129 @@
+// clipper.hxx -- top level routines to take a series of arbitrary areas and
+//                produce a tight fitting puzzle pieces that combine to make a
+//                tile
+//
+// Written by Curtis Olson, started February 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+ 
+
+
+#ifndef _CLIPPER_HXX
+#define _CLIPPER_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Include/compiler.h>
+
+
+// include Generic Polygon Clipping Library
+//
+//    http://www.cs.man.ac.uk/aig/staff/alan/software/
+//
+extern "C" {
+#include <gpc.h>
+}
+
+#include STL_STRING
+#include <vector>
+
+FG_USING_STD(string);
+FG_USING_STD(vector);
+
+
+typedef vector < gpc_polygon * > gpcpoly_container;
+typedef gpcpoly_container::iterator gpcpoly_iterator;
+typedef gpcpoly_container::const_iterator const_gpcpoly_iterator;
+
+
+#define FG_MAX_AREA_TYPES 20
+#define EXTRA_SAFETY_CLIP
+#define FG_MAX_VERTICES 100000
+
+
+class point2d {
+public:
+    double x, y;
+};
+
+
+class FGgpcPolyList {
+public:
+    gpcpoly_container polys[FG_MAX_AREA_TYPES];
+    gpc_polygon safety_base;
+};
+
+
+class FGClipper {
+
+private:
+
+    gpc_vertex_list v_list;
+    // static gpc_polygon poly;
+    FGgpcPolyList polys_in, polys_clipped;
+
+public:
+
+    // Constructor
+    FGClipper( void );
+
+    // Destructor
+    ~FGClipper( void );
+
+    // Initialize Clipper (allocate and/or connect structures)
+    bool init();
+
+    // Load a polygon definition file
+    bool load_polys(const string& path);
+
+    // Do actually clipping work
+    bool clip_all(const point2d& min, const point2d& max);
+
+    // return output poly list
+    inline FGgpcPolyList get_polys_clipped() const { return polys_clipped; }
+};
+
+
+#endif // _CLIPPER_HXX
+
+
+// $Log$
+// Revision 1.5  1999/03/19 00:26:19  curt
+// Fixed a clipping bug (polygons specified in wrong order).
+// Touched up a few compiler warnings.
+//
+// Revision 1.4  1999/03/18 04:31:10  curt
+// Let's not pass copies of huge structures on the stack ... ye might see a
+// segfault ... :-)
+//
+// Revision 1.3  1999/03/17 23:48:59  curt
+// minor renaming and a bit of rearranging.
+//
+// Revision 1.2  1999/03/13 23:51:34  curt
+// Renamed main.cxx to testclipper.cxx
+// Converted clipper routines to a class FGClipper.
+//
+// Revision 1.1  1999/03/01 15:39:39  curt
+// Initial revision.
+//
diff --git a/Tools/Clipper/testclipper.cxx b/Tools/Clipper/testclipper.cxx
new file mode 100644
index 000000000..2a0477b48
--- /dev/null
+++ b/Tools/Clipper/testclipper.cxx
@@ -0,0 +1,119 @@
+// main.cxx -- sample use of the clipper lib
+//
+// Written by Curtis Olson, started February 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+ 
+
+
+#include <Debug/logstream.hxx>
+#include <Bucket/newbucket.hxx>
+
+#include "clipper.hxx"
+
+
+int main( int argc, char **argv ) {
+    point2d global_min, global_max;
+
+    fglog().setLogLevels( FG_ALL, FG_DEBUG );
+
+    global_min.x = global_min.y = 200;
+    global_max.y = global_max.x = -200;
+
+    FGClipper clipper;
+    clipper.init();
+
+    if ( argc < 2 ) {
+	FG_LOG( FG_CLIPPER, FG_ALERT, "Usage: " << argv[0] 
+		<< " file1 file2 ..." );
+	exit(-1);
+    }
+
+    // process all specified polygon files
+    for ( int i = 1; i < argc; i++ ) {
+	string full_path = argv[i];
+
+	// determine bucket for this polygon
+	int pos = full_path.rfind("/");
+	string file_name = full_path.substr(pos + 1);
+	cout << "file name = " << file_name << endl;
+
+	pos = file_name.find(".");
+	string base_name = file_name.substr(0, pos);
+	cout << "base_name = " << base_name << endl;
+
+	long int index;
+	sscanf( base_name.c_str(), "%ld", &index);
+	FGBucket b(index);
+	cout << "bucket = " << b << endl;
+
+	// calculate bucket dimensions
+	point2d c, min, max;
+
+	c.x = b.get_center_lon();
+	c.y = b.get_center_lat();
+	double span = bucket_span(c.y);
+
+	if ( (c.y >= -89.0) && (c.y < 89.0) ) {
+	    min.x = c.x - span / 2.0;
+	    max.x = c.x + span / 2.0;
+	    min.y = c.y - FG_HALF_BUCKET_SPAN;
+	    max.y = c.y + FG_HALF_BUCKET_SPAN;
+	} else if ( c.y < -89.0) {
+	    min.x = -90.0;
+	    max.x = -89.0;
+	    min.y = -180.0;
+	    max.y = 180.0;
+	} else if ( c.y >= 89.0) {
+	    min.x = 89.0;
+	    max.x = 90.0;
+	    min.y = -180.0;
+	    max.y = 180.0;
+	} else {
+	    FG_LOG ( FG_GENERAL, FG_ALERT, 
+		     "Out of range latitude in clip_and_write_poly() = " 
+		     << c.y );
+	}
+
+	if ( min.x < global_min.x ) global_min.x = min.x;
+	if ( min.y < global_min.y ) global_min.y = min.y;
+	if ( max.x > global_max.x ) global_max.x = max.x;
+	if ( max.y > global_max.y ) global_max.y = max.y;
+
+	// finally, load the polygon(s) from this file
+	clipper.load_polys( full_path );
+    }
+
+    // do the clipping
+    clipper.clip_all(global_min, global_max);
+
+    FG_LOG( FG_CLIPPER, FG_INFO, "finished main" );
+
+    return 0;
+}
+
+// $Log$
+// Revision 1.1  1999/03/13 23:51:36  curt
+// Renamed main.cxx to testclipper.cxx
+// Converted clipper routines to a class FGClipper.
+//
+// Revision 1.1  1999/03/01 15:39:39  curt
+// Initial revision.
+//
diff --git a/Tools/Combine/Makefile.am b/Tools/Combine/Makefile.am
new file mode 100644
index 000000000..c8c640202
--- /dev/null
+++ b/Tools/Combine/Makefile.am
@@ -0,0 +1,9 @@
+noinst_LIBRARIES = libCombine.a
+
+libCombine_a_SOURCES = genfans.cxx genfans.hxx
+
+INCLUDES += \
+	-I$(top_builddir) \
+	-I$(top_builddir)/Lib \
+	-I$(top_builddir)/Tools/Lib \
+	-I$(top_builddir)/Tools/Construct
diff --git a/Tools/Combine/genfans.cxx b/Tools/Combine/genfans.cxx
new file mode 100644
index 000000000..856a3d79c
--- /dev/null
+++ b/Tools/Combine/genfans.cxx
@@ -0,0 +1,266 @@
+// genfans.cxx -- Combine individual triangles into more optimal fans.
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include "genfans.hxx"
+
+
+// make sure the list is expanded at least to hold "n" and then push
+// "i" onto the back of the "n" list.
+void FGGenFans::add_and_expand( reverse_list& by_node, int n, int i ) {
+    int_list empty;
+
+    int size = (int)by_node.size();
+    if ( size > n ) {
+	// ok
+    } else {
+	// cout << "capacity = " << by_node.capacity() << endl;
+	// cout << "size = " << size << "  n = " << n
+	//      << " need to push = " << n - size + 1 << endl;
+	for ( int i = 0; i < n - size + 1; ++i ) {
+	    by_node.push_back(empty);
+	}
+    }
+
+    by_node[n].push_back(i);
+}
+
+
+// given an input triangle, shuffle nodes so that "center" is the
+// first node, but maintain winding order.
+static FGTriEle canonify( const FGTriEle& t, int center ) {
+    if ( t.get_n1() == center ) {
+	// already ok
+	return t;
+    } else if ( t.get_n2() == center ) {
+	return FGTriEle( t.get_n2(), t.get_n3(), t.get_n1(), 0.0 );
+    } else if ( t.get_n3() == center ) {
+	return FGTriEle( t.get_n3(), t.get_n1(), t.get_n2(), 0.0 );
+    } else {
+	cout << "ERROR, index doesn't refer to this triangle!!!" << endl;
+	exit(-1);
+    }
+}
+
+// returns a list of triangle indices
+static int_list make_best_fan( const triele_list& master_tris, 
+			       const int center, const int_list& local_tris )
+{
+    int_list best_result;
+
+    // try starting with each of local_tris to find the best fan
+    // arrangement
+    for ( int start = 0; start < (int)local_tris.size(); ++start ) {
+	// cout << "trying with first triangle = " << local_tris[start] << endl;
+
+	int_list tmp_result;
+	tmp_result.clear();
+
+	FGTriEle current_tri;
+	FGTriEle test;
+	current_tri = canonify( master_tris[local_tris[start]], center );
+	tmp_result.push_back( local_tris[start] );
+
+	// follow the ring
+	int next = -1;
+	bool matches = true;
+	while ( (next != start) && matches ) {
+	    // find next triangle in ring
+	    matches = false;
+	    for ( int i = 0; i < (int)local_tris.size(); ++i ) {
+		test = canonify( master_tris[local_tris[i]], center );
+		if ( current_tri.get_n3() == test.get_n2() ) {
+		    if ( i != start ) {
+			// cout << " next triangle = " << local_tris[i] << endl;
+			current_tri = test;
+			tmp_result.push_back( local_tris[i] );
+			matches = true;
+			next = i;
+			break;
+		    }
+		}
+	    }
+	}
+
+	if ( tmp_result.size() == local_tris.size() ) {
+	    // we found a complete usage, no need to go on
+	    // cout << "we found a complete usage, no need to go on" << endl;
+	    best_result = tmp_result;
+	    break;
+	} else if ( tmp_result.size() > best_result.size() ) {
+	    // we found a better way to fan
+	    // cout << "we found a better fan arrangement" << endl;
+	    best_result = tmp_result;
+	}
+    }
+
+    return best_result;
+}
+
+
+static bool in_fan(int index, const int_list& fan ) {
+    const_int_list_iterator current = fan.begin();
+    const_int_list_iterator last = fan.end();
+
+    for ( ; current != last; ++current ) {
+	if ( index == *current ) {
+	    return true;
+	}
+    }
+
+    return false;
+}
+
+
+// recursive build fans from triangle list
+fan_list FGGenFans::greedy_build( triele_list tris ) {
+    cout << "starting greedy build of fans" << endl;
+
+    fans.clear();
+
+    while ( ! tris.empty() ) {
+	// cout << "building reverse_list" << endl;
+	reverse_list by_node;
+	by_node.clear();
+
+	// traverse the triangle list and for each node, build a list of
+	// triangles that attach to it.
+
+	for ( int i = 0; i < (int)tris.size(); ++i ) {
+	    int n1 = tris[i].get_n1();
+	    int n2 = tris[i].get_n2();
+	    int n3 = tris[i].get_n3();
+
+	    add_and_expand( by_node, n1, i );
+	    add_and_expand( by_node, n2, i );
+	    add_and_expand( by_node, n3, i );
+	}
+
+	// find the node in the tris list that attaches to the most
+	// triangles
+
+	// cout << "find most connected node" << endl;
+
+	int_list biggest_group;
+	reverse_list_iterator r_current = by_node.begin();
+	reverse_list_iterator r_last = by_node.end();
+	int index = 0;
+	int counter = 0;
+	for ( ; r_current != r_last; ++r_current ) {
+	    if ( r_current->size() > biggest_group.size() ) {
+		biggest_group = *r_current;
+		index = counter;
+	    }
+	    ++counter;
+	}
+	// cout << "triangle pool = " << tris.size() << endl;
+	// cout << "biggest_group = " << biggest_group.size() << endl;
+	// cout << "center node = " << index << endl;
+
+	// make the best fan we can out of this group
+	// cout << "before make_best_fan()" << endl;
+	int_list best_fan = make_best_fan( tris, index, biggest_group );
+	// cout << "after make_best_fan()" << endl;
+
+	// generate point form of best_fan
+	int_list node_list;
+	node_list.clear();
+
+	int_list_iterator i_start = best_fan.begin();
+	int_list_iterator i_current = i_start;
+	int_list_iterator i_last = best_fan.end();
+	for ( ; i_current != i_last; ++i_current ) {
+	    FGTriEle t = canonify( tris[*i_current], index );
+	    if ( i_start == i_current ) {
+		node_list.push_back( t.get_n1() );
+		node_list.push_back( t.get_n2() );
+	    }
+	    node_list.push_back( t.get_n3() );
+	}
+	// cout << "best list size = " << node_list.size() << endl;
+
+	// add this fan to the fan list
+	fans.push_back( node_list );
+
+	// delete the triangles in best_fan out of tris and repeat
+	triele_list_iterator t_current = tris.begin();
+	triele_list_iterator t_last = tris.end();
+	counter = 0;
+	while ( t_current != t_last ) {
+	    if ( in_fan(counter, best_fan) ) {
+		// cout << "erasing " 
+		//      << t_current->get_n1() << ","
+		//      << t_current->get_n2() << ","
+		//      << t_current->get_n3()
+		//      << " from master tri pool"
+		//      << endl;
+		tris.erase( t_current );
+	    } else {
+		++t_current;
+	    }
+	    ++counter;
+	}
+    }
+
+    cout << "end of greedy build of fans" << endl;
+    cout << "average fan size = " << ave_size() << endl;
+
+    return fans;
+}
+
+
+// report average fan size
+double FGGenFans::ave_size() {
+    double sum = 0.0;
+
+    fan_list_iterator current = fans.begin();
+    fan_list_iterator last = fans.end();
+    for ( ; current != last; ++current ) {
+	sum += current->size();
+    }
+
+    return sum / (double)fans.size();
+}
+
+
+// $Log$
+// Revision 1.6  1999/04/05 02:16:02  curt
+// Fixed a compiler warning.
+//
+// Revision 1.5  1999/03/31 23:46:49  curt
+// Debugging output tweaks.
+//
+// Revision 1.4  1999/03/31 13:26:39  curt
+// Debugging output tweeaks.
+//
+// Revision 1.3  1999/03/31 05:35:04  curt
+// Fixed bug in genfans (deleting the wrong triangles from the available pool.)
+//
+// Revision 1.2  1999/03/30 23:50:15  curt
+// Fannifier is clearly bugging ... working on debugging it.  I suspect there
+// is a problem related to deleting triangles from the triangle pool as they
+// are combined into fans.
+//
+// Revision 1.1  1999/03/29 13:08:35  curt
+// Initial revision.
+//
diff --git a/Tools/Combine/genfans.hxx b/Tools/Combine/genfans.hxx
new file mode 100644
index 000000000..55af05d70
--- /dev/null
+++ b/Tools/Combine/genfans.hxx
@@ -0,0 +1,85 @@
+// genfans.hxx -- Combine individual triangles into more optimal fans.
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _GENFANS_HXX
+#define _GENFANS_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Include/compiler.h>
+
+#include <vector>
+
+#include <Main/construct_types.hxx>
+#include <Triangulate/trieles.hxx>
+
+FG_USING_STD(vector);
+
+
+typedef vector < int_list > fan_list;
+typedef fan_list::iterator fan_list_iterator;
+typedef fan_list::const_iterator const_fan_list_iterator;
+
+typedef vector < int_list > reverse_list;
+typedef reverse_list::iterator reverse_list_iterator;
+typedef reverse_list::const_iterator const_reverse_list_iterator;
+
+
+
+class FGGenFans {
+
+private:
+
+    fan_list fans;
+
+    // make sure the list is expanded at least to hold "n" and then
+    // push "i" onto the back of the "n" list.
+    void add_and_expand( reverse_list& by_node, int n, int i );
+
+public:
+
+    // Constructor && Destructor
+    inline FGGenFans() { }
+    inline ~FGGenFans() { }
+
+    // recursive build fans from triangle list
+    // fan_list greedy_build( triele_list tris );
+    fan_list greedy_build( triele_list tris );
+
+    // report average fan size
+    double ave_size();
+};
+
+
+#endif // _GENFANS_HXX
+
+
+// $Log$
+// Revision 1.1  1999/03/29 13:08:35  curt
+// Initial revision.
+//
diff --git a/Tools/Construct/Makefile.am b/Tools/Construct/Makefile.am
new file mode 100644
index 000000000..f19226325
--- /dev/null
+++ b/Tools/Construct/Makefile.am
@@ -0,0 +1,7 @@
+SUBDIRS = \
+	Array \
+	Clipper \
+	Combine \
+	GenOutput \
+	Triangulate \
+	Main
diff --git a/Tools/DEM/Makefile.am b/Tools/DEM/Makefile.am
new file mode 100644
index 000000000..91bfd90d6
--- /dev/null
+++ b/Tools/DEM/Makefile.am
@@ -0,0 +1,11 @@
+noinst_LIBRARIES = libDEM.a
+
+libDEM_a_SOURCES = dem.cxx dem.hxx
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib
+
+# We can't build this with "-O2" (optimization) since this causes a seg fault
+# I haven't found a way to strip this out of the CXXFLAGS, so I'm just
+# setting it to "-g"
+# CXXFLAGS = -g
+
diff --git a/Tools/DEM/dem.cxx b/Tools/DEM/dem.cxx
new file mode 100644
index 000000000..e4661a3c7
--- /dev/null
+++ b/Tools/DEM/dem.cxx
@@ -0,0 +1,977 @@
+// dem.cxx -- DEM management class
+//
+// Written by Curtis Olson, started March 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifdef HAVE_CONFIG_H
+#  include <config.h>
+#endif
+
+#include <Include/compiler.h>
+
+#include <ctype.h>    // isspace()
+#include <stdlib.h>   // atoi()
+#include <math.h>     // rint()
+#include <stdio.h>
+#include <string.h>
+
+#ifdef HAVE_SYS_STAT_H
+#  include <sys/stat.h> // stat()
+#endif
+
+#ifdef FG_HAVE_STD_INCLUDES
+#  include <cerrno>
+#else
+#  include <errno.h>
+#endif
+
+#ifdef HAVE_UNISTD_H
+# include <unistd.h>   // stat()
+#endif
+
+#include <Misc/fgstream.hxx>
+#include <Misc/strutils.hxx>
+#include <Include/fg_constants.h>
+
+#include "dem.hxx"
+
+
+#define MAX_EX_NODES 10000
+
+#if 0
+#ifdef WIN32
+# ifdef __BORLANDC__
+#  include <dir.h>
+#  define MKDIR(a) mkdir(a)
+# else
+#  define MKDIR(a) mkdir(a,S_IRWXU)  // I am just guessing at this flag (NHV)
+# endif // __BORLANDC__
+#endif // WIN32
+#endif //0
+
+
+FGDem::FGDem( void ) {
+    // cout << "class FGDem CONstructor called." << endl;
+    dem_data = new float[DEM_SIZE_1][DEM_SIZE_1];
+    output_data = new float[DEM_SIZE_1][DEM_SIZE_1];
+}
+
+
+FGDem::FGDem( const string &file ) {
+    // cout << "class FGDem CONstructor called." << endl;
+    dem_data = new float[DEM_SIZE_1][DEM_SIZE_1];
+    output_data = new float[DEM_SIZE_1][DEM_SIZE_1];
+
+    FGDem::open(file);
+}
+
+
+// open a DEM file
+int
+FGDem::open ( const string& file ) {
+    // open input file (or read from stdin)
+    if ( file ==  "-" ) {
+	printf("Loading DEM data file: stdin\n");
+	// fd = stdin;
+	// fd = gzdopen(STDIN_FILENO, "r");
+	printf("Not yet ported ...\n");
+	return 0;
+    } else {
+	in = new fg_gzifstream( file );
+	if ( !(*in) ) {
+	    cout << "Cannot open " << file << endl;
+	    return 0;
+	}
+	cout << "Loading DEM data file: " << file << endl;
+    }
+
+    return 1;
+}
+
+
+// close a DEM file
+int
+FGDem::close () {
+    // the fg_gzifstream doesn't seem to have a close()
+
+    delete in;
+
+    return 1;
+}
+
+
+// return next token from input stream
+string
+FGDem::next_token() {
+    string token;
+
+    *in >> token;
+
+    // cout << "    returning " + token + "\n";
+
+    return token;
+}
+
+
+// return next integer from input stream
+int
+FGDem::next_int() {
+    int result;
+    
+    *in >> result;
+
+    return result;
+}
+
+
+// return next double from input stream
+double
+FGDem::next_double() {
+    double result;
+
+    *in >> result;
+
+    return result;
+}
+
+
+// return next exponential num from input stream
+double
+FGDem::next_exp() {
+    string token;
+
+    token = next_token();
+
+    const char* p = token.c_str();
+    char buf[64];
+    char* bp = buf;
+    
+    for ( ; *p != 0; ++p )
+    {
+	if ( *p == 'D' )
+	    *bp++ = 'E';
+	else
+	    *bp++ = *p;
+    }
+    *bp = 0;
+    return ::atof( buf );
+}
+
+
+// read and parse DEM "A" record
+int
+FGDem::read_a_record() {
+    int i, inum;
+    double dnum;
+    string name, token;
+    char c;
+
+    // get the name field (144 characters)
+    for ( i = 0; i < 144; i++ ) {
+	in->get(c);
+	name += c;
+    }
+  
+    // clean off the trailing whitespace
+    name = trim(name);
+    cout << "    Quad name field: " << name << endl;
+
+    // DEM level code, 3 reflects processing by DMA
+    inum = next_int();
+    cout << "    DEM level code = " << inum << "\n";
+
+    if ( inum > 3 ) {
+	return 0;
+    }
+
+    // Pattern code, 1 indicates a regular elevation pattern
+    inum = next_int();
+    cout << "    Pattern code = " << inum << "\n";
+
+    // Planimetric reference system code, 0 indicates geographic
+    // coordinate system.
+    inum = next_int();
+    cout << "    Planimetric reference code = " << inum << "\n";
+
+    // Zone code
+    inum = next_int();
+    cout << "    Zone code = " << inum << "\n";
+
+    // Map projection parameters (ignored)
+    for ( i = 0; i < 15; i++ ) {
+	dnum = next_exp();
+	// printf("%d: %f\n",i,dnum);
+    }
+
+    // Units code, 3 represents arc-seconds as the unit of measure for
+    // ground planimetric coordinates throughout the file.
+    inum = next_int();
+    if ( inum != 3 ) {
+	cout << "    Unknown (X,Y) units code = " << inum << "!\n";
+	exit(-1);
+    }
+
+    // Units code; 2 represents meters as the unit of measure for
+    // elevation coordinates throughout the file.
+    inum = next_int();
+    if ( inum != 2 ) {
+	cout << "    Unknown (Z) units code = " << inum << "!\n";
+	exit(-1);
+    }
+
+    // Number (n) of sides in the polygon which defines the coverage of
+    // the DEM file (usually equal to 4).
+    inum = next_int();
+    if ( inum != 4 ) {
+	cout << "    Unknown polygon dimension = " << inum << "!\n";
+	exit(-1);
+    }
+
+    // Ground coordinates of bounding box in arc-seconds
+    dem_x1 = originx = next_exp();
+    dem_y1 = originy = next_exp();
+    cout << "    Origin = (" << originx << "," << originy << ")\n";
+
+    dem_x2 = next_exp();
+    dem_y2 = next_exp();
+
+    dem_x3 = next_exp();
+    dem_y3 = next_exp();
+
+    dem_x4 = next_exp();
+    dem_y4 = next_exp();
+
+    // Minimum/maximum elevations in meters
+    dem_z1 = next_exp();
+    dem_z2 = next_exp();
+    cout << "    Elevation range " << dem_z1 << " to " << dem_z2 << "\n";
+
+    // Counterclockwise angle from the primary axis of ground
+    // planimetric referenced to the primary axis of the DEM local
+    // reference system.
+    token = next_token();
+
+    // Accuracy code; 0 indicates that a record of accuracy does not
+    // exist and that no record type C will follow.
+
+    // DEM spacial resolution.  Usually (3,3,1) (3,6,1) or (3,9,1)
+    // depending on latitude
+
+    // I will eventually have to do something with this for data at
+    // higher latitudes */
+    token = next_token();
+    cout << "    accuracy & spacial resolution string = " << token << endl;
+    i = token.length();
+    cout << "    length = " << i << "\n";
+
+    inum = atoi( token.substr( 0, i - 36 ) );
+    row_step = atof( token.substr( i - 24, 12 ) );
+    col_step = atof( token.substr( i - 36, 12 ) );
+    cout << "    Accuracy code = " << inum << "\n";
+    cout << "    column step = " << col_step << 
+	"  row step = " << row_step << "\n";
+
+    // dimension of arrays to follow (1)
+    token = next_token();
+
+    // number of profiles
+    dem_num_profiles = cols = next_int();
+    cout << "    Expecting " << dem_num_profiles << " profiles\n";
+
+    return 1;
+}
+
+
+// read and parse DEM "B" record
+void
+FGDem::read_b_record( ) {
+    string token;
+    int i;
+
+    // row / column id of this profile
+    prof_row = next_int();
+    prof_col = next_int();
+    // printf("col id = %d  row id = %d\n", prof_col, prof_row);
+
+    // Number of columns and rows (elevations) in this profile
+    prof_num_rows = rows = next_int();
+    prof_num_cols = next_int();
+    // printf("    profile num rows = %d\n", prof_num_rows);
+
+    // Ground planimetric coordinates (arc-seconds) of the first
+    // elevation in the profile
+    prof_x1 = next_exp();
+    prof_y1 = next_exp();
+    // printf("    Starting at %.2f %.2f\n", prof_x1, prof_y1);
+
+    // Elevation of local datum for the profile.  Always zero for
+    // 1-degree DEM, the reference is mean sea level.
+    token = next_token();
+
+    // Minimum and maximum elevations for the profile.
+    token = next_token();
+    token = next_token();
+
+    // One (usually) dimensional array (prof_num_cols,1) of elevations
+    for ( i = 0; i < prof_num_rows; i++ ) {
+	prof_data = next_int();
+	dem_data[cur_col][i] = (float)prof_data;
+    }
+}
+
+
+// parse dem file
+int
+FGDem::parse( ) {
+    int i;
+
+    cur_col = 0;
+
+    if ( !read_a_record() ) {
+	return(0);
+    }
+
+    for ( i = 0; i < dem_num_profiles; i++ ) {
+	// printf("Ready to read next b record\n");
+	read_b_record();
+	cur_col++;
+
+	if ( cur_col % 100 == 0 ) {
+	    cout << "    loaded " << cur_col << " profiles of data\n";
+	}
+    }
+
+    cout << "    Done parsing\n";
+
+    return 1;
+}
+
+
+// write out the area of data covered by the specified bucket.  Data
+// is written out column by column starting at the lower left hand
+// corner.
+int
+FGDem::write_area( const string& root, FGBucket& b, bool compress ) {
+    // calculate some boundaries
+    double min_x = ( b.get_center_lon() - 0.5 * b.get_width() ) * 3600.0;
+    double max_x = ( b.get_center_lon() + 0.5 * b.get_width() ) * 3600.0;
+
+    double min_y = ( b.get_center_lat() - 0.5 * b.get_height() ) * 3600.0;
+    double max_y = ( b.get_center_lat() + 0.5 * b.get_height() ) * 3600.0;
+
+    cout << b << endl;
+    cout << "width = " << b.get_width() << " height = " << b.get_height() 
+	 << endl;
+
+    int start_x = (int)((min_x - originx) / col_step);
+    int span_x = (int)(b.get_width() * 3600.0 / col_step);
+
+    int start_y = (int)((min_y - originy) / row_step);
+    int span_y = (int)(b.get_height() * 3600.0 / row_step);
+
+    cout << "start_x = " << start_x << "  span_x = " << span_x << endl;
+    cout << "start_y = " << start_y << "  span_y = " << span_y << endl;
+
+    // Do a simple sanity checking.  But, please, please be nice to
+    // this write_area() routine and feed it buckets that coincide
+    // well with the underlying grid structure and spacing.
+
+    if ( ( min_x < originx )
+	 || ( max_x > originx + cols * col_step )
+	 || ( min_y < originy )
+	 || ( max_y > originy + rows * row_step ) ) {
+	cout << "  ERROR: bucket at least partially outside DEM data range!" <<
+	    endl;
+	return 0;
+    }
+
+    // generate output file name
+    string base = b.gen_base_path();
+    string path = root + "/Scenery/" + base;
+    string command = "mkdir -p " + path;
+    system( command.c_str() );
+
+    string demfile = path + "/" + b.gen_index_str() + ".dem";
+    cout << "demfile = " << demfile << endl;
+
+    // write the file
+    FILE *fp;
+    if ( (fp = fopen(demfile.c_str(), "w")) == NULL ) {
+	cout << "cannot open " << demfile << " for writing!" << endl;
+	exit(-1);
+    }
+
+    fprintf( fp, "%d %d\n", (int)min_x, (int)min_y );
+    fprintf( fp, "%d %d %d %d\n", span_x + 1, (int)col_step, 
+	     span_y + 1, (int)row_step );
+    for ( int i = start_x; i <= start_x + span_x; ++i ) {
+	for ( int j = start_y; j <= start_y + span_y; ++j ) {
+	    fprintf( fp, "%d ", (int)dem_data[i][j] );
+	}
+	fprintf( fp, "\n" );
+    }
+    fclose(fp);
+
+    if ( compress ) {
+	string command = "gzip --best -f " + demfile;
+	system( command.c_str() );
+    }
+
+    return 1;
+}
+
+
+#if 0
+
+// return the current altitude based on grid data.  We should rewrite
+// this to interpolate exact values, but for now this is good enough
+double FGDem::interpolate_altitude( double lon, double lat ) {
+    // we expect incoming (lon,lat) to be in arcsec for now
+
+    double xlocal, ylocal, dx, dy, zA, zB, elev;
+    int x1, x2, x3, y1, y2, y3;
+    float z1, z2, z3;
+    int xindex, yindex;
+
+    /* determine if we are in the lower triangle or the upper triangle 
+       ______
+       |   /|
+       |  / |
+       | /  |
+       |/   |
+       ------
+
+       then calculate our end points
+     */
+
+    xlocal = (lon - originx) / col_step;
+    ylocal = (lat - originy) / row_step;
+
+    xindex = (int)(xlocal);
+    yindex = (int)(ylocal);
+
+    // printf("xindex = %d  yindex = %d\n", xindex, yindex);
+
+    if ( xindex + 1 == cols ) {
+	xindex--;
+    }
+
+    if ( yindex + 1 == rows ) {
+	yindex--;
+    }
+
+    if ( (xindex < 0) || (xindex + 1 >= cols) ||
+	 (yindex < 0) || (yindex + 1 >= rows) ) {
+	return(-9999);
+    }
+
+    dx = xlocal - xindex;
+    dy = ylocal - yindex;
+
+    if ( dx > dy ) {
+	// lower triangle
+	// printf("  Lower triangle\n");
+
+	x1 = xindex; 
+	y1 = yindex; 
+	z1 = dem_data[x1][y1];
+
+	x2 = xindex + 1; 
+	y2 = yindex; 
+	z2 = dem_data[x2][y2];
+				  
+	x3 = xindex + 1; 
+	y3 = yindex + 1; 
+	z3 = dem_data[x3][y3];
+
+	// printf("  dx = %.2f  dy = %.2f\n", dx, dy);
+	// printf("  (x1,y1,z1) = (%d,%d,%d)\n", x1, y1, z1);
+	// printf("  (x2,y2,z2) = (%d,%d,%d)\n", x2, y2, z2);
+	// printf("  (x3,y3,z3) = (%d,%d,%d)\n", x3, y3, z3);
+
+	zA = dx * (z2 - z1) + z1;
+	zB = dx * (z3 - z1) + z1;
+	
+	// printf("  zA = %.2f  zB = %.2f\n", zA, zB);
+
+	if ( dx > FG_EPSILON ) {
+	    elev = dy * (zB - zA) / dx + zA;
+	} else {
+	    elev = zA;
+	}
+    } else {
+	// upper triangle
+	// printf("  Upper triangle\n");
+
+	x1 = xindex; 
+	y1 = yindex; 
+	z1 = dem_data[x1][y1];
+
+	x2 = xindex; 
+	y2 = yindex + 1; 
+	z2 = dem_data[x2][y2];
+				  
+	x3 = xindex + 1; 
+	y3 = yindex + 1; 
+	z3 = dem_data[x3][y3];
+
+	// printf("  dx = %.2f  dy = %.2f\n", dx, dy);
+	// printf("  (x1,y1,z1) = (%d,%d,%d)\n", x1, y1, z1);
+	// printf("  (x2,y2,z2) = (%d,%d,%d)\n", x2, y2, z2);
+	// printf("  (x3,y3,z3) = (%d,%d,%d)\n", x3, y3, z3);
+ 
+	zA = dy * (z2 - z1) + z1;
+	zB = dy * (z3 - z1) + z1;
+	
+	// printf("  zA = %.2f  zB = %.2f\n", zA, zB );
+	// printf("  xB - xA = %.2f\n", col_step * dy / row_step);
+
+	if ( dy > FG_EPSILON ) {
+	    elev = dx * (zB - zA) / dy    + zA;
+	} else {
+	    elev = zA;
+	}
+    }
+
+    return(elev);
+}
+
+
+// Use least squares to fit a simpler data set to dem data
+void FGDem::fit( double error, FGBucket& p ) {
+    double x[DEM_SIZE_1], y[DEM_SIZE_1];
+    double m, b, ave_error, max_error;
+    double cury, lasty;
+    int n, row, start, end;
+    int colmin, colmax, rowmin, rowmax;
+    bool good_fit;
+    // FILE *dem, *fit, *fit1;
+
+    printf("Initializing output mesh structure\n");
+    outputmesh_init();
+
+    // determine dimensions
+    colmin = p.get_x() * ( (cols - 1) / 8);
+    colmax = colmin + ( (cols - 1) / 8);
+    rowmin = p.get_y() * ( (rows - 1) / 8);
+    rowmax = rowmin + ( (rows - 1) / 8);
+    printf("Fitting region = %d,%d to %d,%d\n", colmin, rowmin, colmax, rowmax);
+    
+    // include the corners explicitly
+    outputmesh_set_pt(colmin, rowmin, dem_data[colmin][rowmin]);
+    outputmesh_set_pt(colmin, rowmax, dem_data[colmin][rowmax]);
+    outputmesh_set_pt(colmax, rowmax, dem_data[colmax][rowmax]);
+    outputmesh_set_pt(colmax, rowmin, dem_data[colmax][rowmin]);
+
+    printf("Beginning best fit procedure\n");
+
+    for ( row = rowmin; row <= rowmax; row++ ) {
+	// fit  = fopen("fit.dat",  "w");
+	// fit1 = fopen("fit1.dat", "w");
+
+	start = colmin;
+
+	// printf("    fitting row = %d\n", row);
+
+	while ( start < colmax ) {
+	    end = start + 1;
+	    good_fit = true;
+
+	    x[(end - start) - 1] = 0.0 + ( start * col_step );
+	    y[(end - start) - 1] = dem_data[start][row];
+
+	    while ( (end <= colmax) && good_fit ) {
+		n = (end - start) + 1;
+		// printf("Least square of first %d points\n", n);
+		x[end - start] = 0.0 + ( end * col_step );
+		y[end - start] = dem_data[end][row];
+		least_squares(x, y, n, &m, &b);
+		ave_error = least_squares_error(x, y, n, m, b);
+		max_error = least_squares_max_error(x, y, n, m, b);
+
+		/*
+		printf("%d - %d  ave error = %.2f  max error = %.2f  y = %.2f*x + %.2f\n", 
+		start, end, ave_error, max_error, m, b);
+		
+		f = fopen("gnuplot.dat", "w");
+		for ( j = 0; j <= end; j++) {
+		    fprintf(f, "%.2f %.2f\n", 0.0 + ( j * col_step ), 
+			    dem_data[row][j]);
+		}
+		for ( j = start; j <= end; j++) {
+		    fprintf(f, "%.2f %.2f\n", 0.0 + ( j * col_step ), 
+			    dem_data[row][j]);
+		}
+		fclose(f);
+
+		printf("Please hit return: "); gets(junk);
+		*/
+
+		if ( max_error > error ) {
+		    good_fit = false;
+		}
+		
+		end++;
+	    }
+
+	    if ( !good_fit ) {
+		// error exceeded the threshold, back up
+		end -= 2;  // back "end" up to the last good enough fit
+		n--;       // back "n" up appropriately too
+	    } else {
+		// we popped out of the above loop while still within
+		// the error threshold, so we must be at the end of
+		// the data set
+		end--;
+	    }
+	    
+	    least_squares(x, y, n, &m, &b);
+	    ave_error = least_squares_error(x, y, n, m, b);
+	    max_error = least_squares_max_error(x, y, n, m, b);
+
+	    /*
+	    printf("\n");
+	    printf("%d - %d  ave error = %.2f  max error = %.2f  y = %.2f*x + %.2f\n", 
+		   start, end, ave_error, max_error, m, b);
+	    printf("\n");
+
+	    fprintf(fit1, "%.2f %.2f\n", x[0], m * x[0] + b);
+	    fprintf(fit1, "%.2f %.2f\n", x[end-start], m * x[end-start] + b);
+	    */
+
+	    if ( start > colmin ) {
+		// skip this for the first line segment
+		cury = m * x[0] + b;
+		outputmesh_set_pt(start, row, (lasty + cury) / 2);
+		// fprintf(fit, "%.2f %.2f\n", x[0], (lasty + cury) / 2);
+	    }
+
+	    lasty = m * x[end-start] + b;
+	    start = end;
+	}
+
+	/*
+	fclose(fit);
+	fclose(fit1);
+
+	dem = fopen("gnuplot.dat", "w");
+	for ( j = 0; j < DEM_SIZE_1; j++) {
+	    fprintf(dem, "%.2f %.2f\n", 0.0 + ( j * col_step ), 
+		    dem_data[j][row]);
+	} 
+	fclose(dem);
+	*/
+
+	// NOTICE, this is for testing only.  This instance of
+        // output_nodes should be removed.  It should be called only
+        // once at the end once all the nodes have been generated.
+	// newmesh_output_nodes(&nm, "mesh.node");
+	// printf("Please hit return: "); gets(junk);
+    }
+
+    // outputmesh_output_nodes(fg_root, p);
+}
+
+
+// Initialize output mesh structure
+void FGDem::outputmesh_init( void ) {
+    int i, j;
+    
+    for ( j = 0; j < DEM_SIZE_1; j++ ) {
+	for ( i = 0; i < DEM_SIZE_1; i++ ) {
+	    output_data[i][j] = -9999.0;
+	}
+    }
+}
+
+
+// Get the value of a mesh node
+double FGDem::outputmesh_get_pt( int i, int j ) {
+    return ( output_data[i][j] );
+}
+
+
+// Set the value of a mesh node
+void FGDem::outputmesh_set_pt( int i, int j, double value ) {
+    // printf("Setting data[%d][%d] = %.2f\n", i, j, value);
+   output_data[i][j] = value;
+}
+
+
+// Write out a node file that can be used by the "triangle" program.
+// Check for an optional "index.node.ex" file in case there is a .poly
+// file to go along with this node file.  Include these nodes first
+// since they are referenced by position from the .poly file.
+void FGDem::outputmesh_output_nodes( const string& fg_root, FGBucket& p )
+{
+    double exnodes[MAX_EX_NODES][3];
+    struct stat stat_buf;
+    string dir;
+    char file[256], exfile[256];
+#ifdef WIN32
+    char tmp_path[256];
+#endif
+    string command;
+    FILE *fd;
+    long int index;
+    int colmin, colmax, rowmin, rowmax;
+    int i, j, count, excount, result;
+
+    // determine dimensions
+    colmin = p.get_x() * ( (cols - 1) / 8);
+    colmax = colmin + ( (cols - 1) / 8);
+    rowmin = p.get_y() * ( (rows - 1) / 8);
+    rowmax = rowmin + ( (rows - 1) / 8);
+    cout << "  dumping region = " << colmin << "," << rowmin << " to " <<
+	colmax << "," << rowmax << "\n";
+
+    // generate the base directory
+    string base_path = p.gen_base_path();
+    cout << "fg_root = " << fg_root << "  Base Path = " << base_path << endl;
+    dir = fg_root + "/Scenery/" + base_path;
+    cout << "Dir = " << dir << endl;
+    
+    // stat() directory and create if needed
+    errno = 0;
+    result = stat(dir.c_str(), &stat_buf);
+    if ( result != 0 && errno == ENOENT ) {
+	cout << "Creating directory\n";
+
+// #ifndef WIN32
+
+	command = "mkdir -p " + dir + "\n";
+	system( command.c_str() );
+
+#if 0
+// #else // WIN32
+
+	// Cygwin crashes when trying to output to node file
+	// explicitly making directory structure seems OK on Win95
+
+	extract_path (base_path, tmp_path);
+
+	dir = fg_root + "/Scenery";
+	if (my_mkdir ( dir.c_str() )) { exit (-1); }
+
+	dir = fg_root + "/Scenery/" + tmp_path;
+	if (my_mkdir ( dir.c_str() )) { exit (-1); }
+
+	dir = fg_root + "/Scenery/" + base_path;
+	if (my_mkdir ( dir.c_str() )) { exit (-1); }
+
+// #endif // WIN32
+#endif //0
+
+    } else {
+	// assume directory exists
+    }
+
+    // get index and generate output file name
+    index = p.gen_index();
+    sprintf(file, "%s/%ld.node", dir.c_str(), index);
+
+    // get (optional) extra node file name (in case there is matching
+    // .poly file.
+    strcpy(exfile, file);
+    strcat(exfile, ".ex");
+
+    // load extra nodes if they exist
+    excount = 0;
+    if ( (fd = fopen(exfile, "r")) != NULL ) {
+	int junki;
+	fscanf(fd, "%d %d %d %d", &excount, &junki, &junki, &junki);
+
+	if ( excount > MAX_EX_NODES - 1 ) {
+	    printf("Error, too many 'extra' nodes, increase array size\n");
+	    exit(-1);
+	} else {
+	    printf("    Expecting %d 'extra' nodes\n", excount);
+	}
+
+	for ( i = 1; i <= excount; i++ ) {
+	    fscanf(fd, "%d %lf %lf %lf\n", &junki, 
+		   &exnodes[i][0], &exnodes[i][1], &exnodes[i][2]);
+	    printf("(extra) %d %.2f %.2f %.2f\n", 
+		    i, exnodes[i][0], exnodes[i][1], exnodes[i][2]);
+	}
+	fclose(fd);
+    }
+
+    printf("Creating node file:  %s\n", file);
+    fd = fopen(file, "w");
+
+    // first count regular nodes to generate header
+    count = 0;
+    for ( j = rowmin; j <= rowmax; j++ ) {
+	for ( i = colmin; i <= colmax; i++ ) {
+	    if ( output_data[i][j] > -9000.0 ) {
+		count++;
+	    }
+	}
+	// printf("    count = %d\n", count);
+    }
+    fprintf(fd, "%d 2 1 0\n", count + excount);
+
+    // now write out extra node data
+    for ( i = 1; i <= excount; i++ ) {
+	fprintf(fd, "%d %.2f %.2f %.2f\n", 
+		i, exnodes[i][0], exnodes[i][1], exnodes[i][2]);
+    }
+
+    // write out actual node data
+    count = excount + 1;
+    for ( j = rowmin; j <= rowmax; j++ ) {
+	for ( i = colmin; i <= colmax; i++ ) {
+	    if ( output_data[i][j] > -9000.0 ) {
+		fprintf(fd, "%d %.2f %.2f %.2f\n", 
+			count++, 
+			originx + (double)i * col_step, 
+			originy + (double)j * row_step,
+			output_data[i][j]);
+	    }
+	}
+	// printf("    count = %d\n", count);
+    }
+
+    fclose(fd);
+}
+#endif
+
+
+FGDem::~FGDem( void ) {
+    // printf("class FGDem DEstructor called.\n");
+    delete [] dem_data;
+    delete [] output_data;
+}
+
+
+// $Log$
+// Revision 1.27  1999/03/25 19:04:36  curt
+// Minor tweaks related to FGBucket usage.
+//
+// Revision 1.26  1999/03/13 17:40:37  curt
+// Moved point interpolation and least squares fitting to contruction program
+// area.
+// Moved leastsqs.* to Lib/Math/
+//
+// Revision 1.25  1999/03/12 22:53:07  curt
+// Added a routine to dump out the portion of the dem data covered by a
+// specified bucket.  Other changes related to needs of scenery tools overhaul.
+//
+// Revision 1.24  1999/03/11 23:31:56  curt
+// Tweaks to use newbucket.hxx
+//
+// Revision 1.23  1999/03/10 01:09:12  curt
+// Tweaks to go along with scenery tools overhaul.
+// Added a new constructor that accepts the file name.
+//
+// Revision 1.22  1999/01/19 20:56:56  curt
+// MacOS portability changes contributed by "Robert Puyol" <puyol@abvent.fr>
+//
+// Revision 1.21  1998/11/06 14:04:32  curt
+// Changes due to updates in fgstream.
+//
+// Revision 1.20  1998/10/28 19:38:20  curt
+// Elliminate some unnecessary win32 specific stuff (by Norman Vine)
+//
+// Revision 1.19  1998/10/22 21:59:19  curt
+// Fixed a couple subtle bugs that resulted from some of my c++ conversions.
+// One bug could cause a segfault on certain input, and the other bug could
+// cause the whole procedure to go balistic and generate huge files (also only
+// on rare input combinations.)
+//
+// Revision 1.18  1998/10/18 01:17:09  curt
+// Point3D tweaks.
+//
+// Revision 1.17  1998/10/16 19:08:12  curt
+// Portability updates from Bernie Bright.
+//
+// Revision 1.16  1998/10/02 21:41:39  curt
+// Fixes for win32.
+//
+// Revision 1.15  1998/09/21 20:53:59  curt
+// minor tweaks to clean a few additional things up after the rewrite.
+//
+// Revision 1.14  1998/09/19 17:59:45  curt
+// Use c++ streams (fg_gzifstream).  Also converted many character arrays to
+// the string class.
+//
+// Revision 1.13  1998/09/09 16:24:04  curt
+// Fixed a bug in the handling of exclude files which was causing
+// a crash by calling fclose() on an invalid file handle.
+//
+// Revision 1.12  1998/08/24 20:03:31  curt
+// Eliminated a possible memory overrun error.
+// Use the proper free() rather than the incorrect delete().
+//
+// Revision 1.11  1998/07/20 12:46:11  curt
+// When outputing to a .node file, first check for an optional
+// "index.node.ex" file in case there is a .poly file to go along with this
+// node file.  Include these nodes first since they are referenced by position
+// from the .poly file.  This is my first pass at adding an area "cutout"
+// feature to the terrain generation pipeline.
+//
+// Revision 1.10  1998/07/13 20:58:02  curt
+// .
+//
+// Revision 1.9  1998/07/13 15:29:49  curt
+// Added #ifdef HAVE_CONFIG_H
+//
+// Revision 1.8  1998/07/04 00:47:18  curt
+// typedef'd struct fgBUCKET.
+//
+// Revision 1.7  1998/06/05 18:14:39  curt
+// Abort out early when reading the "A" record if it doesn't look like
+// a proper DEM file.
+//
+// Revision 1.6  1998/05/02 01:49:21  curt
+// Fixed a bug where the wrong variable was being initialized.
+//
+// Revision 1.5  1998/04/25 15:00:32  curt
+// Changed "r" to "rb" in gzopen() options.  This fixes bad behavior in win32.
+//
+// Revision 1.4  1998/04/22 13:14:46  curt
+// Fixed a bug in zlib usage.
+//
+// Revision 1.3  1998/04/18 03:53:05  curt
+// Added zlib support.
+//
+// Revision 1.2  1998/04/14 02:43:27  curt
+// Used "new" to auto-allocate large DEM parsing arrays in class constructor.
+//
+// Revision 1.1  1998/04/08 22:57:22  curt
+// Adopted Gnu automake/autoconf system.
+//
+// Revision 1.3  1998/04/06 21:09:41  curt
+// Additional win32 support.
+// Fixed a bad bug in dem file parsing that was causing the output to be
+// flipped about x = y.
+//
+// Revision 1.2  1998/03/23 20:35:41  curt
+// Updated to use FG_EPSILON
+//
+// Revision 1.1  1998/03/19 02:54:47  curt
+// Reorganized into a class lib called fgDEM.
+//
+// Revision 1.1  1998/03/19 01:46:28  curt
+// Initial revision.
+//
diff --git a/Tools/DEM/dem.hxx b/Tools/DEM/dem.hxx
new file mode 100644
index 000000000..46849e3a4
--- /dev/null
+++ b/Tools/DEM/dem.hxx
@@ -0,0 +1,210 @@
+// dem.hxx -- DEM management class
+//
+// Written by Curtis Olson, started March 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _DEM_HXX
+#define _DEM_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Bucket/newbucket.hxx>
+#include <Misc/fgstream.hxx>
+
+
+#define DEM_SIZE 1200
+#define DEM_SIZE_1 1201
+
+
+class FGDem {
+
+private:
+
+    // file pointer for input
+    // gzFile fd;
+    fg_gzifstream *in;
+
+    // coordinates (in arc seconds) of south west corner
+    double originx, originy;
+    
+    // number of columns and rows
+    int cols, rows;
+    
+    // Distance between column and row data points (in arc seconds)
+    double col_step, row_step;
+    
+    // pointers to the actual grid data allocated here
+    float (*dem_data)[DEM_SIZE_1];
+    float (*output_data)[DEM_SIZE_1];
+
+    // Current "A" Record Information
+    char dem_description[80], dem_quadrangle[80];
+    double dem_x1, dem_y1, dem_x2, dem_y2, dem_x3, dem_y3, dem_x4, dem_y4;
+    double dem_z1, dem_z2;
+    int dem_resolution, dem_num_profiles;
+  
+    // Current "B" Record Information
+    int prof_col, prof_row;
+    int prof_num_cols, prof_num_rows;
+    double prof_x1, prof_y1;
+    int prof_data;
+
+    // temporary values for the class to use
+    char option_name[32];
+    int do_data;
+    int cur_col, cur_row;
+
+    // return next token from input stream
+    string next_token();
+
+    // return next integer from input stream
+    int next_int();
+
+    // return next double from input stream
+    double next_double();
+
+    // return next exponential num from input stream
+    double next_exp();
+
+public:
+
+    // Constructor
+    FGDem( void );
+    FGDem( const string& file );
+
+    // Destructor
+    ~FGDem( void );
+
+    // open a DEM file (use "-" if input is coming from stdin)
+    int open ( const string& file );
+
+    // close a DEM file
+    int close();
+
+    // parse a DEM file
+    int parse();
+
+    // read and parse DEM "A" record
+    int read_a_record();
+
+    // read and parse DEM "B" record
+    void read_b_record();
+
+    // write out the area of data covered by the specified bucket.
+    // Data is written out column by column starting at the lower left
+    // hand corner.
+    int write_area( const string& root, FGBucket& b, bool compress );
+
+#if 0
+    // return the current altitude based on grid data.  We should
+    // rewrite this to interpolate exact values, but for now this is
+    // good enough
+    double interpolate_altitude( double lon, double lat );
+
+    // Use least squares to fit a simpler data set to dem data
+    void fit( double error, FGBucket& p );
+
+    // Initialize output mesh structure
+    void outputmesh_init( void );
+
+    // Get the value of a mesh node
+    double outputmesh_get_pt( int i, int j );
+
+    // Set the value of a mesh node
+    void outputmesh_set_pt( int i, int j, double value );
+
+    // Write out a node file that can be used by the "triangle" program
+    void outputmesh_output_nodes( const string& fg_root, FGBucket& p );
+#endif
+
+    // Informational methods
+    inline double get_originx() const { return originx; }
+    inline double get_originy() const { return originy; }
+    inline int get_cols() const { return cols; }
+    inline int get_rows() const { return rows; }
+    inline double get_col_step() const { return col_step; }
+    inline double get_row_step() const { return row_step; }
+};
+
+
+#endif // _DEM_HXX
+
+
+// $Log$
+// Revision 1.13  1999/03/13 17:40:39  curt
+// Moved point interpolation and least squares fitting to contruction program
+// area.
+// Moved leastsqs.* to Lib/Math/
+//
+// Revision 1.12  1999/03/12 22:53:09  curt
+// Added a routine to dump out the portion of the dem data covered by a
+// specified bucket.  Other changes related to needs of scenery tools overhaul.
+//
+// Revision 1.11  1999/03/11 23:31:57  curt
+// Tweaks to use newbucket.hxx
+//
+// Revision 1.10  1999/03/10 01:09:13  curt
+// Tweaks to go along with scenery tools overhaul.
+// Added a new constructor that accepts the file name.
+//
+// Revision 1.9  1998/10/16 19:08:14  curt
+// Portability updates from Bernie Bright.
+//
+// Revision 1.8  1998/09/19 17:59:46  curt
+// Use c++ streams (fg_gzifstream).  Also converted many character arrays to
+// the string class.
+//
+// Revision 1.7  1998/07/04 00:47:19  curt
+// typedef'd struct fgBUCKET.
+//
+// Revision 1.6  1998/06/05 18:14:40  curt
+// Abort out early when reading the "A" record if it doesn't look like
+// a proper DEM file.
+//
+// Revision 1.5  1998/04/22 13:14:46  curt
+// Fixed a bug in zlib usage.
+//
+// Revision 1.4  1998/04/21 17:03:41  curt
+// Prepairing for C++ integration.
+//
+// Revision 1.3  1998/04/18 03:53:06  curt
+// Added zlib support.
+//
+// Revision 1.2  1998/04/14 02:43:28  curt
+// Used "new" to auto-allocate large DEM parsing arrays in class constructor.
+//
+// Revision 1.1  1998/04/08 22:57:23  curt
+// Adopted Gnu automake/autoconf system.
+//
+// Revision 1.2  1998/03/23 20:35:42  curt
+// Updated to use FG_EPSILON
+//
+// Revision 1.1  1998/03/19 02:54:47  curt
+// Reorganized into a class lib called fgDEM.
+//
+// Revision 1.1  1998/03/19 01:46:29  curt
+// Initial revision.
+//
diff --git a/Tools/DemChop/Makefile.am b/Tools/DemChop/Makefile.am
new file mode 100644
index 000000000..9103e673b
--- /dev/null
+++ b/Tools/DemChop/Makefile.am
@@ -0,0 +1,58 @@
+#---------------------------------------------------------------------------
+# Makefile
+#
+# Written by Curtis Olson, started March 1999.
+#
+# Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+bin_PROGRAMS = demchop
+
+demchop_SOURCES = \
+	demchop.cxx point2d.hxx
+
+demchop_LDADD = \
+	$(top_builddir)/Tools/Lib/DEM/libDEM.a \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(top_builddir)/Lib/Misc/libMisc.a \
+	$(top_builddir)/Lib/Debug/libDebug.a \
+	$(top_builddir)/Lib/zlib/libz.a \
+	$(base_LIBS)
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib -I$(top_builddir)/Tools/Lib
+
+# We can't build this with "-O2" (optimization) since this causes a seg fault
+# I haven't found a way to strip this out of the CXXFLAGS, so I'm just
+# setting it to "-g"
+# CXXFLAGS = -g 
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.3  1999/03/17 23:51:07  curt
+# Removed forced -g compiler flag.
+#
+# Revision 1.2  1999/03/12 22:53:45  curt
+# First working version!
+#
+# Revision 1.1  1999/03/10 01:02:54  curt
+# Initial revision.
+#
diff --git a/Tools/DemChop/demchop.cxx b/Tools/DemChop/demchop.cxx
new file mode 100644
index 000000000..8182c8d8e
--- /dev/null
+++ b/Tools/DemChop/demchop.cxx
@@ -0,0 +1,113 @@
+// demchop.cxx -- chop up a dem file into it's corresponding pieces and stuff
+//                them into the workspace directory
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1997  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <Include/compiler.h>
+
+#include STL_STRING
+
+#include <Debug/logstream.hxx>
+#include <Bucket/newbucket.hxx>
+#include <DEM/dem.hxx>
+
+#include "point2d.hxx"
+
+FG_USING_STD(string);
+
+
+int main(int argc, char **argv) {
+    /*
+    fgDEM dem;
+    FGBucket p;
+    string fg_root;
+    string filename;
+    double error;
+    int i, j;
+    */
+
+    fglog().setLogLevels( FG_ALL, FG_DEBUG );
+
+    if ( argc != 3 ) {
+	FG_LOG( FG_GENERAL, FG_ALERT, 
+		"Usage " << argv[0] << " <dem_file> <work_dir>" );
+	exit(-1);
+    }
+
+    string dem_name = argv[1];
+    string work_dir = argv[2];
+    string command = "mkdir -p " + work_dir;
+    system( command.c_str() );
+
+    FGDem dem(dem_name);
+    dem.parse();
+    dem.close();
+
+    point2d min, max;
+    min.x = dem.get_originx() / 3600.0 + FG_HALF_BUCKET_SPAN;
+    min.y = dem.get_originy() / 3600.0 + FG_HALF_BUCKET_SPAN;
+    FGBucket b_min( min.x, min.y );
+
+    max.x = (dem.get_originx() + dem.get_cols() * dem.get_col_step()) / 3600.0 
+	- FG_HALF_BUCKET_SPAN;
+    max.y = (dem.get_originy() + dem.get_rows() * dem.get_row_step()) / 3600.0 
+	- FG_HALF_BUCKET_SPAN;
+    FGBucket b_max( max.x, max.y );
+
+    if ( b_min == b_max ) {
+	dem.write_area( work_dir, b_min, true );
+    } else {
+	FGBucket b_cur;
+	int dx, dy, i, j;
+
+	fgBucketDiff(b_min, b_max, &dx, &dy);
+	cout << "DEM file spans tile boundaries" << endl;
+	cout << "  dx = " << dx << "  dy = " << dy << endl;
+
+	if ( (dx > 20) || (dy > 20) ) {
+	    cout << "somethings really wrong!!!!" << endl;
+	    exit(-1);
+	}
+
+	for ( j = 0; j <= dy; j++ ) {
+	    for ( i = 0; i <= dx; i++ ) {
+		b_cur = fgBucketOffset(min.x, min.y, i, j);
+		dem.write_area( work_dir, b_cur, true );
+	    }
+	}
+    }
+
+    return 0;
+}
+
+
+// $Log$
+// Revision 1.3  1999/03/12 22:53:46  curt
+// First working version!
+//
+// Revision 1.2  1999/03/10 16:09:44  curt
+// Hacking towards the first working version.
+//
+// Revision 1.1  1999/03/10 01:02:54  curt
+// Initial revision.
+//
diff --git a/Tools/DemChop/point2d.cxx b/Tools/DemChop/point2d.cxx
new file mode 100644
index 000000000..817015f8a
--- /dev/null
+++ b/Tools/DemChop/point2d.cxx
@@ -0,0 +1,44 @@
+// point2d.cxx -- 2d coordinate routines
+//
+// Written by Curtis Olson, started September 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#include <math.h>
+
+#include "point2d.hxx"
+
+
+// convert a point from cartesian to polar coordinates
+point2d cart_to_polar_2d(point2d in) {
+    point2d result;
+    result.dist = sqrt( in.x * in.x + in.y * in.y );
+    result.theta = atan2(in.y, in.x);    
+
+    return(result);
+}
+
+
+// $Log$
+// Revision 1.1  1999/03/10 01:02:54  curt
+// Initial revision.
+//
diff --git a/Tools/DemChop/point2d.hxx b/Tools/DemChop/point2d.hxx
new file mode 100644
index 000000000..e4df44488
--- /dev/null
+++ b/Tools/DemChop/point2d.hxx
@@ -0,0 +1,62 @@
+// point2d.hxx -- define a 2d point class
+//
+// Written by Curtis Olson, started February 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#ifndef _POINT2D_HXX
+#define _POINT2D_HXX
+
+
+#include <list>
+
+
+class point2d {
+public:
+    union {
+	double x;
+	double dist;
+	double lon;
+    };
+    union {
+	double y;
+	double theta;
+	double lat;
+    };
+};
+
+
+// convert a point from cartesian to polar coordinates
+point2d cart_to_polar_2d(point2d in);
+
+
+#endif // _POINT2D_HXX
+
+
+// $Log$
+// Revision 1.1  1999/03/10 16:09:45  curt
+// Hacking towards the first working version.
+//
+// Revision 1.1  1998/09/04 23:04:53  curt
+// Beginning of convex hull genereration routine.
+//
+//
diff --git a/Tools/DemInfo/Makefile.am b/Tools/DemInfo/Makefile.am
new file mode 100644
index 000000000..b3d8d3aa7
--- /dev/null
+++ b/Tools/DemInfo/Makefile.am
@@ -0,0 +1,70 @@
+#---------------------------------------------------------------------------
+# Makefile
+#
+# Written by Curtis Olson, started June 1998.
+#
+# Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+bin_PROGRAMS = deminfo
+
+deminfo_SOURCES = \
+	deminfo.cxx
+
+deminfo_LDADD = \
+	$(top_builddir)/Tools/Lib/DEM/libDEM.a \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(top_builddir)/Lib/Misc/libMisc.a \
+	$(top_builddir)/Lib/zlib/libz.a \
+	$(base_LIBS)
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib -I$(top_builddir)/Tools/Lib
+
+# We can't build this with "-O2" (optimization) since this causes a seg fault
+# I haven't found a way to strip this out of the CXXFLAGS, so I'm just
+# setting it to "-g"
+# CXXFLAGS = -g 
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.7  1999/03/17 23:51:14  curt
+# Removed forced -g compiler flag.
+#
+# Revision 1.6  1999/03/08 22:00:46  curt
+# Lots of directory layout reorganization.
+#
+# Revision 1.5  1999/02/01 21:09:27  curt
+# Moving location of Lib/DEM/ to Tools/DEM/
+#
+# Revision 1.4  1998/11/04 23:01:48  curt
+# Changes to the automake/autoconf system to reduce the number of libraries
+# that are unnecessarily linked into the various executables.
+#
+# Revision 1.3  1998/09/19 18:01:21  curt
+# Support for changes to libDEM.a
+#
+# Revision 1.2  1998/07/30 23:49:24  curt
+# Removed libtool support.
+#
+# Revision 1.1  1998/06/04 19:18:04  curt
+# Initial revision.
+#
diff --git a/Tools/DemInfo/deminfo.cxx b/Tools/DemInfo/deminfo.cxx
new file mode 100644
index 000000000..75f9c2f55
--- /dev/null
+++ b/Tools/DemInfo/deminfo.cxx
@@ -0,0 +1,78 @@
+// deminfo.cxx -- main loop
+//
+// Written by Curtis Olson, started June 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <string>
+
+#include <DEM/dem.hxx>
+
+
+// static float dem_data[DEM_SIZE_1][DEM_SIZE_1];
+// static float output_data[DEM_SIZE_1][DEM_SIZE_1];
+
+
+int main(int argc, char **argv) {
+    // DEM data
+    FGDem dem;
+    string filename;
+    double error;
+    int i, j;
+
+    if ( argc != 2 ) {
+	printf("Usage: %s <file.dem>\n", argv[0]);
+	exit(-1);
+    }
+
+    // set input dem file name
+    filename = argv[1];
+
+    dem.open(filename);
+
+    if ( dem.read_a_record() ) {
+	cout << "Results = " << filename << "  "
+	     << dem.get_originx() / 3600.0 << " "
+	     << dem.get_originy() / 3600.0 << "\n";
+    } else {
+	cout << "Error parsing DEM file.\n";
+    }
+
+    dem.close();
+
+    return(0);
+}
+
+
+// $Log$
+// Revision 1.3  1999/03/12 22:54:04  curt
+// Convert fgDEM to FGDem ...
+//
+// Revision 1.2  1998/09/19 18:01:22  curt
+// Support for changes to libDEM.a
+//
+// Revision 1.1  1998/06/04 19:18:05  curt
+// Initial revision.
+//
diff --git a/Tools/DemInfo/gather-dem-info.pl b/Tools/DemInfo/gather-dem-info.pl
new file mode 100755
index 000000000..746d7120e
--- /dev/null
+++ b/Tools/DemInfo/gather-dem-info.pl
@@ -0,0 +1,61 @@
+#!/usr/bin/perl
+
+#---------------------------------------------------------------------------
+# script to gather DEM position info so we can associate a file name with a
+# position.
+#
+# Written by Curtis Olson, started June 1998.
+#
+# Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+if ( $#ARGV < 0 ) {
+    die "Usage: $0 search_dir ... \n";
+}
+
+while ( $dir = shift(@ARGV) ) {
+    # print "processing $dir\n";
+
+    @allfiles = `find $dir -print`;
+
+    foreach $file (@allfiles) {
+	chop($file);
+	# print "trying $file\n";
+	if ( -f $file ) {
+	    # print "really trying $file\n";
+	    open ( INFO, "./deminfo $file |" );
+	    while ( <INFO> ) {
+		if ( m/Results = / ) {
+		    $_ =~ s/Results = //;
+		    print $_;
+		}
+	    }
+	    close(INFO);
+	}
+    }
+}
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.1  1998/06/04 19:18:06  curt
+# Initial revision.
+#
diff --git a/Tools/DemRaw2ascii/Makefile.am b/Tools/DemRaw2ascii/Makefile.am
new file mode 100644
index 000000000..b638e2e96
--- /dev/null
+++ b/Tools/DemRaw2ascii/Makefile.am
@@ -0,0 +1,47 @@
+#---------------------------------------------------------------------------
+# Makefile
+#
+# Written by Curtis Olson, started February 1998.
+#
+# Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+bin_PROGRAMS = raw2ascii
+
+raw2ascii_SOURCES = main.c rawdem.c rawdem.h
+
+raw2ascii_LDADD = $(base_LIBS)
+
+INCLUDES += 
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.3  1998/11/04 23:01:50  curt
+# Changes to the automake/autoconf system to reduce the number of libraries
+# that are unnecessarily linked into the various executables.
+#
+# Revision 1.2  1998/04/24 00:44:04  curt
+# Added zlib support.
+#
+# Revision 1.1  1998/04/18 03:59:44  curt
+# Incorporated into gnu automake/autoconf system.
+#
diff --git a/Tools/DemRaw2ascii/main.c b/Tools/DemRaw2ascii/main.c
new file mode 100644
index 000000000..8cc0f2ffa
--- /dev/null
+++ b/Tools/DemRaw2ascii/main.c
@@ -0,0 +1,90 @@
+/* main.c -- main loop
+ *
+ * Written by Curtis Olson, started February 1998.
+ *
+ * Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * $Id$
+ * (Log is kept at end of this file)
+ */
+
+
+#include <stdio.h>
+#include <string.h>
+
+#include "rawdem.h"
+
+
+int main(int argc, char **argv) {
+    fgRAWDEM raw;
+    char basename[256], output_dir[256], hdr_file[256], dem_file[256];
+    int i, start_lat, end_lat;
+
+    if ( argc != 3 ) {
+	printf("Usage: %s <input_file_basename> <output_dir>\n", argv[0]);
+	exit(-1);
+    }
+
+    /* get basename */
+    strcpy(basename, argv[1]);
+
+    /* get output dir */
+    strcpy(output_dir, argv[2]);
+
+    /* generate header file name */
+    strcpy(hdr_file, basename);
+    strcat(hdr_file, ".HDR");
+
+    /* generate input file name (raw dem) */
+    strcpy(dem_file, basename);
+    strcat(dem_file, ".DEM");
+    
+    printf("Header file = %s  Input file = %s\n", hdr_file, dem_file);
+    printf("Output Directory = %s\n", output_dir);
+
+    /* scan the header file and extract important values */
+    rawReadDemHdr(&raw, hdr_file);
+
+    /* open up the raw data file */
+    rawOpenDemFile(&raw, dem_file);
+
+    end_lat = raw.rooty / 3600;
+    start_lat = end_lat - ((raw.nrows * raw.ydim) / 3600);
+    printf("Latitude ranges from %d to %d\n", start_lat, end_lat);
+
+    for ( i = start_lat + 1; i <= end_lat; i++ ) {
+	rawProcessStrip(&raw, i, output_dir);
+    }
+
+    /* close the raw data file */
+    rawCloseDemFile(&raw);
+
+    return(0);
+}
+
+
+/* $Log$
+/* Revision 1.3  1998/03/03 21:54:50  curt
+/* Changes to process 30 arcsec binary DEM files.
+/*
+ * Revision 1.2  1998/03/03 13:10:28  curt
+ * Close to a working version.
+ *
+ * Revision 1.1  1998/03/02 23:31:01  curt
+ * Initial revision.
+ *
+ */
diff --git a/Tools/DemRaw2ascii/rawdem.c b/Tools/DemRaw2ascii/rawdem.c
new file mode 100644
index 000000000..8411035bd
--- /dev/null
+++ b/Tools/DemRaw2ascii/rawdem.c
@@ -0,0 +1,485 @@
+/* rawdem.c -- library of routines for processing raw dem files (30 arcsec)
+ *
+ * Written by Curtis Olson, started February 1998.
+ *
+ * Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * $Id$
+ * (Log is kept at end of this file)
+ */
+
+
+#ifdef HAVE_CONFIG_H
+#  include <config.h>
+#endif
+
+#include <math.h>      /* rint() */
+#include <stdio.h>
+#include <stdlib.h>    /* atoi() atof() */
+#include <string.h>    /* swab() */
+
+#include <sys/types.h> /* open() */
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <unistd.h>    /* close() */
+
+#include "rawdem.h"
+
+
+/* Read the DEM header to determine various key parameters for this
+ * DEM file */
+void rawReadDemHdr( fgRAWDEM *raw, char *hdr_file ) {
+    FILE *hdr;
+    char line[256], key[256], value[256];
+    int i, len, offset;
+    double tmp;
+
+    if ( (hdr = fopen(hdr_file, "r")) == NULL ) {
+	printf("Error opening DEM header file: %s\n", hdr_file);
+	exit(-1);
+    }
+
+    /* process each line */
+    while ( (fgets(line, 256, hdr) != NULL) ) {
+	/* printf("%s", line); */
+	len = strlen(line);
+
+	/* extract key */
+	i = 0;
+	while ( (line[i] != ' ') && (i < len) ) {
+	    key[i] = line[i];
+	    i++;
+	}
+	key[i] = '\0';
+
+	/* skip middle space */
+	while ( (line[i] == ' ') && (i < len) ) {
+	    i++;
+	}
+	offset = i;
+
+	/* extract value */
+	while ( (line[i] != '\n') && (i < len) ) {
+	    value[i-offset] = line[i];
+	    i++;
+	}
+	value[i-offset] = '\0';
+	/* printf("key='%s'  value='%s'\n", key, value); */
+
+	if ( strcmp(key, "NROWS") == 0 ) {
+	    raw->nrows = atoi(value);
+	} else if ( strcmp(key, "NCOLS") == 0 ) {
+	    raw->ncols = atoi(value);
+	} else if ( strcmp(key, "ULXMAP") == 0 ) {
+	    tmp = atof(value);
+#ifdef HAVE_RINT
+	    raw->ulxmap = (int)rint(tmp * 3600.0); /* convert to arcsec */
+#else
+#  error Port me rint()
+#endif
+	} else if ( strcmp(key, "ULYMAP") == 0 ) {
+	    tmp = atof(value);
+#ifdef HAVE_RINT
+	    raw->ulymap = (int)rint(tmp * 3600.0); /* convert to arcsec */
+#else
+#  error Port me rint()
+#endif
+	} else if ( strcmp(key, "XDIM") == 0 ) {
+	    tmp = atof(value);
+#ifdef HAVE_RINT
+	    raw->xdim = (int)rint(tmp * 3600.0);   /* convert to arcsec */
+#else
+#  error Port me rint()
+#endif
+	} else if ( strcmp(key, "YDIM") == 0 ) {
+	    tmp = atof(value);
+#ifdef HAVE_RINT
+	    raw->ydim = (int)rint(tmp * 3600.0);   /* convert to arcsec */
+#else
+#  error Port me rint()
+#endif
+	} else {
+	    /* ignore for now */
+	}
+    }
+
+    raw->rootx = raw->ulxmap - (raw->xdim / 2);
+    raw->rooty = raw->ulymap + (raw->ydim / 2);
+
+    printf("%d %d %d %d %d %d %d %d\n", raw->nrows, raw->ncols,
+           raw->ulxmap, raw->ulymap, raw->rootx, raw->rooty, raw->xdim,
+	   raw->ydim);
+}
+
+
+/* Open a raw DEM file. */
+void rawOpenDemFile( fgRAWDEM *raw, char *raw_dem_file ) {
+    printf("Opening Raw DEM file: %s\n", raw_dem_file);
+    if ( (raw->fd = open(raw_dem_file ,O_RDONLY)) == -1 ) {
+	printf("Error opening Raw DEM file: %s\n", raw_dem_file);
+	exit(-1);
+    }
+}
+
+
+/* Close a raw DEM file. */
+void rawCloseDemFile( fgRAWDEM *raw ) {
+    close(raw->fd);
+}
+
+
+/* Advance file pointer position to correct latitude (row) */
+void rawAdvancePosition( fgRAWDEM *raw, int arcsec ) {
+    long offset, result;
+
+    offset = 2 * raw->ncols * ( arcsec  / raw->ydim );
+
+    if ( (result = lseek(raw->fd, offset, SEEK_SET)) == -1 ) {
+	printf("Error lseek filed trying to offset by %ld\n", offset);
+	exit(-1);
+    }
+
+    printf("Successful seek ahead of %ld bytes\n", result);
+}
+
+
+/* Read the next row of data */
+void rawReadNextRow( fgRAWDEM *raw, int index ) {
+    char buf[MAX_COLS_X_2];
+    int i, result;
+
+    if ( raw->ncols > MAX_ROWS ) {
+	printf("Error, buf needs to be bigger in rawReadNextRow()\n");
+	exit(-1);
+    }
+
+    /* printf("Attempting to read %d bytes\n", 2 * raw->ncols); */
+    result = read(raw->fd, buf, 2 * raw->ncols);
+    /* printf("Read %d bytes\n", result); */
+
+    /* reverse byte order */
+    /* it would be nice to test in advance some how if we need to do
+     * this */
+    /* swab(frombuf, tobuf, 2 * raw->ncols); */
+
+    for ( i = 0; i < raw->ncols; i++ ) {
+	/* printf("hi = %d  lo = %d\n", buf[2*i], buf[2*i + 1]); */
+	raw->strip[index][i] = ( (buf[2*i] + 1) << 8 ) + buf[2*i + 1];
+    }
+}
+
+
+/* Convert from pixel centered values to pixel corner values.  This is
+   accomplished by taking the average of the closes center nodes.  In
+   the following diagram "x" marks the data point location:
+
+   +-----+        x-----x
+   |     |        |     |
+   |  x  |  ===>  |     |
+   |     |        |     |
+   +-----+        x-----x
+   
+   */
+void rawConvertCenter2Edge( fgRAWDEM *raw ) {
+    int i, j;
+
+    /* derive corner nodes */
+    raw->edge[0][0]     = raw->center[0][0];
+    raw->edge[120][0]   = raw->center[119][0];
+    raw->edge[120][120] = raw->center[119][119];
+    raw->edge[0][120]   = raw->center[0][119];
+
+    /* derive edge nodes */
+    for ( i = 1; i < 120; i++ ) {
+	raw->edge[i][0] = (raw->center[i-1][0] + raw->center[i][0]) / 2.0;
+	raw->edge[i][120] = (raw->center[i-1][119] + raw->center[i][119]) / 2.0;
+	raw->edge[0][i] = (raw->center[0][i-1] + raw->center[0][i]) / 2.0;
+	raw->edge[120][i] = (raw->center[119][i-1] + raw->center[119][i]) / 2.0;
+    }
+
+    /* derive internal nodes */
+    for ( j = 1; j < 120; j++ ) {
+	for ( i = 1; i < 120; i++ ) {
+	    raw->edge[i][j] = ( raw->center[i-1][j-1] + 
+				raw->center[i]  [j-1] +
+				raw->center[i]  [j]   +
+				raw->center[i-1][j] ) / 4;
+	}
+    }
+}
+
+
+/* Dump out the ascii format DEM file */
+void rawDumpAsciiDEM( fgRAWDEM *raw, char *path, int ilon, int ilat ) {
+    char outfile[256];
+    char tmp[256];
+    int lon, lat;
+    char lon_sign, lat_sign;
+    int i, j;
+    FILE *fd;
+
+    /* Generate output file name */
+
+    if ( ilon >= 0 ) {
+	lon = ilon;
+	lon_sign = 'e';
+    } else {
+	lon = -ilon;
+	lon_sign = 'w';
+    }
+
+    if ( ilat >= 0 ) {
+	lat = ilat;
+	lat_sign = 'n';
+    } else {
+	lat = -ilat;
+	lat_sign = 's';
+    }
+
+    sprintf(outfile, "%s/%c%03d%c%03d.dem", path, lon_sign, lon, lat_sign, lat);
+
+    printf("outfile = %s\n", outfile);
+
+    if ( (fd = fopen(outfile, "w")) == NULL ) {
+	printf("Error opening output file = %s\n", outfile);
+	exit(-1);
+    }
+
+    /* Dump the "A" record */
+
+    /* print descriptive header (144 characters) */
+    sprintf(tmp, "%s - Generated from a 30 arcsec binary DEM", outfile);
+    fprintf(fd, "%-144s", tmp);
+
+    /* DEM level code, 3 reflects processing by DMA */
+    fprintf(fd, "%6d", 1);
+
+    /* Pattern code, 1 indicates a regular elevation pattern */
+    fprintf(fd, "%6d", 1);
+
+    /* Planimetric reference system code, 0 indicates geographic 
+     * coordinate system. */
+    fprintf(fd, "%6d", 0);
+
+    /* Zone code */
+    fprintf(fd, "%6d", 0);
+
+    /* Map projection parameters (ignored) */
+    for ( i = 0; i < 15; i++ ) {
+        fprintf(fd, "%6.1f%18s", 0.0, "");
+    }
+
+   /* Units code, 3 represents arc-seconds as the unit of measure for
+     * ground planimetric coordinates throughout the file. */
+    fprintf(fd, "%6d", 3);
+
+    /* Units code; 2 represents meters as the unit of measure for
+     * elevation coordinates throughout the file. */
+    fprintf(fd, "%6d", 2);
+
+    /* Number (n) of sides in the polygon which defines the coverage of
+     * the DEM file (usually equal to 4). */
+    fprintf(fd, "%6d", 4);
+
+    /* Ground coordinates of bounding box in arc-seconds */
+    fprintf(fd, "%20.15fD+06", ilon * 3600.0 / 1000000.0);
+    fprintf(fd, "%20.15fD+06", ilat * 3600.0 / 1000000.0);
+
+    fprintf(fd, "%20.15fD+06", ilon * 3600.0 / 1000000.0);
+    fprintf(fd, "%20.15fD+06", (ilat+1) * 3600.0 / 1000000.0);
+
+    fprintf(fd, "%20.15fD+06", (ilon+1) * 3600.0 / 1000000.0);
+    fprintf(fd, "%20.15fD+06", (ilat+1) * 3600.0 / 1000000.0);
+
+    fprintf(fd, "%20.15fD+06", (ilon+1) * 3600.0 / 1000000.0);
+    fprintf(fd, "%20.15fD+06", (ilat) * 3600.0 / 1000000.0);
+
+    /* Minimum/maximum elevations in meters */
+    fprintf(fd, "   %20.15E", (double)raw->tmp_min);
+    fprintf(fd, "   %20.15E", (double)raw->tmp_max);
+
+    /* Counterclockwise angle from the primary axis of ground
+     * planimetric referenced to the primary axis of the DEM local
+     * reference system. */
+    fprintf(fd, "%6.1f", 0.0);
+
+    /* Accuracy code; 0 indicates that a record of accuracy does not
+     * exist and that no record type C will follow. */
+    fprintf(fd, "%24d", 0);
+
+    /* DEM spacial resolution.  Usually (3,3) (3,6) or (3,9)
+     * depending on latitude */
+    fprintf(fd, "%12.6E", 30.0);
+    fprintf(fd, "%12.6E", 30.0);
+
+    /* accuracy code */
+    fprintf(fd, "%12.6E", 1.0);
+    
+    /* dimension of arrays to follow (1)*/
+    fprintf(fd, "%6d", 1);
+
+    /* number of profiles */
+    fprintf(fd, "%6d", 3600 / raw->ydim + 1);
+
+    /* pad the end */
+    fprintf(fd, "%160s", "");
+
+
+    /* Dump "B" records */
+
+    for ( j = 0; j <= 120; j++ ) {
+	/* row / column id of this profile */
+	fprintf(fd, "%6d%6d", 1, j + 1);
+
+	/* Number of rows and columns (elevation points) in this
+           profile */
+	fprintf(fd, "%6d%6d", 3600 / raw->xdim + 1, 1);
+
+	/* Ground planimetric coordinates (arc-seconds) of the first
+	 * elevation in the profile */
+	fprintf(fd, "%20.15fD+06", ilon * 3600.0 / 1000000.0);
+	fprintf(fd, "%20.15fD+06", (ilat * 3600.0 + j * raw->ydim) / 1000000.0);
+
+	/* Elevation of local datum for the profile.  Always zero for
+	 * 1-degree DEM, the reference is mean sea level. */
+	fprintf(fd, "%6.1f", 0.0);
+	fprintf(fd, "%18s", "");
+
+	/* Minimum and maximum elevations for the profile. */
+	fprintf(fd, "   %20.15E", 0.0);
+	fprintf(fd, "   %20.15E", 0.0);
+
+	/* One (usually) dimensional array (1,prof_num_cols) of
+           elevations */
+	for ( i = 0; i <= 120; i++ ) {
+	    fprintf(fd, "%6.0f", raw->edge[j][i]);
+	}
+    }
+
+    fprintf(fd, "\n");
+
+    fclose(fd);
+}
+
+
+/* Read a horizontal strip of (1 vertical degree) from the raw DEM
+ * file specified by the upper latitude of the stripe specified in
+ * degrees.  The output the individual ASCII format DEM tiles.  */
+void rawProcessStrip( fgRAWDEM *raw, int lat_degrees, char *path ) {
+    int lat, yrange;
+    int i, j, index, row, col;
+    int min, max;
+    int span, num_degrees, tile_width;
+    int xstart, xend;
+
+    /* convert to arcsec */
+    lat = lat_degrees * 3600;
+
+    printf("Max Latitude = %d arcsec\n", lat);
+
+    /* validity check ... */
+    if ( (lat > raw->rooty) || 
+	 (lat < (raw->rooty - raw->nrows * raw->ydim + 1)) ) {
+	printf("Latitude out of range for this DEM file\n");
+	return;
+    }
+
+    printf ("Reading strip starting at %d (top and working down)\n", lat);
+
+    /* advance to the correct latitude */
+    rawAdvancePosition(raw, (raw->rooty - lat));
+
+    /* printf("short = %d\n", sizeof(short)); */
+
+    yrange = 3600 / raw->ydim;
+
+    for ( i = 0; i < yrange; i++ ) {
+	index = yrange - i - 1;
+	/* printf("About to read into row %d\n", index); */
+	rawReadNextRow(raw, index);
+
+	for ( j = 0; j < raw->ncols; j++ ) {
+	    if ( raw->strip[index][j] == -9999 ) {
+		/* map ocean to 0 for now */
+		raw->strip[index][j] = 0;
+	    } 
+	}
+    }
+
+    /* extract individual tiles from the strip */
+    span = raw->ncols * raw->xdim;
+    num_degrees = span / 3600;
+    tile_width = raw->ncols / num_degrees;
+    printf("span = %d  num_degrees = %d  width = %d\n", 
+	   span, num_degrees, tile_width);
+
+    for ( i = 0; i < num_degrees; i++ ) {
+	xstart = i * tile_width;
+	xend = xstart + 120;
+
+	min = 10000; max = -10000;
+	for ( row = 0; row < yrange; row++ ) {
+	    for ( col = xstart; col < xend; col++ ) {
+		/* Copy from strip to pixel centered tile.  Yep,
+                 * row/col are reversed here.  raw->strip is backwards
+                 * for convenience.  I am converting to [x,y] now. */
+		raw->center[col-xstart][row] = raw->strip[row][col];
+
+		if ( raw->strip[row][col] < min) {
+		    min = raw->strip[row][col];
+		}
+		
+		if ( raw->strip[row][col] > max) {
+		    max = raw->strip[row][col];
+		}
+	    }
+	}
+
+	raw->tmp_min = min;
+	raw->tmp_max = max;
+
+	/* Convert from pixel centered to pixel edge values */
+	rawConvertCenter2Edge(raw);
+
+	/* Dump out the ascii format DEM file */
+	rawDumpAsciiDEM(raw, path, (raw->rootx / 3600) + i, lat_degrees - 1);
+    }
+}
+
+
+/* $Log$
+/* Revision 1.6  1998/04/27 03:32:03  curt
+/* Wrapped rint()'s in #ifdef HAVE_RINT
+/*
+ * Revision 1.5  1998/04/18 03:59:46  curt
+ * Incorporated into gnu automake/autoconf system.
+ *
+ * Revision 1.4  1998/04/06 21:09:43  curt
+ * Additional win32 support.
+ * Fixed a bad bug in dem file parsing that was causing the output to be
+ * flipped about x = y.
+ *
+ * Revision 1.3  1998/03/03 13:10:29  curt
+ * Close to a working version.
+ *
+ * Revision 1.2  1998/03/03 02:04:01  curt
+ * Starting DEM Ascii format output routine.
+ *
+ * Revision 1.1  1998/03/02 23:31:01  curt
+ * Initial revision.
+ *
+ */
diff --git a/Tools/DemRaw2ascii/rawdem.h b/Tools/DemRaw2ascii/rawdem.h
new file mode 100644
index 000000000..8877b2eaa
--- /dev/null
+++ b/Tools/DemRaw2ascii/rawdem.h
@@ -0,0 +1,85 @@
+/* rawdem.h -- library of routines for processing raw dem files (30 arcsec)
+ *
+ * Written by Curtis Olson, started February 1998.
+ *
+ * Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * $Id$
+ * (Log is kept at end of this file)
+ */
+
+
+#ifndef _RAWDEM_H
+#define _RAWDEM_H
+
+
+#define MAX_ROWS 6000
+#define MAX_COLS 7200
+#define MAX_COLS_X_2 14400
+
+typedef struct {
+    /* header info */
+    int nrows;       /* number of rows */
+    int ncols;       /* number of cols */
+    int ulxmap;      /* X coord of center of upper left pixel in arcsec */
+    int ulymap;      /* Y coord of center of upper left pixel in arcsec */
+    int rootx;       /* X coord of upper left *edge* of DEM region in degrees */
+    int rooty;       /* Y coord of upper left *edge* of DEM region in degrees */
+    int xdim;        /* X dimension of a pixel */
+    int ydim;        /* Y dimension of a pixel */
+    int tmp_min;     /* current 1x1 degree tile minimum */
+    int tmp_max;     /* current 1x1 degree tile maximum */
+
+    /* file ptr */
+    int fd;          /* Raw DEM file descriptor */
+
+    /* storage area for a 1 degree high strip of data.  Note, for
+     * convenience this is in y,x order */
+    short strip[120][MAX_ROWS];
+
+    short center[120][120];  /* tile with data taken at center of pixel */
+    float edge[121][121];    /* tile with data converted to corners */
+} fgRAWDEM;
+
+
+/* Read the DEM header to determine various key parameters for this
+ * DEM file */
+void rawReadDemHdr( fgRAWDEM *raw, char *hdr_file );
+
+/* Open a raw DEM file. */
+void rawOpenDemFile( fgRAWDEM *raw, char *raw_dem_file );
+
+/* Close a raw DEM file. */
+void rawCloseDemFile( fgRAWDEM *raw );
+
+/* Read a horizontal strip of (1 vertical degree) from the raw DEM
+ * file specified by the upper latitude of the stripe specified in
+ * degrees.  The output the individual ASCII format DEM tiles.  */
+void rawProcessStrip( fgRAWDEM *raw, int lat_degrees, char *path );
+
+
+#endif /* _RAWDEM_H */
+
+
+/* $Log$
+/* Revision 1.2  1998/03/03 13:10:30  curt
+/* Close to a working version.
+/*
+ * Revision 1.1  1998/03/02 23:31:02  curt
+ * Initial revision.
+ *
+ */
diff --git a/Tools/FixNode/Makefile.am b/Tools/FixNode/Makefile.am
new file mode 100644
index 000000000..a245e6ac0
--- /dev/null
+++ b/Tools/FixNode/Makefile.am
@@ -0,0 +1,95 @@
+#---------------------------------------------------------------------------
+# Makefile
+#
+# Written by Curtis Olson, started October 1997.
+#
+# Copyright (C) 1997 - 1998  Curtis L. Olson  - curt@me.umn.edu
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+bin_PROGRAMS = fixnode
+
+fixnode_SOURCES = \
+	fixnode.cxx fixnode.hxx \
+	main.cxx
+
+fixnode_LDADD = \
+	$(top_builddir)/Tools/Lib/DEM/libDEM.a \
+        $(top_builddir)/Lib/Bucket/libBucket.a \
+        $(top_builddir)/Lib/Misc/libMisc.a \
+        $(top_builddir)/Lib/zlib/libz.a \
+	$(base_LIBS)
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib -I$(top_builddir)/Tools/Lib
+
+# We can't build this with "-O2" (optimization) since this causes a seg fault
+# I haven't found a way to strip this out of the CXXFLAGS, so I'm just
+# setting it to "-g"
+# CXXFLAGS = -g
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.10  1999/03/17 23:50:59  curt
+# Removed forced -g compiler flag.
+#
+# Revision 1.9  1999/03/08 22:00:45  curt
+# Lots of directory layout reorganization.
+#
+# Revision 1.8  1999/02/01 21:09:30  curt
+# Moving location of Lib/DEM/ to Tools/DEM/
+#
+# Revision 1.7  1998/11/04 23:01:51  curt
+# Changes to the automake/autoconf system to reduce the number of libraries
+# that are unnecessarily linked into the various executables.
+#
+# Revision 1.6  1998/09/19 20:43:50  curt
+# C++-ified and STL-ified the code.  Combined triload.* and fixnode.* into
+# a single file.
+#
+# Revision 1.5  1998/09/19 18:01:26  curt
+# Support for changes to libDEM.a
+#
+# Revision 1.4  1998/07/30 23:49:24  curt
+# Removed libtool support.
+#
+# Revision 1.3  1998/04/18 04:02:54  curt
+# Added zlib support in placed and other misc. tweaks.
+#
+# Revision 1.2  1998/04/14 02:26:02  curt
+# Code reorganizations.  Added a Lib/ directory for more general libraries.
+#
+# Revision 1.1  1998/04/08 23:05:54  curt
+# Adopted Gnu automake/autoconf system.
+#
+# Revision 1.4  1998/04/06 21:09:44  curt
+# Additional win32 support.
+# Fixed a bad bug in dem file parsing that was causing the output to be
+# flipped about x = y.
+#
+# Revision 1.3  1998/03/19 02:50:19  curt
+# Updated to support -lDEM class.
+#
+# Revision 1.2  1998/01/21 02:55:50  curt
+# Incorporated new make system from Bob Kuehne <rpk@sgi.com>.
+#
+# Revision 1.1  1997/11/27 00:17:32  curt
+# Initial revision.
+#
diff --git a/Tools/FixNode/fixnode.cxx b/Tools/FixNode/fixnode.cxx
new file mode 100644
index 000000000..5269ac459
--- /dev/null
+++ b/Tools/FixNode/fixnode.cxx
@@ -0,0 +1,161 @@
+// fixnode.cxx -- traverse the node file and fix the elevation of all the new
+//                interpolated points.
+//
+// Written by Curtis Olson, started November 1997.
+//
+// Copyright (C) 1997  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+
+#include <stdio.h>
+#include <string.h>
+#include <unistd.h>
+#include <string>
+
+#ifdef HAVE_STDLIB_H
+#  include <stdlib.h>
+#endif // HAVE_STDLIB_H
+
+#include <Misc/fgstream.hxx>
+
+#include "fixnode.hxx"
+
+
+// load extra nodes
+void load_extra(const string& filename, container& extra_list) {
+}
+
+
+// load the node information
+void load_nodes(const string& filename, container& node_list) {
+    Point3D node;
+    int dim, junk1, junk2;
+    int i, nodecount;
+
+    cout << "Loading node file:  " << filename << " ...\n";
+
+    fg_gzifstream in( filename );
+    if ( !in ) {
+	cout << "Cannot open " + filename + "\n";
+	// exit immediately assuming an airport file for this tile
+	// doesn't exist.
+	exit(-1);
+    }
+
+    // Read header line
+    in >> nodecount >> dim >> junk1 >> junk2;
+    cout << "    Expecting " << nodecount << " nodes\n";
+
+    // start with an empty list :-)
+    node_list.erase( node_list.begin(), node_list.end() );
+
+    in >> skipcomment;
+    while ( ! in.eof() ) {
+	in >> junk1 >> node >> junk2;
+	in >> skipcomment;
+	node_list.push_back(node);
+    }
+}
+
+
+// fix the node elevations
+void fix_nodes( const string& filename, fgDEM& dem, container& node_list )
+{
+    string toname;
+    FILE *fd;
+    int i;
+
+    cout << "Fixing up node elevations\n";
+
+    iterator current;
+    iterator last = node_list.end();
+    for ( current = node_list.begin() ; current != last ; ++current ) {
+	// printf("Current: %d %.2f %.2f %.2f\n", i, nodes[i][0],
+	//        nodes[i][1], nodes[i][2]);
+
+	(*current).setz( 
+			dem.interpolate_altitude( (*current).x(), 
+						  (*current).y() ) );
+
+	// printf("Fixed: %d %.2f %.2f %.2f\n", i, nodes[i][0],
+	//        nodes[i][1], nodes[i][2]);
+    }
+
+
+    toname = filename + ".orig";
+    cout << "Moving " + filename + " to " + toname + "\n";
+    rename( filename.c_str(), toname.c_str() );
+
+    cout << "Saving new node file: " + filename + "\n";
+
+    fd = fopen(filename.c_str(), "w");
+
+    fprintf( fd, "%d 2 1 0\n", node_list.size() );
+
+    i = 1;
+    for ( current = node_list.begin() ; current != last ; ++current ) {
+	fprintf( fd, "%d %.2f %.2f %.2f 0\n", i,
+		 (*current).x(), (*current).y(), (*current).z() );
+	++i;
+    }
+
+    fclose(fd);
+}
+
+
+// $Log$
+// Revision 1.7  1998/11/06 21:33:55  curt
+// Updates to go along with changes in fgstream.
+//
+// Revision 1.6  1998/10/20 15:49:22  curt
+// Converted to Point3D class.
+//
+// Revision 1.5  1998/09/22 23:49:10  curt
+// eliminated a left over #include
+//
+// Revision 1.4  1998/09/19 20:43:52  curt
+// C++-ified and STL-ified the code.  Combined triload.* and fixnode.* into
+// a single file.
+//
+// Revision 1.3  1998/07/22 21:46:40  curt
+// Fixed a bug that was triggering a seg fault.
+//
+// Revision 1.2  1998/04/14 02:26:03  curt
+// Code reorganizations.  Added a Lib/ directory for more general libraries.
+//
+// Revision 1.1  1998/04/08 23:05:56  curt
+// Adopted Gnu automake/autoconf system.
+//
+// Revision 1.5  1998/03/19 02:50:19  curt
+// Updated to support -lDEM class.
+//
+// Revision 1.4  1998/03/03 16:00:57  curt
+// More c++ compile tweaks.
+//
+// Revision 1.3  1998/01/09 23:03:08  curt
+// Restructured to split 1deg x 1deg dem's into 64 subsections.
+//
+// Revision 1.2  1997/12/02 13:12:07  curt
+// Updated to fix every node.
+//
+// Revision 1.1  1997/11/27 00:17:33  curt
+// Initial revision.
+//
+
diff --git a/Tools/FixNode/fixnode.hxx b/Tools/FixNode/fixnode.hxx
new file mode 100644
index 000000000..80b6eb2b6
--- /dev/null
+++ b/Tools/FixNode/fixnode.hxx
@@ -0,0 +1,95 @@
+// fixnode.hxx -- traverse the node file and fix the elevation of all the new
+//                interpolated points.
+//
+// Written by Curtis Olson, started November 1997.
+//
+// Copyright (C) 1997  Curtis L. Olson  - curt@infoplane.com
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#ifndef _FIXNODE_H
+#define _FIXNODE_H
+
+
+#include <stdio.h>
+#include <string.h>
+#include <string>
+
+#include <vector>
+#include "Include/fg_stl_config.h"
+
+#ifdef NEEDNAMESPACESTD
+using namespace std;
+#endif
+
+#include <DEM/dem.hxx>
+#include <Math/point3d.hxx>
+
+
+typedef vector < Point3D > container;
+typedef container::iterator iterator;
+typedef container::const_iterator const_iterator;
+
+
+// Initialize a new mesh structure
+void load_nodes(const string& basename, container& node_list);
+
+
+// load the extra nodes.  These are always the first n nodes of the
+// .node file.  (???  These will be tagged with a code indicating what
+// needs to be done with this node's elevation such as adjust to local
+// DEM elevation, or massage the local DEM points to match this
+// elevation point. ???)
+void load_extra_nodes(const string& filename, container& node_list);
+
+
+// fix the node elevations
+void fix_nodes( const string& basename, fgDEM& dem, container& node_list );
+
+
+#endif // _FIXNODE_H
+
+
+// $Log$
+// Revision 1.4  1998/10/20 15:49:23  curt
+// Converted to Point3D class.
+//
+// Revision 1.3  1998/09/19 20:43:53  curt
+// C++-ified and STL-ified the code.  Combined triload.* and fixnode.* into
+// a single file.
+//
+// Revision 1.2  1998/07/22 21:46:41  curt
+// Fixed a bug that was triggering a seg fault.
+//
+// Revision 1.1  1998/04/08 23:05:56  curt
+// Adopted Gnu automake/autoconf system.
+//
+// Revision 1.4  1998/03/19 02:50:19  curt
+// Updated to support -lDEM class.
+//
+// Revision 1.3  1998/03/03 16:00:58  curt
+// More c++ compile tweaks.
+//
+// Revision 1.2  1997/12/02 13:12:07  curt
+// Updated to fix every node.
+//
+// Revision 1.1  1997/11/27 00:17:33  curt
+// Initial revision.
+//
diff --git a/Tools/FixNode/main.cxx b/Tools/FixNode/main.cxx
new file mode 100644
index 000000000..68e540802
--- /dev/null
+++ b/Tools/FixNode/main.cxx
@@ -0,0 +1,146 @@
+// main.cxx -- read in a .node file and fix the z values of the interpolated 
+//             points
+//
+// Written by Curtis Olson, started November 1997.
+//
+// Copyright (C) 1997  Curtis L. Olson  - curt@infoplane.com
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#include <sys/types.h>
+#include <dirent.h>
+// #include <stdio.h>
+#include <string.h>
+#include <string>
+
+#ifdef HAVE_STDLIB_H
+#  include <stdlib.h>
+#endif // HAVE_STDLIB_H
+
+#include <DEM/dem.hxx>
+
+#include "fixnode.hxx"
+
+
+// find all the matching files in the specified directory and fix them
+void process_files(const string& root_path, fgDEM& dem) {
+    container node_list;
+    DIR *d;
+    struct dirent *de;
+    string file_path;
+    char *ptr;
+    int len;
+
+    if ( (d = opendir( root_path.c_str() )) == NULL ) {
+        cout << "cannot open directory " + root_path + "\n";
+	exit(-1);
+    }
+
+    while ( (de = readdir(d)) != NULL ) {
+	len = strlen(de->d_name);
+	if ( len > 7 ) {
+	    ptr = de->d_name;
+	    ptr += (len - 7);
+	    // printf("--> %s \n", ptr);
+
+	    if ( strcmp(ptr, ".1.node") == 0 ) {
+		file_path =  root_path + "/" + de->d_name;
+		cout << "File = " + file_path + "\n";
+
+		// load the input data files
+		load_nodes(file_path, node_list);
+
+		fix_nodes(file_path, dem, node_list);
+	    }
+	}
+    }
+}
+
+
+// main
+int main(int argc, char **argv) {
+    fgDEM dem;
+    string demfile, root_path;
+
+    if ( argc != 3 ) {
+	cout << "Usage " << argv[0] << " demfile root_path\n";
+	exit(-1);
+    }
+
+    cout << "Starting fixnode\n";
+
+    demfile = argv[1];
+    root_path = argv[2];
+
+    // load the corresponding dem file so we can interpolate elev values
+    dem.open(demfile);
+    dem.parse();
+    dem.close();
+
+    // process all the *.1.node files in the specified directory
+    process_files(root_path, dem);
+
+    return(0);
+}
+
+
+// $Log$
+// Revision 1.7  1998/09/19 20:43:54  curt
+// C++-ified and STL-ified the code.  Combined triload.* and fixnode.* into
+// a single file.
+//
+// Revision 1.6  1998/09/19 18:01:27  curt
+// Support for changes to libDEM.a
+//
+// Revision 1.5  1998/07/22 21:46:41  curt
+// Fixed a bug that was triggering a seg fault.
+//
+// Revision 1.4  1998/06/27 16:55:24  curt
+// Changed include order for <sys/types.h>
+//
+// Revision 1.3  1998/04/26 05:02:06  curt
+// Added #ifdef HAVE_STDLIB_H
+//
+// Revision 1.2  1998/04/14 02:26:04  curt
+// Code reorganizations.  Added a Lib/ directory for more general libraries.
+//
+// Revision 1.1  1998/04/08 23:05:57  curt
+// Adopted Gnu automake/autoconf system.
+//
+// Revision 1.6  1998/04/06 21:09:44  curt
+// Additional win32 support.
+// Fixed a bad bug in dem file parsing that was causing the output to be
+// flipped about x = y.
+//
+// Revision 1.5  1998/03/19 02:50:20  curt
+// Updated to support -lDEM class.
+//
+// Revision 1.4  1998/03/03 16:00:58  curt
+// More c++ compile tweaks.
+//
+// Revision 1.3  1998/01/09 23:03:08  curt
+// Restructured to split 1deg x 1deg dem's into 64 subsections.
+//
+// Revision 1.2  1997/12/02 13:12:07  curt
+// Updated to fix every node.
+//
+// Revision 1.1  1997/11/27 00:17:34  curt
+// Initial revision.
+//
diff --git a/Tools/FixObj/Makefile.am b/Tools/FixObj/Makefile.am
new file mode 100644
index 000000000..7ced91cc9
--- /dev/null
+++ b/Tools/FixObj/Makefile.am
@@ -0,0 +1,69 @@
+#---------------------------------------------------------------------------
+# Makefile
+#
+# Written by Curtis Olson, started October 1997.
+#
+# Copyright (C) 1997 - 1998  Curtis L. Olson  - curt@me.umn.edu
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+bin_PROGRAMS = fixobj
+
+fixobj_SOURCES = main.cxx obj.cxx obj.hxx
+
+fixobj_LDADD = \
+	$(top_builddir)/Lib/Math/libMath.a \
+	$(top_builddir)/Lib/Debug/libDebug.a \
+	$(top_builddir)/Lib/zlib/libz.a \
+	$(base_LIBS)
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.7  1998/11/04 23:01:53  curt
+# Changes to the automake/autoconf system to reduce the number of libraries
+# that are unnecessarily linked into the various executables.
+#
+# Revision 1.6  1998/07/30 23:49:25  curt
+# Removed libtool support.
+#
+# Revision 1.5  1998/06/08 17:11:44  curt
+# Renamed *.[ch] to *.[ch]xx
+#
+# Revision 1.4  1998/04/24 00:44:05  curt
+# Added zlib support.
+#
+# Revision 1.3  1998/04/18 04:01:02  curt
+# Now use libMath rather than having local copies of math routines.
+#
+# Revision 1.2  1998/04/14 02:26:05  curt
+# Code reorganizations.  Added a Lib/ directory for more general libraries.
+#
+# Revision 1.1  1998/04/08 23:19:35  curt
+# Adopted Gnu automake/autoconf system.
+#
+# Revision 1.2  1998/01/21 02:55:53  curt
+# Incorporated new make system from Bob Kuehne <rpk@sgi.com>.
+#
+# Revision 1.1  1997/12/08 19:28:54  curt
+# Initial revision.
+#
diff --git a/Tools/FixObj/main.cxx b/Tools/FixObj/main.cxx
new file mode 100644
index 000000000..bf117a10c
--- /dev/null
+++ b/Tools/FixObj/main.cxx
@@ -0,0 +1,57 @@
+// main.cxx -- read and fix the stripping order of a .obj file
+//
+// Written by Curtis Olson, started December 1997.
+//
+// Copyright (C) 1997 - 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <stdio.h>
+
+#include "obj.hxx"
+
+
+int main(int argc, char **argv) {
+    char infile[256], outfile[256];
+
+    if ( argc != 3 ) {
+	printf("Usage %s: infile outfile\n", argv[0]);
+    }
+
+    strcpy(infile, argv[1]);
+    strcpy(outfile, argv[2]);
+
+    // load the input data files
+    obj_fix(infile, outfile);
+
+    return(0);
+}
+
+
+// $Log$
+// Revision 1.1  1998/06/08 17:11:45  curt
+// Renamed *.[ch] to *.[ch]xx
+//
+// Revision 1.2  1998/01/09 23:03:12  curt
+// Restructured to split 1deg x 1deg dem's into 64 subsections.
+//
+// Revision 1.1  1997/12/08 19:28:54  curt
+// Initial revision.
+//
+
diff --git a/Tools/FixObj/obj.cxx b/Tools/FixObj/obj.cxx
new file mode 100644
index 000000000..4239a1891
--- /dev/null
+++ b/Tools/FixObj/obj.cxx
@@ -0,0 +1,647 @@
+// obj.cxx -- routines to handle WaveFront .obj format files.
+//
+// Written by Curtis Olson, started October 1997.
+//
+// Copyright (C) 1997 - 1998  Curtis L. Olson - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <stdio.h>
+#include <iostream>
+#include <string.h>
+
+#include <vector>
+#include "Include/compiler.h"
+
+#ifdef NEEDNAMESPACESTD
+using namespace std;
+#endif
+
+#include "obj.hxx"
+
+#include <Math/mat3.h>
+#include <Math/point3d.hxx>
+
+
+typedef vector < Point3D > container3;
+typedef container3::iterator iterator3;
+typedef container3::const_iterator const_iterator3;
+
+
+// what do ya' know, here's some global variables
+container3 nodes;
+container3 normals;
+static int faces[MAXNODES][3];
+int vncount, fcount;
+
+static int ccw_list[MAXNODES];
+int ccw_list_ptr;
+
+static int cw_list[MAXNODES];
+int cw_list_ptr;
+
+FILE *in, *out;
+
+Point3D ref;
+
+
+// some simple list routines
+
+// reset the list
+void list_init(int *list_ptr) {
+    *list_ptr = 0;
+}
+
+
+// add to list
+void list_add(int *list, int *list_ptr, int node) {
+    if ( *list_ptr >= MAXNODES ) {
+	printf("ERROR: list overflow in list_add()\n");
+	exit(-1);
+    }
+
+    list[*list_ptr] = node;
+    *list_ptr += 1;
+
+    // printf("list pointer = %d  adding %d\n", *list_ptr, node);
+}
+
+
+// fix the cw list and append to ccw_list
+void fix_cw_list(int *list, int list_ptr) {
+    int i, j, len;
+
+    if ( list_ptr < 3 ) {
+	printf("List is empty ... skipping\n");
+	return;
+    }
+
+    printf("Fixing cw list, size = %d\n", list_ptr);
+
+    i = 0;
+    while ( i < list_ptr ) { 
+	// do next strip
+
+	// find length
+	len = 0;
+	// scan rest of strip (until -1)
+	while ( ((i+len) < list_ptr) && (list[i+len] != -1) ) { 
+	    // printf("len = %d item = %d\n", len, list[i+len] );
+	    len++;
+	}
+	// printf("          Final length = %d\n", len);
+
+	if ( (len % 2) != 0 ) {
+	    // if length is odd, just reverse order of nodes to
+	    // reverse winding
+	    if ( ccw_list_ptr ) {
+		list_add(ccw_list, &ccw_list_ptr, -1);
+	    }
+	    for ( j = i + len - 1; j >= i; j-- ) {
+		// printf(" odd -> item = %d\n", list[j] );
+		list_add(ccw_list, &ccw_list_ptr, list[j]);
+	    }
+	} else {
+	    // if length is even, reverse order of (n-1) nodes to
+	    // reverse winding, and create an orphan triangle for the
+	    // last "nth" node
+	    if ( ccw_list_ptr ) {
+		list_add(ccw_list, &ccw_list_ptr, -1);
+	    }
+	    for ( j = i + len - 2; j >= i; j-- ) {
+		// printf(" even -> item = %d\n", list[j] );
+		list_add(ccw_list, &ccw_list_ptr, list[j]);
+	    }
+
+	    // printf(" even bonus -> item = %d\n", list[i + len - 1] );
+	    // printf(" even bonus -> item = %d\n", list[i + len - 2] );
+	    // printf(" even bonus -> item = %d\n", list[i + len - 3] );
+	    list_add(ccw_list, &ccw_list_ptr, -1);
+	    list_add(ccw_list, &ccw_list_ptr, list[i + len - 3]);
+	    list_add(ccw_list, &ccw_list_ptr, list[i + len - 2]);
+	    list_add(ccw_list, &ccw_list_ptr, list[i + len - 1]);
+	}
+
+	i += len + 1;
+    }
+}
+
+
+void dump_global_bounds( void ) {
+    double dist_squared, radius, radius_squared;
+
+    radius = 0.0;
+
+    fprintf(out, "\n");
+
+    
+    iterator3 current = nodes.begin();
+    iterator3 last = nodes.end();
+
+    // skip first dummy node
+    ++current;
+
+    for ( ; current != last; ++current ) {
+	dist_squared = ref.distance3Dsquared(*current);
+	// cout << "node = " << *current << " dist = " << dist_squared << endl;
+
+	if ( dist_squared > radius_squared ) {
+	    radius_squared = dist_squared;
+	}
+    }
+
+    radius = sqrt(radius_squared);
+
+    fprintf( out, 
+	     "gbs %.5f %.5f %.5f %.2f\n", 
+	     ref.x(), ref.y(), ref.z(), radius);
+}
+
+
+// dump nodes
+void dump_nodes( void ) {
+    Point3D p;
+
+    fprintf(out, "\n");
+
+    iterator3 current = nodes.begin();
+    iterator3 last = nodes.end();
+
+    // skip first dummy node
+    ++current;
+
+    for ( ; current != last; ++current ) {
+	p = *current - ref;
+	fprintf( out, "v %.5f %.5f %.5f\n", p.x(), p.y(), p.z() );
+    }
+}
+
+
+// dump normals
+void dump_normals( void ) {
+    Point3D p;
+
+    fprintf(out, "\n");
+
+    iterator3 current = normals.begin();
+    iterator3 last = normals.end();
+
+    // skip first dummy normal
+    ++current;
+
+    for ( ; current != last; ++current ) {
+	p = *current;
+	fprintf(out, "vn %.5f %.5f %.5f\n", p.x(), p.y(), p.z() );
+    }
+}
+
+
+// dump faces
+void dump_faces( void ) {
+    Point3D p;
+    int i, n1, n2, n3;
+    double xmax, xmin, ymax, ymin, zmax, zmin, dist, radius;
+
+    fprintf(out, "\n");
+    for ( i = 1; i < fcount; i++ ) {
+	n1 = faces[i][0];
+	n2 = faces[i][1];
+	n3 = faces[i][2];
+
+	// calc center of face
+	xmin = xmax = nodes[n1].x();
+	ymin = ymax = nodes[n1].y();
+	zmin = zmax = nodes[n1].z();
+
+	if ( nodes[n2].x() < xmin ) { xmin = nodes[n2].x(); }
+	if ( nodes[n2].x() > xmax ) { xmax = nodes[n2].x(); }
+	if ( nodes[n2].y() < ymin ) { ymin = nodes[n2].y(); }
+	if ( nodes[n2].y() > ymax ) { ymax = nodes[n2].y(); }
+	if ( nodes[n2].z() < zmin ) { zmin = nodes[n2].z(); }
+	if ( nodes[n2].z() > zmax ) { zmax = nodes[n2].z(); }
+
+	if ( nodes[n3].x() < xmin ) { xmin = nodes[n3].x(); }
+	if ( nodes[n3].x() > xmax ) { xmax = nodes[n3].x(); }
+	if ( nodes[n3].y() < ymin ) { ymin = nodes[n3].y(); }
+	if ( nodes[n3].y() > ymax ) { ymax = nodes[n3].y(); }
+	if ( nodes[n3].z() < zmin ) { zmin = nodes[n3].z(); }
+	if ( nodes[n3].z() > zmax ) { zmax = nodes[n3].z(); }
+
+	p = Point3D( (xmin + xmax) / 2.0,
+		     (ymin + ymax) / 2.0,
+		     (zmin + zmax) / 2.0 );
+
+	// calc bounding radius
+	radius = p.distance3D(nodes[n1]);
+
+	dist = p.distance3D(nodes[n2]);
+	if ( dist > radius ) { radius = dist; }
+
+	dist = p.distance3D(nodes[n3]);
+	if ( dist > radius ) { radius = dist; }
+	
+	// output data
+	fprintf(out, "bs %.2f %.2f %.2f %.2f\n", p.x(), p.y(), p.z(), radius);
+	fprintf(out, "f %d %d %d\n", n1, n2, n3);
+    }
+}
+
+
+// dump list
+void dump_list(int *list, int list_ptr) {
+    Point3D p;
+    double xmax, xmin, ymax, ymin, zmax, zmin, dist_squared, radius_squared;
+    double radius;
+    int i, j, len, n;
+
+    if ( list_ptr < 3 ) {
+	printf("List is empty ... skipping\n");
+	return;
+    }
+
+    printf("Dumping list, size = %d\n", list_ptr);
+
+    i = 0;
+    while ( i < list_ptr ) { 
+	// do next strip
+
+	if ( (i % 2) == 0 ) {
+	    fprintf(out, "\nusemtl desert1\n");
+	} else {
+	    fprintf(out, "\nusemtl desert2\n");
+	}
+
+	// find length of next tri strip
+	len = 0;
+	// scan rest of strip (until -1)
+	while ( ((i+len) < list_ptr) && (list[i+len] != -1) ) { 
+	    // printf("len = %d item = %d\n", len, list[i+len] );
+	    len++;
+	}
+	// printf("strip length = %d\n", len);
+
+	// calc center of face
+	n = list[i];
+	xmin = xmax = nodes[n].x();
+	ymin = ymax = nodes[n].y();
+	zmin = zmax = nodes[n].z();
+	// printf("%.2f %.2f %.2f\n", nodes[n].x(), nodes[n].y(), nodes[n].z());
+
+	for ( j = i + 1; j < i + len; j++ ) {
+	    // printf("j = %d\n", j);
+	    n = list[j];
+	    if ( nodes[n].x() < xmin ) { xmin = nodes[n].x(); }
+	    if ( nodes[n].x() > xmax ) { xmax = nodes[n].x(); }
+	    if ( nodes[n].y() < ymin ) { ymin = nodes[n].y(); }
+	    if ( nodes[n].y() > ymax ) { ymax = nodes[n].y(); }
+	    if ( nodes[n].z() < zmin ) { zmin = nodes[n].z(); }
+	    if ( nodes[n].z() > zmax ) { zmax = nodes[n].z(); }
+	    // printf("%.2f %.2f %.2f\n", nodes[n].x(), nodes[n].y(), nodes[n].z());
+	}
+	p = Point3D( (xmin + xmax) / 2.0,
+		     (ymin + ymax) / 2.0,
+		     (zmin + zmax) / 2.0 );
+	// printf("center = %.2f %.2f %.2f\n", p.x(), p.y(), p.z());
+
+	// calc bounding radius
+	n = list[i];
+	radius_squared = p.distance3Dsquared(nodes[n]);
+
+	for ( j = i + 1; j < i + len; j++ ) {
+	    n = list[j];
+	    dist_squared = p.distance3Dsquared(nodes[n]);
+	    if ( dist_squared > radius_squared ) {
+		radius_squared = dist_squared;
+	    }
+	}
+	radius = sqrt(radius_squared);
+
+	// printf("radius = %.2f\n", radius);
+
+	// dump bounding sphere and header
+	fprintf(out, "bs %.2f %.2f %.2f %.2f\n", p.x(), p.y(), p.z(), radius);
+	fprintf(out, "t %d %d %d\n", list[i], list[i+1], list[i+2]);
+	// printf("t %d %d %d\n", list[i], list[i+1], list[i+2]);
+	i += 3;
+
+	// dump rest of strip (until -1)
+	while ( (i < list_ptr) && (list[i] != -1) ) { 
+	    fprintf(out, "q %d", list[i]);
+	    i++;
+	    if ( (i < list_ptr) && (list[i] != -1) ) { 
+		fprintf(out, " %d", list[i]);
+		i++;
+	    }
+	    fprintf(out, "\n");
+	}
+
+	i++;
+    }
+}
+
+
+// Check the direction the current triangle faces, compared to it's
+// pregenerated normal.  Returns the dot product between the target
+// normal and actual normal.  If the dot product is close to 1.0, they
+// nearly match.  If the are close to -1.0, the are nearly opposite.
+double check_cur_face(int n1, int n2, int n3) {
+    double v1[3], v2[3], approx_normal[3], dot_prod, temp;
+
+    // check for the proper rotation by calculating an approximate
+    // normal and seeing if it is close to the precalculated normal
+    v1[0] = nodes[n2].x() - nodes[n1].x();
+    v1[1] = nodes[n2].y() - nodes[n1].y();
+    v1[2] = nodes[n2].z() - nodes[n1].z();
+    v2[0] = nodes[n3].x() - nodes[n1].x();
+    v2[1] = nodes[n3].y() - nodes[n1].y();
+    v2[2] = nodes[n3].z() - nodes[n1].z();
+
+    MAT3cross_product(approx_normal, v1, v2);
+    MAT3_NORMALIZE_VEC(approx_normal,temp);
+    dot_prod = MAT3_DOT_PRODUCT(normals[n1], approx_normal);
+
+    // not first triangle
+    // if ( ((dot_prod < -0.5) && !is_backwards) ||
+    //     ((dot_prod >  0.5) && is_backwards) ) {
+    //     printf("    Approx normal = %.2f %.2f %.2f\n", approx_normal[0], 
+    //            approx_normal[1], approx_normal[2]);
+    //     printf("    Dot product = %.4f\n", dot_prod);
+    // }
+    // angle = acos(dot_prod);
+    // printf("Normal ANGLE = %.3f rads.\n", angle);
+
+    return(dot_prod);
+}
+
+
+// Load a .obj file
+void obj_fix(char *infile, char *outfile) {
+    Point3D node, normal;
+    char line[256];
+    double dot_prod;
+    int first, n1, n2, n3, n4;
+    double x, y, z, xmax, xmin, ymax, ymin, zmax, zmin;
+    int is_ccw;
+
+    if ( (in = fopen(infile, "r")) == NULL ) {
+	printf("Cannot open file: %s\n", infile);
+	exit(-1);
+    }
+
+    if ( (out = fopen(outfile, "w")) == NULL ) {
+	printf("Cannot open file: %s\n", outfile);
+	exit(-1);
+    }
+
+    // push dummy records onto the lists since we start counting with "1"
+    node = Point3D(0.0, 0.0, 0.0);
+    nodes.push_back(node);
+
+    normal = Point3D(0.0, 0.0, 0.0);
+    normals.push_back(normal);
+
+    // initialize other lists
+    list_init(&ccw_list_ptr);
+    list_init(&cw_list_ptr);
+
+    // I start counting at one because that is how the triangle
+    // program refers to nodes and normals
+    first = 1;
+    vncount = 1;
+    fcount = 1;
+
+    printf("Reading file:  %s\n", infile);
+
+    while ( fgets(line, 250, in) != NULL ) {
+	if ( line[0] == '#' ) {
+	    // pass along the comments verbatim
+	    fprintf(out, "%s", line);
+	} else if ( strlen(line) <= 1 ) {
+	    // don't pass along empty lines
+	    // fprintf(out, "%s", line);
+	} else if ( strncmp(line, "v ", 2) == 0 ) {
+	    // save vertex to memory and output to file
+	    // printf("vertex = %s", line);
+	    sscanf(line, "v %lf %lf %lf\n", &x, &y, &z);
+
+	    if ( nodes.size() == 1 ) {
+		// first time through set min's and max'es
+		xmin = x;
+		xmax = x;
+		ymin = y;
+		ymax = y;
+		zmin = z;
+		zmax = z;
+	    } else {
+		// update min/max vertex values
+		if ( x < xmin ) xmin = x;
+		if ( x > xmax ) xmax = x;
+		if ( y < ymin ) ymin = y;
+		if ( y > ymax ) ymax = y;
+		if ( z < zmin ) zmin = z;
+		if ( z > zmax ) zmax = z;		
+	    }
+
+	    node = Point3D(x, y, z);
+	    nodes.push_back(node);
+	    // fprintf(out, "v %.2f %.2f %.2f\n", 
+	    //       node.x(), node.y(), node.z());
+	} else if ( strncmp(line, "vn ", 3) == 0 ) {
+	    // save vertex normals to memory and output to file
+	    // printf("vertex normal = %s", line);
+	    sscanf(line, "vn %lf %lf %lf\n", &x, &y, &z);
+	    normal = Point3D(x, y, z);
+	    normals.push_back(normal);
+	} else if ( line[0] == 't' ) {
+	    // starting a new triangle strip
+
+	    printf("Starting a new triangle strip\n");
+
+	    n1 = n2 = n3 = n4 = 0;
+
+	    printf("new tri strip = %s", line);
+	    sscanf(line, "t %d %d %d %d\n", &n1, &n2, &n3, &n4);
+
+	    // special cases to handle bugs in our beloved tri striper
+	    if ( (n1 == 4) && (n2 == 2) && (n3 == 2) && (n4 == 1) ) {
+		n2 = 3;
+	    }
+	    if ( (n1 == 3) && (n2 == 1) && (n3 == 1) && (n4 == 0) ) {
+		n3 = 4;
+	    }
+
+	    dot_prod = check_cur_face(n1, n2, n3);
+	    if ( dot_prod < 0.0 ) {
+		// this stripe is backwards (CW)
+		is_ccw = 0;
+		printf(" -> Starting a backwards stripe\n");
+	    } else {
+		// this stripe is normal (CCW)
+		is_ccw = 1;
+	    }
+
+	    if ( is_ccw ) {
+		if ( ccw_list_ptr ) {
+		    list_add(ccw_list, &ccw_list_ptr, -1);
+		}
+
+		list_add(ccw_list, &ccw_list_ptr, n1);
+		list_add(ccw_list, &ccw_list_ptr, n2);
+		list_add(ccw_list, &ccw_list_ptr, n3);
+	    } else {
+		if ( cw_list_ptr ) {
+		    list_add(cw_list, &cw_list_ptr, -1);
+		}
+
+		list_add(cw_list, &cw_list_ptr, n1);
+		list_add(cw_list, &cw_list_ptr, n2);
+		list_add(cw_list, &cw_list_ptr, n3);
+	    }
+
+	    if ( n4 > 0 ) {
+		if ( is_ccw ) {
+		    list_add(ccw_list, &ccw_list_ptr, n4);
+		} else {
+		    list_add(cw_list, &cw_list_ptr, n4);
+		}
+	    }
+	} else if ( line[0] == 'f' ) {
+	    if ( fcount < MAXNODES ) {
+		// pass along the unoptimized faces verbatim
+		sscanf(line, "f %d %d %d\n", &n1, &n2, &n3);
+		faces[fcount][0] = n1;
+		faces[fcount][1] = n2;
+		faces[fcount][2] = n3;
+
+		fcount++;
+	    } else {
+		printf("Read too many unoptimized faces ... dying :-(\n");
+                exit(-1);
+	    }
+ 
+	    // fprintf(out, "%s", line);
+	} else if ( line[0] == 'q' ) {
+	    // continue a triangle strip
+	    n1 = n2 = 0;
+
+	    // printf("continued tri strip = %s ", line);
+	    sscanf(line, "q %d %d\n", &n1, &n2);
+
+	    if ( is_ccw ) {
+		list_add(ccw_list, &ccw_list_ptr, n1);
+	    } else {
+		list_add(cw_list, &cw_list_ptr, n1);
+	    }
+
+	    if ( n2 > 0 ) {
+		if ( is_ccw ) {
+		    list_add(ccw_list, &ccw_list_ptr, n2);
+		} else {
+		    list_add(cw_list, &cw_list_ptr, n2);
+		}
+	    }
+	} else {
+	    printf("Unknown line in %s = %s\n", infile, line);
+	}
+    }
+
+    // reference point is the "center"
+    ref = Point3D( (xmin + xmax) / 2.0,
+		   (ymin + ymax) / 2.0,
+		   (zmin + zmax) / 2.0 );
+
+    // convert the cw_list to ccw add append to ccw_list
+    fix_cw_list(cw_list, cw_list_ptr);
+
+    dump_global_bounds();
+    dump_nodes();
+    dump_normals();
+    if ( fcount > 1 ) {
+	dump_faces();
+    }
+
+    dump_list(ccw_list, ccw_list_ptr);
+
+    fclose(in);
+    fclose(out);
+}
+
+
+// $Log$
+// Revision 1.3  1999/02/01 21:09:40  curt
+// Optimizations from Norman Vine.
+//
+// Revision 1.2  1998/10/21 14:55:55  curt
+// Converted to Point3D class.
+//
+// Revision 1.1  1998/06/08 17:11:46  curt
+// Renamed *.[ch] to *.[ch]xx
+//
+// Revision 1.16  1998/05/27 02:27:22  curt
+// Commented out a couple of debugging messages.
+//
+// Revision 1.15  1998/05/24 02:47:47  curt
+// For each strip, specify a default material property and calculate a center
+// and bounding sphere.
+//
+// Revision 1.14  1998/05/23 15:19:49  curt
+// Output more digits after the decimal place.
+//
+// Revision 1.13  1998/05/20 20:55:19  curt
+// Fixed arbitrary polygon winding problem here so all tristrips are passed
+// to runtime simulator with a consistant counter clockwise winding.
+//
+// Revision 1.12  1998/05/16 13:11:26  curt
+// Fixed an off by one error in node, normal, and face counters.
+//
+// Revision 1.11  1998/04/27 15:59:24  curt
+// Fixed an off by one error.
+//
+// Revision 1.10  1998/04/27 03:33:11  curt
+// Code now calculates a center reference points and outputs everything
+// relative to that.  This is useful in the rendering engine to keep everything
+// close to (0, 0, 0) where we can avoid many GLfloat precision problems.
+//
+// Revision 1.9  1998/04/18 04:01:03  curt
+// Now use libMath rather than having local copies of math routines.
+//
+// Revision 1.8  1998/04/08 23:19:37  curt
+// Adopted Gnu automake/autoconf system.
+//
+// Revision 1.7  1998/03/19 02:51:41  curt
+// Added special case handling to compensate for bugs in our beloved tri striper
+//
+// Revision 1.6  1998/03/03 15:36:12  curt
+// Tweaks for compiling with g++
+//
+// Revision 1.5  1998/03/03 03:37:03  curt
+// Cumulative tweaks.
+//
+// Revision 1.4  1998/01/31 00:41:25  curt
+// Made a few changes converting floats to doubles.
+//
+// Revision 1.3  1998/01/19 19:51:07  curt
+// A couple final pre-release tweaks.
+//
+// Revision 1.2  1998/01/09 23:03:12  curt
+// Restructured to split 1deg x 1deg dem's into 64 subsections.
+//
+// Revision 1.1  1997/12/08 19:28:54  curt
+// Initial revision.
+//
diff --git a/Tools/FixObj/obj.hxx b/Tools/FixObj/obj.hxx
new file mode 100644
index 000000000..59a362c8d
--- /dev/null
+++ b/Tools/FixObj/obj.hxx
@@ -0,0 +1,60 @@
+// obj.hxx -- routines to handle WaveFront .obj format files.
+//
+// Written by Curtis Olson, started October 1997.
+//
+// Copyright (C) 1997 - 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef OBJ_HXX
+#define OBJ_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#define MAXNODES 100000
+
+
+// Load a .obj file
+void obj_fix(char *infile, char *outfile);
+
+
+#endif // OBJ_HXX
+
+
+// $Log$
+// Revision 1.1  1998/06/08 17:11:46  curt
+// Renamed *.[ch] to *.[ch]xx
+//
+// Revision 1.4  1998/03/03 15:36:13  curt
+// Tweaks for compiling with g++
+//
+// Revision 1.3  1998/01/31 00:41:25  curt
+// Made a few changes converting floats to doubles.
+//
+// Revision 1.2  1998/01/09 23:03:13  curt
+// Restructured to split 1deg x 1deg dem's into 64 subsections.
+//
+// Revision 1.1  1997/12/08 19:28:55  curt
+// Initial revision.
+//
+
diff --git a/Tools/GenAirports/Makefile.am b/Tools/GenAirports/Makefile.am
new file mode 100644
index 000000000..86c8ecb16
--- /dev/null
+++ b/Tools/GenAirports/Makefile.am
@@ -0,0 +1,86 @@
+#---------------------------------------------------------------------------
+# Makefile
+#
+# Written by Curtis Olson, started January 1998.
+#
+# Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+bin_PROGRAMS = genapts
+
+genapts_SOURCES = \
+	area.cxx area.hxx \
+	convex_hull.cxx convex_hull.hxx \
+	main.cxx \
+	point2d.cxx point2d.hxx
+
+genapts_LDADD = \
+	$(top_builddir)/Tools/Lib/Polygon/libPolygon.a \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(top_builddir)/Lib/Debug/libDebug.a \
+	$(top_builddir)/Lib/Misc/libMisc.a \
+	$(top_builddir)/Lib/zlib/libz.a \
+	$(base_LIBS)
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib -I$(top_builddir)/Tools/Lib
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.6  1999/03/08 22:00:47  curt
+# Lots of directory layout reorganization.
+#
+# Revision 1.5  1999/02/25 21:32:47  curt
+# Modified to adhere to new polygon naming convention, and also to read the
+# new Robin Peel aiport format.
+#
+# Revision 1.4  1999/02/11 01:10:50  curt
+# Start of scenery revamp project.
+#
+# Revision 1.3  1998/11/04 23:01:54  curt
+# Changes to the automake/autoconf system to reduce the number of libraries
+# that are unnecessarily linked into the various executables.
+#
+# Revision 1.2  1998/09/04 23:04:47  curt
+# Beginning of convex hull genereration routine.
+#
+# Revision 1.1  1998/09/01 19:34:32  curt
+# Initial revision.
+#
+# Revision 1.2  1998/07/30 23:49:18  curt
+# Removed libtool support.
+#
+# Revision 1.1  1998/07/20 12:54:53  curt
+# Whoops, need to commit Makefile.am, not Makefile.
+#
+# Revision 1.2  1998/04/14 02:25:59  curt
+# Code reorganizations.  Added a Lib/ directory for more general libraries.
+#
+# Revision 1.1  1998/04/08 22:54:57  curt
+# Adopted Gnu automake/autoconf system.
+#
+# Revision 1.2  1998/01/21 02:55:46  curt
+# Incorporated new make system from Bob Kuehne <rpk@sgi.com>.
+#
+# Revision 1.1  1998/01/15 02:45:25  curt
+# Initial revision.
+#
+
diff --git a/Tools/GenAirports/area.cxx b/Tools/GenAirports/area.cxx
new file mode 100644
index 000000000..75d785377
--- /dev/null
+++ b/Tools/GenAirports/area.cxx
@@ -0,0 +1,241 @@
+// area.c -- routines to assist with inserting "areas" into FG terrain
+//
+// Written by Curtis Olson, started March 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#include <math.h>
+#include <stdio.h>
+
+#include <Include/fg_constants.h>
+
+#include "area.hxx"
+#include "point2d.hxx"
+
+
+// calc new x, y for a rotation
+double rot_x(double x, double y, double theta) {
+    return ( x * cos(theta) + y * sin(theta) );
+}
+
+
+// calc new x, y for a rotation
+double rot_y(double x, double y, double theta) {
+    return ( -x * sin(theta) + y * cos(theta) );
+}
+
+
+// calc new lon/lat given starting lon/lat, and offset radial, and
+// distance.  NOTE: distance is specified in meters (and converted
+// internally to radians)
+point2d calc_lon_lat( point2d orig, point2d offset ) {
+    point2d result;
+
+    // printf("calc_lon_lat()  offset.theta = %.2f offset.dist = %.2f\n",
+    //        offset.theta, offset.dist);
+
+    offset.dist *= METER_TO_NM * NM_TO_RAD;
+
+    result.lat = asin( sin(orig.lat) * cos(offset.dist) + 
+		       cos(orig.lat) * sin(offset.dist) * cos(offset.theta) );
+
+    if ( cos(result.lat) < FG_EPSILON ) {
+        result.lon = orig.lon;      // endpoint a pole
+    } else {
+        result.lon = 
+	    fmod(orig.lon - asin( sin(offset.theta) * sin(offset.dist) / 
+				  cos(result.lat) ) + FG_PI, FG_2PI) - FG_PI;
+    }
+
+    return(result);
+}
+
+
+list < point2d >
+batch_cart_to_polar_2d( list < point2d > in_list)
+{
+    list < point2d > out_list;
+    list < point2d > :: iterator current;                          
+    list < point2d > :: iterator last;                    
+    point2d p;
+
+    current = in_list.begin();
+    last = in_list.end();
+    for ( ; current != last ; ++current ) {
+	p = cart_to_polar_2d( *current );
+	out_list.push_back(p);
+    }
+
+    return out_list;
+}
+
+
+// given a set of 2d coordinates relative to a center point, and the
+// lon, lat of that center point (specified in degrees), as well as a
+// potential orientation angle, generate the corresponding lon and lat
+// of the original 2d verticies.
+list < point2d >
+gen_area(point2d origin, double angle, list < point2d > cart_list)
+{
+    list < point2d > rad_list;
+    list < point2d > result_list;
+    list < point2d > :: iterator current;                          
+    list < point2d > :: iterator last;                    
+    point2d origin_rad, p;
+
+    origin_rad.lon = origin.lon * DEG_TO_RAD;
+    origin_rad.lat = origin.lat * DEG_TO_RAD;
+	
+    // convert to polar coordinates
+    rad_list = batch_cart_to_polar_2d(cart_list);
+
+    /*
+    // display points
+    printf("converted to polar\n");
+    current = rad_list.begin();
+    last = rad_list.end();
+    while ( current != last ) {
+	printf("(%.2f, %.2f)\n", current->theta, current->dist);
+	++current;
+    }
+    printf("\n");
+    */
+
+    // rotate by specified angle
+    // printf("Rotating points by %.2f\n", angle);
+    current = rad_list.begin();
+    last = rad_list.end();
+    for ( ; current != last ; ++current ) {
+        current->theta -= angle;
+        while ( current->theta > FG_2PI ) {
+            current->theta -= FG_2PI;
+	// (*current).theta -= angle;
+	// while ( (*current).theta > FG_2PI ) {
+	//     (*current).theta -= FG_2PI;
+	}
+	// printf("(%.2f, %.2f)\n", current->theta, current->dist);
+    }
+    // printf("\n");
+
+    // find actual lon,lat of coordinates
+    // printf("convert to lon, lat relative to %.2f %.2f\n", 
+    //        origin.lon, origin.lat);
+    current = rad_list.begin();
+    last = rad_list.end();
+    for ( ; current != last ; ++current ) {
+	p = calc_lon_lat(origin_rad, *current);
+	// convert from radians to degress
+	p.lon *= RAD_TO_DEG;
+	p.lat *= RAD_TO_DEG;
+	// printf("(%.8f, %.8f)\n", p.lon, p.lat);
+	result_list.push_back(p);
+    }
+    // printf("\n");
+
+    return result_list;
+}
+
+
+// generate an area for a runway
+list < point2d >
+gen_runway_area( double lon, double lat, double heading, 
+		      double length, double width) 
+{
+    list < point2d > result_list;
+    list < point2d > tmp_list;
+    list < point2d > :: iterator current;                          
+    list < point2d > :: iterator last;                    
+
+    point2d p;
+    point2d origin;
+    double l, w;
+    int i;
+
+    /*
+    printf("runway: lon = %.2f lat = %.2f hdg = %.2f len = %.2f width = %.2f\n",
+	   lon, lat, heading, length, width);
+    */
+
+    origin.lon = lon;
+    origin.lat = lat;
+    l = length / 2.0;
+    w = width / 2.0;
+
+    // generate untransformed runway area vertices
+    p.x =  l; p.y =  w; tmp_list.push_back(p);
+    p.x =  l; p.y = -w; tmp_list.push_back(p);
+    p.x = -l; p.y = -w; tmp_list.push_back(p);
+    p.x = -l; p.y =  w; tmp_list.push_back(p);
+
+    /*
+    // display points
+    printf("Untransformed, unrotated runway\n");
+    current = tmp_list.begin();
+    last = tmp_list.end();
+    while ( current != last ) {
+	printf("(%.2f, %.2f)\n", current->x, current->y);
+	++current;
+    }
+    printf("\n");
+    */
+
+    // rotate, transform, and convert points to lon, lat in degrees
+    result_list = gen_area(origin, heading, tmp_list);
+
+    /*
+    // display points
+    printf("Results in radians.\n");
+    current = result_list.begin();
+    last = result_list.end();
+    while ( current != last ) {
+	printf("(%.8f, %.8f)\n", current->lon, current->lat);
+	++current;
+    }
+    printf("\n");
+    */
+
+    return result_list;
+}
+
+
+// $Log$
+// Revision 1.5  1998/10/20 15:49:54  curt
+// tweak ...
+//
+// Revision 1.4  1998/09/09 20:59:53  curt
+// Loop construct tweaks for STL usage.
+// Output airport file to be used to generate airport scenery on the fly
+//   by the run time sim.
+//
+// Revision 1.3  1998/09/09 16:26:31  curt
+// Continued progress in implementing the convex hull algorithm.
+//
+// Revision 1.2  1998/09/04 23:04:48  curt
+// Beginning of convex hull genereration routine.
+//
+// Revision 1.1  1998/09/01 19:34:33  curt
+// Initial revision.
+//
+// Revision 1.1  1998/07/20 12:54:05  curt
+// Initial revision.
+//
+//
diff --git a/Tools/GenAirports/area.hxx b/Tools/GenAirports/area.hxx
new file mode 100644
index 000000000..a1bbd342e
--- /dev/null
+++ b/Tools/GenAirports/area.hxx
@@ -0,0 +1,54 @@
+// area.h -- routines to assist with inserting "areas" into FG terrain
+//
+// Written by Curtis Olson, started February 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#ifndef _AREA_H
+#define _AREA_H
+
+
+#include <list>
+
+#include "point2d.hxx"
+
+
+// generate an area for a runway (return result points in degrees)
+list < point2d >
+gen_runway_area( double lon, double lat, double heading, 
+		      double length, double width);
+
+
+#endif // _AREA_H
+
+
+// $Log$
+// Revision 1.2  1998/09/04 23:04:49  curt
+// Beginning of convex hull genereration routine.
+//
+// Revision 1.1  1998/09/01 19:34:33  curt
+// Initial revision.
+//
+// Revision 1.1  1998/07/20 12:54:05  curt
+// Initial revision.
+//
+//
diff --git a/Tools/GenAirports/convex_hull.cxx b/Tools/GenAirports/convex_hull.cxx
new file mode 100644
index 000000000..0cdff1dcb
--- /dev/null
+++ b/Tools/GenAirports/convex_hull.cxx
@@ -0,0 +1,277 @@
+// convex_hull.cxx -- calculate the convex hull of a set of points
+//
+// Written by Curtis Olson, started September 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#include <math.h>
+#include <stdio.h>
+
+#include <list>
+#include <map>
+
+#ifdef NEEDNAMESPACESTD
+using namespace std;
+#endif
+
+#include <Include/fg_constants.h>
+
+#include "convex_hull.hxx"
+#include "point2d.hxx"
+
+
+// stl map typedefs
+typedef map < double, double, less<double> > map_container;
+typedef map_container::iterator map_iterator;
+
+
+// Calculate theta of angle (a, b, c)
+double calc_angle(point2d a, point2d b, point2d c) {
+    point2d u, v;
+    double udist, vdist, uv_dot, tmp;
+
+    // u . v = ||u|| * ||v|| * cos(theta)
+
+    u.x = b.x - a.x;
+    u.y = b.y - a.y;
+    udist = sqrt( u.x * u.x + u.y * u.y );
+    // printf("udist = %.6f\n", udist);
+
+    v.x = b.x - c.x;
+    v.y = b.y - c.y;
+    vdist = sqrt( v.x * v.x + v.y * v.y );
+    // printf("vdist = %.6f\n", vdist);
+
+    uv_dot = u.x * v.x + u.y * v.y;
+    // printf("uv_dot = %.6f\n", uv_dot);
+
+    tmp = uv_dot / (udist * vdist);
+    // printf("tmp = %.6f\n", tmp);
+
+    return acos(tmp);
+}
+
+
+// Test to see if angle(Pa, Pb, Pc) < 180 degrees
+bool test_point(point2d Pa, point2d Pb, point2d Pc) {
+    point2d origin, a, b, c;
+    double a1, a2;
+
+    origin.x = origin.y = 0.0;
+
+    a.x = cos(Pa.theta) * Pa.dist;
+    a.y = sin(Pa.theta) * Pa.dist;
+
+    b.x = cos(Pb.theta) * Pb.dist;
+    b.y = sin(Pb.theta) * Pb.dist;
+
+    c.x = cos(Pc.theta) * Pc.dist;
+    c.y = sin(Pc.theta) * Pc.dist;
+
+    // printf("a is %.6f %.6f\n", a.x, a.y);
+    // printf("b is %.6f %.6f\n", b.x, b.y);
+    // printf("c is %.6f %.6f\n", c.x, c.y);
+
+    a1 = calc_angle(a, b, origin);
+    a2 = calc_angle(origin, b, c);
+
+    // printf("a1 = %.2f  a2 = %.2f\n", a1 * RAD_TO_DEG, a2 * RAD_TO_DEG);
+
+    return ( (a1 + a2) < FG_PI );
+}
+
+
+// calculate the convex hull of a set of points, return as a list of
+// point2d.  The algorithm description can be found at:
+// http://riot.ieor.berkeley.edu/riot/Applications/ConvexHull/CHDetails.html
+list_container convex_hull( list_container input_list )
+{
+    list_iterator current, last;
+    map_iterator map_current, map_next, map_next_next, map_last;
+
+    // list of translated points
+    list_container trans_list;
+
+    // points sorted by radian degrees
+    map_container radians_map;
+
+    // will contain the convex hull
+    list_container con_hull;
+
+    point2d p, average, Pa, Pb, Pc, result;
+    double sum_x, sum_y;
+    int in_count, last_size;
+
+    // STEP ONE:  Find an average midpoint of the input set of points
+    current = input_list.begin();
+    last = input_list.end();
+    in_count = input_list.size();
+    sum_x = sum_y = 0.0;
+
+    for ( ; current != last ; ++current ) {
+	sum_x += (*current).x;
+	sum_y += (*current).y;
+    }
+
+    average.x = sum_x / in_count;
+    average.y = sum_y / in_count;
+
+    // printf("Average center point is %.4f %.4f\n", average.x, average.y);
+
+    // STEP TWO:  Translate input points so average is at origin
+    current = input_list.begin();
+    last = input_list.end();
+    trans_list.erase( trans_list.begin(), trans_list.end() );
+
+    for ( ; current != last ; ++current ) {
+	p.x = (*current).x - average.x;
+	p.y = (*current).y - average.y;
+	// printf("%.6f %.6f\n", p.x, p.y);
+	trans_list.push_back(p);
+    }
+
+    // STEP THREE:  convert to radians and sort by theta
+    current = trans_list.begin();
+    last = trans_list.end();
+    radians_map.erase( radians_map.begin(), radians_map.end() );
+
+    for ( ; current != last ; ++current) {
+	p = cart_to_polar_2d(*current);
+	if ( p.dist > radians_map[p.theta] ) {
+	    radians_map[p.theta] = p.dist;
+	}
+    }
+
+    // printf("Sorted list\n");
+    map_current = radians_map.begin();
+    map_last = radians_map.end();
+    for ( ; map_current != map_last ; ++map_current ) {
+	p.x = (*map_current).first;
+	p.y = (*map_current).second;
+
+	// printf("p is %.6f %.6f\n", p.x, p.y);
+    }
+
+    // STEP FOUR: traverse the sorted list and eliminate everything
+    // not on the perimeter.
+    // printf("Traversing list\n");
+
+    // double check list size ... this should never fail because a
+    // single runway will always generate four points.
+    if ( radians_map.size() < 3 ) {
+	cout << "convex hull not possible with < 3 points" << endl;
+	exit(-1);
+    }
+
+    // ensure that we run the while loop at least once
+    last_size = radians_map.size() + 1;
+
+    while ( last_size > radians_map.size() ) {
+	// printf("Running an iteration of the graham scan algorithm\n"); 
+	last_size = radians_map.size();
+
+	map_current = radians_map.begin();
+	while ( map_current != radians_map.end() ) {
+	    // get first element
+	    Pa.theta = (*map_current).first;
+	    Pa.dist = (*map_current).second;
+
+	    // get second element
+	    map_next = map_current;
+	    ++map_next;
+	    if ( map_next == radians_map.end() ) {
+		map_next = radians_map.begin();
+	    }
+	    Pb.theta = (*map_next).first;
+	    Pb.dist = (*map_next).second;
+
+	    // get third element
+	    map_next_next = map_next;
+	    ++map_next_next;
+	    if ( map_next_next == radians_map.end() ) {
+		map_next_next = radians_map.begin();
+	    }
+	    Pc.theta = (*map_next_next).first;
+	    Pc.dist = (*map_next_next).second;
+
+	    // printf("Pa is %.6f %.6f\n", Pa.theta, Pa.dist);
+	    // printf("Pb is %.6f %.6f\n", Pb.theta, Pb.dist);
+	    // printf("Pc is %.6f %.6f\n", Pc.theta, Pc.dist);
+
+	    if ( test_point(Pa, Pb, Pc) ) {
+		// printf("Accepted a point\n");
+		// accept point, advance Pa, Pb, and Pc.
+		++map_current;
+	    } else {
+		// printf("REJECTED A POINT\n");
+		// reject point, delete it and advance only Pb and Pc
+		map_next = map_current;
+		++map_next;
+		if ( map_next == radians_map.end() ) {
+		    map_next = radians_map.begin();
+		}
+		radians_map.erase( map_next );
+	    }
+	}
+    }
+
+    // translate back to correct lon/lat
+    // printf("Final sorted convex hull\n");
+    con_hull.erase( con_hull.begin(), con_hull.end() );
+    map_current = radians_map.begin();
+    map_last = radians_map.end();
+    for ( ; map_current != map_last ; ++map_current ) {
+	p.theta = (*map_current).first;
+	p.dist = (*map_current).second;
+
+	result.x = cos(p.theta) * p.dist + average.x;
+	result.y = sin(p.theta) * p.dist + average.y;
+
+	// printf("%.6f %.6f\n", result.x, result.y);
+
+	con_hull.push_back(result);
+    }
+
+    return con_hull;
+}
+
+
+// $Log$
+// Revision 1.5  1999/02/25 21:32:48  curt
+// Modified to adhere to new polygon naming convention, and also to read the
+// new Robin Peel aiport format.
+//
+// Revision 1.4  1998/09/17 18:40:42  curt
+// Debug message tweaks.
+//
+// Revision 1.3  1998/09/09 20:59:55  curt
+// Loop construct tweaks for STL usage.
+// Output airport file to be used to generate airport scenery on the fly
+//   by the run time sim.
+//
+// Revision 1.2  1998/09/09 16:26:32  curt
+// Continued progress in implementing the convex hull algorithm.
+//
+// Revision 1.1  1998/09/04 23:04:51  curt
+// Beginning of convex hull genereration routine.
+//
+//
diff --git a/Tools/GenAirports/convex_hull.hxx b/Tools/GenAirports/convex_hull.hxx
new file mode 100644
index 000000000..42bf0db83
--- /dev/null
+++ b/Tools/GenAirports/convex_hull.hxx
@@ -0,0 +1,60 @@
+// convex_hull.hxx -- calculate the convex hull of a set of points
+//
+// Written by Curtis Olson, started September 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#ifndef _CONVEX_HULL_HXX
+#define _CONVEX_HULL_HXX
+
+
+#include <list>
+
+#ifdef NEEDNAMESPACESTD
+using namespace std;
+#endif
+
+#include "point2d.hxx"
+
+
+// stl list typedefs
+typedef list < point2d > list_container;
+typedef list_container::iterator list_iterator;
+
+
+// calculate the convex hull of a set of points, return as a list of
+// point2d.  The algorithm description can be found at:
+// http://riot.ieor.berkeley.edu/riot/Applications/ConvexHull/CHDetails.html
+list_container convex_hull( list_container input_list );
+
+
+#endif // _CONVEX_HULL_HXX
+
+
+// $Log$
+// Revision 1.2  1998/09/09 16:26:33  curt
+// Continued progress in implementing the convex hull algorithm.
+//
+// Revision 1.1  1998/09/04 23:04:51  curt
+// Beginning of convex hull genereration routine.
+//
+//
diff --git a/Tools/GenAirports/main.cxx b/Tools/GenAirports/main.cxx
new file mode 100644
index 000000000..7ad07f6db
--- /dev/null
+++ b/Tools/GenAirports/main.cxx
@@ -0,0 +1,374 @@
+// main.cxx -- main loop
+//
+// Written by Curtis Olson, started March 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include <Include/compiler.h>
+
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#include <list>
+#include <stdio.h>
+#include <string.h>
+#include STL_STRING
+
+#include <Bucket/newbucket.hxx>
+#include <Debug/logstream.hxx>
+#include <Include/fg_constants.h>
+#include <Misc/fgstream.hxx>
+#include <Polygon/index.hxx>
+
+#include "area.hxx"
+#include "convex_hull.hxx"
+
+
+// write out airport data
+void write_airport( long int p_index, list_container hull_list, FGBucket b, 
+		    const string& root, const bool cut_and_keep ) {
+    char tile_name[256], poly_index[256];
+
+    string base = b.gen_base_path();
+    string path = root + "/Scenery/" + base;
+    string command = "mkdir -p " + path;
+    system( command.c_str() );
+
+    long int b_index = b.gen_index();
+    sprintf(tile_name, "%ld", b_index);
+    string aptfile = path + "/" + tile_name;
+
+    sprintf( poly_index, "%ld", p_index );
+    aptfile += ".";
+    aptfile += poly_index;
+    cout << "apt file = " << aptfile << endl;
+
+    FILE *fd;
+    if ( (fd = fopen(aptfile.c_str(), "a")) == NULL ) {
+        cout << "Cannot open file: " << aptfile << endl;
+        exit(-1);
+    }
+
+    // polygon type
+    if ( cut_and_keep ) {
+	fprintf( fd, "AirportKeep\n" );
+    } else {
+	fprintf( fd, "AirportIgnore\n" );
+    }
+
+    // number of contours
+    fprintf( fd, "1\n" );
+
+    // size of first contour
+    fprintf( fd, "%d\n", hull_list.size() );
+
+    // write contour (polygon) points
+    list_iterator current = hull_list.begin();
+    list_iterator last = hull_list.end();
+    for ( ; current != last ; ++current ) {
+	fprintf( fd, "%.7f %.7f\n", (*current).lon, (*current).lat );
+    }
+
+    fclose(fd);
+}
+
+
+// process and airport + runway list
+void process_airport( string airport, list < string > & runway_list,
+		      const string& root ) {
+    list_container rwy_list, apt_list, hull_list;
+    list_iterator current, last;
+
+    // parse main airport information
+    int elev;
+
+    cout << airport << endl;
+    string apt_type = airport.substr(0, 1);
+    string apt_code = airport.substr(2, 4);
+    string apt_lat = airport.substr(7, 10);
+    string apt_lon = airport.substr(18, 11);
+    string apt_elev = airport.substr(30, 5);
+    sscanf( apt_elev.c_str(), "%d", &elev );
+    string apt_use = airport.substr(36, 1);
+    string apt_twr = airport.substr(37, 1);
+    string apt_bldg = airport.substr(38, 1);
+    string apt_name = airport.substr(40);
+
+    /*
+    cout << "  type = " << apt_type << endl;
+    cout << "  code = " << apt_code << endl;
+    cout << "  lat  = " << apt_lat << endl;
+    cout << "  lon  = " << apt_lon << endl;
+    cout << "  elev = " << apt_elev << " " << elev << endl;
+    cout << "  use  = " << apt_use << endl;
+    cout << "  twr  = " << apt_twr << endl;
+    cout << "  bldg = " << apt_bldg << endl;
+    cout << "  name = " << apt_name << endl;
+    */
+
+    // parse runways and generate the vertex list
+    string rwy_str;
+    double lon, lat, hdg;
+    int len, width;
+
+    list < string >::iterator last_runway = runway_list.end();
+    for ( list < string >::iterator current_runway = runway_list.begin();
+	  current_runway != last_runway ; ++current_runway ) {
+	rwy_str = (*current_runway);
+
+	cout << rwy_str << endl;
+	string rwy_no = rwy_str.substr(2, 4);
+	string rwy_lat = rwy_str.substr(6, 10);
+	sscanf( rwy_lat.c_str(), "%lf", &lat);
+	string rwy_lon = rwy_str.substr(17, 11);
+	sscanf( rwy_lon.c_str(), "%lf", &lon);
+	string rwy_hdg = rwy_str.substr(29, 7);
+	sscanf( rwy_hdg.c_str(), "%lf", &hdg);
+	string rwy_len = rwy_str.substr(36, 7);
+	sscanf( rwy_len.c_str(), "%d", &len);
+	string rwy_width = rwy_str.substr(43, 4);
+	sscanf( rwy_width.c_str(), "%d", &width);
+	string rwy_sfc = rwy_str.substr(47, 4);
+	string rwy_end1 = rwy_str.substr(52, 8);
+	string rwy_end2 = rwy_str.substr(61, 8);
+
+	/*
+	cout << "  no    = " << rwy_no << endl;
+	cout << "  lat   = " << rwy_lat << " " << lat << endl;
+	cout << "  lon   = " << rwy_lon << " " << lon << endl;
+	cout << "  hdg   = " << rwy_hdg << " " << hdg << endl;
+	cout << "  len   = " << rwy_len << " " << len << endl;
+	cout << "  width = " << rwy_width << " " << width << endl;
+	cout << "  sfc   = " << rwy_sfc << endl;
+	cout << "  end1  = " << rwy_end1 << endl;
+	cout << "  end2  = " << rwy_end2 << endl;
+	*/
+
+	rwy_list = gen_runway_area( lon, lat, hdg * DEG_TO_RAD, 
+				    (double)len * FEET_TO_METER,
+				    (double)width * FEET_TO_METER );
+
+	// add rwy_list to apt_list
+	current = rwy_list.begin();
+	last = rwy_list.end();
+	for ( ; current != last ; ++current ) {
+	    apt_list.push_back(*current);
+	}
+    }
+
+    if ( apt_list.size() == 0 ) {
+	cout << "no runway points generated" << endl;
+	return;
+    }
+
+    // printf("Runway points in degrees\n");
+    // current = apt_list.begin();
+    // last = apt_list.end();
+    // for ( ; current != last; ++current ) {
+    //   printf( "%.5f %.5f\n", current->lon, current->lat );
+    // }
+    // printf("\n");
+
+    // generate convex hull
+    hull_list = convex_hull(apt_list);
+
+    // get next polygon index
+    long int index = poly_index_next();
+
+    // find average center, min, and max point of convex hull
+    point2d average, min, max;
+    double sum_x, sum_y;
+    int count = hull_list.size();
+    current = hull_list.begin();
+    last = hull_list.end();
+    sum_x = sum_y = 0.0;
+    min.x = min.y = 200.0;
+    max.x = max.y = -200.0;
+    for ( ; current != last; ++current ) {
+	// printf("return = %.6f %.6f\n", (*current).x, (*current).y);
+	sum_x += (*current).x;
+	sum_y += (*current).y;
+
+	if ( (*current).x < min.x ) { min.x = (*current).x; }
+	if ( (*current).y < min.y ) { min.y = (*current).y; }
+	if ( (*current).x > max.x ) { max.x = (*current).x; }
+	if ( (*current).y > max.y ) { max.y = (*current).y; }
+    }
+    average.x = sum_x / count;
+    average.y = sum_y / count;
+
+    // find buckets for center, min, and max points of convex hull.
+    // note to self: self, you should think about checking for runways
+    // that span the data line
+    FGBucket b(average.lon, average.lat);
+    FGBucket b_min(min.x, min.y);
+    FGBucket b_max(max.x, max.y);
+    cout << "Bucket center = " << b << endl;
+    cout << "Bucket min = " << b_min << endl;
+    cout << "Bucket max = " << b_max << endl;
+    
+    if ( b_min == b_max ) {
+	write_airport( index, hull_list, b, root, true );
+    } else {
+	FGBucket b_cur;
+	int dx, dy, i, j;
+
+	fgBucketDiff(b_min, b_max, &dx, &dy);
+	cout << "airport spans tile boundaries" << endl;
+	cout << "  dx = " << dx << "  dy = " << dy << endl;
+
+	if ( (dx > 2) || (dy > 2) ) {
+	    cout << "somethings really wrong!!!!" << endl;
+	    exit(-1);
+	}
+
+	for ( j = 0; j <= dy; j++ ) {
+	    for ( i = 0; i <= dx; i++ ) {
+		b_cur = fgBucketOffset(min.x, min.y, i, j);
+		if ( b_cur == b ) {
+		    write_airport( index, hull_list, b_cur, root, true );
+		} else {
+		    write_airport( index, hull_list, b_cur, root, false );
+		}
+	    }
+	}
+	// string answer; cin >> answer;
+    }
+}
+
+
+// reads the apt_full file and extracts and processes the individual
+// airport records
+int main( int argc, char **argv ) {
+    list < string > runway_list;
+    string airport, last_airport;
+    string line;
+    char tmp[256];
+
+    fglog().setLogLevels( FG_ALL, FG_DEBUG );
+
+    if ( argc != 3 ) {
+	FG_LOG( FG_GENERAL, FG_ALERT, 
+		"Usage " << argv[0] << " <apt_file> <work_dir>" );
+	exit(-1);
+    }
+
+    // make work directory
+    string work_dir = argv[2];
+    string command = "mkdir -p " + work_dir;
+    system( command.c_str() );
+
+    // initialize persistant polygon counter
+    string counter_file = work_dir + "/../work.counter";
+    poly_index_init( counter_file );
+
+    fg_gzifstream in( argv[1] );
+    if ( !in ) {
+        FG_LOG( FG_GENERAL, FG_ALERT, "Cannot open file: " << argv[1] );
+        exit(-1);
+    }
+
+    // throw away the first 3 lines
+    in.getline(tmp, 256);
+    in.getline(tmp, 256);
+    in.getline(tmp, 256);
+
+    last_airport = "";
+
+    while ( ! in.eof() ) {
+	in.getline(tmp, 256);
+	line = tmp;
+	// cout << line << endl;
+
+	if ( line.length() == 0 ) {
+	    // empty, skip
+	} else if ( line[0] == '#' ) {
+	    // comment, skip
+	} else if ( (line[0] == 'A') || (line[0] == 'S') ) {
+	    // start of airport record
+	    airport = line;
+
+	    if ( last_airport.length() ) {
+		// process previous record
+		process_airport(last_airport, runway_list, argv[2]);
+	    }
+
+	    // clear runway list for start of next airport
+	    runway_list.erase(runway_list.begin(), runway_list.end());
+
+	    last_airport = airport;
+	} else if ( line[0] == 'R' ) {
+	    // runway entry
+	    runway_list.push_back(line);
+	} else if ( line == "[End]" ) {
+	    // end of file
+	    break;
+	} else {
+	    FG_LOG( FG_GENERAL, FG_ALERT, 
+		    "Unknown line in file" << endl << line );
+	    exit(-1);
+	}
+    }
+
+    if ( last_airport.length() ) {
+	// process previous record
+	process_airport(last_airport, runway_list, argv[2]);
+    }
+
+    return 0;
+}
+
+
+// $Log$
+// Revision 1.11  1999/03/19 00:27:38  curt
+// Use long int for index instead of just int.
+//
+// Revision 1.10  1999/03/17 23:51:25  curt
+// Changed polygon index counter file.
+//
+// Revision 1.9  1999/03/12 22:54:19  curt
+// Rearrange a bit of code ...
+//
+// Revision 1.8  1999/03/01 15:35:26  curt
+// Fixed bug in output format generated.
+//
+// Revision 1.7  1999/02/25 21:32:49  curt
+// Modified to adhere to new polygon naming convention, and also to read the
+// new Robin Peel aiport format.
+//
+// Revision 1.6  1999/02/11 01:10:51  curt
+// Start of scenery revamp project.
+//
+// Revision 1.5  1998/09/17 18:40:43  curt
+// Debug message tweaks.
+//
+// Revision 1.4  1998/09/09 20:59:56  curt
+// Loop construct tweaks for STL usage.
+// Output airport file to be used to generate airport scenery on the fly
+//   by the run time sim.
+//
+//
diff --git a/Tools/GenAirports/point2d.cxx b/Tools/GenAirports/point2d.cxx
new file mode 100644
index 000000000..755224477
--- /dev/null
+++ b/Tools/GenAirports/point2d.cxx
@@ -0,0 +1,45 @@
+// point2d.cxx -- 2d coordinate routines
+//
+// Written by Curtis Olson, started September 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#include <math.h>
+
+#include "point2d.hxx"
+
+
+// convert a point from cartesian to polar coordinates
+point2d cart_to_polar_2d(point2d in) {
+    point2d result;
+    result.dist = sqrt( in.x * in.x + in.y * in.y );
+    result.theta = atan2(in.y, in.x);    
+
+    return(result);
+}
+
+
+// $Log$
+// Revision 1.1  1998/09/04 23:04:53  curt
+// Beginning of convex hull genereration routine.
+//
+//
diff --git a/Tools/GenAirports/point2d.hxx b/Tools/GenAirports/point2d.hxx
new file mode 100644
index 000000000..199524047
--- /dev/null
+++ b/Tools/GenAirports/point2d.hxx
@@ -0,0 +1,59 @@
+// point2d.hxx -- define a 2d point class
+//
+// Written by Curtis Olson, started February 1998.
+//
+// Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+//
+
+
+#ifndef _POINT2D_HXX
+#define _POINT2D_HXX
+
+
+#include <list>
+
+
+class point2d {
+public:
+    union {
+	double x;
+	double dist;
+	double lon;
+    };
+    union {
+	double y;
+	double theta;
+	double lat;
+    };
+};
+
+
+// convert a point from cartesian to polar coordinates
+point2d cart_to_polar_2d(point2d in);
+
+
+#endif // _POINT2D_HXX
+
+
+// $Log$
+// Revision 1.1  1998/09/04 23:04:53  curt
+// Beginning of convex hull genereration routine.
+//
+//
diff --git a/Tools/GenOutput/Makefile.am b/Tools/GenOutput/Makefile.am
new file mode 100644
index 000000000..28ad535a2
--- /dev/null
+++ b/Tools/GenOutput/Makefile.am
@@ -0,0 +1,9 @@
+noinst_LIBRARIES = libGenOutput.a
+
+libGenOutput_a_SOURCES = genobj.cxx genobj.hxx
+
+INCLUDES += \
+	-I$(top_builddir) \
+	-I$(top_builddir)/Lib \
+	-I$(top_builddir)/Tools/Lib \
+	-I$(top_builddir)/Tools/Construct
diff --git a/Tools/GenOutput/genobj.cxx b/Tools/GenOutput/genobj.cxx
new file mode 100644
index 000000000..fc3cc3b68
--- /dev/null
+++ b/Tools/GenOutput/genobj.cxx
@@ -0,0 +1,469 @@
+// genobj.hxx -- Generate the flight gear "obj" file format from the
+//               triangle output
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <time.h>
+
+#include <Math/mat3.h>
+#include <Polygon/names.hxx>
+#include <Tools/scenery_version.hxx>
+
+#include "genobj.hxx"
+
+
+// build the wgs-84 point list
+void FGGenOutput::gen_wgs84_points( const FGArray& array ) {
+    cout << "calculating wgs84 point" << endl;
+    Point3D geod, radians, cart;
+
+    const_point_list_iterator current = geod_nodes.begin();
+    const_point_list_iterator last = geod_nodes.end();
+
+    double real_z;
+
+    for ( ; current != last; ++current ) {
+	geod = *current;
+
+	real_z = array.interpolate_altitude( geod.x() * 3600.0, 
+					      geod.y() * 3600.0 );
+
+	// convert to radians
+	radians = Point3D( geod.x() * DEG_TO_RAD,
+			   geod.y() * DEG_TO_RAD,
+			   real_z );
+
+        cart = fgGeodToCart(radians);
+	// cout << cart << endl;
+        wgs84_nodes.push_back(cart);
+    }
+}
+
+
+// build the node -> element (triangle) reverse lookup table.  there
+// is an entry for each point containing a list of all the triangles
+// that share that point.
+void FGGenOutput::gen_node_ele_lookup_table() {
+    int_list ele_list;
+    ele_list.erase( ele_list.begin(), ele_list.end() );
+
+    // initialize reverse_ele_lookup structure by creating an empty
+    // list for each point
+    const_point_list_iterator w_current = wgs84_nodes.begin();
+    const_point_list_iterator w_last = wgs84_nodes.end();
+    for ( ; w_current != w_last; ++w_current ) {
+	reverse_ele_lookup.push_back( ele_list );
+    }
+
+    // traverse triangle structure building reverse lookup table
+    const_triele_list_iterator current = tri_elements.begin();
+    const_triele_list_iterator last = tri_elements.end();
+    int counter = 0;
+    for ( ; current != last; ++current ) {
+	reverse_ele_lookup[ current->get_n1() ].push_back( counter );
+	reverse_ele_lookup[ current->get_n2() ].push_back( counter );
+	reverse_ele_lookup[ current->get_n3() ].push_back( counter );
+	++counter;
+    }
+}
+
+
+// caclulate the normal for the specified triangle face
+Point3D FGGenOutput::calc_normal( int i ) {
+    double v1[3], v2[3], normal[3];
+    double temp;
+
+    Point3D p1 = wgs84_nodes[ tri_elements[i].get_n1() ];
+    Point3D p2 = wgs84_nodes[ tri_elements[i].get_n2() ];
+    Point3D p3 = wgs84_nodes[ tri_elements[i].get_n3() ];
+
+    v1[0] = p2.x() - p1.x(); v1[1] = p2.y() - p1.y(); v1[2] = p2.z() - p1.z();
+    v2[0] = p3.x() - p1.x(); v2[1] = p3.y() - p1.y(); v2[2] = p3.z() - p1.z();
+
+    MAT3cross_product(normal, v1, v2);
+    MAT3_NORMALIZE_VEC(normal,temp);
+
+    return Point3D( normal[0], normal[1], normal[2] );
+}
+
+
+// build the face normal list
+void FGGenOutput::gen_face_normals() {
+    // traverse triangle structure building the face normal table
+
+    cout << "calculating face normals" << endl;
+
+    for ( int i = 0; i < (int)tri_elements.size(); i++ ) {
+	// cout << calc_normal( i ) << endl;
+	face_normals.push_back( calc_normal( i ) );
+    }
+
+}
+
+
+// calculate the normals for each point in wgs84_nodes
+void FGGenOutput::gen_normals() {
+    Point3D normal;
+    cout << "caculating node normals" << endl;
+
+    // for each node
+    for ( int i = 0; i < (int)wgs84_nodes.size(); ++i ) {
+	int_list tri_list = reverse_ele_lookup[i];
+
+	int_list_iterator current = tri_list.begin();
+	int_list_iterator last = tri_list.end();
+
+	Point3D average( 0.0 );
+
+	// for each triangle that shares this node
+	for ( ; current != last; ++current ) {
+	    normal = face_normals[ *current ];
+	    average += normal;
+	    // cout << normal << endl;
+	}
+
+	average /= tri_list.size();
+	// cout << "average = " << average << endl;
+
+	point_normals.push_back( average );
+    }
+}
+
+
+// calculate the global bounding sphere.  Center is the average of the
+// points.
+void FGGenOutput::calc_gbs() {
+    double dist_squared;
+    double radius_squared = 0;
+    
+    gbs_center = Point3D( 0.0 );
+
+    const_point_list_iterator current = wgs84_nodes.begin();
+    const_point_list_iterator last = wgs84_nodes.end();
+
+    for ( ; current != last; ++current ) {
+	gbs_center += *current;
+    }
+
+    gbs_center /= wgs84_nodes.size();
+
+    current =  wgs84_nodes.begin();
+    for ( ; current != last; ++current ) {
+        dist_squared = gbs_center.distance3Dsquared(*current);
+	if ( dist_squared > radius_squared ) {
+            radius_squared = dist_squared;
+        }
+    }
+
+    gbs_radius = sqrt(radius_squared);
+}
+
+
+// build the necessary output structures based on the triangulation
+// data
+int FGGenOutput::build( const FGArray& array, const FGTriangle& t ) {
+    FGTriNodes trinodes = t.get_out_nodes();
+
+    // copy the geodetic node list into this class
+    geod_nodes = trinodes.get_node_list();
+
+    // copy the triangle list into this class
+    tri_elements = t.get_elelist();
+
+    // build the trifan list
+    cout << "total triangles = " << tri_elements.size() << endl;
+    FGGenFans f;
+    for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
+	triele_list area_tris;
+	area_tris.erase( area_tris.begin(), area_tris.end() );
+
+	const_triele_list_iterator t_current = tri_elements.begin();
+	const_triele_list_iterator t_last = tri_elements.end();
+	for ( ; t_current != t_last; ++t_current ) {
+	    if ( (int)t_current->get_attribute() == i ) {
+		area_tris.push_back( *t_current );
+	    }
+	}
+
+	if ( (int)area_tris.size() > 0 ) {
+	    cout << "generating fans for area = " << i << endl;
+	    fans[i] = f.greedy_build( area_tris );
+	}
+    }
+
+    // generate the point list in wgs-84 coordinates
+    gen_wgs84_points( array );
+
+    // calculate the global bounding sphere
+    calc_gbs();
+    cout << "center = " << gbs_center << " radius = " << gbs_radius << endl;
+
+    // build the node -> element (triangle) reverse lookup table
+    gen_node_ele_lookup_table();
+
+    // build the face normal list
+    gen_face_normals();
+
+    // calculate the normals for each point in wgs84_nodes
+    gen_normals();
+
+    return 1;
+}
+
+
+// caclulate the bounding sphere for a list of triangle faces
+void FGGenOutput::calc_group_bounding_sphere( const fan_list& fans, 
+					      Point3D *center, double *radius )
+{
+    cout << "calculate group bounding sphere for " << fans.size() << " fans." 
+	 << endl;
+
+    // generate a list of unique points from the triangle list
+    FGTriNodes nodes;
+
+    const_fan_list_iterator f_current = fans.begin();
+    const_fan_list_iterator f_last = fans.end();
+    for ( ; f_current != f_last; ++f_current ) {
+	const_int_list_iterator i_current = f_current->begin();
+	const_int_list_iterator i_last = f_current->end();
+	for ( ; i_current != i_last; ++i_current ) {
+	    Point3D p1 = wgs84_nodes[ *i_current ];
+	    nodes.unique_add(p1);
+	}
+    }
+
+    // find average of point list
+    Point3D c( 0.0 );
+    point_list points = nodes.get_node_list();
+    // cout << "found " << points.size() << " unique nodes" << endl;
+    point_list_iterator p_current = points.begin();
+    point_list_iterator p_last = points.end();
+    for ( ; p_current != p_last; ++p_current ) {
+	c += *p_current;
+    }
+    c /= points.size();
+
+    // find max radius
+    double dist_squared;
+    double max_squared = 0;
+
+    p_current = points.begin();
+    p_last = points.end();
+    for ( ; p_current != p_last; ++p_current ) {
+	dist_squared = c.distance3Dsquared(*p_current);
+	if ( dist_squared > max_squared ) {
+	    max_squared = dist_squared;
+	}
+    }
+
+    *center = c;
+    *radius = sqrt(max_squared);
+}
+
+
+// caclulate the bounding sphere for the specified triangle face
+void FGGenOutput::calc_bounding_sphere( const FGTriEle& t, 
+					Point3D *center, double *radius )
+{
+    Point3D c( 0.0 );
+
+    Point3D p1 = wgs84_nodes[ t.get_n1() ];
+    Point3D p2 = wgs84_nodes[ t.get_n2() ];
+    Point3D p3 = wgs84_nodes[ t.get_n3() ];
+
+    c = p1 + p2 + p3;
+    c /= 3;
+
+    double dist_squared;
+    double max_squared = 0;
+
+    dist_squared = c.distance3Dsquared(p1);
+    if ( dist_squared > max_squared ) {
+	max_squared = dist_squared;
+    }
+
+    dist_squared = c.distance3Dsquared(p2);
+    if ( dist_squared > max_squared ) {
+	max_squared = dist_squared;
+    }
+
+    dist_squared = c.distance3Dsquared(p3);
+    if ( dist_squared > max_squared ) {
+	max_squared = dist_squared;
+    }
+
+    *center = c;
+    *radius = sqrt(max_squared);
+}
+
+
+// write out the fgfs scenery file
+int FGGenOutput::write( const string& base, const FGBucket& b ) {
+    Point3D p;
+
+    string dir = base + "/Scenery/" + b.gen_base_path();
+    string command = "mkdir -p " + dir;
+    system(command.c_str());
+
+    string file = dir + "/" + b.gen_index_str();
+    cout << "Output file = " << file << endl;
+
+    FILE *fp;
+    if ( (fp = fopen( file.c_str(), "w" )) == NULL ) {
+	cout << "ERROR: opening " << file << " for writing!" << endl;
+	exit(-1);
+    }
+
+    // write headers
+    fprintf(fp, "# FGFS Scenery Version %s\n", FG_SCENERY_FILE_FORMAT);
+
+    time_t calendar_time = time(NULL);
+    struct tm *local_tm;
+    local_tm = localtime( &calendar_time );
+    char time_str[256];
+    strftime( time_str, 256, "%a %b %d %H:%M:%S %Z %Y", local_tm);
+    fprintf(fp, "# Created %s\n", time_str );
+    fprintf(fp, "\n");
+
+    // write global bounding sphere
+    fprintf(fp, "# gbs %.5f %.5f %.5f %.2f\n",
+	    gbs_center.x(), gbs_center.y(), gbs_center.z(), gbs_radius);
+    fprintf(fp, "\n");
+
+    // write nodes
+    fprintf(fp, "# vertex list\n");
+    const_point_list_iterator w_current = wgs84_nodes.begin();
+    const_point_list_iterator w_last = wgs84_nodes.end();
+    for ( ; w_current != w_last; ++w_current ) {
+	p = *w_current - gbs_center;
+	fprintf(fp, "v %.5f %.5f %.5f\n", p.x(), p.y(), p.z());
+    }
+    fprintf(fp, "\n");
+    
+    // write vertex normals
+    fprintf(fp, "# vertex normal list\n");
+    const_point_list_iterator n_current = point_normals.begin();
+    const_point_list_iterator n_last = point_normals.end();
+    for ( ; n_current != n_last; ++n_current ) {
+	p = *n_current;
+	fprintf(fp, "vn %.5f %.5f %.5f\n", p.x(), p.y(), p.z());
+    }
+    fprintf(fp, "\n");
+
+    // write triangles (grouped by type for now)
+    Point3D center;
+    double radius;
+    fprintf(fp, "# triangle groups\n");
+    fprintf(fp, "\n");
+
+    int total_tris = 0;
+    for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
+	if ( (int)fans[i].size() > 0 ) {
+	    string attr_name = get_area_name( (AreaType)i );
+	    calc_group_bounding_sphere( fans[i], &center, &radius );
+	    cout << "writing " << (int)fans[i].size() << " fans for " 
+		 << attr_name << endl;
+
+	    fprintf(fp, "# usemtl %s\n", attr_name.c_str() );
+	    fprintf(fp, "# bs %.4f %.4f %.4f %.2f\n", 
+		    center.x(), center.y(), center.z(), radius);
+
+	    fan_list_iterator f_current = fans[i].begin();
+	    fan_list_iterator f_last = fans[i].end();
+	    for ( ; f_current != f_last; ++f_current ) {
+		fprintf( fp, "tf" );
+		total_tris += f_current->size() - 2;
+		int_list_iterator i_current = f_current->begin();
+		int_list_iterator i_last = f_current->end();
+		for ( ; i_current != i_last; ++i_current ) {
+		    fprintf( fp, " %d", *i_current );
+		}
+		fprintf( fp, "\n" );
+
+#if 0
+		{
+		    int_list_iterator i_current = f_current->begin();
+		    int_list_iterator i_last = f_current->end();
+		    int center = *i_current;
+		    ++i_current;
+		    int n2 = *i_current;
+		    ++i_current;
+		    for ( ; i_current != i_last; ++i_current ) {
+			int n3 = *i_current;
+			fprintf( fp, "f %d %d %d\n", center, n2, n3 );
+			n2 = n3;
+		    }
+		}
+#endif
+	    }
+
+	    fprintf( fp, "\n" );
+	}
+    }
+    cout << "wrote " << total_tris << " tris to output file" << endl;
+
+    fclose(fp);
+
+    command = "gzip --force --best " + file;
+    system(command.c_str());
+
+    return 1;
+}
+
+
+// $Log$
+// Revision 1.10  1999/03/31 23:46:57  curt
+// Debugging output tweaks.
+//
+// Revision 1.9  1999/03/31 13:26:40  curt
+// Debugging output tweeaks.
+//
+// Revision 1.8  1999/03/31 05:35:05  curt
+// Fixed bug in genfans (deleting the wrong triangles from the available pool.)
+//
+// Revision 1.7  1999/03/30 23:50:43  curt
+// Modifications to fanify by attribute.
+//
+// Revision 1.6  1999/03/29 13:11:03  curt
+// Shuffled stl type names a bit.
+// Began adding support for tri-fanning (or maybe other arrangments too.)
+//
+// Revision 1.5  1999/03/27 14:06:42  curt
+// Tweaks to bounding sphere calculation routines.
+// Group like triangles together for output to be in a single display list,
+// even though they are individual, non-fanified, triangles.
+//
+// Revision 1.4  1999/03/27 05:23:22  curt
+// Interpolate real z value of all nodes from dem data.
+// Write scenery file to correct location.
+// Pass along correct triangle attributes and write to output file.
+//
+// Revision 1.3  1999/03/25 19:04:21  curt
+// Preparations for outputing scenery file to correct location.
+//
+// Revision 1.2  1999/03/23 22:02:03  curt
+// Worked on creating data to output ... normals, bounding spheres, etc.
+//
+// Revision 1.1  1999/03/22 23:51:51  curt
+// Initial revision.
+//
diff --git a/Tools/GenOutput/genobj.hxx b/Tools/GenOutput/genobj.hxx
new file mode 100644
index 000000000..55f984452
--- /dev/null
+++ b/Tools/GenOutput/genobj.hxx
@@ -0,0 +1,165 @@
+// genobj.hxx -- Generate the flight gear "obj" file format from the
+//               triangle output
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _GENOBJ_HXX
+#define _GENOBJ_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Include/compiler.h>
+
+#include STL_STRING
+
+#include <Bucket/newbucket.hxx>
+#include <Math/fg_geodesy.hxx>
+#include <Math/point3d.hxx>
+
+#include <Combine/genfans.hxx>
+#include <Main/construct_types.hxx>
+#include <Triangulate/triangle.hxx>
+
+FG_USING_STD(string);
+FG_USING_STD(vector);
+
+
+typedef vector < int_list > belongs_to_list;
+typedef belongs_to_list::iterator belongs_to_list_iterator;
+typedef belongs_to_list::const_iterator belongs_to_list_tripoly_iterator;
+
+
+class FGGenOutput {
+
+private:
+
+    // node list in geodetic coordinats
+    point_list geod_nodes;
+
+    // node list in cartesian coords (wgs84 model)
+    point_list wgs84_nodes;
+
+    // face normal list (for flat shading)
+    point_list face_normals;
+
+    // normal list (for each point) in cart coords (for smooth
+    // shading)
+    point_list point_normals;
+
+    // triangles (by index into point list)
+    triele_list tri_elements;
+
+    // fan list
+    fan_list fans[FG_MAX_AREA_TYPES];
+
+    // for each node, a list of triangle indices that contain this node
+    belongs_to_list reverse_ele_lookup;
+
+    // global bounding sphere
+    Point3D gbs_center;
+    double gbs_radius;
+
+    // build the wgs-84 point list
+    void gen_wgs84_points( const FGArray& array );
+
+    // build the node -> element (triangle) reverse lookup table.
+    // there is an entry for each point containing a list of all the
+    // triangles that share that point.
+    void gen_node_ele_lookup_table();
+
+    // calculate the normals for each point in wgs84_nodes
+    void gen_normals();
+
+    // build the face normal list
+    void gen_face_normals();
+
+    // caclulate the normal for the specified triangle face
+    Point3D calc_normal( int i );
+
+    // calculate the global bounding sphere.  Center is the average of
+    // the points.
+    void calc_gbs();
+
+    // caclulate the bounding sphere for a list of triangle faces
+    void calc_group_bounding_sphere( const fan_list& fans, 
+				     Point3D *center, double *radius );
+
+    // caclulate the bounding sphere for the specified triangle face
+    void calc_bounding_sphere( const FGTriEle& t, 
+			       Point3D *center, double *radius );
+
+public:
+
+    // Constructor && Destructor
+    inline FGGenOutput() { }
+    inline ~FGGenOutput() { }
+
+    // build the necessary output structures based on the
+    // triangulation data
+    int build( const FGArray& array, const FGTriangle& t );
+
+    // write out the fgfs scenery file
+    int write( const string& base, const FGBucket& b );
+};
+
+
+#endif // _GENOBJ_HXX
+
+
+// $Log$
+// Revision 1.9  1999/03/31 23:46:58  curt
+// Debugging output tweaks.
+//
+// Revision 1.8  1999/03/30 23:50:44  curt
+// Modifications to fanify by attribute.
+//
+// Revision 1.7  1999/03/29 13:11:04  curt
+// Shuffled stl type names a bit.
+// Began adding support for tri-fanning (or maybe other arrangments too.)
+//
+// Revision 1.6  1999/03/27 14:06:43  curt
+// Tweaks to bounding sphere calculation routines.
+// Group like triangles together for output to be in a single display list,
+// even though they are individual, non-fanified, triangles.
+//
+// Revision 1.5  1999/03/27 05:23:23  curt
+// Interpolate real z value of all nodes from dem data.
+// Write scenery file to correct location.
+// Pass along correct triangle attributes and write to output file.
+//
+// Revision 1.4  1999/03/25 19:04:22  curt
+// Preparations for outputing scenery file to correct location.
+//
+// Revision 1.3  1999/03/23 22:02:04  curt
+// Worked on creating data to output ... normals, bounding spheres, etc.
+//
+// Revision 1.2  1999/03/23 17:44:49  curt
+// Beginning work on generating output scenery.
+//
+// Revision 1.1  1999/03/22 23:51:51  curt
+// Initial revision.
+//
diff --git a/Tools/Lib/Makefile.am b/Tools/Lib/Makefile.am
new file mode 100644
index 000000000..6c6ad9d3e
--- /dev/null
+++ b/Tools/Lib/Makefile.am
@@ -0,0 +1,4 @@
+SUBDIRS = \
+	DEM \
+	Polygon \
+	Triangle
diff --git a/Tools/Main/Makefile.am b/Tools/Main/Makefile.am
new file mode 100644
index 000000000..95e1e4f14
--- /dev/null
+++ b/Tools/Main/Makefile.am
@@ -0,0 +1,24 @@
+bin_PROGRAMS = construct
+
+construct_SOURCES = construct.cxx construct_types.hxx
+
+construct_LDADD = \
+	$(top_builddir)/Tools/Construct/Array/libArray.a \
+	$(top_builddir)/Tools/Construct/Clipper/libClipper.a \
+	$(top_builddir)/Tools/Construct/GenOutput/libGenOutput.a \
+	$(top_builddir)/Tools/Construct/Combine/libCombine.a \
+	$(top_builddir)/Tools/Construct/Triangulate/libTriangulate.a \
+	$(top_builddir)/Tools/Lib/Polygon/libPolygon.a \
+	$(top_builddir)/Tools/Lib/Triangle/libTriangle.a \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(top_builddir)/Lib/Math/libMath.a \
+	$(top_builddir)/Lib/Misc/libMisc.a \
+	$(top_builddir)/Lib/Debug/libDebug.a \
+	$(top_builddir)/Lib/zlib/libz.a \
+	-lgpc -lgfc
+
+INCLUDES += \
+	-I$(top_builddir) \
+	-I$(top_builddir)/Lib \
+	-I$(top_builddir)/Tools/Lib \
+	-I$(top_builddir)/Tools/Construct
diff --git a/Tools/Main/construct.cxx b/Tools/Main/construct.cxx
new file mode 100644
index 000000000..1c5c117a9
--- /dev/null
+++ b/Tools/Main/construct.cxx
@@ -0,0 +1,373 @@
+// main.cxx -- top level construction routines
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <sys/types.h>  // for directory reading
+#include <dirent.h>     // for directory reading
+
+#include <Bucket/newbucket.hxx>
+#include <Include/fg_constants.h>
+
+#include <Debug/logstream.hxx>
+#include <Array/array.hxx>
+#include <Clipper/clipper.hxx>
+#include <GenOutput/genobj.hxx>
+#include <Triangulate/triangle.hxx>
+
+
+// load regular grid of elevation data (dem based), return list of
+// fitted nodes
+int load_dem(const string& work_base, FGBucket& b, FGArray& array) {
+    point_list result;
+    string base = b.gen_base_path();
+
+    string dem_path = work_base + ".dem" + "/Scenery/" + base 
+	+ "/" + b.gen_index_str() + ".dem";
+    cout << "dem_path = " << dem_path << endl;
+
+    if ( ! array.open(dem_path) ) {
+	cout << "ERROR: cannot open " << dem_path << endl;
+    }
+
+    array.parse( b );
+
+    return 1;
+}
+
+// fit dem nodes, return number of fitted nodes
+int fit_dem(FGArray& array, int error) {
+    return array.fit( error );
+}
+
+
+// do actual scan of directory and loading of files
+int actual_load_polys( const string& dir, FGBucket& b, FGClipper& clipper ) {
+    int counter = 0;
+    string base = b.gen_base_path();
+    string tile_str = b.gen_index_str();
+    string ext;
+
+    DIR *d;
+    struct dirent *de;
+
+    if ( (d = opendir( dir.c_str() )) == NULL ) {
+        cout << "cannot open directory " << dir << "\n";
+	return 0;
+    }
+
+    // load all matching polygon files
+    string file, f_index, full_path;
+    int pos;
+    while ( (de = readdir(d)) != NULL ) {
+	file = de->d_name;
+	pos = file.find(".");
+	f_index = file.substr(0, pos);
+
+	if ( tile_str == f_index ) {
+	    ext = file.substr(pos + 1);
+	    cout << file << "  " << f_index << "  '" << ext << "'" << endl;
+	    full_path = dir + "/" + file;
+	    if ( (ext == "dem") || (ext == "dem.gz") ) {
+		// skip
+	    } else {
+		cout << "ext = '" << ext << "'" << endl;
+		clipper.load_polys( full_path );
+		++counter;
+	    }
+	}
+    }
+
+    return counter;
+}
+
+
+// load all 2d polygons matching the specified base path and clip
+// against each other to resolve any overlaps
+int load_polys( const string& work_base, FGBucket& b, FGClipper& clipper) {
+    string base = b.gen_base_path();
+    int result;
+
+    // initialize clipper
+    clipper.init();
+
+    // load airports
+    string poly_path = work_base + ".apt" + "/Scenery/" + base;
+    cout << "poly_path = " << poly_path << endl;
+    result = actual_load_polys( poly_path, b, clipper );
+    cout << "  loaded " << result << " polys" << endl;
+
+    // load hydro
+    poly_path = work_base + ".hydro" + "/Scenery/" + base;
+    cout << "poly_path = " << poly_path << endl;
+    result = actual_load_polys( poly_path, b, clipper );
+    cout << "  loaded " << result << " polys" << endl;
+
+    point2d min, max;
+    min.x = b.get_center_lon() - 0.5 * b.get_width();
+    min.y = b.get_center_lat() - 0.5 * b.get_height();
+    max.x = b.get_center_lon() + 0.5 * b.get_width();
+    max.y = b.get_center_lat() + 0.5 * b.get_height();
+
+    // do clipping
+    cout << "clipping polygons" << endl;
+    clipper.clip_all(min, max);
+
+    return 1;
+}
+
+
+// triangulate the data for each polygon
+void do_triangulate( const FGArray& array, const FGClipper& clipper,
+		  FGTriangle& t ) {
+    // first we need to consolidate the points of the DEM fit list and
+    // all the polygons into a more "Triangle" friendly format
+
+    point_list corner_list = array.get_corner_node_list();
+    point_list fit_list = array.get_fit_node_list();
+    FGgpcPolyList gpc_polys = clipper.get_polys_clipped();
+
+    cout << "ready to build node list and polygons" << endl;
+    t.build( corner_list, fit_list, gpc_polys );
+    cout << "done building node list and polygons" << endl;
+
+    cout << "ready to do triangulation" << endl;
+    t.run_triangulate();
+    cout << "finished triangulation" << endl;
+}
+
+
+// generate the flight gear scenery file
+void do_output( const string& base, const FGBucket &b, const FGTriangle& t, 
+		const FGArray& array, FGGenOutput& output ) {
+    output.build( array, t );
+    output.write( base, b );
+}
+
+
+void construct_tile( const string& work_base, const string& output_base,
+		     FGBucket& b )
+{
+    cout << "Construct tile, bucket = " << b << endl;
+
+    // fit with ever increasing error tolerance until we produce <=
+    // 80% of max nodes.  We should really have the sim end handle
+    // arbitrarily complex tiles.
+
+    const int min_nodes = 50;
+    const int max_nodes = (int)(MAX_NODES * 0.8);
+
+    bool acceptable = false;
+    double error = 200.0;
+    int count = 0;
+
+    // load and fit grid of elevation data
+    FGArray array;
+    load_dem( work_base, b, array );
+
+    FGTriangle t;
+
+    while ( ! acceptable ) {
+	// fit the data
+	array.fit( error );
+
+	// load and clip 2d polygon data
+	FGClipper clipper;
+	load_polys( work_base, b, clipper );
+
+	// triangulate the data for each polygon
+	do_triangulate( array, clipper, t );
+
+	acceptable = true;
+
+	count = t.get_out_nodes_size();
+
+	if ( (count < min_nodes) && (error >= 25.0) ) {
+	    // reduce error tolerance until number of points exceeds the
+	    // minimum threshold
+	    cout << "produced too few nodes ..." << endl;
+
+	    acceptable = false;
+
+	    error /= 1.5;
+	    cout << "Setting error to " << error << " and retrying fit." 
+		 << endl;
+	}
+
+	if ( (count > max_nodes) && (error <= 1000.0) ) {
+	    // increase error tolerance until number of points drops below
+	    // the maximum threshold
+	    cout << "produced too many nodes ..." << endl;
+	    
+	    acceptable = false;
+
+	    error *= 1.5;
+	    cout << "Setting error to " << error << " and retrying fit." 
+		 << endl;
+	}
+    }
+
+    cout << "finished fit with error = " << error << " node count = " 
+	 << count << endl;
+
+    // generate the output
+    FGGenOutput output;
+    do_output( output_base, b, t, array, output );
+}
+
+
+main(int argc, char **argv) {
+    double lon, lat;
+
+    fglog().setLogLevels( FG_ALL, FG_DEBUG );
+
+    if ( argc != 3 ) {
+	cout << "Usage: " << argv[0] << " <work_base> <output_base>" << endl;
+	exit(-1);
+    }
+
+    string work_base = argv[1];
+    string output_base = argv[2];
+   
+    // lon = -146.248360; lat = 61.133950;     // PAVD (Valdez, AK)
+    // lon = -110.664244; lat = 33.352890;     // P13
+    // lon = -93.211389; lat = 45.145000;      // KANE
+    // lon = -92.486188; lat = 44.590190;      // KRGK
+    // lon = -89.744682312011719; lat= 29.314495086669922;
+    // lon = -122.488090; lat = 42.743183;     // 64S
+    // lon = -114.861097; lat = 35.947480;     // 61B
+    // lon = -112.012175; lat = 41.195944;     // KOGD
+    // lon = -90.757128; lat = 46.790212;      // WI32
+    // lon = -122.220717; lat = 37.721291;     // KOAK
+    // lon = -111.721477; lat = 40.215641;     // KPVU
+    // lon = -122.309313; lat = 47.448982;     // KSEA
+    lon = -148.798131; lat = 63.645099;     // AK06 (Danali, AK)
+
+    double min_x = lon - 3;
+    double min_y = lat - 1;
+    FGBucket b_min( min_x, min_y );
+    FGBucket b_max( lon + 3, lat + 1 );
+
+    FGBucket b_omit(550314L);
+    // FGBucket b(517745L);
+    // FGBucket b(-146.248360, 61.133950);
+    // construct_tile( work_base, output_base, b );
+    // exit(0);
+
+    if ( b_min == b_max ) {
+	construct_tile( work_base, output_base, b_min );
+    } else {
+	FGBucket b_cur;
+	int dx, dy, i, j;
+	    
+	fgBucketDiff(b_min, b_max, &dx, &dy);
+	cout << "  construction area spans tile boundaries" << endl;
+	cout << "  dx = " << dx << "  dy = " << dy << endl;
+
+	for ( j = 0; j <= dy; j++ ) {
+	    for ( i = 0; i <= dx; i++ ) {
+		b_cur = fgBucketOffset(min_x, min_y, i, j);
+
+		if ( b_cur != b_omit ) {
+		    construct_tile( work_base, output_base, b_cur );
+		}
+	    }
+	}
+	// string answer; cin >> answer;
+    }
+}
+
+
+// $Log$
+// Revision 1.18  1999/04/05 02:16:51  curt
+// Dynamically update "error" until the resulting tile data scales within
+// a lower and upper bounds.
+//
+// Revision 1.17  1999/04/03 05:22:57  curt
+// Found a bug in dividing and adding unique verticle segments which could
+// cause the triangulator to end up in an infinite loop.  Basically the code
+// was correct, but the verticle line test was a bit to selective.
+//
+// Revision 1.16  1999/04/01 13:52:12  curt
+// Version 0.6.0
+// Shape name tweak.
+// Removing tool: FixNode
+//
+// Revision 1.15  1999/03/31 23:47:02  curt
+// Debugging output tweaks.
+//
+// Revision 1.14  1999/03/31 13:26:41  curt
+// Debugging output tweeaks.
+//
+// Revision 1.13  1999/03/31 05:35:06  curt
+// Fixed bug in genfans (deleting the wrong triangles from the available pool.)
+//
+// Revision 1.12  1999/03/30 23:51:14  curt
+// fiddling ...
+//
+// Revision 1.11  1999/03/29 13:11:06  curt
+// Shuffled stl type names a bit.
+// Began adding support for tri-fanning (or maybe other arrangments too.)
+//
+// Revision 1.10  1999/03/27 05:25:02  curt
+// Fit with a value of 200 rather than 100.
+// Handle corner nodes separately from the rest of the fitted nodes.
+// Write scenery file to correct location.
+// First hack at generating scenery for multiple tiles in one invocation.
+//
+// Revision 1.9  1999/03/25 19:04:31  curt
+// Preparations for outputing scenery file to correct location.
+// Minor tweaks related to FGBucket usage.
+//
+// Revision 1.8  1999/03/23 22:02:17  curt
+// Worked on creating data to output ... normals, bounding spheres, etc.
+//
+// Revision 1.7  1999/03/22 23:48:29  curt
+// Added GenOutput/
+//
+// Revision 1.6  1999/03/21 15:48:01  curt
+// Removed Dem2node from the Tools fold.
+// Tweaked the triangulator options to add quality mesh refinement.
+//
+// Revision 1.5  1999/03/21 14:02:05  curt
+// Added a mechanism to dump out the triangle structures for viewing.
+// Fixed a couple bugs in first pass at triangulation.
+// - needed to explicitely initialize the polygon accumulator in triangle.cxx
+//   before each polygon rather than depending on the default behavior.
+// - Fixed a problem with region attribute propagation where I wasn't generating
+//   the hole points correctly.
+//
+// Revision 1.4  1999/03/20 20:32:54  curt
+// First mostly successful tile triangulation works.  There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
+// Revision 1.3  1999/03/19 00:26:52  curt
+// Minor tweaks ...
+//
+// Revision 1.2  1999/03/17 23:49:52  curt
+// Started work on Triangulate/ section.
+//
+// Revision 1.1  1999/03/14 00:03:24  curt
+// Initial revision.
+//
+
+
diff --git a/Tools/Main/construct_types.hxx b/Tools/Main/construct_types.hxx
new file mode 100644
index 000000000..095e48c56
--- /dev/null
+++ b/Tools/Main/construct_types.hxx
@@ -0,0 +1,58 @@
+// construct_types.hxx -- commonly used types in the construction business.
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _CONSTRUCT_TYPES_HXX
+#define _CONSTRUCT_TYPES_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Include/compiler.h>
+
+#include <vector>
+
+#include <Math/point3d.hxx>
+
+FG_USING_STD(vector);
+
+
+typedef vector < int > int_list;
+typedef int_list::iterator int_list_iterator;
+typedef int_list::const_iterator const_int_list_iterator;
+
+typedef vector < Point3D > point_list;
+typedef point_list::iterator point_list_iterator;
+typedef point_list::const_iterator const_point_list_iterator;
+
+
+#endif // _CONSTRUCT_TYPES_HXX
+
+
+// $Log$
+// Revision 1.1  1999/03/29 13:19:44  curt
+// Initial revision.
+//
diff --git a/Tools/Makedir/Makefile.am b/Tools/Makedir/Makefile.am
new file mode 100644
index 000000000..e93857cc0
--- /dev/null
+++ b/Tools/Makedir/Makefile.am
@@ -0,0 +1,9 @@
+bin_PROGRAMS = makedir
+
+makedir_SOURCES = makedir.cxx
+
+makedir_LDADD = \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(base_LIBS)
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib
diff --git a/Tools/Makedir/makedir.cxx b/Tools/Makedir/makedir.cxx
new file mode 100644
index 000000000..1bc7734cb
--- /dev/null
+++ b/Tools/Makedir/makedir.cxx
@@ -0,0 +1,119 @@
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#include <stdio.h>
+#include <sys/stat.h> // stat()
+#include <unistd.h>   // stat()
+
+#include <string>
+
+#include <Bucket/bucketutils.h>
+
+
+
+#ifdef WIN32
+#ifndef TRUE
+ #define FALSE 0
+ #define TRUE 1
+#endif
+
+char* PathDivider()
+{
+	return "\\";
+} // PathDivider
+
+void ReplaceDivider( char* path )
+{
+	char	div = PathDivider()[0];
+	int		i;
+
+	if ( ! path )
+		return;
+	if ( div == '/' )
+		return;
+
+	for ( i = 0; path[i]; i++ )
+		if ( path[i] == '/' )
+			path[i] = div;
+
+} // ReplaceDivider
+
+int	Exists( char* path )
+{
+    struct stat statbuff;
+
+	ReplaceDivider( path );
+	if ( path[strlen( path ) - 1] == ':' )
+		return TRUE;
+	if ( _stat( path, &statbuff ) != 0 )
+		return FALSE;
+	return TRUE;
+} // Exists
+
+
+void CreateDir( char* path )
+{
+	if ( ! path  ||  ! strlen( path ) )
+		return;
+	ReplaceDivider( path );
+								// see if the parent exists yet
+	int		i;	// looping index
+	string	parent;	// path to parent
+
+	parent =  path;
+	for ( i = strlen( parent.c_str() )-1; i >= 0; i-- )
+		if ( parent[i] == PathDivider()[0] )
+		{
+			parent[i] = '\0';
+			break;
+		}
+	
+	if ( ! Exists( parent.c_str() ) )
+	{
+		CreateDir( parent.c_str() );
+	}
+
+	if ( ! Exists( path ) )
+	{
+		if (mkdir(path, S_IRWXU) != 0 )
+		{
+			cout << "Could not create directory " << path << endl;
+		}else{
+			cout << "CreateDir: " << path << endl;
+		}
+	}
+	
+} // CreateDir
+
+
+int main(int argc, char **argv)
+{
+	string root;
+
+	if(argc != 2)
+	{
+		cout << "Makedir failed needs one argument\n";
+		return(10);
+	}
+	root = argv[1];
+	
+	CreateDir(root.c_str());
+	
+	return(0);
+}
+#else
+
+int main(int argc, char **argv)
+{
+	cout << "This program is intended to work with windoze\n";
+	cout << "Other platforms can use mkdir\n";
+}
+
+#endif // WIN32
+
diff --git a/Tools/Polygon/Makefile.am b/Tools/Polygon/Makefile.am
new file mode 100644
index 000000000..caa4c59be
--- /dev/null
+++ b/Tools/Polygon/Makefile.am
@@ -0,0 +1,7 @@
+noinst_LIBRARIES = libPolygon.a
+
+libPolygon_a_SOURCES = \
+	index.cxx index.hxx \
+	names.cxx names.hxx
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib
diff --git a/Tools/Polygon/index.cxx b/Tools/Polygon/index.cxx
new file mode 100644
index 000000000..34352aacd
--- /dev/null
+++ b/Tools/Polygon/index.cxx
@@ -0,0 +1,79 @@
+// index.cxx -- routines to handle a unique/persistant integer polygon index
+//
+// Written by Curtis Olson, started February 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+ 
+#include <Include/compiler.h>
+
+#include STL_STRING
+
+#include <stdio.h>
+
+#include "index.hxx"
+
+
+static long int poly_index;
+static string poly_path;
+
+
+// initialize the unique polygon index counter stored in path
+bool poly_index_init( string path ) {
+    poly_path = path;
+
+    FILE *fp = fopen( poly_path.c_str(), "r" );
+
+    if ( fp == NULL ) {
+	cout << "Error cannot open " << poly_path << endl;
+	poly_index = 0;
+	return false;
+    }
+
+    fscanf( fp, "%ld", &poly_index );
+
+    fclose( fp );
+}
+
+
+// increment the persistant counter and return the next poly_index
+long int poly_index_next() {
+    ++poly_index;
+
+    FILE *fp = fopen( poly_path.c_str(), "w" );
+
+    if ( fp == NULL ) {
+	cout << "Error cannot open " << poly_path << " for writing" << endl;
+    }
+
+    fprintf( fp, "%ld\n", poly_index );
+
+    fclose( fp );
+
+    return poly_index;
+}
+
+
+// $Log$
+// Revision 1.2  1999/03/19 00:27:30  curt
+// Use long int for index instead of just int.
+//
+// Revision 1.1  1999/02/25 21:30:24  curt
+// Initial revision.
+//
diff --git a/Tools/Polygon/index.hxx b/Tools/Polygon/index.hxx
new file mode 100644
index 000000000..0ea6b5c06
--- /dev/null
+++ b/Tools/Polygon/index.hxx
@@ -0,0 +1,51 @@
+// index.cxx -- routines to handle a unique/persistant integer polygon index
+//
+// Written by Curtis Olson, started February 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _INDEX_HXX
+#define _INDEX_HXX
+
+
+#include <Include/compiler.h>
+
+#include STL_STRING
+
+
+// initialize the unique polygon index counter stored in path
+bool poly_index_init( string path );
+
+// increment the persistant counter and return the next poly_index
+long int poly_index_next();
+
+
+
+#endif // _INDEX_HXX
+
+
+// $Log$
+// Revision 1.2  1999/03/19 00:27:31  curt
+// Use long int for index instead of just int.
+//
+// Revision 1.1  1999/02/25 21:30:24  curt
+// Initial revision.
+//
diff --git a/Tools/Polygon/names.cxx b/Tools/Polygon/names.cxx
new file mode 100644
index 000000000..2633d19a6
--- /dev/null
+++ b/Tools/Polygon/names.cxx
@@ -0,0 +1,146 @@
+// names.cxx -- process shapefiles names
+//
+// Written by Curtis Olson, started February 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+ 
+#include <Include/compiler.h>
+
+#include STL_STRING
+
+#include "names.hxx"
+
+
+// return area type from text name
+AreaType get_area_type( string area ) {
+    if ( area == "Default" ) {
+	return DefaultArea;
+    } else if ( area == "AirportKeep" ) {
+	return AirportKeepArea;
+    } else if ( area == "AirportIgnore" ) {
+	return AirportIgnoreArea;
+    } else if ( (area == "Swamp or Marsh")
+		|| (area == "Marsh") ) {
+	return MarshArea;
+    } else if ( (area == "Bay  Estuary or Ocean")
+                || (area == "Ocean") ) {
+	return OceanArea;
+    } else if ( area == "Lake" ) {
+	return LakeArea;
+    } else if ( (area == "Lake   Dry")
+		|| (area == "DryLake") ) {
+	return DryLakeArea;
+    } else if ( (area == "Lake   Intermittent")
+		|| (area == "IntermittentLake") ) {
+	return IntLakeArea;
+    } else if ( area == "Reservoir" ) {
+	return ReservoirArea;
+    } else if ( (area == "Reservoir   Intermittent")
+		|| (area == "IntermittentReservoir") ) {
+	return IntReservoirArea;
+    } else if ( area == "Stream" ) {
+	return StreamArea;
+    } else if ( area == "Canal" ) {
+	return CanalArea;
+    } else if ( area == "Glacier" ) {
+	return GlacierArea;
+    } else if ( area == "Void Area" ) {
+	return VoidArea;
+    } else if ( area == "Null" ) {
+	return NullArea;
+    } else {
+	cout << "unknown area = '" << area << "'" << endl;
+	// cout << "area = " << area << endl;
+	// for ( int i = 0; i < area.length(); i++ ) {
+	//  cout << i << ") " << (int)area[i] << endl;
+	// }
+	return UnknownArea;
+    }
+}
+
+
+// return text from of area name
+string get_area_name( AreaType area ) {
+    if ( area == DefaultArea ) {
+	return "Default";
+    } else if ( area == AirportKeepArea ) {
+	return "AirportKeep";
+    } else if ( area == AirportIgnoreArea ) {
+	return "AirportIgnore";
+    } else if ( area == MarshArea ) {
+	return "Marsh";
+    } else if ( area == OceanArea ) {
+	return "Ocean";
+    } else if ( area == LakeArea ) {
+	return "Lake";
+    } else if ( area == DryLakeArea ) {
+	return "DryLake";
+    } else if ( area == IntLakeArea ) {
+	return "IntermittentLake";
+    } else if ( area == ReservoirArea ) {
+	return "Reservoir";
+    } else if ( area == IntReservoirArea ) {
+	return "IntermittentReservoir";
+    } else if ( area == StreamArea ) {
+	return "Stream";
+    } else if ( area == CanalArea ) {
+	return "Canal";
+    } else if ( area == GlacierArea ) {
+	return "Glacier";
+    } else if ( area == VoidArea ) {
+	return "VoidArea";
+    } else if ( area == NullArea ) {
+	return "Null";
+    } else {
+	cout << "unknown area code = " << (int)area << endl;
+	return "Unknown";
+    }
+}
+
+
+// $Log$
+// Revision 1.7  1999/04/01 13:52:13  curt
+// Version 0.6.0
+// Shape name tweak.
+// Removing tool: FixNode
+//
+// Revision 1.6  1999/03/27 05:31:24  curt
+// Make 0 the default area type since this corresponds well with the conventions
+//   used by the triangulator.
+//
+// Revision 1.5  1999/03/22 23:49:29  curt
+// Moved AreaType get_shapefile_type(GDBFile *dbf, int rec) to where it
+// belongs in ShapeFile/
+//
+// Revision 1.4  1999/03/13 18:47:04  curt
+// Removed an unused variable.
+//
+// Revision 1.3  1999/03/02 01:03:58  curt
+// Added more reverse lookup support.
+//
+// Revision 1.2  1999/03/01 15:35:52  curt
+// Generalized the routines a bit to make them more useful.
+//
+// Revision 1.1  1999/02/25 21:30:24  curt
+// Initial revision.
+//
+// Revision 1.1  1999/02/23 01:29:05  curt
+// Additional progress.
+//
diff --git a/Tools/Polygon/names.hxx b/Tools/Polygon/names.hxx
new file mode 100644
index 000000000..0a919a5ed
--- /dev/null
+++ b/Tools/Polygon/names.hxx
@@ -0,0 +1,89 @@
+// names.hxx -- process shapefiles names
+//
+// Written by Curtis Olson, started February 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+ 
+
+#ifndef _NAMES_HXX
+#define _NAMES_HXX
+
+
+#include <Include/compiler.h>
+
+#include STL_STRING
+
+FG_USING_STD(string);
+
+
+// Posible shape file types.  Note the order of these is important and
+// defines the priority of these shapes if they should intersect.  The
+// smaller the number, the higher the priority.
+enum AreaType {
+    DefaultArea       = 0,
+    AirportKeepArea   = 1,
+    AirportIgnoreArea = 2,
+    OceanArea         = 3,
+    LakeArea          = 4,
+    DryLakeArea       = 5,
+    IntLakeArea       = 6,
+    ReservoirArea     = 7,
+    IntReservoirArea  = 8,
+    StreamArea        = 9,
+    CanalArea         = 10,
+    GlacierArea       = 11,
+    MarshArea         = 12,
+    VoidArea          = 9997,
+    NullArea          = 9998,
+    UnknownArea       = 9999
+};
+
+
+// return area type from text name
+AreaType get_area_type( string area );
+
+// return text form of area name
+string get_area_name( AreaType area );
+
+
+#endif // _NAMES_HXX
+
+
+// $Log$
+// Revision 1.5  1999/03/27 05:31:25  curt
+// Make 0 the default area type since this corresponds well with the conventions
+//   used by the triangulator.
+//
+// Revision 1.4  1999/03/22 23:49:30  curt
+// Moved AreaType get_shapefile_type(GDBFile *dbf, int rec) to where it
+// belongs in ShapeFile/
+//
+// Revision 1.3  1999/03/01 15:35:53  curt
+// Generalized the routines a bit to make them more useful.
+//
+// Revision 1.2  1999/02/26 22:10:42  curt
+// Updated names and priorities of area types.
+//
+// Revision 1.1  1999/02/25 21:30:24  curt
+// Initial revision.
+//
+// Revision 1.1  1999/02/23 01:29:05  curt
+// Additional progress.
+//
diff --git a/Tools/Prep/Makefile.am b/Tools/Prep/Makefile.am
new file mode 100644
index 000000000..96c87b412
--- /dev/null
+++ b/Tools/Prep/Makefile.am
@@ -0,0 +1,6 @@
+SUBDIRS = \
+	DemChop \
+	DemInfo \
+	DemRaw2ascii \
+	GenAirports \
+	ShapeFile
diff --git a/Tools/ShapeFile/Makefile.am b/Tools/ShapeFile/Makefile.am
new file mode 100644
index 000000000..b3c41b82b
--- /dev/null
+++ b/Tools/ShapeFile/Makefile.am
@@ -0,0 +1,14 @@
+bin_PROGRAMS = shape-decode
+
+shape_decode_SOURCES = main.cxx shape.cxx shape.hxx
+
+shape_decode_LDADD = \
+	$(top_builddir)/Tools/Lib/Polygon/libPolygon.a \
+	$(top_builddir)/Lib/Debug/libDebug.a \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(top_builddir)/Lib/Misc/libMisc.a \
+	$(top_builddir)/Lib/zlib/libz.a \
+	-lgfc -lgpc
+
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib -I$(top_builddir)/Tools/Lib
diff --git a/Tools/ShapeFile/main.cxx b/Tools/ShapeFile/main.cxx
new file mode 100644
index 000000000..b0e629575
--- /dev/null
+++ b/Tools/ShapeFile/main.cxx
@@ -0,0 +1,333 @@
+// main.cxx -- process shapefiles and extract polygon outlines,
+//             clipping against and sorting them into the revelant
+//             tiles.
+//
+// Written by Curtis Olson, started February 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+ 
+
+// Include Geographic Foundation Classes library
+
+// libgfc.a includes need this bit o' strangeness
+#if defined ( linux )
+#  define _LINUX_
+#endif
+#include <gfc/gadt_polygon.h>
+#include <gfc/gdbf.h>
+#include <gfc/gshapefile.h>
+#undef E
+#undef DEG_TO_RAD
+#undef RAD_TO_DEG
+
+// include Generic Polygon Clipping Library
+extern "C" {
+#include <gpc.h>
+}
+
+#include <Include/compiler.h>
+
+#include STL_STRING
+
+#include <Debug/logstream.hxx>
+
+#include <Polygon/index.hxx>
+#include <Polygon/names.hxx>
+#include "shape.hxx"
+
+
+// return the type of the shapefile record
+AreaType get_shapefile_type(GDBFile *dbf, int rec) {
+    // GDBFieldDesc *fdesc[128];	// 128 is an arbitrary number here
+    GDBFValue *fields;		//an array of field values
+    char* dbf_rec;		//a record containing all the fields
+
+    // grab the meta-information for all the fields
+    // this applies to all the records in the DBF file.
+    // for ( int i = 0; i < dbf->numFields(); i++ ) {
+    //   fdesc[i] = dbf->getFieldDesc(i);
+    //   cout << i << ") " << fdesc[i]->name << endl;
+    // }
+
+    // this is the whole name record
+    dbf_rec = dbf->getRecord( rec );
+
+    // parse it into individual fields
+    if ( dbf_rec ) {
+	fields = dbf->recordDeform( dbf_rec );
+    } else {
+	return UnknownArea;
+    }
+
+    string area = fields[4].str_v;
+    // strip leading spaces
+    while ( area[0] == ' ' ) {
+	area = area.substr(1, area.length() - 1);
+    }
+    // strip trailing spaces
+    while ( area[area.length() - 1] == ' ' ) {
+	area = area.substr(0, area.length() - 1);
+    }
+    // strip other junk encountered
+    while ( (int)area[area.length() - 1] == 9 ) {
+	area = area.substr(0, area.length() - 1);
+    }
+
+    return get_area_type( area );
+}
+
+
+int main( int argc, char **argv ) {
+    gpc_polygon gpc_shape;
+    int i, j;
+
+    fglog().setLogLevels( FG_ALL, FG_DEBUG );
+
+    if ( argc != 3 ) {
+	FG_LOG( FG_GENERAL, FG_ALERT, "Usage: " << argv[0] 
+		<< " <shape_file> <work_dir>" );
+	exit(-1);
+    }
+
+    FG_LOG( FG_GENERAL, FG_DEBUG, "Opening " << argv[1] << " for reading." );
+
+    // make work directory
+    string work_dir = argv[2];
+    string command = "mkdir -p " + work_dir;
+    system( command.c_str() );
+
+    // initialize persistant polygon counter
+    string counter_file = work_dir + "/../work.counter";
+    poly_index_init( counter_file );
+
+    // initialize structure for building gpc polygons
+    shape_utils_init();
+
+    GShapeFile * sf = new GShapeFile( argv[1] );
+    GDBFile *dbf = new GDBFile( argv[1] );
+    string path = argv[2];
+
+    GPolygon shape;
+    double  *coords; // in decimal degrees
+    int	n_vertices;
+
+    FG_LOG( FG_GENERAL, FG_INFO, "shape file records = " << sf->numRecords() );
+
+    GShapeFile::ShapeType t = sf->shapeType();
+    if ( t != GShapeFile::av_Polygon ) {
+	FG_LOG( FG_GENERAL, FG_ALERT, "Can't handle non-polygon shape files" );
+	exit(-1);
+    }
+
+    for ( i = 0; i < sf->numRecords(); i++ ) {
+	//fetch i-th record (shape)
+	sf->getShapeRec(i, &shape); 
+	FG_LOG( FG_GENERAL, FG_DEBUG, "Record = " << i << "  rings = " 
+		<< shape.numRings() );
+
+	AreaType area = get_shapefile_type(dbf, i);
+	FG_LOG( FG_GENERAL, FG_DEBUG, "area type = " << get_area_name(area) 
+		<< " (" << (int)area << ")" );
+
+	FG_LOG( FG_GENERAL, FG_INFO, "  record = " << i 
+		<< " ring = " << 0 );
+
+	if ( area == MarshArea ) {
+	    // interior of polygon is marsh, holes are water
+
+	    // do main outline first
+	    init_shape(&gpc_shape);
+	    n_vertices = shape.getRing(0, coords);
+	    add_to_shape(n_vertices, coords, &gpc_shape);
+	    process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+
+	    // do lakes (individually) next
+	    for (  j = 1; j < shape.numRings(); j++ ) {
+		FG_LOG( FG_GENERAL, FG_INFO, "  record = " << i 
+			<< " ring = " << j );
+		init_shape(&gpc_shape);
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+		process_shape(path, LakeArea, &gpc_shape);
+		free_shape(&gpc_shape);
+	    }
+	} else if ( area == OceanArea ) {
+	    // interior of polygon is ocean, holes are islands
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else if ( area == LakeArea ) {
+	    // interior of polygon is lake, holes are islands
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else if ( area == DryLakeArea ) {
+	    // interior of polygon is dry lake, holes are islands
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else if ( area == IntLakeArea ) {
+	    // interior of polygon is intermittent lake, holes are islands
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else if ( area == ReservoirArea ) {
+	    // interior of polygon is reservoir, holes are islands
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else if ( area == IntReservoirArea ) {
+	    // interior of polygon is intermittent reservoir, holes are islands
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else if ( area == StreamArea ) {
+	    // interior of polygon is stream, holes are islands
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else if ( area == CanalArea ) {
+	    // interior of polygon is canal, holes are islands
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else if ( area == GlacierArea ) {
+	    // interior of polygon is glacier, holes are dry land
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else if ( area == VoidArea ) {
+	    // interior is ????
+
+	    // skip for now
+	    FG_LOG(  FG_GENERAL, FG_ALERT, "Void area ... SKIPPING!" );
+
+	    if ( shape.numRings() > 1 ) {
+		FG_LOG(  FG_GENERAL, FG_ALERT, "  Void area with holes!" );
+		// exit(-1);
+	    }
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    // process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else if ( area == NullArea ) {
+	    // interior is ????
+
+	    // skip for now
+	    FG_LOG(  FG_GENERAL, FG_ALERT, "Null area ... SKIPPING!" );
+
+	    if ( shape.numRings() > 1 ) {
+		FG_LOG(  FG_GENERAL, FG_ALERT, "  Null area with holes!" );
+		// exit(-1);
+	    }
+
+	    init_shape(&gpc_shape);
+	    for (  j = 0; j < shape.numRings(); j++ ) {
+		n_vertices = shape.getRing(j, coords);
+		add_to_shape(n_vertices, coords, &gpc_shape);
+	    }
+	    // process_shape(path, area, &gpc_shape);
+	    free_shape(&gpc_shape);
+	} else {
+	    FG_LOG(  FG_GENERAL, FG_ALERT, "Uknown area!" );
+	    exit(-1);
+	}
+    }
+
+    return 0;
+}
+
+
+// $Log$
+// Revision 1.8  1999/03/22 23:49:36  curt
+// Moved AreaType get_shapefile_type(GDBFile *dbf, int rec) to where it
+// belongs in ShapeFile/
+//
+// Revision 1.7  1999/03/17 23:51:29  curt
+// Changed polygon index counter file.
+//
+// Revision 1.6  1999/03/02 01:04:28  curt
+// Don't crash when work directory doesn't exist ... create it.
+//
+// Revision 1.5  1999/03/01 15:36:28  curt
+// Tweaked a function call name in "names.hxx".
+//
+// Revision 1.4  1999/02/25 21:31:05  curt
+// First working version???
+//
+// Revision 1.3  1999/02/23 01:29:04  curt
+// Additional progress.
+//
+// Revision 1.2  1999/02/19 19:05:18  curt
+// Working on clipping shapes and distributing into buckets.
+//
+// Revision 1.1  1999/02/15 19:10:23  curt
+// Initial revision.
+//
diff --git a/Tools/ShapeFile/shape.cxx b/Tools/ShapeFile/shape.cxx
new file mode 100644
index 000000000..badef8823
--- /dev/null
+++ b/Tools/ShapeFile/shape.cxx
@@ -0,0 +1,255 @@
+// shape.cxx -- shape/gpc utils
+//
+// Written by Curtis Olson, started February 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <Include/compiler.h>
+
+#include STL_STRING
+
+#include <Bucket/newbucket.hxx>
+#include <Debug/logstream.hxx>
+
+#include <Polygon/index.hxx>
+#include <Polygon/names.hxx>
+#include "shape.hxx"
+
+
+#define FG_MAX_VERTICES 100000
+static gpc_vertex_list v_list;
+
+
+class point2d {
+public:
+    double x, y;
+};
+
+
+static void clip_and_write_poly( string root, long int p_index, AreaType area, 
+				 FGBucket b, gpc_polygon *shape ) {
+    point2d c, min, max;
+    c.x = b.get_center_lon();
+    c.y = b.get_center_lat();
+    double span = bucket_span(c.y);
+    gpc_polygon base, result;
+    char tile_name[256], poly_index[256];
+
+    // calculate bucket dimensions
+    if ( (c.y >= -89.0) && (c.y < 89.0) ) {
+	min.x = c.x - span / 2.0;
+	max.x = c.x + span / 2.0;
+	min.y = c.y - FG_HALF_BUCKET_SPAN;
+	max.y = c.y + FG_HALF_BUCKET_SPAN;
+    } else if ( c.y < -89.0) {
+	min.x = -90.0;
+	max.x = -89.0;
+	min.y = -180.0;
+	max.y = 180.0;
+    } else if ( c.y >= 89.0) {
+	min.x = 89.0;
+	max.x = 90.0;
+	min.y = -180.0;
+	max.y = 180.0;
+    } else {
+	FG_LOG ( FG_GENERAL, FG_ALERT, 
+		 "Out of range latitude in clip_and_write_poly() = " << c.y );
+    }
+
+    FG_LOG( FG_GENERAL, FG_INFO, "  (" << min.x << "," << min.y << ") ("
+	    << max.x << "," << max.y << ")" );
+
+    // set up clipping tile
+    v_list.vertex[0].x = min.x;
+    v_list.vertex[0].y = min.y;
+
+    v_list.vertex[1].x = max.x;
+    v_list.vertex[1].y = min.y;
+
+    v_list.vertex[2].x = max.x;
+    v_list.vertex[2].y = max.y;
+
+    v_list.vertex[3].x = min.x;
+    v_list.vertex[3].y = max.y;
+
+    v_list.num_vertices = 4;
+
+    base.num_contours = 0;
+    base.contour = NULL;
+    gpc_add_contour( &base, &v_list );
+
+    // FG_LOG( FG_GENERAL, FG_DEBUG, "base = 4 vertices" );
+
+    /*
+    FILE *bfp= fopen("base", "w");
+    gpc_write_polygon(bfp, &base);
+    fclose(bfp);
+    */
+
+    gpc_polygon_clip(GPC_INT, &base, shape, &result);
+
+    if ( result.num_contours > 0 ) {
+	long int t_index = b.gen_index();
+	string path = root + "/Scenery/" + b.gen_base_path();
+	string command = "mkdir -p " + path;
+	system( command.c_str() );
+
+	sprintf( tile_name, "%ld", t_index );
+	string polyfile = path + "/" + tile_name;
+
+	sprintf( poly_index, "%ld", p_index );
+	polyfile += ".";
+	polyfile += poly_index;
+
+	string poly_type = get_area_name( area );
+	if ( poly_type == "Unknown" ) {
+	    cout << "unknown area type in clip_and_write_poly()!" << endl;
+	    exit(-1);
+	}
+	
+	FILE *rfp= fopen( polyfile.c_str(), "w" );
+	fprintf( rfp, "%s\n", poly_type.c_str() );
+	gpc_write_polygon( rfp, &result );
+	fclose( rfp );
+    }
+
+    gpc_free_polygon(&base);
+    gpc_free_polygon(&result);
+}
+
+
+// Initialize structure we use to create polygons for the gpc library
+bool shape_utils_init() {
+    v_list.num_vertices = 0;
+    v_list.vertex = new gpc_vertex[FG_MAX_VERTICES];;
+
+    return true;
+}
+
+
+// initialize a gpc_polygon
+void init_shape(gpc_polygon *shape) {
+    shape->num_contours = 0;
+    shape->contour = NULL;
+}
+
+
+// make a gpc_polygon
+void add_to_shape(int count, double *coords, gpc_polygon *shape) {
+    
+    for ( int i = 0; i < count; i++ ) {
+	v_list.vertex[i].x = coords[i*2+0];
+	v_list.vertex[i].y = coords[i*2+1];
+    }
+
+    v_list.num_vertices = count;
+    gpc_add_contour( shape, &v_list );
+}
+
+
+// process shape (write polygon to all intersecting tiles)
+void process_shape(string path, AreaType area, gpc_polygon *gpc_shape) {
+    point2d min, max;
+    long int index;
+    int i, j;
+
+    min.x = min.y = 200.0;
+    max.x = max.y = -200.0;
+
+    // find min/max of polygon
+    for ( i = 0; i < gpc_shape->num_contours; i++ ) {
+	for ( j = 0; j < gpc_shape->contour[i].num_vertices; j++ ) {
+	    double x = gpc_shape->contour[i].vertex[j].x;
+	    double y = gpc_shape->contour[i].vertex[j].y;
+
+	    if ( x < min.x ) { min.x = x; }
+	    if ( y < min.y ) { min.y = y; }
+	    if ( x > max.x ) { max.x = x; }
+	    if ( y > max.y ) { max.y = y; }
+	}
+    }
+
+    /*
+    FILE *sfp= fopen("shape", "w");
+    gpc_write_polygon(sfp, gpc_shape);
+    fclose(sfp);
+    exit(-1);
+    */
+	
+    // get next polygon index
+    index = poly_index_next();
+
+    FG_LOG( FG_GENERAL, FG_INFO, "  min = " << min.x << "," << min.y
+	    << " max = " << max.x << "," << max.y );
+
+    // find buckets for min, and max points of convex hull.
+    // note to self: self, you should think about checking for
+    // polygons that span the date line
+    FGBucket b_min(min.x, min.y);
+    FGBucket b_max(max.x, max.y);
+    FG_LOG( FG_GENERAL, FG_INFO, "  Bucket min = " << b_min );
+    FG_LOG( FG_GENERAL, FG_INFO, "  Bucket max = " << b_max );
+	    
+    if ( b_min == b_max ) {
+	clip_and_write_poly( path, index, area, b_min, gpc_shape );
+    } else {
+	FGBucket b_cur;
+	int dx, dy, i, j;
+	    
+	fgBucketDiff(b_min, b_max, &dx, &dy);
+	FG_LOG( FG_GENERAL, FG_INFO, 
+		"  polygon spans tile boundaries" );
+	FG_LOG( FG_GENERAL, FG_INFO, "  dx = " << dx 
+		<< "  dy = " << dy );
+
+	if ( (dx > 100) || (dy > 100) ) {
+	    FG_LOG( FG_GENERAL, FG_ALERT, 
+		    "somethings really wrong!!!!" );
+	    exit(-1);
+	}
+
+	for ( j = 0; j <= dy; j++ ) {
+	    for ( i = 0; i <= dx; i++ ) {
+		b_cur = fgBucketOffset(min.x, min.y, i, j);
+		clip_and_write_poly( path, index, area, b_cur, gpc_shape );
+	    }
+	}
+	// string answer; cin >> answer;
+    }
+}
+
+
+// free a gpc_polygon
+void free_shape(gpc_polygon *shape) {
+    gpc_free_polygon(shape);
+}
+
+
+// $Log$
+// Revision 1.3  1999/03/19 00:27:41  curt
+// Use long int for index instead of just int.
+//
+// Revision 1.2  1999/02/25 21:31:08  curt
+// First working version???
+//
+// Revision 1.1  1999/02/23 01:29:06  curt
+// Additional progress.
+//
diff --git a/Tools/ShapeFile/shape.hxx b/Tools/ShapeFile/shape.hxx
new file mode 100644
index 000000000..6a59b77e3
--- /dev/null
+++ b/Tools/ShapeFile/shape.hxx
@@ -0,0 +1,64 @@
+// shape.hxx -- shape/gpc utils
+//
+// Written by Curtis Olson, started February 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _SHAPE_HXX
+#define _SHAPE_HXX
+
+
+// include Generic Polygon Clipping Library
+extern "C" {
+#include <gpc.h>
+}
+
+#include <Polygon/names.hxx>
+
+
+// Initialize structure we use to create polygons for the gpc library
+// this must be called once from main for any program that uses this library
+bool shape_utils_init();
+
+
+// initialize a gpc_polygon
+void init_shape(gpc_polygon *shape);
+
+// make a gpc_polygon
+void add_to_shape(int count, double *coords, gpc_polygon *shape);
+
+// process shape (write polygon to all intersecting tiles)
+void process_shape(string path, AreaType area, gpc_polygon *gpc_shape);
+
+// free a gpc_polygon
+void free_shape(gpc_polygon *shape);
+
+
+#endif // _SHAPE_HXX
+
+
+// $Log$
+// Revision 1.2  1999/02/25 21:31:09  curt
+// First working version???
+//
+// Revision 1.1  1999/02/23 01:29:06  curt
+// Additional progress.
+//
diff --git a/Tools/SplitTris/Makefile.am b/Tools/SplitTris/Makefile.am
new file mode 100644
index 000000000..e8f64e5b9
--- /dev/null
+++ b/Tools/SplitTris/Makefile.am
@@ -0,0 +1,77 @@
+#---------------------------------------------------------------------------
+# Makefile
+#
+# Written by Curtis Olson, started January 1998.
+#
+# Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+bin_PROGRAMS = splittris
+
+splittris_SOURCES = splittris.cxx splittris.hxx
+
+splittris_LDADD = \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(top_builddir)/Lib/Math/libMath.a \
+        $(top_builddir)/Lib/Debug/libDebug.a \
+	$(top_builddir)/Lib/Misc/libMisc.a \
+        $(top_builddir)/Lib/zlib/libz.a \
+	$(base_LIBS)
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.8  1998/11/04 23:01:57  curt
+# Changes to the automake/autoconf system to reduce the number of libraries
+# that are unnecessarily linked into the various executables.
+#
+# Revision 1.7  1998/10/18 01:17:25  curt
+# Point3D tweaks.
+#
+# Revision 1.6  1998/07/30 23:49:26  curt
+# Removed libtool support.
+#
+# Revision 1.5  1998/07/08 14:49:13  curt
+# tweaks.
+#
+# Revision 1.4  1998/04/24 00:44:06  curt
+# Added zlib support.
+#
+# Revision 1.3  1998/04/18 04:01:17  curt
+# Now use libMath rather than having local copies of math routines.
+#
+# Revision 1.2  1998/04/14 02:26:06  curt
+# Code reorganizations.  Added a Lib/ directory for more general libraries.
+#
+# Revision 1.1  1998/04/08 23:21:10  curt
+# Adopted Gnu automake/autoconf system.
+#
+# Revision 1.3  1998/01/21 02:55:55  curt
+# Incorporated new make system from Bob Kuehne <rpk@sgi.com>.
+#
+# Revision 1.2  1998/01/14 15:54:42  curt
+# Initial revision completed.
+#
+# Revision 1.1  1998/01/14 02:11:30  curt
+# Initial revision.
+#
diff --git a/Tools/SplitTris/splittris.cxx b/Tools/SplitTris/splittris.cxx
new file mode 100644
index 000000000..20e26e7a9
--- /dev/null
+++ b/Tools/SplitTris/splittris.cxx
@@ -0,0 +1,673 @@
+// splittris.cxx -- read in a .ele/.node file pair generated by the
+//                  triangle program and output a simple Wavefront .obj
+//                  file for the north, south, east, and west edge
+//                  verticies ... including the normals.
+//
+// Written by Curtis Olson, started January 1998.
+//
+// Copyright (C) 1997  Curtis L. Olson  - curt@infoplane.com
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>   // for atoi()
+#include <string.h>
+#include <sys/stat.h> // for stat()
+#include <unistd.h>   // for stat()
+
+#include "splittris.hxx"
+
+#include <Include/fg_constants.h>
+#include <Bucket/bucketutils.h>
+#include <Math/fg_geodesy.hxx>
+#include <Math/mat3.h>
+#include <Math/point3d.hxx>
+#include <Math/polar3d.hxx>
+#include <Misc/fgstream.hxx>
+
+// int nodecount, tricount;
+double xmin, xmax, ymin, ymax;
+
+// static double nodes_orig[MAX_NODES][3];
+// static Point3D nodes_cart[MAX_NODES];
+// static int tris[MAX_TRIS][3];
+
+container_3d nodes_orig;
+container_3d nodes_cart;
+container_tri tri_list;
+
+fgBUCKET ne_index, nw_index, sw_index, se_index;
+fgBUCKET north_index, south_index, east_index, west_index;
+
+
+// given three points defining a triangle, calculate the normal
+void calc_normal(const Point3D& p1, const Point3D& p2, 
+		 const Point3D& p3, double normal[3])
+{
+    double v1[3], v2[3];
+    double temp;
+
+    v1[0] = p2.x() - p1.x(); v1[1] = p2.y() - p1.y(); v1[2] = p2.z() - p1.z();
+    v2[0] = p3.x() - p1.x(); v2[1] = p3.y() - p1.y(); v2[2] = p3.z() - p1.z();
+
+    MAT3cross_product(normal, v1, v2);
+    MAT3_NORMALIZE_VEC(normal,temp);
+
+    // printf("  Normal = %.2f %.2f %.2f\n", normal[0], normal[1], normal[2]);
+}
+
+
+// return the file base name ( foo/bar/file.ext = file.ext )
+string extract_file(const string& input) {
+    int pos;
+
+    pos = input.rfind("/");
+    ++pos;
+
+    return input.substr(pos);
+}
+
+
+// return the file path name ( foo/bar/file.ext = foo/bar )
+string extract_path(const string& input) {
+    int pos;
+
+    pos = input.rfind("/");
+
+    return input.substr(0, pos);
+}
+
+
+// return the index of all triangles containing the specified node
+void find_tris(int n, int *t1, int *t2, int *t3, int *t4, int *t5) {
+    int i;
+
+    *t1 = *t2 = *t3 = *t4 = *t5 = 0;
+
+    i = 1;
+    iterator_tri last = tri_list.end();
+    iterator_tri current = tri_list.begin();
+
+    // skip first null record
+    ++current;
+
+    for ( ; current != last; ++current )
+    {
+        if ( (n == (*current).n1) || (n == (*current).n2) || 
+	     (n == (*current).n3) )
+	{
+            if ( *t1 == 0 ) {
+		*t1 = i;
+            } else if ( *t2 == 0 ) {
+		*t2 = i;
+            } else if ( *t3 == 0 ) {
+		*t3 = i;
+            } else if ( *t4 == 0 ) {
+		*t4 = i;
+	    } else {
+		*t5 = i;
+	    }
+        }
+        ++i;
+    }
+}
+
+
+// Initialize a new mesh structure
+void triload(const string& basename) {
+    string nodename, elename;
+    Point3D node1, node2, p;
+    triangle tri;
+    int nodecount, tricount, dim, junk1, junk2;
+    int i;
+
+    nodename = basename + ".node";
+    elename  = basename + ".ele";
+
+    cout << "Loading node file:  " + nodename + " ...\n";
+
+    fg_gzifstream node_in( nodename );
+    if ( !node_in ) {
+	cout << "Cannot open file " + nodename + "\n";
+	exit(-1);
+    }
+
+    // the triangle program starts counting at 1 by default which is
+    // pretty obnoxious.  Let's just push null record zero's onto our
+    // list to compensate
+    nodes_orig.push_back(node1);
+    nodes_cart.push_back(node1);
+    tri_list.push_back(tri);
+
+    node_in >> nodecount >> dim >> junk1 >> junk2;
+    cout << "    Expecting " << nodecount << " nodes\n";
+
+    for ( i = 1; i <= nodecount; i++ ) {
+	node_in >> junk1 >> node1 >> junk2;
+	nodes_orig.push_back(node1);
+	// printf("%d %.2f %.2f %.2f\n", junk1, node1.x, node1.y, node1.z);
+	
+	// convert to radians (before we can convert to cartesian)
+	p = Point3D( node1.x() * ARCSEC_TO_RAD,
+	             node1.y() * ARCSEC_TO_RAD,
+		     node1.z() );
+
+	node2 = fgGeodToCart(p);
+	nodes_cart.push_back(node2);
+	// printf("%d %.2f %.2f %.2f\n", junk1, node2.x, node2.y, node2.z);
+
+	if ( i == 1 ) {
+	    xmin = xmax = node1.x();
+	    ymin = ymax = node1.y();
+	} else {
+	    if ( node1.x() < xmin ) {
+		xmin = node1.x();
+	    }
+	    if ( node1.x() > xmax ) {
+		xmax = node1.x();
+	    }
+	    if ( node1.y() < ymin ) {
+		ymin = node1.y();
+	    }
+	    if ( node1.y() > ymax ) {
+		ymax = node1.y();
+	    }
+	}
+    }
+
+    cout << "Loading element file:  " + elename + " ...\n";
+    fg_gzifstream ele_in( elename );
+    if ( !ele_in ) {
+	cout << "Cannot open file " + elename + "\n";
+	exit(-1);
+    }
+
+    ele_in >> tricount >> junk1 >> junk2;
+    cout << "    Expecting " << tricount << " elements\n";
+
+    for ( i = 1; i <= tricount; i++ ) {
+	// fscanf(ele_file, "%d %d %d %d\n", &junk1, 
+	//        &(tri.n1), &(tri.n2), &(tri.n3));
+	ele_in >> junk1 >> tri.n1 >> tri.n2 >> tri.n3;
+	// printf("%d %d %d %d\n", junk1, tri.n1, tri.n2, tri.n3);
+	tri_list.push_back(tri);
+    }
+}
+
+
+// check if a file exists
+int file_exists(char *file) {
+    struct stat stat_buf;
+    int result;
+
+    cout << "checking " << file << " ... ";
+
+    result = stat(file, &stat_buf);
+
+    if ( result != 0 ) {
+	// stat failed, no file
+	cout << "not found.\n";
+	return 0;
+    } else {
+	// stat succeeded, file exists
+	cout << "exists.\n";
+	return 1;
+    }
+}
+
+
+// check to see if a shared object exists
+int shared_object_exists(const char *basepath, const string& ext) {
+    char file[256], scene_path[256];
+    long int index;
+
+    if ( ext == ".sw" ) {
+	fgBucketGenBasePath(&west_index, scene_path);
+	index = fgBucketGenIndex(&west_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&sw_index, scene_path);
+	index = fgBucketGenIndex(&sw_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&south_index, scene_path);
+	index = fgBucketGenIndex(&south_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( ext == ".se" ) {
+	fgBucketGenBasePath(&east_index, scene_path);
+	index = fgBucketGenIndex(&east_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&se_index, scene_path);
+	index = fgBucketGenIndex(&se_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&south_index, scene_path);
+	index = fgBucketGenIndex(&south_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( ext == ".ne" ) {
+	fgBucketGenBasePath(&east_index, scene_path);
+	index = fgBucketGenIndex(&east_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&ne_index, scene_path);
+	index = fgBucketGenIndex(&ne_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&north_index, scene_path);
+	index = fgBucketGenIndex(&north_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( ext == ".nw" ) {
+	fgBucketGenBasePath(&west_index, scene_path);
+	index = fgBucketGenIndex(&west_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&nw_index, scene_path);
+	index = fgBucketGenIndex(&nw_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&north_index, scene_path);
+	index = fgBucketGenIndex(&north_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( ext == ".south" ) {
+	fgBucketGenBasePath(&south_index, scene_path);
+	index = fgBucketGenIndex(&south_index);
+	sprintf(file, "%s/%s/%ld.1.north", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( ext == ".north" ) {
+	fgBucketGenBasePath(&north_index, scene_path);
+	index = fgBucketGenIndex(&north_index);
+	sprintf(file, "%s/%s/%ld.1.south", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( ext == ".west" ) {
+	fgBucketGenBasePath(&west_index, scene_path);
+	index = fgBucketGenIndex(&west_index);
+	sprintf(file, "%s/%s/%ld.1.east", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( ext == ".east" ) {
+	fgBucketGenBasePath(&east_index, scene_path);
+	index = fgBucketGenIndex(&east_index);
+	sprintf(file, "%s/%s/%ld.1.west", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    return(0);
+}
+
+
+// my custom file opening routine ... don't open if a shared edge or
+// vertex alread exists
+FILE *my_open(const string& basename, const string& basepath, 
+	      const string& ext)
+{
+    FILE *fp;
+    string filename;
+
+    // create the output file name
+    filename = basename + ext;
+
+    // check if a shared object already exist from a different tile
+
+    if ( shared_object_exists(basepath.c_str(), ext) ) {
+	// not an actual file open error, but we've already got the
+        // shared edge, so we don't want to create another one
+	cout << "not opening\n";
+	return(NULL);
+    } else {
+	// open the file
+	fp = fopen(filename.c_str(), "w");
+	cout << "Opening " + filename + "\n";
+	return(fp);
+    }
+}
+
+
+// dump in WaveFront .obj format
+void dump_obj(const string& basename, const string& basepath) {
+    Point3D node;
+    double n1[3], n2[3], n3[3], n4[3], n5[3], norm[3], temp;
+    FILE *fp, *sw, *se, *ne, *nw, *north, *south, *east, *west, *body;
+    int i, t1, t2, t3, t4, t5, count, size;
+    double x, y, z;
+
+    sw = my_open(basename, basepath, ".sw");
+    se = my_open(basename, basepath, ".se");
+    ne = my_open(basename, basepath, ".ne");
+    nw = my_open(basename, basepath, ".nw");
+
+    north = my_open(basename, basepath, ".north");
+    south = my_open(basename, basepath, ".south");
+    east = my_open(basename, basepath, ".east");
+    west = my_open(basename, basepath, ".west");
+
+    body = my_open(basename, basepath, ".body");
+
+    cout << "Dumping edges file basename:  " + basename + " ...\n";
+
+    // dump vertices
+    cout << "  writing vertices\n";
+
+    iterator_3d last = nodes_orig.end();
+    iterator_3d current = nodes_orig.begin();
+    ++current;
+    for ( ; current != last; ++current) {
+	node = *current;
+
+	if ( (fabs(node.y() - ymin) < FG_EPSILON) && 
+	     (fabs(node.x() - xmin) < FG_EPSILON) ) {
+	    fp = sw;
+	} else if ( (fabs(node.y() - ymin) < FG_EPSILON) &&
+		    (fabs(node.x() - xmax) < FG_EPSILON) ) {
+	    fp = se;
+	} else if ( (fabs(node.y() - ymax) < FG_EPSILON) &&
+		    (fabs(node.x() - xmax) < FG_EPSILON)) {
+	    fp = ne;
+	} else if ( (fabs(node.y() - ymax) < FG_EPSILON) &&
+		    (fabs(node.x() - xmin) < FG_EPSILON) ) {
+	    fp = nw;
+	} else if ( fabs(node.x() - xmin) < FG_EPSILON ) {
+	    fp = west;
+	} else if ( fabs(node.x() - xmax) < FG_EPSILON ) {
+	    fp = east;
+	} else if ( fabs(node.y() - ymin) < FG_EPSILON ) {
+	    fp = south;
+	} else if ( fabs(node.y() - ymax) < FG_EPSILON ) {
+	    fp = north;
+	} else {
+	    fp = body;
+	}
+
+	x = node.x();
+	y = node.y();
+	z = node.z();
+
+	if ( fp != NULL ) {
+	    fprintf(fp, "gdn %.2f %.2f %.2f\n", x, y, z);
+	}
+    }
+
+    cout << "  calculating and writing normals\n";
+
+    // calculate and generate normals
+    size = nodes_orig.size();
+    for ( i = 1; i < size; i++ ) {
+	// printf("Finding normal\n");
+
+	find_tris(i, &t1, &t2, &t3, &t4, &t5);
+
+	n1[0] = n1[1] = n1[2] = 0.0;
+	n2[0] = n2[1] = n2[2] = 0.0;
+	n3[0] = n3[1] = n3[2] = 0.0;
+	n4[0] = n4[1] = n4[2] = 0.0;
+	n5[0] = n5[1] = n5[2] = 0.0;
+
+	count = 1;
+	calc_normal(nodes_cart[tri_list[t1].n1],
+		    nodes_cart[tri_list[t1].n2], 
+		    nodes_cart[tri_list[t1].n3],
+		    n1);
+
+	if ( t2 > 0 ) {
+	    calc_normal(nodes_cart[tri_list[t2].n1], 
+			nodes_cart[tri_list[t2].n2], 
+			nodes_cart[tri_list[t2].n3],
+			n2);
+	    count = 2;
+	}
+
+	if ( t3 > 0 ) {
+	    calc_normal(nodes_cart[tri_list[t3].n1],
+			nodes_cart[tri_list[t3].n2],
+			nodes_cart[tri_list[t3].n3],
+			n3);
+	    count = 3;
+	}
+
+	if ( t4 > 0 ) {
+	    calc_normal(nodes_cart[tri_list[t4].n1],
+			nodes_cart[tri_list[t4].n2],
+			nodes_cart[tri_list[t4].n3],
+			n4);
+	    count = 4;
+	}
+
+	if ( t5 > 0 ) {
+	    calc_normal(nodes_cart[tri_list[t5].n1],
+			nodes_cart[tri_list[t5].n2],
+			nodes_cart[tri_list[t5].n3],
+			n5);
+	    count = 5;
+	}
+
+	// printf("  norm[2] = %.2f %.2f %.2f\n", n1[2], n2[2], n3[2]);
+
+	norm[0] = ( n1[0] + n2[0] + n3[0] + n4[0] + n5[0] ) / (double)count;
+	norm[1] = ( n1[1] + n2[1] + n3[1] + n4[1] + n5[1] ) / (double)count;
+	norm[2] = ( n1[2] + n2[2] + n3[2] + n4[2] + n5[2] ) / (double)count;
+	
+	// printf("  count = %d\n", count);
+	// printf("  Ave. normal = %.4f %.4f %.4f\n", norm[0], norm[1], 
+	//        norm[2]);
+	MAT3_NORMALIZE_VEC(norm, temp);
+	// printf("  Normalized ave. normal = %.4f %.4f %.4f\n", 
+	//        norm[0], norm[1], norm[2]);
+	
+	fp = NULL;
+
+	if ( (fabs(nodes_orig[i].y() - ymin) < FG_EPSILON) && 
+	     (fabs(nodes_orig[i].x() - xmin) < FG_EPSILON) ) {
+	    fp = sw;
+	} else if ( (fabs(nodes_orig[i].y() - ymin) < FG_EPSILON) &&
+		    (fabs(nodes_orig[i].x() - xmax) < FG_EPSILON) ) {
+	    fp = se;
+	} else if ( (fabs(nodes_orig[i].y() - ymax) < FG_EPSILON) &&
+		    (fabs(nodes_orig[i].x() - xmax) < FG_EPSILON)) {
+	    fp = ne;
+	} else if ( (fabs(nodes_orig[i].y() - ymax) < FG_EPSILON) &&
+		    (fabs(nodes_orig[i].x() - xmin) < FG_EPSILON) ) {
+	    fp = nw;
+	} else if ( fabs(nodes_orig[i].x() - xmin) < FG_EPSILON ) {
+	    fp = west;
+	} else if ( fabs(nodes_orig[i].x() - xmax) < FG_EPSILON ) {
+	    fp = east;
+	} else if ( fabs(nodes_orig[i].y() - ymin) < FG_EPSILON ) {
+	    fp = south;
+	} else if ( fabs(nodes_orig[i].y() - ymax) < FG_EPSILON ) {
+	    fp = north;
+	}
+	if ( fp != NULL ) {
+	    fprintf(fp, "vn %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]);
+	}
+    }
+
+    if ( sw ) { fclose(sw); }
+    if ( se ) { fclose(se); }
+    if ( ne ) { fclose(ne); }
+    if ( nw ) { fclose(nw); }
+
+    if ( north ) { fclose(north); }
+    if ( south ) { fclose(south); }
+    if ( east ) { fclose(east); }
+    if ( west ) { fclose(west); }
+
+    if ( body ) { fclose(body); }
+}
+
+
+int main(int argc, char **argv) {
+    string basename, basepath, temp;
+    fgBUCKET p;
+    long int index;
+    int len;
+
+    basename = argv[1];
+
+    // find the base path of the file
+    basepath = extract_path(basename);
+    basepath = extract_path(basepath);
+    basepath = extract_path(basepath);
+    cout << "basepath = " + basepath + "\n";
+
+    // find the index of the current file
+    temp = extract_file(basename);
+    len = temp.length();
+    if ( len >= 2 ) {
+	temp = temp.substr(0, len-2);
+    }
+    index = atoi( temp.c_str() );
+    cout << "index = " << index << "\n";
+    fgBucketParseIndex(index, &p);
+
+    cout << "bucket = " << p.lon << " " << p.lat << " " << 
+	p.x << " " << p.y << "\n";
+
+    // generate the indexes of the neighbors
+    fgBucketOffset(&p, &ne_index,  1,  1);
+    fgBucketOffset(&p, &nw_index, -1,  1);
+    fgBucketOffset(&p, &se_index,  1, -1);
+    fgBucketOffset(&p, &sw_index, -1, -1);
+
+    fgBucketOffset(&p, &north_index,  0,  1);
+    fgBucketOffset(&p, &south_index,  0, -1);
+    fgBucketOffset(&p, &east_index,  1,  0);
+    fgBucketOffset(&p, &west_index, -1,  0);
+
+    // printf("Corner indexes = %ld %ld %ld %ld\n", 
+    //        ne_index, nw_index, sw_index, se_index);
+    // printf("Edge indexes = %ld %ld %ld %ld\n",
+    //        north_index, south_index, east_index, west_index);
+	  
+
+    // load the input data files
+    triload(basename);
+
+    // dump in WaveFront .obj format
+    dump_obj(basename, basepath);
+
+    return(0);
+}
+
+
+// $Log$
+// Revision 1.7  1998/11/06 21:33:57  curt
+// Updates to go along with changes in fgstream.
+//
+// Revision 1.6  1998/10/21 14:56:20  curt
+// Fixed a units conversion bug.
+//
+// Revision 1.5  1998/10/20 15:50:33  curt
+// whitespace tweak.
+//
+// Revision 1.4  1998/10/18 01:17:27  curt
+// Point3D tweaks.
+//
+// Revision 1.3  1998/09/22 23:49:56  curt
+// C++-ified, STL-ified, and string-ified.
+//
+// Revision 1.2  1998/09/21 23:16:23  curt
+// Converted to c++ style comments.
+//
+// Revision 1.1  1998/07/08 14:59:13  curt
+// *.[ch] renamed to *.[ch]xx
+//
+// Revision 1.11  1998/07/04 00:56:40  curt
+// typedef'd struct fgBUCKET.
+//
+// Revision 1.10  1998/05/02 01:54:37  curt
+// Converting to polar3d.h routines.
+//
+// Revision 1.9  1998/04/18 04:01:20  curt
+// Now use libMath rather than having local copies of math routines.
+//
+// Revision 1.8  1998/04/14 02:26:08  curt
+// Code reorganizations.  Added a Lib/ directory for more general libraries.
+//
+// Revision 1.7  1998/04/08 23:21:13  curt
+// Adopted Gnu automake/autoconf system.
+//
+// Revision 1.6  1998/03/03 15:36:13  curt
+// Tweaks for compiling with g++
+//
+// Revision 1.5  1998/03/03 03:37:04  curt
+// Cumulative tweaks.
+//
+// Revision 1.4  1998/01/31 00:41:26  curt
+// Made a few changes converting floats to doubles.
+//
+// Revision 1.3  1998/01/27 18:37:04  curt
+// Lots of updates to get back in sync with changes made over in .../Src/
+//
+// Revision 1.2  1998/01/14 15:54:43  curt
+// Initial revision completed.
+//
+// Revision 1.1  1998/01/14 02:11:31  curt
+// Initial revision.
+//
+
diff --git a/Tools/SplitTris/splittris.hxx b/Tools/SplitTris/splittris.hxx
new file mode 100644
index 000000000..12787872d
--- /dev/null
+++ b/Tools/SplitTris/splittris.hxx
@@ -0,0 +1,89 @@
+// splittris.hxx -- read in a .ele/.node file pair generated by the triangle 
+//                  program and output edge vertices w/ normals.
+//
+// Written by Curtis Olson, started January 1998.
+//
+// Copyright (C) 1997  Curtis L. Olson  - curt@infoplane.com
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+
+#ifndef SPLITTRIS_HXX
+#define SPLITTRIS_HXX
+
+
+#include <stdio.h>
+#include <string.h>
+#include <string>
+
+#include <vector>
+#include "Include/fg_stl_config.h"
+
+#ifdef NEEDNAMESPACESTD
+using namespace std;
+#endif
+
+#include <Math/point3d.hxx>
+
+
+// A triangle (indices of the three nodes)
+typedef struct {
+    int n1, n2, n3;
+} triangle;
+
+
+typedef vector < Point3D > container_3d;
+typedef container_3d::iterator iterator_3d;
+typedef container_3d::const_iterator const_iterator_3d;
+
+typedef vector < triangle > container_tri;
+typedef container_tri::iterator iterator_tri;
+typedef container_tri::const_iterator const_iterator_tri;
+
+
+// Initialize a new mesh structure
+void triload(const string& basename);
+
+
+#endif // SPLITTRIS_HXX
+
+
+// $Log$
+// Revision 1.4  1998/10/18 01:17:28  curt
+// Point3D tweaks.
+//
+// Revision 1.3  1998/09/22 23:49:58  curt
+// C++-ified, STL-ified, and string-ified.
+//
+// Revision 1.2  1998/09/21 23:16:24  curt
+// Converted to c++ style comments.
+//
+// Revision 1.1  1998/07/08 14:59:14  curt
+// *.[ch] renamed to *.[ch]xx
+//
+// Revision 1.3  1998/03/03 15:36:13  curt
+// Tweaks for compiling with g++
+//
+// Revision 1.2  1998/01/15 02:49:25  curt
+// Misc. housekeeping.
+//
+// Revision 1.1  1998/01/14 02:11:32  curt
+// Initial revision.
+//
+
diff --git a/Tools/Stripe_u/Makefile.am b/Tools/Stripe_u/Makefile.am
new file mode 100644
index 000000000..8373ea88b
--- /dev/null
+++ b/Tools/Stripe_u/Makefile.am
@@ -0,0 +1,30 @@
+bin_PROGRAMS = strips
+
+strips_SOURCES = \
+	add.c add.h \
+	bands.c \
+	common.c common.h \
+	define.h \
+	extend.h \
+	free.c free.h \
+	global.h \
+	glove.h \
+	init.c init.h \
+	local.c local.h \
+	my_global.h \
+	newpolve.c \
+	options.c options.h \
+	output.c output.h \
+	outputex.c outputex.h \
+	partial.c partial.h \
+	polverts.h polvertsex.h \
+	queue.c queue.h \
+	sgi_triang.c sgi_triangex.c \
+	struct.c struct.h \
+	structex.c \
+	sturcts.h sturctsex.h \
+	ties.c ties.h \
+	triangulate.h triangulatex.h \
+	util.c util.h
+
+strips_LDADD = $(base_LIBS)
diff --git a/Tools/Stripe_u/add.c b/Tools/Stripe_u/add.c
new file mode 100644
index 000000000..7d90357fd
--- /dev/null
+++ b/Tools/Stripe_u/add.c
@@ -0,0 +1,386 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: add.c
+     This file contains the procedure code that will add information
+     to our data structures.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include <string.h>
+#include "global.h"
+#include "queue.h"
+#include "polverts.h"
+#include "triangulate.h"
+#include "ties.h"
+#include "outputex.h"
+#include "options.h"
+#include "local.h"
+
+BOOL new_vertex(double difference, int id1,int id2,
+                struct vert_struct *n)
+{
+     /*   Is the difference between id1 and id2 (2 normal vertices that
+          mapped to the same vertex) greater than the
+          threshold that was specified?
+     */
+     struct vert_struct *pn1,*pn2;
+     double dot_product;
+     double distance1, distance2,distance;
+     double rad;
+     char arg1[100];
+     char arg2[100];
+
+     pn1 = n + id1;
+     pn2 = n + id2;
+ 
+     dot_product = ((pn1->x) * (pn2->x)) +
+                   ((pn1->y) * (pn2->y)) +
+                   ((pn1->z) * (pn2->z));
+     /*   Get the absolute value */
+     if (dot_product < 0)
+          dot_product = dot_product * -1;
+
+     distance1 = sqrt( (pn1->x * pn1->x) +
+                       (pn1->y * pn1->y) +
+                       (pn1->z * pn1->z) );
+     distance2 = sqrt( (pn2->x * pn2->x) +
+                       (pn2->y * pn2->y) +
+                       (pn2->z * pn2->z) );
+     distance = distance1 * distance2;
+
+     rad = acos((double)dot_product/(double)distance);
+     /*   convert to degrees */
+     rad = (180 * rad)/PI;
+    
+     if ( rad <= difference)
+         return FALSE;
+     
+     /*   double checking because of imprecision with floating
+          point acos function
+     */
+     sprintf( arg1,"%.5f", rad );
+     sprintf( arg2,"%.5f", difference );
+     if ( strcmp( arg1, arg2 ) <=0 )
+          return( FALSE );
+     if ( rad <= difference)
+         return FALSE;
+     else 
+          return TRUE;
+}
+
+BOOL Check_VN(int vertex,int normal, struct vert_added *added)
+{
+     /*   Check to see if we already added this vertex and normal */
+     register int x,n;
+
+     n = (added+vertex)->num;
+     for (x = 0; x < n; x++)
+     {
+          if (*((added+vertex)->normal+x) == normal)
+               return TRUE;
+     }
+     return FALSE;
+}
+
+BOOL norm_array(int id, int vertex, double normal_difference,
+                struct vert_struct *n, int num_vert)
+{
+     static int last;
+     static struct vert_added *added;
+     register int x;
+     static BOOL first = TRUE;
+
+     if (first)
+     {
+          /*   This is the first time that we are in here, so we will allocate
+               a structure that will save the vertices that we added, so that we
+               do not add the same thing twice
+          */
+          first = FALSE;
+          added = (struct vert_added *) malloc (sizeof (struct vert_added ) * num_vert);
+          /*   The number of vertices added for each vertex must be initialized to
+               zero
+          */
+          for (x = 0; x < num_vert; x++)
+               (added+x)->num = 0;
+     }
+     
+     if (vertex)
+          /*   Set the pointer to the vertex, we will be calling again with the
+               normal to fill it with
+          */
+          last = id;
+     else
+     {    
+          /*   Fill the pointer with the id of the normal */
+          if (*(vert_norms + last) == 0)
+               *(vert_norms + last) = id;
+          else if ((*(vert_norms + last) != id) && ((int)normal_difference != 360))
+          {
+               /*   difference is big enough, we need to create a new vertex */
+               if (new_vertex(normal_difference,id,*(vert_norms + last),n))
+               {
+                    /*   First check to see if we added this vertex and normal already */
+                    if (Check_VN(last,id,added))
+                         return FALSE;
+                    /*   OK, create the new vertex, and have its id = the number of vertices
+                         and its normal what we have here
+                    */
+                    vert_norms = realloc(vert_norms, sizeof(int) * (num_vert + 1));
+                    if (!vert_norms)
+                    {
+                         printf("Allocation error - aborting\n");
+                         exit(1);
+                    }
+                    *(vert_norms + num_vert) = id;
+                    /*   We created a new vertex, now put it in our added structure so
+                         we do not add the same thing twice
+                    */
+                    (added+last)->num = (added+last)->num + 1;
+                    if ((added+last)->num == 1)
+                    {
+                         /*   First time */
+                         (added+last)->normal =  (int *) malloc (sizeof (int ) * 1);
+                         *((added+last)->normal) =  id;
+                    }
+                    else
+                    {
+                         /*   Not the first time, reallocate space */
+                         (added+last)->normal = realloc((added+last)->normal,sizeof(int) * (added+last)->num);
+                         *((added+last)->normal+((added+last)->num-1)) = id;
+                    }
+                    return TRUE;
+               }
+          }
+     }
+     return FALSE;
+}
+
+void add_texture(int id,BOOL vertex)
+{
+     /*   Save the texture with its vertex for future use when outputting */
+     static int last;
+
+     if (vertex)
+          last = id;
+     else
+          *(vert_texture+last) = id;
+}
+
+int	add_vert_id(int id, int	index_count)
+{
+	register int x;
+     
+     /*   Test if degenerate, if so do not add degenerate vertex */
+     for (x = 1; x < index_count ; x++)
+     {
+          if (ids[x] == id)
+               return 0;
+     }
+     ids[index_count] = id;
+     return 1;
+}
+
+void	add_norm_id(int id, int index_count)
+{
+	norms[index_count] = id;
+}
+
+void AddNewFace(int ids[MAX1], int vert_count, int face_id, int norms[MAX1])
+{
+PF_FACES pfNode;
+int	*pTempInt;
+int *pnorms;
+F_EDGES **pTempVertptr;
+int	*pTempmarked, *pTempwalked;
+register int	y,count = 0,sum = 0;
+	
+	/*   Add a new face into our face data structure */
+
+     pfNode = (PF_FACES) malloc(sizeof(F_FACES) );
+     if ( pfNode )
+     {
+          pfNode->pPolygon = (int*) malloc(sizeof(int) * (vert_count) );
+     	pfNode->pNorms = (int*) malloc(sizeof(int) * (vert_count) );
+          pfNode->VertandId = (F_EDGES**)malloc(sizeof(F_EDGES*) * (vert_count)); 
+		pfNode->marked  = (int*)malloc(sizeof(int) * (vert_count));
+		pfNode->walked = (int*)malloc(sizeof(int) * (vert_count));
+	}
+	pTempInt =pfNode->pPolygon;
+	pnorms = pfNode->pNorms;
+     pTempmarked = pfNode->marked;
+	pTempwalked = pfNode->walked;
+	pTempVertptr = pfNode->VertandId;
+	pfNode->nPolSize = vert_count;
+	pfNode->seen = -1;
+     pfNode->seen2 = -1;
+	for (y=1;y<=vert_count;y++)
+	{
+		*(pTempInt + count) = ids[y];
+		*(pnorms + count) = norms[y];
+          *(pTempmarked + count) = FALSE;
+		*(pTempwalked + count) =  -1;
+		*(pTempVertptr+count) = NULL;
+		count++;
+	}
+        AddHead(PolFaces[face_id-1],(PLISTINFO) pfNode);
+}	
+
+	
+void CopyFace(int ids[MAX1], int vert_count, int face_id, int norms[MAX1])
+{
+PF_FACES pfNode;
+int	*pTempInt;
+int *pnorms;
+F_EDGES **pTempVertptr;
+int	*pTempmarked, *pTempwalked;
+register int	y,count = 0,sum = 0;
+	
+	/*   Copy a face node into a new node, used after the global algorithm
+          is run, so that we can save whatever is left into a new structure
+     */
+     
+     pfNode = (PF_FACES) malloc(sizeof(F_FACES) );
+     if ( pfNode )
+     {
+          pfNode->pPolygon = (int*) malloc(sizeof(int) * (vert_count) );
+     	pfNode->pNorms = (int*) malloc(sizeof(int) * (vert_count) );
+          pfNode->VertandId = (F_EDGES**)malloc(sizeof(F_EDGES*) * (vert_count)); 
+		pfNode->marked  = (int*)malloc(sizeof(int) * (vert_count));
+		pfNode->walked = (int*)malloc(sizeof(int) * (vert_count));
+	}
+	pTempInt =pfNode->pPolygon;
+	pnorms = pfNode->pNorms;
+     pTempmarked = pfNode->marked;
+	pTempwalked = pfNode->walked;
+	pTempVertptr = pfNode->VertandId;
+	pfNode->nPolSize = vert_count;
+	pfNode->seen = -1;
+     pfNode->seen2 = -1;
+	for (y=0;y<vert_count;y++)
+	{
+		*(pTempInt + count) = ids[y];
+		*(pnorms + count) = norms[y];
+          *(pTempmarked + count) = FALSE;
+		*(pTempwalked + count) =  -1;
+		*(pTempVertptr+count) = NULL;
+		count++;
+	}
+	AddHead(PolFaces[face_id-1],(PLISTINFO) pfNode);
+}	
+	
+void Add_Edge(int v1,int v2)
+{
+PF_EDGES temp  = NULL;
+ListHead *pListHead;
+BOOL flag = TRUE;
+register int t,count = 0;
+	
+	/*   Add a new edge into the edge data structure */
+     if (v1 > v2)
+	{
+		t  = v1;
+		v1 = v2;
+		v2 = t;
+	}
+	
+     pListHead = PolEdges[v1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+	if (temp == NULL)
+     {
+          printf("Have the wrong edge \n:");
+          exit(1);
+     }
+	
+	while (flag)
+	{
+		if (v2 == temp->edge[0])
+               return;
+          else
+             	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,++count);
+
+	}                	
+}
+
+void Add_AdjEdge(int v1,int v2,int fnum,int index1 )
+{
+     PF_EDGES temp  = NULL;
+     PF_FACES temp2 = NULL;
+     PF_EDGES pfNode;
+     ListHead *pListHead;
+     ListHead *pListFace;
+     BOOL 	flag = TRUE;
+     register int	count = 0;
+     register int	t,v3 = -1;
+	
+	if (v1 > v2)
+	{
+		t  = v1;
+		v1 = v2;
+		v2 = t;
+	}
+	pListFace  = PolFaces[fnum];
+	temp2 = (PF_FACES) PeekList(pListFace,LISTHEAD,0);
+	pListHead = PolEdges[v1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+	if (temp == NULL)
+		flag = FALSE;
+	count++;
+	while (flag)
+	{
+		if (v2 == temp->edge[0])
+		{
+               /*   If greater than 2 polygons adjacent to an edge, then we will
+                    only save the first 2 that we found. We will have a small performance
+                    hit, but this does not happen often.
+               */
+               if (temp->edge[2] == -1)
+                    temp->edge[2] = fnum;
+               else
+                    v3 = temp->edge[2];
+			flag = FALSE;
+		}
+		else
+		{
+			temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+			count++;
+			if (temp == NULL)
+				flag = FALSE;
+		}
+	}
+                
+	/*   Did not find it */
+     if (temp == NULL)
+	{
+		pfNode = (PF_EDGES) malloc(sizeof(F_EDGES) );
+          if ( pfNode )
+          {
+               pfNode->edge[0] = v2;
+			pfNode->edge[1] = fnum;
+	          pfNode->edge[2] =  v3;
+			AddTail( PolEdges[v1], (PLISTINFO) pfNode );
+          }
+		else
+          {
+               printf("Out of memory!\n");
+               exit(1);
+          }
+		
+          *(temp2->VertandId+index1) = pfNode;
+	}
+	else
+		*(temp2->VertandId+index1) =  temp;
+		
+}
+
+
diff --git a/Tools/Stripe_u/add.h b/Tools/Stripe_u/add.h
new file mode 100644
index 000000000..607363e5e
--- /dev/null
+++ b/Tools/Stripe_u/add.h
@@ -0,0 +1,25 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: add.h
+-----------------------------------------------------------------------*/
+
+BOOL new_vertex();
+BOOL Check_VN();
+BOOL norm_array();
+void add_texture();
+int	add_vert_id();
+void	add_norm_id();
+void AddNewFace();
+void CopyFace();
+void Add_Edge();
+void Add_AdjEdge();
+
+
+
diff --git a/Tools/Stripe_u/bands.c b/Tools/Stripe_u/bands.c
new file mode 100644
index 000000000..14a9fe4c0
--- /dev/null
+++ b/Tools/Stripe_u/bands.c
@@ -0,0 +1,549 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: bands.c
+     This file contains the main procedure code that will read in the
+     object and then call the routines that produce the triangle strips.
+*/
+/*---------------------------------------------------------------------*/
+
+  
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include <string.h>
+#include "global.h"
+#include "polverts.h"
+#include "triangulate.h"
+#include "ties.h"
+#include "outputex.h"
+#include "options.h"
+#include "local.h"
+#include "init.h"
+#include "free.h"
+#include "add.h"
+
+#define MAX1 60
+/*   TIMING for Windows */
+#ifdef WIN32
+#include <sys/timeb.h>
+#include <time.h>
+/*   TIMING for UNIX */
+#else
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/times.h>
+#include        <sys/time.h>
+struct timeval   tm;
+struct timezone  tz;
+double           et;
+#define START gettimeofday(&tm,&tz);\
+                et = (tm.tv_sec)+ (0.000001* (tm.tv_usec));
+
+#define STOP gettimeofday(&tm,&tz);\
+                et = (tm.tv_sec)+(0.000001*(tm.tv_usec)) - et;
+#endif
+
+
+void get_time()
+{
+     /*   For timing */
+     #ifdef WIN32
+          struct _timeb timebuffer;
+          char *timeline;
+     #else
+          long timer;
+     #endif
+
+
+     #ifdef WIN32
+          _ftime( &timebuffer );
+          timeline = ctime( & ( timebuffer.time ) );
+          printf( "The time is %.19s.%hu %s", timeline, timebuffer.millitm, &timeline[20] );
+     #else
+            printf("Time for last frame  = %lf seconds\n", et);
+     #endif
+}
+
+/*
+** 
+     Here the main program begins. It will start by loading in a .obj file
+     then it will convert the polygonal model into triangle strips.
+**  
+*/
+
+void main (int argc,char *argv[])
+{
+	char	*fname,*all,buff[255], *ptr, *ptr2;
+	FILE	*file, *bands;
+	int face_id=0, vert_count, loop, num=0,num2;
+	float center[3];
+     int temp[MAX1],vertex,strips, swaps,tempi,cost,triangles;
+     int f,t,tr,g;
+     char *file_open;
+	int	num_vert	= 0,
+		num_faces	= 0,
+		num_nvert	= 0,
+		num_edges	= 0,
+          num_texture = 0,
+          num_tris = 0;
+     double fra = 0.0;
+     BOOL texture, normal, normal_and_texture,quads = FALSE;
+
+     /*   Options variables */
+     float norm_difference;
+
+	/*   Structures for the object */
+     struct vert_struct	*vertices	= NULL,
+				*nvertices	= NULL,
+				*pvertices	= NULL,
+				*pnvertices	= NULL;
+
+     get_time();
+     START
+
+     /*   File that will contain the triangle strip data */
+     bands = fopen("bands.d","w");
+
+     /*
+	     Scan the file once to find out the number of vertices,
+	     vertice normals, and faces so we can set up some memory
+	     structures 
+	*/
+	/* Interpret the options specified */
+	norm_difference = get_options(argc,argv,&f,&t,&tr,&g);
+     if (f == BINARY)
+          file_open = "rb";
+     else
+          file_open = "r";
+
+	fname = argv[argc-1];
+     printf ("File: %s\n",fname);
+	/*printf ("Scanning...%s ",file_open);*/
+
+	    
+     /*   File can be in binary for faster reading */
+     if (file = fopen (fname,file_open))
+	{
+		while (!feof (file))
+		{
+			/*   Read a line */
+               if (f == BINARY)
+                    fread (buff,sizeof(char) * 255,1, file);
+			else
+                    fgets (buff, sizeof(char) * 255, file);
+          	num++;
+               /*   At a vertex */
+               if (*buff == 'v')
+			{
+				/*   At a normal */
+                    if (*(buff+1)=='n')
+					num_nvert++;
+				else if (*(buff+1)=='t')
+                         num_texture++;
+                    /*   At a regular vertex */
+                    else
+					num_vert++;
+			}
+			/*   At a face */
+               else if (*buff == 'f')
+			{  
+                    num_faces++;
+			     strtok(buff, " ");
+			     tempi = 0;
+			     while (strtok(NULL, " ") != NULL) tempi++;
+			     num_tris += tempi - 2;
+               }
+		}
+		fclose (file);
+	}
+
+	else
+     {
+		printf("Error in the file name\n");
+          exit(1);
+     }
+	
+	
+	/* Allocate structures for the information */
+	Start_Face_Struct(num_faces);
+	vertices = (struct vert_struct *)
+			malloc (sizeof (struct vert_struct) * num_vert);
+
+	if (num_nvert > 0) 
+     {
+          nvertices = (struct vert_struct *)
+			malloc (sizeof (struct vert_struct) * num_nvert);
+          vert_norms = (int *) 
+               malloc (sizeof (int) * num_vert);
+          /*   Initialize entries to zero, in case there are 2 hits
+               to the same vertex we will know it - used for determining
+               the normal difference
+          */
+          init_vert_norms(num_vert);
+     }
+	else 
+		nvertices = NULL;
+
+     if (num_texture > 0)
+     {
+          vert_texture = (int *) malloc (sizeof(int) * num_vert);
+          init_vert_texture(num_vert);
+     }
+     
+	/*   Set up the temporary 'p' pointers 
+     */
+	pvertices = vertices;
+	pnvertices = nvertices;
+
+	/* Load the object into memory */
+	/*printf (" Loading...");*/
+ 
+     fprintf(bands,"#%s: a triangle strip representation created by STRIPE.\n#This is a .objf file\n#by Francine Evans\n",fname);
+ 
+     /*  File will be put in a list for faster execution if file is in binary */   
+     if (file = fopen(fname,file_open))
+     {
+          if (f == BINARY)
+          {
+               all = (char *) malloc (sizeof(char) * 255 * num);
+               fread(all,sizeof(char) * 255 * num, 1, file);
+          	ptr = all;
+          }
+          else
+               ptr = (char *) malloc (sizeof(char) * 255 * num);
+     }
+
+   
+     while (num > 0)
+	{
+          num--;
+		if (f == ASCII)
+               fgets (ptr, sizeof(char) * 255, file);
+          else
+               ptr = ptr + 255;
+
+          /* Load in vertices/normals */
+		if (*ptr == 'v')
+		{
+			if (*(ptr+1)=='n')
+			{
+				sscanf (ptr+3,"%lf%lf%lf",
+					&(pnvertices->x),
+					&(pnvertices->y),
+					&(pnvertices->z));
+	   			fprintf(bands,"vn %lf %lf %lf\n",
+					pnvertices->x,pnvertices->y,pnvertices->z); 
+     			++pnvertices;
+			}
+			else if (*(ptr+1)=='t')
+               {
+				sscanf (ptr+3,"%f%f%f",&center[0],&center[1],&center[2]);
+	   			fprintf(bands,"vt %f %f %f\n",center[0],center[1],center[2]); 
+               }
+               else
+			{
+				sscanf (ptr+2,"%lf%lf%lf",
+					&(pvertices->x), 
+					&(pvertices->y), 
+					&(pvertices->z));
+     			fprintf(bands,"v %lf %lf %lf\n",
+					pvertices->x,pvertices->y,pvertices->z); 
+				++pvertices;
+               }
+		}
+		
+          else if (*ptr == 'f')
+		{
+			/* Read in faces */
+			num2 = 0;
+			face_id++;
+               ptr2 = ptr+1;
+               normal = FALSE; texture = FALSE, normal_and_texture = FALSE;
+               while (*ptr2)
+               {
+			   if (*ptr2 >='0' && *ptr2 <='9')
+			   {
+				num2++;
+				++ptr2;
+				while (*ptr2 && (*ptr2!=' ' && *ptr2!='/'))
+					ptr2++;
+                    /*   There are normals in this line */
+                    if (*ptr2 == '/')
+                    {
+                         if (*(ptr2+1) == '/')
+                              normal = TRUE;
+                         else
+                              texture = TRUE;
+			     }
+                    else if (*ptr2 == ' ')
+                    {
+                         if ((num2 == 3) && (texture))
+                              normal_and_texture = TRUE;
+                    }
+                  }
+			   else
+				   ++ptr2;
+			}
+
+               ptr2 = ptr+1;
+			
+               /* loop on the number of numbers in this line of face data 
+               */
+			vert_count = 0;
+								
+			for (loop=0;loop<num2;loop++)
+			{
+				/* skip the whitespace */
+				while (*ptr2<'0' || *ptr2>'9')
+                    {
+                         if (*ptr2 == '-')
+                              break;
+                         ptr2++;
+                    }
+				vertex = atoi(ptr2)-1;
+                    if (vertex < 0)
+                    {
+                         vertex = num_vert + vertex;
+                         *ptr2 = ' ';
+                         ptr2++;
+                    }
+                    /*   If there are either normals or textures with the vertices
+                         in this file, the data alternates so we must read it this way 
+                    */
+				if ( (normal) && (!normal_and_texture))
+				{
+					if (loop%2)
+                         {
+                              add_norm_id(vertex,vert_count);
+                              /*   Test here to see if we added a new vertex, since the
+                                   vertex has more than one normal and the 2 normals are greater
+                                   than the threshold specified
+                              */
+                              if (norm_array(vertex,0,norm_difference,nvertices,num_vert))
+                              {
+                                   /*   Add a new vertex and change the
+                                        id of the vertex that we just read to the id of the new
+                                        vertex that we just added
+                                   */
+                                   /*   Put it in the output file, note the added vertices will
+                                        be after the normals and separated from the rest of the 
+                                        vertices. Will not affect our viewer
+                                   */
+                                   fprintf(bands,"v %lf %lf %lf\n",
+                                          (vertices + temp[vert_count - 1])->x,
+                                          (vertices + temp[vert_count - 1])->y,
+                                          (vertices + temp[vert_count - 1])->z); 
+                                   num_vert++;
+                                   temp[vert_count - 1] = num_vert - 1;
+                                   if (!(add_vert_id(num_vert - 1,vert_count)))
+                                        vert_count--;
+                              }
+                         }
+					/*   the vertex */
+                         else 
+					{
+						temp[vert_count] = vertex ;
+						vert_count++;
+                              if (!(add_vert_id(vertex,vert_count)))
+                                   vert_count--;
+                              norm_array(vertex,1,norm_difference,nvertices,num_vert);
+					}
+                    }
+                         
+                    /*   Else there are vertices and textures with the data */
+                    else if (normal_and_texture)
+                    {
+                         if( !((loop+1)%3))
+                         {
+                              add_norm_id(vertex,vert_count);
+                              /*   Test here to see if we added a new vertex, since the
+                                   vertex has more than one normal and the 2 normals are greater
+                                   than the threshold specified
+                              */
+                              if (norm_array(vertex,0,norm_difference,nvertices,num_vert))
+                              {
+                                   /*   Add a new vertex and change the
+                                        id of the vertex that we just read to the id of the new
+                                        vertex that we just added
+                                   */
+                                   /*   Put it in the output file, note the added vertices will
+                                        be after the normals and separated from the rest of the 
+                                        vertices. Will not affect our viewer
+                                   */
+                                   fprintf(bands,"v %lf %lf %lf\n",
+                                          (vertices + temp[vert_count - 1])->x,
+                                          (vertices + temp[vert_count - 1])->y,
+                                          (vertices + temp[vert_count - 1])->z); 
+                                   num_vert++;
+                                   temp[vert_count - 1] = num_vert - 1;
+                                   if (!(add_vert_id(num_vert - 1,vert_count)))
+                                        vert_count--;
+                              }
+                         }
+                         /*   the vertex */
+                         else if ((loop == 0) || (*(ptr2-1) == ' '))
+					{
+						temp[vert_count] = vertex ;
+						vert_count++;
+                              if (vert_count == 4)
+                                   quads = TRUE;
+                              if (!(add_vert_id(vertex,vert_count)))
+                                   vert_count--;
+                              add_texture(vertex,TRUE);
+                              norm_array(vertex,1,norm_difference,nvertices,num_vert);
+					}
+                         else /*   The texture */
+                              add_texture(vertex,FALSE);
+                    }
+				
+ 				else if ( texture )
+				{
+					/*   the vertex */
+                         if (!(loop%2))
+					{
+						temp[vert_count] = vertex ;
+						vert_count++;
+                              if (vert_count == 4)
+                                   quads = TRUE;
+                              add_texture(vertex,TRUE);
+                              if (!(add_vert_id(vertex,vert_count)))
+                                   vert_count--;
+                              norm_array(vertex,1,norm_difference,nvertices,num_vert);
+					}
+                         else /*   texture */
+                              add_texture(vertex,FALSE);
+                    }
+ 
+                    else
+				{
+				    /*** no nvertices ***/
+					temp[vert_count] = vertex ;
+					vert_count++;
+                         if (vert_count == 4)
+                              quads = TRUE;
+                         if (!(add_vert_id(vertex,vert_count)))
+                              vert_count--;
+				}
+				while (*ptr2>='0' && *ptr2<='9')
+					ptr2++;
+               }
+			/* Done with the polygon */
+			num_edges += vert_count;
+			/* add it to face structure */
+			if (vert_count >= 3)
+                    AddNewFace(ids,vert_count,face_id,norms);
+               else
+                    face_id--;
+               if (vert_count == 4)
+                    quads = TRUE;
+          }
+          else if ((g == TRUE) && (face_id > 0)
+                      && ((*ptr == 'g') || (*ptr  == 's') || (*ptr == 'm') || (*ptr == 'o')))
+          {
+               /*   The user specified that the strips will be contained in each group
+                    from the data file, so we just finished a group and will find the
+                    triangle strips in it.
+               */
+               Start_Edge_Struct(num_vert);
+	          Find_Adjacencies(face_id);
+	          if (quads)
+               {
+     	          Init_Table_SGI();
+	               Build_SGI_Table(num_vert,face_id);
+                    /* Code for lengths of walks in each direction */
+	               Save_Walks(face_id,TRUE);
+	
+                    /* Code for finding the bands */
+	               Find_Bands(face_id,bands,&swaps,&strips,&cost,&triangles,num_nvert,vert_norms,num_texture,vert_texture);
+
+                    /*  Remove the faces that we did  so that we can
+                         run the strip code on the rest of the faces that are left
+                    */
+                    if (cost != 0)
+                    {
+                         printf("Total %d triangles with %d cost\n",triangles,cost);
+                         Save_Rest(&face_id);
+                         printf("We saved %d .... now doing the local algorithm\n",face_id);
+                         fprintf(bands,"\n#local\n");
+	                    End_Edge_Struct(num_vert);
+                         Start_Edge_Struct(num_vert);
+	                    Find_Adjacencies(face_id);
+                    }
+              }
+	     
+          	SGI_Strip(num_vert,face_id,bands,t,tr);
+
+               /*   Get the total cost */
+               Output_TriEx(-1,-2,-3,NULL,-1,-20,cost);
+
+               End_Face_Struct(num_faces);
+               End_Edge_Struct(num_vert);
+               cost = 0;
+               face_id = 0;
+               quads = FALSE;
+              	Start_Face_Struct(num_faces-face_id);
+               num_faces = num_faces - face_id;
+               Free_Strips();
+          }
+}
+               
+     /*   Done reading in all the information into data structures */
+     num_faces = face_id;
+     fclose (file);
+	/*printf(" Done.\n\n");*/
+     free(vertices);
+     free(nvertices);
+
+	/*printf ("Vertices:	%d\nNormals:	%d\nFaces:		%d\n",num_vert,num_nvert,num_faces);*/
+	Start_Edge_Struct(num_vert);
+	Find_Adjacencies(num_faces);
+
+     /*	Initialize it */
+	Init_Table_SGI();
+	/*	Build it */
+	Build_SGI_Table(num_vert,num_faces);
+
+     InitStripTable();
+
+	
+	if (quads)
+     {
+          /* Code for lengths of walks in each direction */
+	     Save_Walks(num_faces,TRUE);
+	
+          /* Code for finding the bands */
+	     Find_Bands(num_faces,bands,&swaps,&strips,&cost,&triangles,num_nvert,vert_norms,num_texture,vert_texture);
+          /*printf("Total %d triangles with %d cost\n",triangles,cost);*/
+
+          /*  Remove the faces that we did  so that we can
+               run the strip code on the rest of the faces that are left
+          */
+          Save_Rest(&num_faces);
+          /*printf("We saved %d .... now doing the local algorithm\n",num_faces);*/
+          fprintf(bands,"\n#local\n");
+	     End_Edge_Struct(num_vert);
+          Start_Edge_Struct(num_vert);
+	     Find_Adjacencies(num_faces);
+     }
+	     
+	SGI_Strip(num_vert,num_faces,bands,t,tr);
+
+     /*   Get the total cost */
+     Output_TriEx(-1,-2,-3,NULL,-1,-20,cost);
+
+     End_Face_Struct(num_faces);
+     End_Edge_Struct(num_vert);
+     fclose(bands);
+     STOP
+
+     get_time();
+
+}
+
diff --git a/Tools/Stripe_u/common.c b/Tools/Stripe_u/common.c
new file mode 100644
index 000000000..6e553f149
--- /dev/null
+++ b/Tools/Stripe_u/common.c
@@ -0,0 +1,811 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: common.c
+     This file contains common code used in both the local and global algorithm
+*/
+/*---------------------------------------------------------------------*/
+
+
+#include <stdlib.h>
+#include "polverts.h"
+#include "extend.h"
+#include "output.h"
+#include "triangulate.h"
+#include "util.h"
+#include "add.h"
+
+int  Old_Adj(int face_id)
+{
+	/*	Find the bucket that the face_id is currently in,
+		because maybe we will be deleting it. 
+	*/
+	PF_FACES temp = NULL;
+	ListHead *pListHead;
+	int size,y;
+	
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	if ( temp == NULL )
+	{
+		printf("The face was already deleted, there is an error\n");
+		exit(0);
+	}
+	
+	size = temp->nPolSize;
+	if (Done(face_id,size,&y) == NULL)
+	{
+		printf("There is an error in finding the face\n");
+		exit(0);
+	}
+	return y;
+}
+
+int Number_Adj(int id1, int id2, int curr_id)
+{
+	/*	Given edge whose endpoints are specified by id1 and id2,
+		determine how many polygons share this edge and return that
+		number minus one (since we do not want to include the polygon
+		that the caller has already).
+	*/
+
+	int size,y,count=0;
+	PF_EDGES temp = NULL;
+	PF_FACES temp2 = NULL;
+	ListHead *pListHead;
+	BOOL there= FALSE;
+
+	/*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+     /*	new edge that was created might not be here */
+		return 0;
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	This edge was not there in the original, which
+				mean that we created it in the partial triangulation.
+				So it is adjacent to nothing.
+			*/
+			return 0;
+	}
+	/*	Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return 0;
+	else
+	{
+		/*	It was adjacent to another polygon, but maybe we did this
+			polygon already, and it was done partially so that this edge
+			could have been done
+		*/
+		if (curr_id != temp->edge[1])
+		{
+			/*	Did we use this polygon already?and it was deleted
+				completely from the structure
+			*/
+			pListHead = PolFaces[temp->edge[1]];
+			temp2 = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+			if (Done(temp->edge[1],temp2->nPolSize,&size) == NULL)
+				return 0;
+		}
+		else
+		{
+			pListHead = PolFaces[temp->edge[2]];
+			temp2 = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+			if (Done(temp->edge[2],temp2->nPolSize,&size)== NULL)
+				return 0;
+		}
+
+		/*	Now we have to check whether it was partially done, before
+			we can say definitely if it is adjacent.
+			Check each edge of the face and tally the number of adjacent
+			polygons to this face. 
+		*/	      		
+		if ( temp2 != NULL )
+		{
+			/*	Size of the polygon */
+			size = temp2->nPolSize;
+			for (y = 0; y< size; y++)
+			{
+				/*	If we are doing partial triangulation, we must check
+					to see whether the edge is still there in the polygon,
+					since we might have done a portion of the polygon
+					and saved the rest for later.
+				*/
+				if (y != (size-1))
+				{
+					if( ((id1 == *(temp2->pPolygon+y)) && (id2 ==*(temp2->pPolygon+y+1)))
+						|| ((id2 == *(temp2->pPolygon+y)) && (id1 ==*(temp2->pPolygon+y+1))))
+						/*	edge is still there we are ok */
+						there = TRUE;
+				}
+				else
+				{
+					if( ((id1 == *(temp2->pPolygon)) && (id2 == *(temp2->pPolygon+size-1)))
+					|| ((id2 == *(temp2->pPolygon)) && (id1 ==*(temp2->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+						there = TRUE;
+				}
+			}
+		}
+		
+		if (there )
+			return 1;
+		return 0;
+	}
+}
+
+int Min_Adj(int id)
+{
+	/*	Used for the lookahead to break ties. It will
+		return the minimum adjacency found at this face.
+	*/
+	int y,numverts,t,x=60;
+	PF_FACES temp=NULL;
+	ListHead *pListHead;
+
+	/*	If polygon was used then we can't use this face */
+	if (Done(id,59,&y) == NULL)
+		return 60;
+		
+	/*	It was not used already */
+	pListHead = PolFaces[id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+     if ( temp != NULL )
+	{
+		numverts = temp->nPolSize;
+		for (y = 0; y< numverts; y++)
+		{
+			if (y != (numverts-1))
+				t = Number_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1),id);
+			else
+				t = Number_Adj(*(temp->pPolygon),*(temp->pPolygon+(numverts-1)),id);
+			if (t < x)
+				x = t;
+		}
+	}
+	if (x == -1)
+	{
+		printf("Error in the look\n");
+		exit(0);
+	}
+	return x;
+}
+
+
+
+void Edge_Least(int *index,int *new1,int *new2,int face_id,int size)
+{
+    /*   We had a polygon without an input edge and now we re going to pick one
+         of the edges with the least number of adjacencies to be the input
+         edge
+    */
+    register int x,value,smallest=60;
+
+    for (x = 0; x<size; x++)
+    {
+        if (x != (size -1) )
+            value = Number_Adj(*(index+x),*(index+x+1),face_id);
+        else 
+            value = Number_Adj(*(index),*(index+size-1),face_id);
+        if (value < smallest)
+        {
+            smallest = value;
+            if (x != (size -1))
+            {
+                *new1 = *(index+x);
+                *new2 = *(index+x+1);
+            }
+            else
+            {
+                *new1 = *(index);
+                *new2 = *(index+size-1);
+            }
+        }
+    }
+    if ((smallest == 60) || (smallest < 0))
+    {
+        printf("There is an error in getting the least edge\n");
+        exit(0);
+    }
+}
+
+
+void Check_In_Polygon(int face_id, int *min, int size)
+{
+    /*  Check to see the adjacencies by going into a polygon that has
+        greater than 4 sides.
+    */
+    
+    ListHead *pListHead;
+    PF_FACES temp;
+    int y,id1,id2,id3,x=0,z=0;
+    int saved[2];
+    int big_saved[60];
+
+    pListHead = PolFaces[face_id];
+    temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+
+    /*   Get the input edge that we came in on */
+    Last_Edge(&id1,&id2,&id3,0);
+
+    /*  Find the number of adjacencies to the edges that are adjacent
+        to the input edge.
+    */
+    for (y=0; y< size; y++)
+    {
+        if (y != (size-1))
+        {
+            if (((*(temp->pPolygon+y) == id2) && (*(temp->pPolygon+y+1) != id3))
+                || ((*(temp->pPolygon+y) == id3) && (*(temp->pPolygon+y+1) != id2)))
+            {
+                saved[x++] = Number_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1),face_id);
+                big_saved[z++] = saved[x-1];
+            }
+            else
+                big_saved[z++] = Number_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1),face_id);
+        }
+        else
+        {
+            if (((*(temp->pPolygon) == id2) && (*(temp->pPolygon+size-1) != id3))
+                || ((*(temp->pPolygon) == id3) && (*(temp->pPolygon+size-1) != id2)))
+            {
+                saved[x++] = Number_Adj(*(temp->pPolygon),*(temp->pPolygon+size-1),face_id);
+                big_saved[z++] = saved[x-1];
+            }
+            else
+                big_saved[z++] = Number_Adj(*(temp->pPolygon),*(temp->pPolygon+size-1),face_id);
+        }
+    }
+    /*  There was an input edge */
+    if (x == 2)
+    {
+        if (saved[0] < saved[1])
+            /*  Count the polygon that we will be cutting as another adjacency*/
+            *min = saved[0] + 1;
+        else
+            *min = saved[1] + 1;
+    }
+    /*  There was not an input edge */
+    else
+    {
+        if (z != size)
+        {
+            printf("There is an error with the z %d %d\n",size,z);
+            exit(0);
+        }
+        *min = 60;
+        for (x = 0; x < size; x++)
+        {
+            if (*min > big_saved[x])
+                *min = big_saved[x];
+        }
+    }
+}
+
+
+void New_Face (int face_id, int v1, int v2, int v3)
+{
+	/*	We want to change the face that was face_id, we will
+		change it to a triangle, since the rest of the polygon
+		was already outputtted
+	*/
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+
+	pListHead = PolFaces[face_id];
+     temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0);
+	/*	Check each edge of the face and tally the number of adjacent
+		polygons to this face. 
+	*/	      		
+	if ( temp != NULL )
+	{
+		/*	Size of the polygon */
+		if (temp->nPolSize != 4)
+		{
+			printf("There is a miscalculation in the partial\n");
+			exit (0);
+		}
+		temp->nPolSize = 3;
+		*(temp->pPolygon) = v1;
+		*(temp->pPolygon+1) = v2;
+		*(temp->pPolygon+2) = v3;
+	}
+}
+
+void New_Size_Face (int face_id)
+{
+	/*	We want to change the face that was face_id, we will
+		change it to a triangle, since the rest of the polygon
+		was already outputtted
+	*/
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	/*	Check each edge of the face and tally the number of adjacent
+		polygons to this face. 
+	*/	      		
+	if ( temp != NULL )
+		(temp->nPolSize)--;
+	else
+		printf("There is an error in updating the size\n");
+}
+
+
+
+void  Check_In_Quad(int face_id,int *min)
+{
+     /*   Check to see what the adjacencies are for the polygons that
+          are inside the quad, ie the 2 triangles that we can form.
+     */
+    ListHead *pListHead;
+    int y,id1,id2,id3,x=0;
+    int saved[4];
+    PF_FACES temp;
+    register int size = 4;
+
+    pListHead = PolFaces[face_id];
+    temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	
+     /*   Get the input edge that we came in on */
+    Last_Edge(&id1,&id2,&id3,0);
+	
+    /*    Now find the adjacencies for the inside triangles */
+    for (y = 0; y< size; y++)
+	{
+         /*     Will not do this if the edge is the input edge */
+         if (y != (size-1))
+         {
+              if ((((*(temp->pPolygon+y) == id2) && (*(temp->pPolygon+y+1) == id3))) ||
+             (((*(temp->pPolygon+y) == id3) && (*(temp->pPolygon+y+1) == id2))))
+                    saved[x++] = -1;
+              else
+              {
+                   if (x == 4)
+                   {
+                        printf("There is an error in the check in quad \n");
+                        exit(0);
+                   }
+                   /*    Save the number of Adjacent Polygons to this edge */
+                   saved[x++] = Number_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1),face_id);
+              }
+         }
+		else if ((((*(temp->pPolygon) == id2) && (*(temp->pPolygon+size-1) == id3))) ||
+             (((*(temp->pPolygon) == id3) && (*(temp->pPolygon+size-1) == id2))) )
+             saved[x++] = -1;
+        else
+        {
+               if (x == 4)
+               {
+                    printf("There is an error in the check in quad \n");
+                    exit(0);
+               }
+               /*    Save the number of Adjacent Polygons to this edge */
+               saved[x++] = Number_Adj(*(temp->pPolygon),*(temp->pPolygon+size-1),face_id);
+
+        }
+    }
+    if (x != 4)
+    {
+         printf("Did not enter all the values %d \n",x);
+         exit(0);
+    }
+    
+    *min = 10;
+    for (x=0; x<4; x++)
+    {
+         if (x!= 3)
+         {
+              if ((saved[x] != -1) && (saved[x+1] != -1) && 
+                   ((saved[x] + saved[x+1]) < *min))
+                   *min = saved[x] + saved[x+1];
+         }
+         else
+         {
+              if ((saved[0] != -1) && (saved[x] != -1) &&
+                   ((saved[x] + saved[0]) < *min))
+                   *min = saved[0] + saved[x];
+         }
+    }
+}
+
+
+
+int Get_Output_Edge(int face_id, int size, int *index,int id2,int id3)
+{
+    /*  Return the vertex adjacent to either input1 or input2 that
+        is adjacent to the least number of polygons on the edge that
+        is shared with either input1 or input2.
+    */
+    register int x=0,y;
+    int saved[2];
+    int edges[2][1];
+
+    for (y = 0; y < size; y++)
+    {
+        if (y != (size-1))
+        {
+            if (((*(index+y) == id2) && (*(index+y+1) != id3))
+                || ((*(index+y) == id3) && (*(index+y+1) != id2)))
+            {
+                saved[x++] = Number_Adj(*(index+y),*(index+y+1),face_id);
+                edges[x-1][0] = *(index+y+1);
+            }
+            else if (y != 0)
+            {
+                if (( (*(index+y) == id2) && (*(index+y-1) != id3) ) ||
+                    ( (*(index+y) == id3) && (*(index+y-1) != id2)) )
+                {
+                    saved[x++] = Number_Adj(*(index+y),*(index+y-1),face_id);
+                    edges[x-1][0] = *(index+y-1);
+                }
+            }
+            else if (y == 0)
+            {
+                if (( (*(index) == id2) && (*(index+size-1) != id3) ) ||
+                    ( (*(index) == id3) && (*(index+size-1) != id2)) )
+                {
+                    saved[x++] = Number_Adj(*(index),*(index+size-1),face_id);
+                    edges[x-1][0] = *(index+size-1);
+                }
+            }
+
+        }
+        else
+        {
+            if (((*(index+size-1) == id2) && (*(index) != id3))
+                || ((*(index+size-1) == id3) && (*(index) != id2)))
+            {
+                saved[x++] = Number_Adj(*(index),*(index+size-1),face_id);
+                edges[x-1][0] = *(index);
+            }
+
+            if (( (*(index+size-1) == id2) && (*(index+y-1) != id3) ) ||
+                    ( (*(index+size-1) == id3) && (*(index+y-1) != id2)) )
+                {
+                    saved[x++] = Number_Adj(*(index+size-1),*(index+y-1),face_id);
+                    edges[x-1][0] = *(index+y-1);
+                }
+        }
+    }
+    if ((x != 2))
+    {
+        printf("There is an error in getting the input edge %d \n",x);
+        exit(0);
+    }
+    if (saved[0] < saved[1])
+        return edges[0][0];
+    else
+        return edges[1][0];
+
+}
+
+void Get_Input_Edge(int *index,int id1,int id2,int id3,int *new1,int *new2,int size,
+                    int face_id)
+{
+    /*  We had a polygon without an input edge and now we are going to pick one
+        as the input edge. The last triangle was id1,id2,id3, we will try to
+        get an edge to have something in common with one of those vertices, otherwise
+        we will pick the edge with the least number of adjacencies.
+    */
+
+    register int x;
+    int saved[3];
+
+    saved[0] = -1;
+    saved[1] = -1;
+    saved[2] = -1;
+    
+    /*  Go through the edges to see if there is one in common with one
+        of the vertices of the last triangle that we had, preferably id2 or
+        id3 since those are the last 2 things in the stack of size 2.
+    */
+    for (x=0; x< size; x++)
+    {
+        if (*(index+x) == id1)
+        {
+            if (x != (size-1))
+                saved[0] = *(index+x+1);
+            else
+                saved[0] = *(index);
+        }
+
+        if (*(index+x) == id2)
+        {
+            if (x != (size-1))
+                saved[1] = *(index+x+1);
+            else
+                saved[1] = *(index);
+        }
+        
+        if (*(index+x) == id3)
+        {
+            if (x != (size -1))
+                saved[2] = *(index+x+1);
+            else
+                saved[2] = *(index);
+        }
+    }
+    /*  Now see what we saved */
+    if (saved[2] != -1)
+    {
+        *new1 = id3;
+        *new2 = saved[2];
+        return;
+    }
+    else if (saved[1] != -1)
+    {
+        *new1 = id2;
+        *new2 = saved[1];
+        return;
+    }
+    else if (saved[0] != -1)
+    {
+        *new1 = id1;
+        *new2 = saved[0];
+        return;
+    }
+    /*  We did not find anything so get the edge with the least number of adjacencies */
+    Edge_Least(index,new1,new2,face_id,size);
+
+}
+
+int Find_Face(int current_face, int id1, int id2, int *bucket)
+{
+	/*	Find the face that is adjacent to the edge and is not the
+		current face.
+	*/
+	register int size,each_poly=0,y,tally=0,count=0;
+	PF_EDGES temp = NULL;
+	PF_FACES temp2 = NULL;
+	ListHead *pListHead;
+	int next_face;
+	BOOL there = FALSE;
+
+    
+    /*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     /*  The input edge was a new edge */
+     if (temp == NULL)
+        return -1;
+        
+     while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          /*  The input edge was a new edge */
+          if (temp == NULL)
+            return -1;
+     }
+	/*	Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return -1;
+	else
+	{
+		if (temp->edge[2] == current_face)
+			next_face =  temp->edge[1];
+		else 
+			next_face = temp->edge[2];
+	}
+	/*	We have the other face adjacent to this edge, it is 
+		next_face. 
+	*/
+	pListHead = PolFaces[next_face];
+	temp2 = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+		
+     /*	See if the face was already deleted, and where
+              it is if it was not
+     */
+		
+     if (Done(next_face,59,bucket) == NULL)
+        return -1;
+
+     /*  Make sure the edge is still in this polygon, and that it is not
+         done
+     */
+		/*	Size of the polygon */
+		size = temp2->nPolSize;
+		for (y = 0; y< size; y++)
+		{
+			/*	Make sure that the edge is still in the
+				polygon and was not deleted, because if the edge was
+				deleted, then we used it already.
+			*/
+			if (y != (size-1))
+			{
+				if( ((id1 == *(temp2->pPolygon+y)) && (id2 ==*(temp2->pPolygon+y+1)))
+					|| ((id2 == *(temp2->pPolygon+y)) && (id1 ==*(temp2->pPolygon+y+1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+			else
+			{		
+				if( ((id1 == *(temp2->pPolygon)) && (id2 ==*(temp2->pPolygon+size-1)))
+					|| ((id2 == *(temp2->pPolygon)) && (id1 ==*(temp2->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+		}
+		
+		if (!there)
+			/*	Edge already used and deleted from the polygon*/
+			return -1;
+         else
+            return next_face;
+}
+
+BOOL Look_Up(int id1,int id2,int face_id)
+{
+	/*	See if the endpoints of the edge specified by id1 and id2
+		are adjacent to the face with face_id 
+	*/
+	register int count = 0;
+	PF_EDGES temp  = NULL;
+	ListHead *pListHead;
+	PF_FACES temp2 = NULL;
+	
+	/*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+     /*	Was a new edge that we created */
+		return 0;
+	
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	Was a new edge that we created */
+			return 0;
+     }
+	/*	Was not adjacent to anything else except itself */
+	if ((temp->edge[2] == face_id) || (temp->edge[1] == face_id))
+	{
+		/*	Edge was adjacent to face, make sure that edge is 
+			still there
+		*/
+		if (Exist(face_id,id1,id2))
+			return 1;
+		else
+			return 0;
+	}
+	else
+		return 0;
+}
+
+
+void Add_Id_Strips(int id, int where)
+{
+     /*    Just save the triangle for later  */
+     P_STRIPS pfNode;
+
+	pfNode = (P_STRIPS) malloc(sizeof(Strips) );
+	if ( pfNode )
+	{
+	     pfNode->face_id = id;
+	     if (where == 1)
+     		 AddTail(strips[0],(PLISTINFO) pfNode);
+	     /* We are backtracking in the strip */
+	     else
+		 AddHead(strips[0],(PLISTINFO) pfNode);
+	}
+	else
+	{
+	     printf("There is not enough memory to allocate for the strips\n");
+	     exit(0);
+	}
+}
+
+
+int Num_Adj(int id1, int id2)
+{
+	/*   Given edge whose endpoints are specified by id1 and id2,
+		determine how many polygons share this edge and return that
+		number minus one (since we do not want to include the polygon
+		that the caller has already).
+	*/
+
+	PF_EDGES temp = NULL;
+	ListHead *pListHead;
+	register count=-1;
+
+	/*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+	{
+		printf("There is an error in the creation of the table \n");
+		exit(0);
+	}
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+	     if (temp == NULL)
+		{
+			printf("There is an error in the creation of the table\n");
+			exit(0);
+		}
+	}
+	/*      Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return 0;
+	return 1;
+}
+
+
+void Add_Sgi_Adj(int bucket,int face_id)
+{
+	/*   This routine will add the face to the proper bucket,
+		depending on how many faces are adjacent to it (what the
+		value bucket should be).
+	*/
+	P_ADJACENCIES pfNode;
+
+	pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+     if ( pfNode )
+     {
+		pfNode->face_id = face_id;
+	     AddHead(array[bucket],(PLISTINFO) pfNode);
+	}
+	else
+	{
+		printf("Out of memory for the SGI adj list!\n");
+		exit(0);
+	}
+}
+
+void Find_Adjacencies(int num_faces)
+{
+     register int	x,y;
+     register int	numverts;
+     PF_FACES temp=NULL;
+     ListHead *pListHead;
+
+	/*   Fill in the adjacencies data structure for all the faces */
+     for (x=0;x<num_faces;x++)
+	{
+        	pListHead = PolFaces[x];
+		temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+     	if ( temp != NULL )
+		{
+			numverts = temp->nPolSize;
+			if (numverts != 1)
+               {
+                    for (y = 0; y< numverts; y++)
+			     {
+				     if (y != (numverts-1))
+					     Add_AdjEdge(*(temp->pPolygon+y),*(temp->pPolygon+y+1),x,y);
+			
+				     else 
+					     Add_AdjEdge(*(temp->pPolygon),*(temp->pPolygon+(numverts-1)),x,numverts-1);
+			
+                    }
+               }
+			temp = NULL;
+		}
+	}
+}
+
+
diff --git a/Tools/Stripe_u/common.h b/Tools/Stripe_u/common.h
new file mode 100644
index 000000000..a220b3628
--- /dev/null
+++ b/Tools/Stripe_u/common.h
@@ -0,0 +1,41 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: common.h
+-----------------------------------------------------------------------*/
+
+void Add_AdjEdge();
+void Find_Adjacencies();
+void Add_Sgi_Adj();
+int Num_Adj();
+void Add_Id_Strips();
+BOOL Look_Up();
+int Number_Adj();
+int  Old_Adj();
+int Min_Adj();
+int Find_Face();
+void Edge_Least();
+void Get_Input_Edge();
+int Get_Output_Edge();
+void Check_In_Polygon();
+void  Check_In_Quad();
+void New_Size_Face ();
+void New_Face ();
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/Tools/Stripe_u/define.h b/Tools/Stripe_u/define.h
new file mode 100644
index 000000000..931e5713f
--- /dev/null
+++ b/Tools/Stripe_u/define.h
@@ -0,0 +1,13 @@
+
+#define   VRDATA		double
+#define   MAX1            60
+	
+#define	TRUE	      	1
+#define	FALSE		0
+
+#define   PI	     	3.1415926573
+
+struct vert_struct {
+	VRDATA	x, y, z;	/* point coordinates */
+};
+
diff --git a/Tools/Stripe_u/extend.h b/Tools/Stripe_u/extend.h
new file mode 100644
index 000000000..78c135e3a
--- /dev/null
+++ b/Tools/Stripe_u/extend.h
@@ -0,0 +1,17 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: extend.h
+-----------------------------------------------------------------------*/
+
+int Bottom_Left();
+int Top_Left();
+void Start_Edge();
+
+
diff --git a/Tools/Stripe_u/free.c b/Tools/Stripe_u/free.c
new file mode 100644
index 000000000..9494f4fb4
--- /dev/null
+++ b/Tools/Stripe_u/free.c
@@ -0,0 +1,110 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: free.c
+     This file contains the code used to free the data structures.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "polverts.h"
+
+void ParseAndFreeList( ListHead *pListHead )
+{
+    PLISTINFO value;
+    register int c,num;
+	  
+    /*    Freeing a linked list */
+    num = NumOnList(pListHead);
+    for (c = 0; c< num; c++)
+	     value =   RemHead(pListHead);
+} 
+
+void FreePolygonNode( PF_VERTS pfVerts)
+{
+	/*   Free a vertex node */
+     if ( pfVerts->pPolygon )
+		free( pfVerts->pPolygon );
+	free( pfVerts );
+
+}
+ 
+void Free_Strips()
+{
+    P_STRIPS temp = NULL;
+
+    /*    Free strips data structure */
+    if (strips[0] == NULL)
+         return;
+    else
+         ParseAndFreeList(strips[0]);
+}
+
+void FreeFaceNode( PF_FACES pfFaces)
+{
+	/*   Free face node */
+     if ( pfFaces->pPolygon )
+                free( pfFaces->pPolygon );
+        free( pfFaces );
+}
+
+
+void FreeFaceTable(int nSize)
+{
+     register int nIndex;
+
+     for ( nIndex=0; nIndex < nSize; nIndex++ )
+     { 
+    		if ( PolFaces[nIndex] != NULL ) 
+             ParseAndFreeList( PolFaces[nIndex] );
+     }
+     free( PolFaces );
+}
+
+void FreeEdgeTable(int nSize)
+{
+        register int nIndex;
+
+        for ( nIndex=0; nIndex < nSize; nIndex++ )
+        {
+                if ( PolEdges[nIndex] != NULL )
+                        ParseAndFreeList( PolEdges[nIndex] );
+        }
+        free( PolEdges );
+}
+
+
+void Free_All_Strips()
+{
+
+	ListHead *pListHead;
+	register int y;
+
+	for (y =0; ; y++)
+	{
+		pListHead = all_strips[y];
+		if (pListHead == NULL)
+			return;
+		else
+			ParseAndFreeList(all_strips[y]);
+	}
+}
+
+void End_Face_Struct(int numfaces)
+{
+     FreeFaceTable(numfaces);
+}
+
+void End_Edge_Struct(int numverts)
+{
+     FreeEdgeTable(numverts);
+}	
+
+
diff --git a/Tools/Stripe_u/free.h b/Tools/Stripe_u/free.h
new file mode 100644
index 000000000..3303d05e1
--- /dev/null
+++ b/Tools/Stripe_u/free.h
@@ -0,0 +1,22 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: free.h
+-----------------------------------------------------------------------*/
+
+void Free_All_Strips();
+void ParseAndFreeList();
+void FreePolygonNode();
+void Free_Strips();
+void FreeFaceTable();
+void FreeEdgeTable();
+void End_Face_Struct();
+void End_Edge_Struct();
+
+
diff --git a/Tools/Stripe_u/global.h b/Tools/Stripe_u/global.h
new file mode 100644
index 000000000..3621b25e1
--- /dev/null
+++ b/Tools/Stripe_u/global.h
@@ -0,0 +1,37 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: global.h
+-----------------------------------------------------------------------*/
+
+#define   VRDATA		double
+#define   MAX1            60
+	
+#define	TRUE	      	1
+#define	FALSE		0
+
+#ifndef PI
+#  define   PI	     	3.1415926573
+#endif /* PI */
+#define   ATOI(C)        (C -'0')
+#define   X              0
+#define   Y              1
+#define   Z              2
+#define   EVEN(x)       (((x) & 1) == 0)
+#define   MAX_BAND      10000
+
+struct vert_struct {
+	VRDATA	x, y, z;	/* point coordinates */
+};
+
+int     ids[MAX1];
+int     norms[MAX1];
+int     *vert_norms;
+int     *vert_texture;
+
diff --git a/Tools/Stripe_u/glove.h b/Tools/Stripe_u/glove.h
new file mode 100644
index 000000000..74bcd07da
--- /dev/null
+++ b/Tools/Stripe_u/glove.h
@@ -0,0 +1,151 @@
+/*
+ * dg2lib.h - header file for the DG2 library libdg2.a
+ *
+ * copyright 1988-92 VPL Research Inc.
+ *
+ */
+
+
+
+/******** error returns from the library */
+
+extern int DG2_error;  		/* for error information */
+extern float DG2_lib_version;  	/* for the library version */
+extern int DG2_box_version;  	/* for the firmware version */
+extern int DG2_glove_sensors;	/* for the number of sensors in the glove */
+
+/* defines for DG2_error values */
+
+#define DG2_AOK			0 
+#define DG2_SETTINGS_FILE	-1
+#define DG2_SERIAL_OPEN		-2 
+#define DG2_SERIAL_PORT		-4   
+#define DG2_RESET		-6  
+#define DG2_PARAMETER		-7  
+#define DG2_FILE_IO		-8
+#define DG2_CALIBRATION_FILE	-9
+#define DG2_GESTURE_FILE	-10
+#define DG2_CAL_GEST_FILES	-11
+/* defines for DG2_response() */
+
+#define DATAGLOVE	1
+#define POLHEMUS	2
+#define GESTURE		8
+
+#define DG2_60Hz	1
+#define DG2_30Hz	2
+#define DG2_oneShot	3
+
+/* defines for DG2_DataGlove_select() */
+
+#define THUMB_INNER	0x1
+#define THUMB_OUTER	0x2
+#define INDEX_INNER	0x4
+#define INDEX_OUTER	0x8
+#define MIDDLE_INNER	0x10
+#define MIDDLE_OUTER	0x20
+#define RING_INNER	0x40
+#define RING_OUTER	0x80
+#define LITTLE_INNER	0x100
+#define LITTLE_OUTER	0x200
+#define NORMAL_JOINTS	0x3ff
+#define FLEX11		0x400
+#define FLEX12		0x800
+#define FLEX13		0x1000
+#define FLEX14		0x2000
+#define FLEX15		0x4000
+#define FLEX16		0x8000
+
+
+/* defines for DG2_DataGlove_trans_select() */
+
+#define DG2_TRANSLATED 	5
+#define DG2_RAW		6
+
+/* defines for DG2_Polhemus_units() */
+
+#define POL_RAW		0
+#define POL_INCHES	1
+#define POL_CM		2
+
+/* defines for DG2_user_IRQ() */
+
+#define IRQ_ON	1
+#define IRQ_OFF	2
+
+
+/* defines for DG2_get_data() */
+
+#define DG2_report	1
+#define DG2_userport	2
+
+
+/* dg2 command codes*/
+#define LEADINGBYTE 	0x24
+#define RPT60     	0x41	/* repeat 60 */
+#define RPT30     	0x42	/* repeat 30 */
+#define ONESHOT   	0x43	/* one shot */
+#define SYSID     	0x44	/* system ID */
+#define EPTBUF    	0x45 	/* empty buffer */
+#define USRRD     	0x46	/* user read */
+#define USRIRQ    	0x47	/* user IRQ */
+#define QBRT      	0x48	/* query bright */	
+#define CDRST     	0x49	/* cold reset */
+#define WMRST     	0x4A	/* warm reset */
+#define MEMALLO   	0x4B	/* memory alloc */
+#define DLTSND    	0x4C	/* delta send */
+#define SETBRT    	0x4D	/* set bright */
+#define SETDIM    	0x4E	/* set dim */
+#define FILBUF    	0x4F	/* fill buffer */
+#define LDTBL     	0x50	/* load table */
+#define LDPOL     	0x51	/* send up to 63 bytes to Polhemus  */
+#define ANGLE     	0x52	/* angles */
+#define NSNSR     	0x53	/* num sensors */
+#define SETFB     	0x54	/* set feedback */
+#define QCUT      	0X55	/* query cutoff*/
+#define SETCUT    	0X56	/* set cutoff */
+#define FLXVAL    	0X57	/* raw flex values */
+#define USRWR     	0X58	/* user write */
+#define JNTMAP    	0X59	/* joint map */
+#define ERRMESS		0XFF	/* error in command input */
+#define TIMOUT		0XFE	/* timed out during command */
+
+/* response structure */
+
+typedef struct DG2_data {
+	char gesture;
+	double location[3];  	/* X,Y,Z */
+	double orientation[3];	/* yaw, pitch, roll */
+	short flex[16];
+	char gesture_name[20];
+	short reserved[16];
+		/* user port data: */
+	char user_nibble;
+	char user_analog[3];
+} DG2_data;
+
+
+/**************function prototypes*************/
+/*NOTE: all DG2_ functions return -1 on error*/
+
+extern int DG2_open(char *portname, int baud);
+extern int DG2_close(int filedes);
+extern int DG2_direct(int filedes,char *message,int count);
+extern int DG2_response(int filedes,int devices,int rate);
+extern int DG2_DataGlove_select(int filedes,int flex_sensors);
+extern int DG2_DataGlove_translation(int filedes,int flex_sensors,char table[16][256]);
+extern int DG2_DataGlove_trans_select(int filedes,int status);
+extern int DG2_DataGlove_LED_set(int filedes,int LED);
+extern int DG2_DataGlove_LED_read(int filedes);
+extern int DG2_Polhemus_units(int filedes,char type);
+extern int DG2_Polhemus_direct(int filedes,char *message,int count);
+extern int DG2_user_write(int filedes,int nibble);
+extern int DG2_user_IRQ(int filedes,int mode);
+extern int DG2_user_read(int filedes,DG2_data *data);
+extern int DG2_get_data(int filedes,DG2_data *data);
+extern int DG2_gesture_load(int filedes,char *calib,char *gest);
+
+/*use this with caution since it does not return until it gets a correct
+ *response from the DG2
+*/
+extern int DG2U_get_reply(int filedes,char *buff,int response,int size);
diff --git a/Tools/Stripe_u/init.c b/Tools/Stripe_u/init.c
new file mode 100644
index 000000000..b3b218cec
--- /dev/null
+++ b/Tools/Stripe_u/init.c
@@ -0,0 +1,217 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: init.c
+     This file contains the initialization of data structures.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "global.h"
+#include "polverts.h"
+
+void init_vert_norms(int num_vert)
+{
+     /*   Initialize vertex/normal array to have all zeros to
+          start with.
+     */
+     register int x;
+
+     for (x = 0; x < num_vert; x++)
+          *(vert_norms + x) = 0;
+}
+
+void init_vert_texture(int num_vert)
+{
+     /*   Initialize vertex/normal array to have all zeros to
+          start with.
+     */
+     register int x;
+
+     for (x = 0; x < num_vert; x++)
+          *(vert_texture + x) = 0;
+}
+
+BOOL InitVertTable( int nSize )
+{
+     register int nIndex;
+
+	/*   Initialize the vertex table */
+     PolVerts = (ListHead**) malloc(sizeof(ListHead*) * nSize ); 
+	if ( PolVerts )
+	{
+		for ( nIndex=0; nIndex < nSize; nIndex++ )
+		{
+			PolVerts[nIndex] = NULL;
+		}
+		return( TRUE );	
+	}
+	return( FALSE );
+}  
+
+BOOL InitFaceTable( int nSize )
+{
+        register int nIndex;
+
+        /*     Initialize the face table */
+        PolFaces = (ListHead**) malloc(sizeof(ListHead*) * nSize ); 
+        if ( PolFaces )
+        {
+                for ( nIndex=0; nIndex < nSize; nIndex++ )
+                {
+                        PolFaces[nIndex] = NULL;
+                }
+                return( TRUE );
+        }
+        return( FALSE );
+} 
+
+BOOL InitEdgeTable( int nSize )
+{
+        register int nIndex;
+
+        /*     Initialize the edge table */
+        PolEdges = (ListHead**) malloc(sizeof(ListHead*) * nSize );
+        if ( PolEdges )
+        {
+                for ( nIndex=0; nIndex < nSize; nIndex++ )
+                {
+                        PolEdges[nIndex] = NULL;
+                }
+                return( TRUE );
+        }
+        return( FALSE );
+}
+
+
+void InitStripTable(  )
+{
+
+     PLISTHEAD pListHead;
+
+     /*   Initialize the strip table */
+     pListHead = ( PLISTHEAD ) malloc(sizeof(ListHead));
+	if ( pListHead )
+     {
+		InitList( pListHead );
+		strips[0] = pListHead;
+	}
+     else
+	{
+	     printf("Out of memory !\n");
+		exit(0);
+	}
+
+}
+
+void Init_Table_SGI()
+{
+	PLISTHEAD pListHead;
+	int max_adj = 60;
+	register int x;
+	
+	/*   This routine will initialize the table that will
+		have the faces sorted by the number of adjacent polygons
+		to it.
+	*/
+
+	for (x=0; x< max_adj; x++)
+	{
+		/*   We are allowing the max number of sides of a polygon
+			to be max_adj.
+		*/                      
+		pListHead = ( PLISTHEAD ) malloc(sizeof(ListHead));
+		if ( pListHead )
+	     {
+			InitList( pListHead );
+			array[x] = pListHead;
+		}
+	     else
+		{
+		     printf("Out of memory !\n");
+			exit(0);
+		}
+	}
+}
+
+void BuildVertTable( int nSize )
+{
+     register int nIndex;
+     PLISTHEAD pListHead;
+	
+	for ( nIndex=0; nIndex < nSize; nIndex++ )
+	{
+		pListHead = ( PLISTHEAD ) malloc(sizeof(ListHead));
+		if ( pListHead )
+        	{
+			InitList( pListHead );
+			PolVerts[nIndex] = pListHead;
+		}
+        	else
+        		return;	
+		
+	}
+}
+   
+
+void BuildFaceTable( int nSize )
+{
+        register int nIndex;
+        PLISTHEAD pListHead;
+        
+        for ( nIndex=0; nIndex < nSize; nIndex++ )
+        {
+                pListHead = ( PLISTHEAD ) malloc(sizeof(ListHead));
+                if ( pListHead )
+                {
+                        InitList( pListHead );
+                        PolFaces[nIndex] = pListHead;
+                }
+                else
+                        return; 
+                
+        }
+}
+   
+void BuildEdgeTable( int nSize )
+{
+        register int nIndex;
+        PLISTHEAD pListHead;
+
+        for ( nIndex=0; nIndex < nSize; nIndex++ )
+        {
+                pListHead = ( PLISTHEAD ) malloc(sizeof(ListHead));
+                if ( pListHead )
+                {
+                        InitList( pListHead );
+                        PolEdges[nIndex] = pListHead;
+                }
+                else
+                        return;
+        }
+}
+
+void Start_Face_Struct(int numfaces)
+{
+	if (InitFaceTable(numfaces))
+	{
+		BuildFaceTable(numfaces);
+	}
+}
+
+void Start_Edge_Struct(int numverts)
+{
+        if (InitEdgeTable(numverts))
+        {
+                BuildEdgeTable(numverts);
+        }
+}
+
+
diff --git a/Tools/Stripe_u/init.h b/Tools/Stripe_u/init.h
new file mode 100644
index 000000000..2faf0e838
--- /dev/null
+++ b/Tools/Stripe_u/init.h
@@ -0,0 +1,30 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: init.h
+-----------------------------------------------------------------------*/
+
+void init_vert_norms();
+void init_vert_texture();
+BOOL InitVertTable();
+BOOL InitFaceTable();
+BOOL InitEdgeTable();
+void InitStripTable();
+void Init_Table_SGI();
+void BuildVertTable();
+void BuildFaceTable();
+void BuildEdgeTable();
+void Start_Face_Struct();
+void Start_Edge_Struct();
+
+
+
+
+
+
diff --git a/Tools/Stripe_u/local.c b/Tools/Stripe_u/local.c
new file mode 100644
index 000000000..2db94904e
--- /dev/null
+++ b/Tools/Stripe_u/local.c
@@ -0,0 +1,123 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: local.c
+     This file contains the code that initializes the data structures for
+     the local algorithm, and starts the local algorithm going.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "polverts.h"
+#include "local.h"
+#include "triangulatex.h"
+#include "sturctsex.h"
+#include "common.h"
+#include "outputex.h"
+#include "util.h"
+#include "init.h"
+
+void Find_StripsEx(FILE *output,FILE *strip,int *ties,
+				 int  tie, int triangulate,
+                 int  swaps,int *next_id)
+{
+	/*	This routine will peel off the strips from the model */
+
+	ListHead *pListHead;
+	P_ADJACENCIES temp = NULL;
+	register int max,bucket=0;
+	BOOL whole_flag = TRUE;
+     int dummy = 0;
+	
+	/*  Set the last known input edge to be null */
+     Last_Edge(&dummy,&dummy,&dummy,1);
+    
+     /*	Search for lowest adjacency polygon and output strips */
+	while (whole_flag)
+	{
+		bucket = -1;
+		/*	Search for polygons in increasing number of adjacencies */
+		while (bucket < 59)
+		{
+			bucket++;
+			pListHead = array[bucket];
+			max = NumOnList(pListHead);
+			if (max > 0)
+			{
+				temp = (P_ADJACENCIES) PeekList(pListHead,LISTHEAD,0);
+				if (temp == NULL)
+				{
+					printf("Error in the buckets%d %d %d\n",bucket,max,0);
+					exit(0);
+				}
+				Polygon_OutputEx(temp,temp->face_id,bucket,pListHead,
+	       				       output,strip,ties,tie,triangulate,swaps,next_id,1);
+				/*  Try to extend backwards, if the starting polygon in the
+                        strip had 2 or more adjacencies to begin with
+                    */
+                    if (bucket >= 2)
+                         Extend_BackwardsEx(temp->face_id,output,strip,ties,tie,triangulate,
+                                            swaps,next_id);
+                    break;  
+			}
+		}
+		/*	Went through the whole structure, it is empty and we are done.
+		*/
+		if ((bucket == 59) && (max == 0))
+			whole_flag = FALSE;
+        
+          /*  We just finished a strip, send dummy data to signal the end
+              of the strip so that we can output it.
+          */
+         else
+         {
+             Output_TriEx(-1,-2,-3,output,-1,-10,1);
+             Last_Edge(&dummy,&dummy,&dummy,1);
+         }
+	}
+}
+
+
+
+void SGI_Strip(int num_verts,int num_faces,FILE *output,
+			   int ties,int triangulate)
+               
+{
+	FILE *strip;
+     int next_id = -1,t=0;
+
+     strip = fopen("output.d","w");
+     /*	We are going to output and find triangle strips
+		according the the method that SGI uses, ie always
+		choosing as the next triangle in our strip the triangle
+		that has the least number of adjacencies. We do not have
+		all triangles and will be triangulating on the fly those
+		polygons that have more than 3 sides.
+	*/
+
+	/*	Build a table that has all the polygons sorted by the number
+		of polygons adjacent to it.
+	*/
+	/*	Initialize it */
+	Init_Table_SGI();
+	/*	Build it */
+	Build_SGI_Table(num_verts,num_faces);
+
+	/*    We will have a structure to hold all the strips, until
+          outputted.
+     */
+     InitStripTable();
+     /*	Now we have the structure built to find the polygons according
+		to the number of adjacencies. Now use the SGI Method to find
+		strips according to the adjacencies
+	*/
+     Find_StripsEx(output,strip,&t,ties,triangulate,ON,&next_id);
+
+}
diff --git a/Tools/Stripe_u/local.h b/Tools/Stripe_u/local.h
new file mode 100644
index 000000000..34769ebb8
--- /dev/null
+++ b/Tools/Stripe_u/local.h
@@ -0,0 +1,19 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE:local.h
+-----------------------------------------------------------------------*/
+
+void Local_Polygon_Output();
+void Local_Output_Tri();
+int Different();
+void Local_Non_Blind_Triangulate();
+void Local_Blind_Triangulate();
+void Local_Triangulate_Polygon();
+void SGI_Strip();
diff --git a/Tools/Stripe_u/my_global.h b/Tools/Stripe_u/my_global.h
new file mode 100644
index 000000000..629c12074
--- /dev/null
+++ b/Tools/Stripe_u/my_global.h
@@ -0,0 +1,3 @@
+int change_in_stripEx = 0;
+int change_in_strip = 0;
+
diff --git a/Tools/Stripe_u/newpolve.c b/Tools/Stripe_u/newpolve.c
new file mode 100644
index 000000000..9adbfd651
--- /dev/null
+++ b/Tools/Stripe_u/newpolve.c
@@ -0,0 +1,1667 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: newpolve.c
+     This routine contains the bulk of the code that will find the
+     patches of quads in the data model
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdlib.h>
+#include "polverts.h"
+#include "extend.h"
+#include "output.h"
+#include "triangulate.h"
+#include "common.h"
+#include "util.h"
+#include "global.h"        
+#include "init.h"
+#include "add.h"
+
+ListHead **PolVerts;
+ListHead **PolFaces;
+ListHead **PolEdges;
+int length;
+BOOL resetting = FALSE;
+int     ids[MAX1];
+int 	added_quad = 0;
+BOOL reversed = FALSE;
+int patch = 0;
+int *vn;
+int *vt;
+
+int Calculate_Walks(int lastvert,int y, PF_FACES temp2)
+{
+	/* Find the length of the walk */
+	
+	int previous_edge1, previous_edge2;
+	register int nextvert,numverts,counter,walk=0;
+	BOOL flag;
+	F_EDGES *node;
+     ListHead *pListHead;
+     static int seen = 0;
+     
+	/* Find the edge that we are currently on */
+	if (y != 3)
+	{
+		previous_edge1 = *(temp2->pPolygon +y);
+		previous_edge2 = *(temp2->pPolygon + y + 1);
+	}
+	else
+	{
+		previous_edge1 = *(temp2->pPolygon +y);
+		previous_edge2 = *(temp2->pPolygon);
+	}
+
+	temp2->seen = seen;
+     counter = y;
+
+     /*Find the adjacent face to this edge */
+	node = *(temp2->VertandId+y);			
+	if (node->edge[2] != lastvert)
+        nextvert = node->edge[2];
+     else
+        nextvert = node->edge[1];
+					
+	/* Keep walking in this direction until we cannot do so */
+	while ((nextvert != lastvert) && (nextvert != -1))
+	{
+		walk++;
+		pListHead = PolFaces[nextvert];
+		temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+		numverts = temp2->nPolSize;
+		if ((numverts != 4) || (temp2->seen == seen))
+		{
+			walk--;
+			nextvert = -1;
+		}
+		else
+		{
+			temp2->seen = seen;
+               /* Find edge that is not adjacent to the previous one */
+			counter = 0;
+			flag = TRUE;
+			while ((counter < 3) && (flag))
+			{
+				if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+					(*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+					((*(temp2->pPolygon+counter) == previous_edge2) || 
+					(*(temp2->pPolygon+counter+1) == previous_edge1)) )
+					counter++;		
+				else
+					flag = FALSE;	
+			}
+	     	/* Get the IDs of the next edge */
+		     if (counter < 3)
+		     {
+			     previous_edge1 = *(temp2->pPolygon + counter);
+			     previous_edge2 = *(temp2->pPolygon + counter + 1);
+		     }
+		     else
+		     {
+                    previous_edge1 = *(temp2->pPolygon + counter);
+                    previous_edge2 = *(temp2->pPolygon);
+		     }
+	
+		     node = *(temp2->VertandId + counter);
+		     if (node->edge[1] == nextvert)
+			     nextvert = node->edge[2];
+		     else
+			     nextvert = node->edge[1];
+		}
+	}
+     seen++;
+	return walk;
+}
+
+
+BOOL Check_Right(int last_seen,PF_FACES temp2,int y,int face_id)
+{
+	/* Check when we last saw the face to the right of the current
+	   one. We want to have seen it just before we started this strip
+	*/
+
+	F_EDGES *node;
+	ListHead *pListHead;
+	register int nextvert,oldy;
+	PF_FACES t;
+	
+     oldy = y;
+	if (y != 3)
+		y = y+1;
+	else
+		y = 0;
+	node = *(temp2->VertandId + y);
+	if (face_id == node->edge[1])
+		nextvert = node->edge[2];
+	else
+		nextvert = node->edge[1];
+	
+     if (nextvert == -1)
+          return FALSE;
+     
+     pListHead = PolFaces[nextvert];
+	t = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+	if (t->seen != (last_seen - 1))
+	{
+		 /* maybe because of the numbering, we are not
+		    on the right orientation, so we have to check the
+		    opposite one to be sure 
+           */
+		if (oldy != 0)
+			y = oldy-1;
+		else
+			y = 3;
+		node = *(temp2->VertandId + y);
+		if (face_id == node->edge[1])
+			nextvert = node->edge[2];
+		else
+			nextvert = node->edge[1];
+		if (nextvert == -1)
+               return FALSE;
+          pListHead = PolFaces[nextvert];
+		t = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+		if (t->seen != (last_seen - 1))
+		 	return FALSE;
+	}
+	return TRUE;
+}
+
+
+int Update_and_Test(PF_FACES temp2,int y,BOOL first,int distance,int lastvert, int val)
+{
+	     
+        static int last_seen = 17;
+        int previous_edge1, previous_edge2;
+        register int original_distance,nextvert,numverts,counter;
+        BOOL flag;
+        F_EDGES *node;
+        ListHead *pListHead;
+                                                        
+        original_distance = distance;
+        /* Find the edge that we are currently on */
+        if (y != 3)
+        {
+                previous_edge1 = *(temp2->pPolygon +y);
+                previous_edge2 = *(temp2->pPolygon + y + 1);
+        }
+        else
+        {
+                previous_edge1 = *(temp2->pPolygon +y);
+                previous_edge2 = *(temp2->pPolygon);
+        }
+
+        temp2->seen = val;
+        temp2->seen2 = val;
+		
+        node = *(temp2->VertandId+y);                   
+        if (lastvert != node->edge[2])
+			nextvert = node->edge[2];
+	   else
+			nextvert = node->edge[1];
+                                        
+        /* Keep walking in this direction until we cannot do so  or
+		we go to distance */
+        while ((distance > 0)  && (nextvert != lastvert) && (nextvert != -1))
+        {
+                distance--;
+			           
+                pListHead = PolFaces[nextvert];
+                temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+                temp2->seen = val;
+				
+                if (temp2->seen2 == val)
+                {
+                     last_seen++;
+                     return (original_distance - distance);
+                }
+                
+                temp2->seen2 = val;
+                
+                numverts = temp2->nPolSize;
+                                
+	     	 if (numverts != 4)
+          	     nextvert = -1;
+		
+                else if ((!first) && (!(Check_Right(last_seen,temp2,y,nextvert))))
+                {
+                    last_seen++;
+                    return (original_distance - distance);
+                }
+		      else
+                {
+                        /* Find edge that is not adjacent to the previous one */
+                        counter = 0;
+                        flag = TRUE;
+                        while ((counter < 3) && (flag))
+                        {
+                                if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                                        (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                                        ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                                        (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                                        counter++;
+                                else
+                                        flag = FALSE;
+                        }
+                        /* Get the IDs of the next edge */
+                        if (counter < 3)
+                        {
+                              previous_edge1 = *(temp2->pPolygon + counter);
+                              previous_edge2 = *(temp2->pPolygon + counter + 1);
+                        }
+                        else
+                        {
+                              previous_edge1 = *(temp2->pPolygon + counter);
+                              previous_edge2 = *(temp2->pPolygon);
+                        }
+                        if      ( ((*(temp2->walked+counter) == -1) && 
+                                (*(temp2->walked+counter+2) == -1)))
+                        {
+                                printf("There is an error in the walks!\n");
+                                printf("1Code %d %d \n",*(temp2->walked+counter),*(temp2->walked+counter+2));
+                                exit(0);
+                        }
+                        else
+                        {
+                                if      ((*(temp2->walked+counter) == -1) && 
+                                        (*(temp2->walked+counter-2) ==  -1))
+                                {
+                                        printf("There is an error in the walks!\n");
+                                        printf("2Code %d %d \n",*(temp2->walked+counter),*(temp2->walked+counter-2));
+                                        exit(0);
+                                }
+                        }
+                        node = *(temp2->VertandId + counter);
+                        y = counter;
+		              if (node->edge[1] == nextvert)
+                              nextvert = node->edge[2];
+                        else
+                              nextvert = node->edge[1];
+             }
+    }
+	
+    last_seen++;
+
+    if  (distance != 0)  
+    {
+		if (((nextvert == -1) || (nextvert == lastvert)) && (distance != 1))
+			return (original_distance - distance);
+    }
+    return original_distance;
+}
+
+
+int Test_Adj(PF_FACES temp2,int x,int north,int distance,int lastvert, int value)
+{
+	/* if first time, then just update the last seen field */
+	if (x==1)
+		return(Update_and_Test(temp2,north,TRUE,distance,lastvert,value));
+	/* else we have to check if we are adjacent to the last strip */
+	else
+		return(Update_and_Test(temp2,north,FALSE,distance,lastvert,value));
+}
+  
+void Get_Band_Walk(PF_FACES temp2,int face_id,int *dir1,int *dir2, 
+					int orientation,int cutoff_length)
+{
+	int previous_edge1, previous_edge2;
+	F_EDGES *node;
+	ListHead *pListHead;
+	register int walk = 0, nextvert,numverts,counter;
+	BOOL flag;
+	
+	/*	Get the largest band that will include this face, starting
+		from orientation. Save the values of the largest band
+		(either north and south together, or east and west together)
+		in the direction variables.
+	*/
+	/* Find the edge that we are currently on */
+     if (orientation != 3)
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation);
+                previous_edge2 = *(temp2->pPolygon + orientation + 1);
+     }
+     else
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation );
+                previous_edge2 = *(temp2->pPolygon);
+     }
+		
+     if (orientation == 0)
+     {
+			 if (*dir1 > *(temp2->walked + 1))
+				*dir1 = *(temp2->walked + 1);
+			 if (*dir2 > *(temp2->walked + 3))
+				*dir2 = *(temp2->walked + 3);
+	}
+	else if (orientation == 3)
+	{
+			if (*dir1 > *(temp2->walked + orientation - 3))
+			     *dir1 = *(temp2->walked + orientation - 3) ;
+			if (*dir2 > *(temp2->walked + orientation -1 ))
+				*dir2 = *(temp2->walked + orientation - 1);
+	}
+	else
+	{
+			if (*dir1 > *(temp2->walked + orientation - 1))
+				*dir1 = *(temp2->walked + orientation -1) ;
+			if (*dir2 > *(temp2->walked+ orientation + 1))
+				*dir2 = *(temp2->walked + orientation + 1);
+	}
+        
+     /*	if we know already that we can't extend the
+        	band from this face, we do not need to do the walk
+     */
+     if ((*dir1 != 0) && (*dir2 != 0))
+     {
+		/* Find the adjacent face to this edge */
+        	node = *(temp2->VertandId+orientation);                   
+        	if (face_id == node->edge[1])
+			nextvert = node->edge[2];
+        	else 
+			nextvert = node->edge[1];
+	}
+     else
+        	nextvert = -1; /* leave w/o walking */                                
+	
+	/* Keep walking in this direction until we cannot do so */
+     while ((nextvert != face_id) && (nextvert != -1))
+     {
+            walk++;
+            pListHead = PolFaces[nextvert];
+            temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+            numverts = temp2->nPolSize;
+            if ((numverts != 4)	|| (walk > cutoff_length))
+                   nextvert = -1;
+            else
+            {
+	  		  /* Find edge that is not adjacent to the previous one */
+                 counter = 0;
+                 flag = TRUE;
+                 while ((counter < 3) && (flag))
+                 {
+                           if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                                (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                                ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                                (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                                     counter++;
+                           else
+                                flag = FALSE;
+                 }
+                 /* Get the IDs of the next edge */
+                 if (counter < 3)
+                 {
+                        previous_edge1 = *(temp2->pPolygon + counter);
+                        previous_edge2 = *(temp2->pPolygon + counter + 1);
+                 }
+                 else
+                 {
+                        previous_edge1 = *(temp2->pPolygon + counter);
+                        previous_edge2 = *(temp2->pPolygon);
+                 }
+                
+			  /* 	find out how far we can extend in the 2 directions
+					along this new face in the walk
+			  */
+			  if (counter == 0)
+			  {
+					if (*dir1 > *(temp2->walked + 1))
+						*dir1 = *(temp2->walked + 1);
+					if (*dir2 > *(temp2->walked + 3))
+						*dir2 = *(temp2->walked + 3);
+			  }
+			  else if (counter == 3)
+			  {
+					if (*dir1 > *(temp2->walked + counter - 3))
+						*dir1 = *(temp2->walked + counter - 3) ;
+					if (*dir2 > *(temp2->walked + counter -1 ))
+						*dir2 = *(temp2->walked + counter -1);
+			  }
+			  else
+			  {
+					if (*dir1 > *(temp2->walked + counter - 1))
+						*dir1 = *(temp2->walked + counter -1) ;
+					if (*dir2 > *(temp2->walked + counter + 1))
+						*dir2 = *(temp2->walked + counter + 1);
+			  }
+        
+        	      /*	if we know already that we can't extend the
+        	     	band from this face, we do not need to do the walk
+        	      */
+	        	 if ((*dir1 == 0) || (*dir2 == 0))
+                	nextvert = -1;
+                if (nextvert != -1)
+                {
+                	node = *(temp2->VertandId + counter);
+                	if (node->edge[1] == nextvert)
+                        nextvert = node->edge[2];
+                	else
+                        nextvert = node->edge[1];
+                }
+
+           }
+        }
+}
+
+
+
+
+int Find_Max(PF_FACES temp2,int lastvert,int north,int left,
+			int *lastminup,int *lastminleft)
+{
+	int temp,walk,counter,minup,x,band_value;
+	int previous_edge1, previous_edge2;
+	F_EDGES	*node;
+	ListHead *pListHead;
+	BOOL flag;	
+	static int last_seen = 0;
+	register int t,smallest_so_far,nextvert,max=-1;
+	        
+     t= lastvert;
+     *lastminup = MAX_BAND;
+	*lastminleft = 1;
+
+     if (left == 3)
+	{
+          previous_edge1 = *(temp2->pPolygon + left);
+          previous_edge2 = *(temp2->pPolygon);
+	}
+                
+	else
+	{
+          previous_edge1 = *(temp2->pPolygon + left + 1);
+          previous_edge2 = *(temp2->pPolygon + left);
+	}
+
+	temp2->seen = last_seen;
+     walk = *(temp2->walked + left);
+
+     for (x=1;x<=(walk+1); x++)
+	{
+		/*   test to see if we have a true band
+		     that is, are they adjacent to each other
+		*/
+        
+         minup = *(temp2->walked + north) + 1;
+
+	    /*	if we are at the very first face, then we do not
+	    	     have to check the adjacent faces going up
+	    	     and our north distance is the distance of this face's
+			north direction. 
+	    */
+         if (x == 1) 
+	    {
+			*lastminup = minup;
+			minup = Test_Adj(temp2,x,north,*lastminup,lastvert,last_seen);
+			*lastminup = minup;
+               smallest_so_far = minup;	
+         }
+		
+	
+	    /* find the largest band that we can have */
+	    if (minup < (*lastminup))
+	    {
+			/*	see if we really can go up all the way 
+				temp should by less than our equal to minup
+				if it is less, then one of the faces was not
+				adjacent to those next to it and the band height
+				will be smaller
+			*/
+			temp = Test_Adj(temp2,x,north,minup,lastvert,last_seen);
+			if (temp > minup)
+			{
+				printf("There is an error in the test adj\n");
+				exit(0);
+			}
+			minup = temp;
+			band_value = x * minup;
+			if (minup < smallest_so_far)
+			{
+				if (band_value > max)
+               	{
+					smallest_so_far = minup;
+					*lastminup = minup;
+					*lastminleft = x;
+                         max = band_value;
+                    }
+				else
+					smallest_so_far = minup;
+			}
+			else
+			{
+				band_value = x * smallest_so_far;
+     	          if (band_value > max)
+                    {
+                	     *lastminup = smallest_so_far;
+                         *lastminleft = x;
+                         max = band_value;
+                    }
+			}
+		}
+		else
+		{
+			if (x != 1)
+               {
+                    temp = Test_Adj(temp2,x,north,smallest_so_far,lastvert,last_seen);
+			     if (temp > smallest_so_far)
+			     {
+				    printf("There is an error in the test adj\n");
+				    exit(0);
+			     }
+			    smallest_so_far = temp;
+               }
+               band_value = x * smallest_so_far; 
+			if (band_value > max)
+			{
+				*lastminup = smallest_so_far;
+				*lastminleft = x;
+				max = band_value;
+			}
+		}
+		if ( x != (walk + 1))
+		{
+			node = *(temp2->VertandId+left);
+			if (lastvert == node->edge[1])
+				nextvert = node->edge[2];
+			else
+				nextvert = node->edge[1];
+
+               lastvert = nextvert;
+               
+               if (nextvert == -1)
+                    return max;
+               
+               pListHead = PolFaces[nextvert];
+			temp2 = (PF_FACES) PeekList(pListHead, LISTHEAD, 0);
+			
+               /* if we have visited this face before, then there is an error */
+               if (((*(temp2->walked) == -1) && (*(temp2->walked+1) == -1) &&
+				(*(temp2->walked+2) == -1) && (*(temp2->walked+3) == -1))
+				|| (temp2->nPolSize !=4) || (temp2->seen == last_seen))
+			{
+
+                    if (lastvert == node->edge[1])
+                         nextvert = node->edge[2];
+                    else
+                         nextvert = node->edge[1];
+                    if (nextvert == -1)
+                         return max;
+                    lastvert = nextvert;
+                    /*   Last attempt to get the face ... */
+                    pListHead = PolFaces[nextvert];
+     			temp2 = (PF_FACES) PeekList(pListHead, LISTHEAD, 0);
+                    if (((*(temp2->walked) == -1) && (*(temp2->walked+1) == -1) &&
+				     (*(temp2->walked+2) == -1) && (*(temp2->walked+3) == -1))
+				     || (temp2->nPolSize !=4) || (temp2->seen == last_seen))
+                         return max;    /*   The polygon was not saved with the edge, not
+                                             enough room. We will get the walk when we come
+                                             to that polygon later.
+                                        */
+			}
+			else
+			{
+				counter = 0;
+				flag = TRUE;
+				temp2->seen = last_seen;
+
+                    while ((counter < 3) && (flag))
+			     {
+
+                         if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                                        (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                                        ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                                        (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                                        counter++;
+				     else
+                                        flag = FALSE;
+                    }
+               }
+		
+               /* Get the IDs of the next edge */
+               left = counter;
+		     north = left+1;
+               if (left ==3)
+			     north = 0;	
+		     if (counter < 3)
+               {
+                        previous_edge1 = *(temp2->pPolygon + counter + 1);
+                        previous_edge2 = *(temp2->pPolygon + counter);
+               }
+               else
+               {
+                        previous_edge1 = *(temp2->pPolygon + counter);
+                        previous_edge2 = *(temp2->pPolygon);
+               }
+
+          } 
+
+}
+last_seen++;
+return max;
+}
+
+void Mark_Face(PF_FACES temp2, int color1, int color2,
+				int color3, FILE *output_file, BOOL end, int *edge1, int *edge2, 
+                    int *face_id, int norms, int texture)
+{
+     static int last_quad[4];
+     register int x,y,z=0;
+     int saved[2];
+     static int output1, output2,last_id;
+     BOOL cptexture;
+
+     /*   Are we done with the patch? If so return the last edge that
+          we will come out on, and that will be the edge that we will
+          start to extend upon.
+     */
+
+     cptexture = texture;
+     if (end)
+     {
+          *edge1 = output1;
+          *edge2 = output2;
+          *face_id = last_id;
+          return;
+     }
+
+     last_id = *face_id;
+	*(temp2->walked) = -1;
+	*(temp2->walked+1) = -1;
+	*(temp2->walked+2) = -1;
+	*(temp2->walked+3) = -1;
+	added_quad++;
+	temp2->nPolSize = 1;
+
+     if (patch == 0)
+     {
+          /*   At the first quad in the strip -- save it */
+          last_quad[0] = *(temp2->pPolygon);
+          last_quad[1] = *(temp2->pPolygon+1);
+          last_quad[2] = *(temp2->pPolygon+2);
+          last_quad[3] = *(temp2->pPolygon+3);
+          patch++;
+     }
+     else
+     {
+          /*   Now we have a triangle to output, find the edge in common */
+          for (x=0; x < 4 ;x++)
+          {
+              for (y=0; y< 4; y++)
+              {
+                   if (last_quad[x] == *(temp2->pPolygon+y))
+                   {
+                        saved[z++] = last_quad[x];               
+                        if (z > 2)
+                        {
+                             /*    This means that there was a non convex or
+                                   an overlapping polygon
+                             */
+                             z--;
+                             break;
+                        }
+                   }                             
+              }
+          }
+          
+          if (z != 2)
+          {
+               printf("Z is not 2 %d \n",patch);
+               printf("4 %d %d %d %d %d %d %d\n",*(temp2->pPolygon),
+				*(temp2->pPolygon+1),*(temp2->pPolygon+2),*(temp2->pPolygon+3),
+				color1,color2,color3);
+               printf("%d %d %d %d\n",last_quad[0],last_quad[1],last_quad[2],last_quad[3]);
+               exit(1);
+          }
+          
+          if (patch == 1)
+          {
+               /*   First one to output, there was no output edge */
+               patch++;
+               x = Adjacent(saved[0],saved[1],last_quad,4);
+               y = Adjacent(saved[1],saved[0],last_quad,4);
+               
+               /*   Data might be mixed and we do not have textures for some of the vertices */
+               if ((texture) && ( ((vt[x]) == 0) || ((vt[y])==0) || ((vt[saved[1]])==0)))
+                    cptexture = FALSE;
+
+               if ((!norms) && (!cptexture))
+               {
+                    fprintf(output_file,"\nt %d %d %d ",x+1,y+1,saved[1]+1);
+                    fprintf(output_file,"%d ",saved[0]+1);
+               }
+               else if ((norms) && (!cptexture))
+               {
+                    fprintf(output_file,"\nt %d//%d %d//%d %d//%d ",x+1,vn[x] +1,
+                                                                    y+1,vn[y] +1,
+                                                                    saved[1]+1,vn[saved[1]]+1);
+                    fprintf(output_file,"%d//%d ",saved[0]+1,vn[saved[0]]+1);
+               }
+               else if ((cptexture) && (!norms))
+               {
+                    fprintf(output_file,"\nt %d/%d %d/%d %d/%d ",x+1,vt[x] +1,
+                                                                    y+1,vt[y] +1,
+                                                                    saved[1]+1,vt[saved[1]]+1);
+                    fprintf(output_file,"%d//%d ",saved[0]+1,vt[saved[0]]+1);
+               }
+               else
+               {
+                    fprintf(output_file,"\nt %d/%d/%d %d/%d/%d %d/%d/%d ",x+1,vt[x]+1,vn[x] +1,
+                                                                    y+1,vt[y]+1,vn[y] +1,
+                                                                    saved[1]+1,vt[saved[1]]+1,vn[saved[1]]+1);
+                    fprintf(output_file,"%d/%d/%d ",saved[0]+1,vt[saved[0]]+1,vn[saved[0]]+1);
+               }
+
+               x = Adjacent(saved[0],saved[1],temp2->pPolygon,4);
+               y = Adjacent(saved[1],saved[0],temp2->pPolygon,4);
+
+               /*   Data might be mixed and we do not have textures for some of the vertices */
+               if ((texture) && ( (vt[x] == 0) || (vt[y]==0)))
+               {
+                    if (cptexture)
+                         fprintf(output_file,"\nq ");
+                    cptexture = FALSE;
+               }
+               if ((!norms) && (!cptexture))
+               {
+                    fprintf(output_file,"%d ",x+1);
+                    fprintf(output_file,"%d ",y+1);
+               }
+               else if ((norms) && (!cptexture))
+               {
+                    fprintf(output_file,"%d//%d ",x+1,vn[x]+1);
+                    fprintf(output_file,"%d//%d ",y+1,vn[y]+1);
+               }
+               else if ((cptexture) && (!norms))
+               {
+                    fprintf(output_file,"%d/%d ",x+1,vt[x]+1);
+                    fprintf(output_file,"%d/%d ",y+1,vt[y]+1);
+               }
+               else
+               {
+                    fprintf(output_file,"%d/%d/%d ",x+1,vt[x]+1,vn[x]+1);
+                    fprintf(output_file,"%d/%d/%d ",y+1,vt[y]+1,vn[y]+1);
+               }
+
+               output1 = x;
+               output2 = y;
+          }
+          
+          else 
+          {
+               x = Adjacent(output2,output1,temp2->pPolygon,4);
+               y = Adjacent(output1,output2,temp2->pPolygon,4);
+               /*   Data might be mixed and we do not have textures for some of the vertices */
+               if ((texture) && ( ((vt[x]) == 0) || ((vt[y])==0) ))
+                    texture = FALSE;
+
+               if ((!norms) && (!texture))
+               {
+                    fprintf(output_file,"\nq %d ",x+1);
+                    fprintf(output_file,"%d ",y+1);
+               }
+               else if ((norms) && (!texture))
+               {
+                    fprintf(output_file,"\nq %d//%d ",x+1,vn[x]+1);
+                    fprintf(output_file,"%d//%d ",y+1,vn[y]+1);
+               }
+               else if ((texture) && (!norms))
+               {
+                    fprintf(output_file,"\nq %d/%d ",x+1,vt[x]+1);
+                    fprintf(output_file,"%d/%d ",y+1,vt[y]+1);
+               }
+               else
+               {
+                    fprintf(output_file,"\nq %d/%d/%d ",x+1,vt[x]+1,vn[x]+1);
+                    fprintf(output_file,"%d/%d/%d ",y+1,vt[y]+1,vn[y]+1);
+               }
+               
+               output1 = x;
+               output2 = y;
+          }
+          
+          last_quad[0] = *(temp2->pPolygon);
+          last_quad[1] = *(temp2->pPolygon+1);
+          last_quad[2] = *(temp2->pPolygon+2);
+          last_quad[3] = *(temp2->pPolygon+3);
+     }
+}
+
+void Fast_Reset(int x)
+{
+	register int y,numverts;
+	register int front_walk, back_walk;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+
+     pListHead = PolFaces[x];
+	temp = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+	numverts = temp->nPolSize;
+     
+     front_walk = 0; 
+     back_walk = 0;          
+     resetting = TRUE;
+          
+     /* we are doing this only for quads */
+	if (numverts == 4)
+	{
+			/* 	for each face not seen yet, do North and South together
+				and East and West together
+			*/
+			for (y=0;y<2;y++)
+			{
+				/* Check if the opposite sides were seen already */
+	     		/* Find walk for the first edge */
+				front_walk = Calculate_Walks(x,y,temp);
+				/* Find walk in the opposite direction */
+				back_walk = Calculate_Walks(x,y+2,temp);
+				/* 	Now put into the data structure the numbers that
+		          	we have found
+				*/
+                    Assign_Walk(x,temp,front_walk,y,back_walk);
+				Assign_Walk(x,temp,back_walk,y+2,front_walk);
+			}
+	}
+     resetting = FALSE;
+}
+
+
+void Reset_Max(PF_FACES temp2,int face_id,int north,int last_north, int orientation,
+		int last_left,FILE *output_file,int color1,int color2,int color3,
+		BOOL start)
+{
+	register int walk = 0,count = 0;
+	int previous_edge1,previous_edge2;
+	int static last_seen = 1000;
+	F_EDGES *node;
+	ListHead *pListHead;
+	int f,t,nextvert,counter;
+     BOOL flag;
+
+ 
+     /*   Reset walks on faces, since we just found a patch */
+     if (orientation !=3)
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation+1);
+                previous_edge2 = *(temp2->pPolygon + orientation );
+     }
+     else
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation );
+                previous_edge2 = *(temp2->pPolygon);
+     }
+
+	/* only if we are going left, otherwise there will be -1 there */
+	/*Find the adjacent face to this edge */
+        
+     for (t = 0; t <=3 ; t++)
+     {
+             node = *(temp2->VertandId+t);
+              
+             if (face_id == node->edge[1])
+                f = node->edge[2];
+             else
+               f = node->edge[1];
+       
+             if (f != -1)
+                  Fast_Reset(f);
+        }
+
+        node = *(temp2->VertandId+orientation);
+        if (face_id == node->edge[1])
+             nextvert = node->edge[2];
+        else
+             nextvert = node->edge[1];
+
+	while ((last_left--) > 1)
+	{
+               
+          if (start)
+               Reset_Max(temp2,face_id,orientation,last_left,north,last_north,output_file,color1,color2,color3,FALSE);		
+        
+          face_id = nextvert;
+          pListHead = PolFaces[nextvert];                
+          temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+          if ((temp2->nPolSize != 4) && (temp2->nPolSize != 1))
+          {
+             /*   There is more than 2 polygons on the edge, and we could have
+                  gotten the wrong one
+             */
+             if (nextvert != node->edge[1])
+                  nextvert = node->edge[1];
+             else
+                  nextvert = node->edge[2];
+             pListHead = PolFaces[nextvert];          
+             temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+             node = *(temp2->VertandId+orientation);
+          }
+
+                
+         if (!start)
+         {
+             for (t = 0; t <=3 ; t++)
+             {
+                    node = *(temp2->VertandId+t);
+              
+                    if (face_id == node->edge[1])
+                         f = node->edge[2];
+                    else
+                         f = node->edge[1];
+          
+                    if (f != -1)
+                         Fast_Reset(f);
+             }
+        }
+
+
+        counter = 0;
+	   flag = TRUE;
+	   while ((counter < 3) && (flag))
+        {
+             if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                   (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                  ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                   (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                   counter++;
+             else
+                  flag = FALSE;
+        }
+
+        /* Get the IDs of the next edge */
+        if (counter < 3)
+        {
+             previous_edge1 = *(temp2->pPolygon + counter+1);
+             previous_edge2 = *(temp2->pPolygon + counter);
+        }
+        else
+        {
+             previous_edge1 = *(temp2->pPolygon + counter);
+             previous_edge2 = *(temp2->pPolygon);
+        }
+        orientation = counter;
+
+        node = *(temp2->VertandId + counter);
+	   if (node->edge[1] == nextvert)
+			nextvert = node->edge[2];
+	   else
+			nextvert = node->edge[1];
+
+        if (!reversed)
+        {
+               if (counter != 3)
+			     north = counter +1;
+		     else
+			     north = 0;
+        }
+        else
+        {
+               if (counter != 0)
+                    north = counter -1;
+               else
+                    north = 3;
+    
+        }
+     }
+if (start)
+	Reset_Max(temp2,face_id,orientation,last_left,north,last_north,output_file,color1,color2,color3,FALSE);
+else if (nextvert != -1)       
+     Fast_Reset(nextvert);
+
+}
+
+
+int Peel_Max(PF_FACES temp2,int face_id,int north,int last_north, int orientation,
+		int last_left,FILE *output_file,int color1,int color2,int color3,
+		BOOL start, int *swaps_added, int norms, int texture)
+{
+	int end1,end2,last_id,s=0,walk = 0,count = 0;
+	int previous_edge1,previous_edge2;
+	int static last_seen = 1000;
+	F_EDGES *node;
+	ListHead *pListHead;
+	int nextvert,numverts,counter,dummy,tris=0;
+     BOOL flag;
+
+     /*   Peel the patch from the model.
+          We will try and extend off the end of each strip in the patch. We will return the
+          number of triangles completed by this extension only, and the number of swaps
+          in the extension only.
+     */	
+     patch = 0;
+     
+     if (orientation !=3)
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation+1);
+                previous_edge2 = *(temp2->pPolygon + orientation );
+     }
+     else
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation );
+                previous_edge2 = *(temp2->pPolygon);
+     }
+
+
+     walk = *(temp2->walked + orientation);
+	
+     /* only if we are going left, otherwise there will be -1 there */
+	if ((start) && ((walk+1) < last_left))
+	{
+		printf("There is an error in the left %d %d\n",walk,last_left);
+		exit(0);
+	}
+	
+     /* Find the adjacent face to this edge */
+     node = *(temp2->VertandId+orientation);
+     if (face_id == node->edge[1])
+          nextvert = node->edge[2];
+     else
+          nextvert = node->edge[1];
+	temp2->seen = last_seen;
+
+
+	while ((last_left--) > 1)
+	{
+ 		if (start)
+             tris += Peel_Max(temp2,face_id,orientation,last_left,north,last_north,output_file,
+                              color1,color2,color3,FALSE,swaps_added,norms,texture);		    
+          else
+             Mark_Face(temp2,color1,color2,color3,output_file,FALSE,&dummy,&dummy,&face_id,norms,texture);
+		
+
+          pListHead = PolFaces[nextvert];      
+          temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+          numverts = temp2->nPolSize;
+	
+          if ((numverts != 4) || (temp2->seen == last_seen) 
+			||  (nextvert == -1))
+          {
+  	
+             /*   There is more than 2 polygons on the edge, and we could have
+                  gotten the wrong one
+             */
+             if (nextvert != node->edge[1])
+                  nextvert = node->edge[1];
+             else
+                  nextvert = node->edge[2];
+             pListHead = PolFaces[nextvert];
+             temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+             numverts = temp2->nPolSize;
+             if ((numverts != 4) || (temp2->seen == last_seen) )
+             {
+                  printf("Peel 2 %d\n",numverts);
+                  exit(1);
+             }
+        }
+
+        face_id = nextvert;
+        temp2->seen = last_seen;
+                
+        counter = 0;
+        flag = TRUE;
+	   while ((counter < 3) && (flag))
+        {
+             if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                   (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                  ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                   (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                   counter++;
+             else
+                  flag = FALSE;
+        }
+        /* Get the IDs of the next edge */
+        if (counter < 3)
+        {
+             previous_edge1 = *(temp2->pPolygon + counter+1);
+             previous_edge2 = *(temp2->pPolygon + counter);
+        }
+        else
+        {
+             previous_edge1 = *(temp2->pPolygon + counter);
+             previous_edge2 = *(temp2->pPolygon);
+        }
+        orientation = counter;
+		              
+	   node = *(temp2->VertandId + counter);
+	   if (node->edge[1] == nextvert)
+			nextvert = node->edge[2];
+	   else
+			nextvert = node->edge[1];
+
+	   if (!reversed)
+        {
+               if (counter != 3)
+			     north = counter +1;
+		     else
+			     north = 0;
+        }
+        else
+        {
+               if (counter != 0)
+                    north = counter -1;
+               else
+                    north = 3;
+        }
+}
+
+if (start)
+	tris += Peel_Max(temp2,face_id,orientation,last_left,north,last_north,output_file,
+                        color1,color2,color3,FALSE,swaps_added,norms,texture);	
+else
+     Mark_Face(temp2,color1,color2,color3,output_file,FALSE,&dummy,&dummy,&face_id,norms,texture);/* do the last face */
+
+last_seen++;
+
+/*    Get the edge that we came out on the last strip of the patch */
+Mark_Face(NULL,0,0,0,output_file,TRUE,&end1,&end2,&last_id,norms,texture);
+tris += Extend_Face(last_id,end1,end2,&s,output_file,color1,color2,color3,vn,norms,vt,texture);
+*swaps_added = *swaps_added + s;
+return tris;
+}
+
+
+
+void Find_Bands(int numfaces, FILE *output_file, int *swaps, int *bands, 
+                int *cost, int *tri, int norms, int *vert_norms, int texture, int *vert_texture)
+{
+
+	register int x,y,max1,max2,numverts,face_id,flag,maximum = 25;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+	int color1 = 0, color2 = 100, color3 = 255;
+	int color = 0,larger,smaller;
+	int north_length1,last_north,left_length1,last_left,north_length2,left_length2;
+     int total_tri = 0, total_swaps = 0,last_id;
+     int end1, end2,s=0;
+     register int cutoff = 20;
+    
+     /*   Code that will find the patches. "Cutoff" will be
+          the cutoff of the area of the patches that we will be allowing. After
+          we reach this cutoff length, then we will run the local algorithm on the
+          remaining faces.
+     */
+
+	/* 	For each faces that is left find the largest possible band that we can
+		have with the remaining faces. Note that we will only be finding patches
+          consisting of quads.
+	*/
+
+vn = vert_norms;
+vt = vert_texture;
+y=1;
+*bands = 0;
+
+while ((maximum >= cutoff))
+{
+	y++;
+     maximum = -1;
+	for (x=0; x<numfaces; x++)
+	{ 
+			
+          /*   Used to produce the triangle strips */
+               
+          /* for each face, get the face */
+		pListHead = PolFaces[x];
+		temp = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+		numverts = temp->nPolSize;
+		
+          /* we are doing this only for quads */
+		if (numverts == 4)
+		{
+			/*   We want a face that is has not been used yet,
+                    since we know that that face must be part of
+				a band. Then we will find the largest band that
+				the face may be contained in
+			*/
+			
+               /*  Doing the north and the left */
+			if ((*(temp->walked) != -1) && (*(temp->walked+3) != -1))
+				max1 = Find_Max(temp,x,0,3,&north_length1,&left_length1);
+			if ((*(temp->walked+1) != -1) && (*(temp->walked+2) != -1))
+				max2 = Find_Max(temp,x,2,1,&north_length2,&left_length2);
+			if ((max1 != (north_length1 * left_length1)) ||
+			    (max2 != (north_length2 * left_length2)))
+			{
+				printf("Max1 %d, %d %d	Max2 %d, %d %d\n",max1,north_length1,left_length1,max2,north_length2,left_length2);
+				exit(0);
+			}
+                
+                    
+               if ((max1 > max2) && (max1 > maximum))
+			{
+                    maximum = max1;
+                    face_id = x;
+                    flag = 1; 
+                    last_north = north_length1;
+                    last_left = left_length1;
+                    /* so we know we saved max1 */
+			}
+			else if ((max2 > maximum) )
+			{
+                    maximum = max2;
+                    face_id = x;
+                    flag = 2; 
+                    last_north = north_length2;
+                    last_left = left_length2;
+                    /* so we know we saved max2 */
+               }
+          }
+     }
+     if ((maximum < cutoff) && (*bands == 0))
+          return;
+     pListHead = PolFaces[face_id];
+     temp = (PF_FACES) PeekList(pListHead,LISTHEAD,0);	
+     /*   There are no patches that we found in this pass */
+     if (maximum == -1)
+          break;
+     /*printf("The maximum is  face %d area %d: lengths %d %d\n",face_id,maximum,last_north,last_left);*/
+
+     if (last_north > last_left)
+     {
+          larger = last_north;
+          smaller = last_left;
+     }
+     else
+     {
+          larger = last_left;
+          smaller = last_north;
+     }
+
+     length = larger;
+
+if (flag == 1)
+{
+	if (last_north > last_left) /*     go north sequentially */
+     {
+          total_tri += Peel_Max(temp,face_id,0,last_north,3,last_left,output_file,color1,color2,color3,TRUE,&s,norms,texture);
+          Reset_Max(temp,face_id,0,last_north,3,last_left,output_file,color1,color2,color3,TRUE);
+          total_swaps += s;
+     }
+    else
+    {
+         reversed = TRUE;
+         total_tri += Peel_Max(temp,face_id,3,last_left,0,last_north,output_file,color1,color2,color3,TRUE,&s,norms,texture);
+         Reset_Max(temp,face_id,3,last_left,0,last_north,output_file,color1,color2,color3,TRUE);
+         reversed = FALSE;
+         total_swaps += s;
+    }
+
+     
+    /*    Get the edge that we came out on the last strip of the patch */
+    Mark_Face(NULL,0,0,0,NULL,TRUE,&end1,&end2,&last_id,norms,texture);
+    total_tri += Extend_Face(last_id,end1,end2,&s,output_file,color1,color2,color3,vn,norms,vt,texture);
+    total_swaps += s;
+
+}
+else
+{
+     if (last_north > last_left)
+     {
+          total_tri += Peel_Max(temp,face_id,2,last_north,1,last_left,output_file,color1,color2,color3,TRUE,&s,norms,texture); 
+          Reset_Max(temp,face_id,2,last_north,1,last_left,output_file,color1,color2,color3,TRUE); 
+          total_swaps += s;
+     }
+     else
+     {
+          reversed = TRUE;
+          total_tri += Peel_Max(temp,face_id,1,last_left,2,last_north,output_file,color1,color2,color3,TRUE,&s,norms,texture);
+          Reset_Max(temp,face_id,1,last_left,2,last_north,output_file,color1,color2,color3,TRUE);
+          reversed = FALSE;
+          total_swaps += s;
+     }
+
+     /*    Get the edge that we came out on on the patch */
+    Mark_Face(NULL,0,0,0,NULL,TRUE,&end1,&end2,&last_id,norms,texture);
+    total_tri += Extend_Face(last_id,end1,end2,&s,output_file,color1,color2,color3,vn,norms,vt,texture);
+    total_swaps += s;
+}
+
+    /*  Now compute the cost of transmitting this band, is equal to 
+        going across the larger portion sequentially,
+        and swapping 3 times per other dimension
+    */
+
+total_tri += (maximum * 2);
+*bands = *bands + smaller;
+
+}
+
+/*printf("We transmitted %d triangles,using %d swaps and %d strips\n",total_tri,
+        total_swaps, *bands);
+printf("COST %d\n",total_tri + total_swaps + *bands + *bands);*/
+*cost = total_tri + total_swaps + *bands + *bands;
+*tri = total_tri;
+added_quad = added_quad * 4;
+*swaps = total_swaps;
+}
+
+ 
+void Save_Rest(int *numfaces)
+{
+    /*  Put the polygons that are left into a data structure so that we can run the
+        stripping code on it.
+    */
+    register int x,y=0,numverts;
+    ListHead *pListHead;
+    PF_FACES temp=NULL;
+
+    for (x=0; x<*numfaces; x++)
+    { 
+			/* for each face, get the face */
+			pListHead = PolFaces[x];
+			temp = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+			numverts = temp->nPolSize;
+               /*  If we did not do the face before add it to data structure with new 
+                   face id number
+               */
+               if (numverts != 1)
+               {
+                   CopyFace(temp->pPolygon,numverts,y+1,temp->pNorms);
+                   y++;
+               }
+               /*   Used it, so remove it */
+               else
+                    RemoveList(pListHead,(PLISTINFO) temp);
+
+    }
+    *numfaces = y;
+}
+
+void Assign_Walk(int lastvert,PF_FACES temp2, int front_walk,int y,
+				int back_walk)
+{
+/*      Go back and do the walk again, but this time save the lengths inside
+        the data structure.
+        y was the starting edge number for the front_walk length
+        back_walk is the length of the walk along the opposite edge
+ */
+        int previous_edge1, previous_edge2;
+        register int walk = 0,nextvert,numverts,counter;
+        BOOL flag;
+        F_EDGES *node;
+        ListHead *pListHead;
+        register int total_walk, start_back_walk;
+        static int seen = 0;
+        static BOOL first = TRUE;         
+        int test;
+        BOOL f = TRUE, wrap = FALSE, set = FALSE;
+             test = lastvert;
+
+        /*     In the "Fast_Reset" resetting will be true */
+        if ((resetting) && (first))
+        {
+             seen = 0;
+             first = FALSE;
+        }
+
+        seen++;
+        total_walk = front_walk + back_walk;
+        start_back_walk = back_walk;
+        /*     Had a band who could be a cycle  */
+        if (front_walk == back_walk)
+             wrap = TRUE;
+             
+        /* Find the edge that we are currently on */
+        if (y != 3)
+        {
+                previous_edge1 = *(temp2->pPolygon +y);
+                previous_edge2 = *(temp2->pPolygon + y + 1);
+        }
+        else
+        {
+                previous_edge1 = *(temp2->pPolygon +y);
+                previous_edge2 = *(temp2->pPolygon);
+        }
+
+        /* Assign the lengths */
+	   if (y < 2) 
+	   {
+                *(temp2->walked+y) = front_walk--;
+         		 *(temp2->walked+y+2) = back_walk++;
+    	   }
+	   else
+	   {				
+               *(temp2->walked+y) = front_walk--;
+              	*(temp2->walked+y-2) = back_walk++;
+  	   }
+
+	   /*Find the adjacent face to this edge */
+        node = *(temp2->VertandId+y);                   
+
+        if (node->edge[2] != lastvert)
+          nextvert = node->edge[2];
+        else
+          nextvert = node->edge[1];
+                                       
+        temp2->seen3 = seen;
+        
+        /* Keep walking in this direction until we cannot do so */
+        while ((nextvert != lastvert) && (nextvert != -1) && (front_walk >= 0))
+        {
+		     walk++;
+               pListHead = PolFaces[nextvert];
+               
+               temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+               numverts = temp2->nPolSize;
+               if ((numverts != 4))
+               {
+                    nextvert = -1;
+                    /* Don't include this face in the walk */
+                    walk--;
+               }
+               else
+               {
+                    /* Find edge that is not adjacent to the previous one */
+                    counter = 0;
+                    flag = TRUE;
+                    while ((counter < 3) && (flag))
+                    {
+                         if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                               (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                              ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                               (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                              counter++;
+                         else
+                              flag = FALSE;
+                    }
+                    /* Get the IDs of the next edge */
+                    if (counter < 3)
+                    {
+                         previous_edge1 = *(temp2->pPolygon + counter);
+                         previous_edge2 = *(temp2->pPolygon + counter + 1);
+                    }
+                    else
+                    {
+                         previous_edge1 = *(temp2->pPolygon + counter);
+                         previous_edge2 = *(temp2->pPolygon);
+                    }
+               
+
+		          /*      Put in the walk lengths */
+		          if (counter < 2)
+		          {
+                        if (((*(temp2->walked + counter) >= 0)
+			          || (*(temp2->walked +counter + 2) >= 0)))
+			          {
+				          if ((resetting == FALSE) && ((temp2->seen3) != (seen-1)))
+				          {
+					          /*   If there are more than 2 polygons adjacent
+                                        to an edge then we can be trying to assign more than
+                                        once. We will save the smaller one
+                                   */
+                                   temp2->seen3 = seen;
+                                   if ( (*(temp2->walked+counter) <= front_walk) &&
+                                        (*(temp2->walked+counter+2) <= back_walk) )
+                                        return;
+                                   if (*(temp2->walked+counter) > front_walk)
+                                       *(temp2->walked+counter) = front_walk--;
+                                   else
+                                        front_walk--;
+                                   if (*(temp2->walked+counter+2) > back_walk)
+                                       *(temp2->walked+counter+2) = back_walk++;
+                                   else
+                                        back_walk++;
+				          }
+				          else if (resetting == FALSE)
+				          {
+					          /* if there was a cycle then all lengths are the same */
+					          walk--;
+					          back_walk--;
+					          front_walk++;
+                                   temp2->seen3 = seen;
+                                   *(temp2->walked+counter) = front_walk--;
+                                   *(temp2->walked+counter+2) = back_walk++;
+                              }
+                              else if (((temp2->seen3 == (seen-1))
+                                   && (wrap) && (walk == 1)) || (set))
+                              {
+					          /* if there was a cycle then all lengths are the same */
+					          set = TRUE;
+                                   walk--;
+					          back_walk--;
+					          front_walk++;
+                                   temp2->seen3 = seen;
+                                   *(temp2->walked+counter) = front_walk--;
+                                   *(temp2->walked+counter+2) = back_walk++;
+                              }
+                              else
+                              {
+                                   temp2->seen3 = seen;
+                                   *(temp2->walked+counter) = front_walk--;
+                                   *(temp2->walked+counter+2) = back_walk++;
+                              }
+                        } /* if was > 0 */	
+                        else
+                        {
+                             temp2->seen3 = seen;
+                             *(temp2->walked+counter) = front_walk--;
+                             *(temp2->walked+counter+2) = back_walk++;
+                        }
+                    }
+		
+               else
+               {
+                    if (((*(temp2->walked + counter) >= 0 )
+                        || (*(temp2->walked +counter - 2) >= 0)) )
+                    {
+                         if ((temp2->seen3 != (seen-1))  && (resetting == FALSE))
+                         {
+                              /*   If there are more than 2 polygons adjacent
+                                   to an edge then we can be trying to assign more than
+                                   once. We will save the smaller one
+                              */
+                              temp2->seen3 = seen;
+                              if ( (*(temp2->walked+counter) <= front_walk) &&
+                                   (*(temp2->walked+counter-2) <= back_walk) )
+                                   return;
+                              if (*(temp2->walked+counter) > front_walk)
+                                   *(temp2->walked+counter) = front_walk--;
+                              else
+                                   front_walk--;
+                              if (*(temp2->walked+counter-2) > back_walk)
+                                   *(temp2->walked+counter-2) = back_walk++;
+                              else
+                                   back_walk++;
+                        	}
+				     else if (resetting == FALSE)
+	     			{
+     					walk--;
+		     			back_walk--;
+			     		front_walk++;
+	                         temp2->seen3 = seen;
+                              *(temp2->walked+counter) = front_walk--;
+                              *(temp2->walked+counter-2) = back_walk++;
+                         }
+                         else if (((temp2->seen3 == (seen-1)) && (walk == 1) && (wrap))
+                              || (set))
+                         {
+					     /* if there was a cycle then all lengths are the same */
+					     set = TRUE;
+                              walk--;
+					     back_walk--;
+					     front_walk++;
+                              temp2->seen3 = seen;
+                              *(temp2->walked+counter) = front_walk--;
+                              *(temp2->walked+counter-2) = back_walk++;
+                         }
+                         else
+                         {
+                              temp2->seen3 = seen;
+                              *(temp2->walked+counter) = front_walk--;
+                              *(temp2->walked+counter-2) = back_walk++;
+                         }
+     			}
+                    else
+                    {
+                         temp2->seen3 = seen;
+                         *(temp2->walked+counter) = front_walk--;
+                         *(temp2->walked+counter-2) = back_walk++;
+                    }
+		                
+  		     } 
+		     if (nextvert != -1)
+		     {
+			     node = *(temp2->VertandId + counter);
+                	if (node->edge[1] == nextvert)
+                        	nextvert = node->edge[2];
+                	else
+                        	nextvert = node->edge[1];
+               }
+		
+     }
+}
+if ((EVEN(seen)) )
+     seen+=2;
+}
+
+void Save_Walks(int numfaces)
+{
+	int x,y,numverts;
+	int front_walk, back_walk;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+
+	for (x=0; x<numfaces; x++)
+	{ 
+		/* for each face, get the face */
+		pListHead = PolFaces[x];
+		temp = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+		numverts = temp->nPolSize;
+		front_walk = 0; 
+          back_walk = 0;
+
+          /* we are finding patches only for quads */
+		if (numverts == 4)
+		{
+			/* 	for each face not seen yet, do North and South together
+				and East and West together
+			*/
+			for (y=0;y<2;y++)
+			{
+				/*   Check if the opposite sides were seen already from another
+                         starting face, if they were then there is no need to do the walk again
+                    */
+
+				if 	( ((*(temp->walked+y) == -1) &&
+					(*(temp->walked+y+2) == -1) ))
+				{
+					/* Find walk for the first edge */
+					front_walk = Calculate_Walks(x,y,temp);
+					/* Find walk in the opposite direction */
+					back_walk = Calculate_Walks(x,y+2,temp);
+					/* 	Now put into the data structure the numbers that
+						we have found
+					*/
+                         Assign_Walk(x,temp,front_walk,y,back_walk);
+					Assign_Walk(x,temp,back_walk,y+2,front_walk);
+	     		}
+			}
+		}
+	}
+}
+
+
diff --git a/Tools/Stripe_u/options.c b/Tools/Stripe_u/options.c
new file mode 100644
index 000000000..7322d937c
--- /dev/null
+++ b/Tools/Stripe_u/options.c
@@ -0,0 +1,181 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: options.c
+     This file contains routines that are used to determine the options
+     that were specified by the user
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "options.h"
+#include "global.h"
+
+int power_10(int power)
+{
+	/*	Raise 10 to the power */
+	register int i,p;
+
+	p = 1;
+	for (i = 1; i <= power; ++i)
+		p = p * 10;
+	return p;
+}
+
+float power_negative(int power)
+{
+     /*   Raise 10 to the negative power */
+
+     register int i;
+     float p;
+     
+     p = (float)1;
+     for (i = 1; i<=power; i++)
+          p = p * (float).1;
+     return p;
+}
+
+float convert_array(int num[],int stack_size)
+{
+	/* Convert an array of characters to an integer */
+	
+	register int counter,c;
+	float temp =(float)0.0;
+
+	for (c=(stack_size-1), counter = 0; c>=0; c--, counter++)
+     {
+          if (num[c] == -1)
+          /*   We are at the decimal point, convert to decimal
+               less than 1
+          */
+          {
+               counter = -1;
+               temp = power_negative(stack_size - c - 1) * temp;
+          }
+          else 
+               temp += power_10(counter) * num[c];
+     }
+			
+	return(temp);
+}
+
+float get_options(int argc, char **argv, int *f, int *t, int *tr, int *group)
+{
+     char c;
+     int count = 0;
+     int buffer[MAX1];
+     int next = 0;
+     /*    tie variable */
+     enum tie_options tie = FIRST;
+     /*   triangulation variable */
+     enum triangulation_options triangulate = WHOLE;
+     /*   normal difference variable (in degrees) */
+     float norm_difference = (float)360.0;
+     /*   file-type variable */
+     enum file_options file_type = ASCII;
+
+     /*      User has the wrong number of options */
+	if ((argc > 5) || (argc < 2))
+	{
+		printf("Usage: bands -[file_option][ties_option][triangulation_option][normal_difference] file_name\n");
+		exit(0);
+	}
+	
+     /* Interpret the options specified */
+	while (--argc > 0 && (*++argv)[0] == '-')
+     {
+          /*   At the next option that was specified */
+          next = 1;
+          while (c = *++argv[0])
+			switch (c)
+		{
+				case 'f': 
+					/*      Use the first polygon we see. */
+                         tie = FIRST;
+					break;
+				
+				case 'r':
+					/*      Randomly choose the next polygon */
+                         tie = RANDOM;
+					break;
+
+				case 'a':
+					/*      Alternate direction in choosing the next polygon */
+                         tie = ALTERNATE;
+					break;
+
+				case 'l':
+					/*      Use lookahead to choose the next polygon */
+                         tie = LOOK;
+					break;
+
+				case 'q':
+					/*  Try to reduce swaps */
+                         tie = SEQUENTIAL;
+					break;
+
+				case 'p':
+					/*      Use partial triangulation of polygons */
+                         triangulate = PARTIAL;
+					break;
+
+				case 'w':
+					/*      Use whole triangulation of polygons */
+                         triangulate = WHOLE;
+					break;
+
+                    case 'b':
+                         /*      Input file is in binary */
+                         file_type = BINARY;
+                         break;
+
+                    case 'g':
+                         /*   Strips will be grouped according to the groups in 
+                              the data file. We will have to restrict strips to be
+                              in the grouping of the data file.
+                         */
+                         *group = 1;
+  		    
+                         /*	Get each the value of the integer */
+                         /*	We have an integer */
+                    default:
+                         if ((c >= '0') && (c <= '9'))
+                         {
+                              /*   More than one normal difference specified, use the last one */
+                              if (next == 1)
+                              {
+                                   count = 0;
+                                   next = 0;
+                              }
+                              buffer[count++] = ATOI(c);
+                         }
+                              /*   At the decimal point */
+                         else if (c == '.')
+                         {
+                              /*   More than one normal difference specified, use the last one */
+                              if (next == 1)
+                              {
+                                   count = 0;
+                                   next = 0;
+                              }
+                              buffer[count++] = -1;
+                         }
+                         else 
+                              break;
+		}
+     }
+     /*   Convert the buffer of characters to a floating pt integer */
+     if (count != 0) 
+          norm_difference = convert_array(buffer,count);
+     *f = file_type;
+     *t = tie;
+     *tr = triangulate;
+     return norm_difference;
+}
diff --git a/Tools/Stripe_u/options.h b/Tools/Stripe_u/options.h
new file mode 100644
index 000000000..055d33ea7
--- /dev/null
+++ b/Tools/Stripe_u/options.h
@@ -0,0 +1,17 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: options.h
+-----------------------------------------------------------------------*/
+
+float get_options();
+enum file_options {ASCII,BINARY};
+enum tie_options {FIRST, RANDOM, ALTERNATE, LOOK, SEQUENTIAL};
+enum triangulation_options {PARTIAL,WHOLE};
+     
diff --git a/Tools/Stripe_u/output.c b/Tools/Stripe_u/output.c
new file mode 100644
index 000000000..d6c30f613
--- /dev/null
+++ b/Tools/Stripe_u/output.c
@@ -0,0 +1,582 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: output.c
+     This file contains routines that are finding and outputting the
+     strips from the local algorithm
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "global.h"
+#include "polverts.h"
+#include "triangulate.h"
+#include "partial.h"
+#include "sturcts.h"
+#include "ties.h"
+#include "options.h"
+#include "common.h"
+#include "util.h"
+#include "free.h"
+
+int *vn;
+int *vt;
+int norm;
+int text;
+
+int Finished(int *swap, FILE *output, BOOL global)
+{
+     /*   We have finished all the triangles, now is time to output to
+	     the data file. In the strips data structure, every three ids
+	     is  a triangle. Now we see whether we can swap, or make a new strip
+	     or continue the strip, and output the data accordingly to the
+	     data file. 
+     */
+     register int start_swap = 0;
+     int num,x,vertex1,vertex2;
+     ListHead *pListHead;
+     int id[2],other1,other2,index = 0,a,b,c;
+     P_STRIPS temp1,temp2,temp3,temp4,temp5,temp6;
+     BOOL cptexture;
+     *swap =0;
+    
+     cptexture = text;
+     pListHead = strips[0];
+     if (pListHead == NULL)
+         return 0;
+
+     num = NumOnList(pListHead);
+     /*printf ("There are %d triangles in the extend\n",num/3);*/
+
+     /* Go through the list triangle by triangle */
+	temp1 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 0);
+	temp2 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 1);
+	temp3 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 2);
+	
+      /*   Next triangle for lookahead */
+     temp4 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 3);
+	  
+
+     /*    There is only one polygon in the strip */
+     if (temp4 == NULL)
+     {
+           /*   Data might be mixed and we do not have textures for some of the vertices */
+           if ((text) &&  (vt[temp3->face_id] == 0))
+                    cptexture = FALSE;
+           if ((norm) && (!cptexture))
+                fprintf(output,"%d//%d %d//%d %d//%d",temp3->face_id+1,vn[temp3->face_id]+1,
+                                temp2->face_id+1,vn[temp2->face_id]+1,
+                                temp1->face_id+1,vn[temp1->face_id]+1);
+           else if ((cptexture) && (!norm))
+                fprintf(output,"%d/%d %d/%d %d/%d",temp3->face_id+1,vt[temp3->face_id]+1,
+                        temp2->face_id+1,vt[temp2->face_id]+1,
+                        temp1->face_id+1,vt[temp1->face_id]+1);
+           else if ((cptexture)&& (norm))
+                fprintf(output,"%d/%d/%d %d/%d/%d %d/%d/%d",temp3->face_id+1,vt[temp3->face_id]+1,vn[temp3->face_id]+1,
+                        temp2->face_id+1,vt[temp2->face_id]+1,vn[temp2->face_id]+1,
+                        temp1->face_id+1,vt[temp1->face_id]+1,vn[temp1->face_id]+1);
+           else 
+                fprintf(output,"%d %d %d",temp3->face_id+1,temp2->face_id+1,temp1->face_id+1);
+           Free_Strips();
+	      return 1;
+	  }
+	  
+	  /*    We have a real strip */
+	  temp5 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 4);
+	  temp6 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 5);
+	  
+	  if ((temp1 == NULL) || (temp2 == NULL) || (temp3 == NULL) || (temp5 == NULL) || (temp6 == NULL))
+	  {
+	       printf("There is an error in the output of the triangles\n");
+	       exit(0);
+	  }
+
+	  /*   Find the vertex in the first triangle that is not in the second */
+	  vertex1 = Different(temp1->face_id,temp2->face_id,temp3->face_id,temp4->face_id,temp5->face_id,temp6->face_id,&other1,&other2);
+	  /*    Find the vertex in the second triangle that is not in the first */
+	  vertex2 = Different(temp4->face_id,temp5->face_id,temp6->face_id,temp1->face_id,temp2->face_id,temp3->face_id,&other1,&other2);
+
+	  /* Lookahead for the correct order of the 2nd and 3rd vertex of the first triangle */
+       temp1 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 6);
+	  temp2 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 7);
+	  temp3 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 8);
+       
+       if (temp1 != NULL)
+          other1 = Different(temp3->face_id,temp4->face_id,temp5->face_id,temp1->face_id,temp2->face_id,temp3->face_id,&other1,&a);
+	   
+	  id[index] = vertex1; index = !index;
+	  id[index] = other1; index = !index;
+	  id[index] = other2; index = !index;
+
+	  a = temp4->face_id; 
+	  b = temp5->face_id; 
+	  c = temp6->face_id;
+
+      /*    If we need to rearrange the first sequence because otherwise
+            there would have been a swap.
+      */
+
+      if ((temp3 != NULL) && (text) && ( vt[temp3->face_id]==0))
+           cptexture = FALSE;
+      if ((norm) && (!cptexture))
+           fprintf(output,"%d//%d %d//%d %d//%d ",vertex1+1,vn[vertex1]+1,other1+1,vn[other1]+1,
+                                                  other2+1,vn[other2]+1);
+      else if ((cptexture) && (!norm))
+           fprintf(output,"%d/%d %d/%d %d/%d ",vertex1+1,vt[vertex1]+1,other1+1,vt[other1]+1,
+                                               other2+1,vt[other2]+1);
+      else if ((cptexture) && (norm))
+           fprintf(output,"%d/%d/%d %d/%d/%d %d/%d/%d ",vertex1+1,vt[vertex1]+1,vn[vertex1]+1,
+                                                        other1+1,vt[other1]+1,vn[other1]+1,
+                                                        other2+1,vt[other2]+1,vn[other2]+1);
+      else
+           fprintf(output,"%d %d %d ",vertex1+1,other1+1,other2+1);
+
+
+	 for (x = 6; x < num ; x = x+3)
+	  {
+
+	      /*    Get the next triangle */
+	      temp1 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, x);
+	      temp2 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, x+1);
+	      temp3 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, x+2);
+
+           /*    Error checking */
+	      if (!(member(id[0],a,b,c)) || !(member(id[1],a,b,c)) || !(member(vertex2,a,b,c)))
+	      {
+		     /*   If we used partial we might have a break in the middle of a strip */
+		     fprintf(output,"\nt ");
+	          /*   Find the vertex in the first triangle that is not in the second */
+	          vertex1 = Different(a,b,c,temp1->face_id,temp2->face_id,temp3->face_id,&other1,&other2);
+	          /*    Find the vertex in the second triangle that is not in the first */
+	          vertex2 = Different(temp1->face_id,temp2->face_id,temp3->face_id,a,b,c,&other1,&other2);
+	   
+	          id[index] = vertex1; index = !index;
+	          id[index] = other1; index = !index;
+	          id[index] = other2; index = !index;
+	      }
+
+	      if ((temp1 == NULL ) || (temp2 == NULL) || (temp3 == NULL))
+	      {
+		  printf("There is an error in the triangle list \n");
+		  exit(0);
+	      }
+         
+           if ((id[0] == id[1]) || (id[0] == vertex2))
+                continue;
+
+           if ((member(id[index],temp1->face_id,temp2->face_id,temp3->face_id)))
+           {
+                if ((text) && ( vt[id[index]]==0))
+                     cptexture = FALSE;
+                if ((!norm) && (!cptexture))
+                     fprintf(output,"%d ",id[index]+1);
+                else if ((norm) && (!cptexture))
+                     fprintf(output,"%d//%d ",id[index]+1,vn[id[index]]+1);
+                else if ((!norm) && (cptexture))
+                     fprintf(output,"%d/%d ",id[index]+1,vt[id[index]]+1);
+                else
+                     fprintf(output,"%d/%d/%d ",id[index]+1,vt[id[index]]+1,vn[id[index]]+1);
+                index = !index;
+                *swap = *swap + 1;
+           }
+           
+           if ((text) && ( vt[vertex2]==0))
+                cptexture = FALSE;
+	      if ((!norm) && (!cptexture))
+                fprintf(output,"\nq %d ",vertex2+1);
+           else if ((norm) && (!cptexture))
+                fprintf(output,"\nq %d//%d ",vertex2+1,vn[vertex2]+1);
+           else if ((!norm) && (cptexture))
+                fprintf(output,"\nq %d/%d ",vertex2+1,vt[vertex2]+1);
+           else
+                fprintf(output,"\nq %d/%d/%d ",vertex2+1,vt[vertex2]+1,vn[vertex2]+1);
+
+	      id[index] = vertex2; index = !index;
+
+	      /*    Get the next vertex not in common */
+	      vertex2 = Different(temp1->face_id,temp2->face_id,temp3->face_id,a,b,c,&other1,&other2);
+	      a = temp1->face_id;
+	      b = temp2->face_id;
+	      c = temp3->face_id;
+	  }
+	  /*    Do the last vertex */
+       if ((text) && (vt[vertex2]==0))
+       {
+            if (cptexture)
+                 fprintf(output,"\nq ");
+            cptexture = FALSE;
+       }
+       if ((!norm) && (!cptexture))
+            fprintf(output,"%d ",vertex2+1);
+       else if ((norm) && (!cptexture))
+            fprintf(output,"%d//%d ",vertex2+1,vn[vertex2]+1);
+       else if ((!norm) && (cptexture))
+            fprintf(output,"%d/%d ",vertex2+1,vt[vertex2]+1);
+       else
+            fprintf(output,"%d/%d/%d ",vertex2+1,vt[vertex2]+1,vn[vertex2]+1);
+
+	  
+	 Free_Strips();
+      return (num/3);	      
+}
+
+void Output_Tri(int id1, int id2, int id3,FILE *bands, int color1, int color2, int color3,BOOL end)
+{
+     /*   We will save everything into a list, rather than output at once,
+	     as was done in the old routine. This way for future modifications
+	     we can change the strips later on if we want to.
+     */
+
+    int temp1,temp2,temp3;
+    
+    /*  Make sure we do not have an error */
+    /*    There are degeneracies in some of the files */
+	if ( (id1 == id2) || (id1 == id3) || (id2 == id3))
+	{
+		printf("Degenerate triangle %d %d %d\n",id1,id2,id3);
+		exit(0);
+	}
+     else
+     {
+          Last_Edge(&temp1,&temp2,&temp3,0);
+	     Add_Id_Strips(id1,end);
+	     Add_Id_Strips(id2,end);
+	     Add_Id_Strips(id3,end);
+	     Last_Edge(&id1,&id2,&id3,1);
+     }
+}
+
+
+int Polygon_Output(P_ADJACENCIES temp,int face_id,int bucket,
+					ListHead *pListHead, BOOL first, int *swaps,
+                         FILE *bands,int color1,int color2,int color3,BOOL global, BOOL end)
+{
+	ListHead *pListFace;
+	PF_FACES face;
+	P_ADJACENCIES pfNode;
+	static BOOL begin = TRUE;
+	int old_face,next_face_id,next_bucket,e1,e2,e3,other1,other2,other3;
+	P_ADJACENCIES lpListInfo; 
+     int ties=0;
+     int  tie = SEQUENTIAL;
+     
+     /* We have a polygon to output, the id is face id, and the number
+	   of adjacent polygons to it is bucket. This routine extends the patches from
+        either end to make longer triangle strips.
+	*/
+                
+                   
+     /*  Now get the edge */
+     Last_Edge(&e1,&e2,&e3,0);
+    
+     /*  Get the polygon with id face_id */
+	pListFace  = PolFaces[face_id];
+	face = (PF_FACES) PeekList(pListFace,LISTHEAD,0);
+
+     /*  We can't go any more */
+     if ((face->nPolSize == 1) || ((face->nPolSize == 4) && (global))) /* if global, then we are still doing patches */
+     {
+        /*     Remove it from the list so we do not have to waste
+               time visiting it in the future, or winding up in an infinite loop
+               if it is the first on that we are looking at for a possible strip
+        */
+        if (face->nPolSize == 1)
+             RemoveList(pListHead,(PLISTINFO) temp);
+        if (first)
+             return 0;
+        else
+             return (Finished(swaps,bands,global));
+    }
+
+    if (face->nPolSize == 3)
+    {
+		/*      It is already a triangle */
+		if (bucket == 0)
+		{
+			/*      It is not adjacent to anything so we do not have to
+	 			   worry about the order of the sides or updating adjacencies
+			*/
+			    
+	          next_face_id = Different(*(face->pPolygon),*(face->pPolygon+1),*(face->pPolygon+2),
+		                              e1,e2,e3,&other1,&other2);  
+			face->nPolSize = 1;
+                       
+               /* If this is the first triangle in the strip */
+               if ((e2 == 0) && (e3 ==0))
+               {
+                    e2 = other1;
+                    e3 = other2;
+               }
+
+               Output_Tri(e2,e3,next_face_id,bands,color1,color2,color3,end);
+               RemoveList(pListHead,(PLISTINFO) temp);
+               return (Finished(swaps,bands,global));
+          }
+		
+        
+          /*  It is a triangle with adjacencies. This means that we
+		    have to:
+				1. Update the adjacencies in the list, because we are
+					using this polygon and it will be deleted.
+				2. Get the next polygon.
+		*/
+		else
+		{
+			/*   Return the face_id of the next polygon we will be using,
+				while updating the adjacency list by decrementing the
+				adjacencies of everything adjacent to the current triangle.
+			*/
+            
+               next_face_id = Update_Adjacencies(face_id, &next_bucket, &e1,&e2,&ties);
+               /*  Maybe we deleted something in a patch and could not find an adj polygon */
+               if (next_face_id == -1)
+               {
+                       Output_Tri(*(face->pPolygon),*(face->pPolygon+1),*(face->pPolygon+2),bands,color1,
+                                  color2,color3,end);
+                       face->nPolSize = 1;
+                       RemoveList(pListHead,(PLISTINFO) temp);
+                       return (Finished(swaps,bands,global));
+               }
+		  
+               old_face = next_face_id;
+		     /*      Find the other vertex to transmit in the triangle */
+		     e3 = Return_Other(face->pPolygon,e1,e2);
+	          Last_Edge(&other1,&other2,&other3,0);
+	    
+	          if ((other2 != 0) && (other3 != 0))
+	          {
+	              /*   See which vertex in the output edge is not in the input edge */
+	              if ((e1 != other2) && (e1 != other3))
+		            e3 = e1;
+	              else if ((e2 != other2) && (e2 != other3))
+		             e3 = e2;
+	              else
+	              {
+		            printf("There is an error in the tri with adj\n");
+		            exit(0);
+	              }
+
+	              /*   See which vertex of the input edge is not in the output edge */
+	              if ((other2 != e1) && (other2 != e2))
+	              {
+		            other1 = other2;
+		            other2 = other3;
+	              }
+	              else if ((other3 != e1) && (other3 != e2))
+		            other1 = other3;
+	              else
+	              {
+		            printf("There is an error in getting the tri with adj\n");
+		            exit(0);
+	              }
+		      
+	          }
+               else
+               {
+                  /*     We are the first triangle in the strip and the starting edge
+                         has not been set yet
+                  */
+                  /*  Maybe we deleted something in a patch and could not find an adj polygon */
+                  if (next_face_id == -1)
+                  {
+                       Output_Tri(*(face->pPolygon),*(face->pPolygon+1),*(face->pPolygon+2),bands,color1,
+                                  color2,color3,end);
+                       face->nPolSize = 1;
+                       RemoveList(pListHead,(PLISTINFO) temp);
+                       return (Finished(swaps,bands,global));
+                  }
+
+                  other1 = e3;
+                  e3 = e2;
+                  other2 = e1;
+               }
+	   
+	          /*   At this point the adjacencies have been updated  and we
+				have the next polygon id 
+	          */
+
+               Output_Tri(other1,other2,e3,bands,color1,color2,color3,end);
+               face->nPolSize = 1;
+		     RemoveList(pListHead,(PLISTINFO) temp);
+		     begin = FALSE;
+	          
+               /*  Maybe we deleted something in a patch and could not find an adj polygon */
+               if (next_face_id == -1)
+                    return (Finished(swaps,bands,global));
+        
+               if (Done(next_face_id,59,&next_bucket) == NULL)
+		     {
+			     printf("We deleted the next face 4%d\n",next_face_id);
+			     exit(0);
+	          }
+
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = next_face_id;
+			lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+				(int (*)(void *,void *)) (Compare)));
+			if (lpListInfo == NULL)
+			{
+				printf("There is an error finding the next polygon3 %d\n",next_face_id);
+				exit(0);
+			}
+			return (Polygon_Output(lpListInfo,next_face_id,next_bucket,
+					             pListHead, FALSE, swaps,bands,color1,color2,color3,global,end));
+
+		}
+	}
+
+	else
+	{
+		/*   It is not a triangle, we have to triangulate it .
+			Since it is not adjacent to anything we can triangulate it
+			blindly
+		*/
+		if (bucket == 0)
+		{
+		          /*   It is the first polygon in the strip, therefore there is no
+                         input edge to start with.
+                    */
+                    if ((e2 == 0) && (e3 ==0))
+                       Blind_Triangulate(face->nPolSize,face->pPolygon,bands,
+			                          TRUE,1,color1,color2,color3);
+
+                    else
+                       Blind_Triangulate(face->nPolSize,face->pPolygon,bands,
+			                          FALSE,1,color1,color2,color3);
+
+			     RemoveList(pListHead,(PLISTINFO) temp);
+			               
+                    /*      We will be at the beginning of the next strip. */
+                    face->nPolSize = 1;
+                    return (Finished(swaps,bands,global));
+		}
+
+
+		else
+		{
+			
+             
+               /*  WHOLE triangulation */
+	          /*  It is not a triangle and has adjacencies. 
+				This means that we have to:
+				1. Triangulate this polygon, not blindly because
+					we have an edge that we want to come out on, that
+					is the edge that is adjacent to a polygon with the
+					least number of adjacencies. Also we must come in
+					on the last seen edge.
+				2. Update the adjacencies in the list, because we are
+					using this polygon .
+				3. Get the next polygon.
+			*/
+			/*      Return the face_id of the next polygon we will be using,
+				while updating the adjacency list by decrementing the
+				adjacencies of everything adjacent to the current polygon.
+			*/
+				
+               next_face_id = Update_Adjacencies(face_id, &next_bucket, &e1,&e2,&ties);
+	    
+               /*  Maybe we deleted something in a patch and could not find an adj polygon */
+               if (next_face_id == -1)
+               {
+ 
+                    /*   If we are at the first polygon in the strip and there is no input
+                         edge, then begin is TRUE
+                    */
+                    if ((e2 == 0) && (e3 == 0))
+                         Blind_Triangulate(face->nPolSize,face->pPolygon,
+			                            bands,TRUE,1,color1,color2,color3);
+
+                    else
+                         Blind_Triangulate(face->nPolSize,face->pPolygon,
+			                            bands,FALSE,1,color1,color2,color3);
+
+		          RemoveList(pListHead,(PLISTINFO) temp);
+		              
+    	               /*      We will be at the beginning of the next strip. */
+                    face->nPolSize = 1;
+                    return (Finished(swaps,bands,global));
+               }
+
+               if (Done(next_face_id,59,&next_bucket) == NULL)
+	          {
+			    printf("We deleted the next face 6 %d %d\n",next_face_id,face_id);
+			    exit(0);
+		     }
+			
+			Non_Blind_Triangulate(face->nPolSize,face->pPolygon, 
+				                 bands,next_face_id,face_id,1,color1,color2,color3);
+				     
+               RemoveList(pListHead,(PLISTINFO) temp);
+               begin = FALSE;
+               face->nPolSize = 1;
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = next_face_id;
+			lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+					   (int (*)(void *,void *)) (Compare)));
+			if (lpListInfo == NULL)
+		     {
+				printf("There is an error finding the next polygon2 %d %d\n",next_face_id,next_bucket);
+				exit(0);
+			}
+			return (Polygon_Output(lpListInfo,next_face_id,next_bucket,
+					             pListHead, FALSE, swaps,bands,color1,color2,color3,global,end));
+		}
+
+	}
+    Last_Edge(&e1,&e2,&e3,0);
+
+}       
+
+
+int Extend_Face(int face_id,int e1,int e2,int *swaps,FILE *bands,
+                int color1,int color2,int color3,int *vert_norm, int normals,
+                int *vert_texture, int texture)
+{
+    int dummy=0,next_bucket;
+    P_ADJACENCIES pfNode,lpListInfo;
+    ListHead *pListHead;
+
+    /*    Try to extend backwards off of the local strip that we just found */
+    
+    vn = vert_norm;
+    vt = vert_texture;
+    norm = normals;
+    text = texture;
+
+    *swaps = 0;
+    /*	Find the face that is adjacent to the edge and is not the
+		current face.
+    */
+    face_id = Find_Face(face_id, e1, e2,&next_bucket);
+    if (face_id == -1)
+          return 0;
+			
+    pListHead = array[next_bucket];
+    pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+    if ( pfNode )
+		pfNode->face_id = face_id;
+    lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+		       (int (*)(void *,void *)) (Compare)));
+    if (lpListInfo == NULL)
+    {
+		printf("There is an error finding the next polygon3 %d\n",face_id);
+		exit(0);
+    }
+    Last_Edge(&dummy,&e1,&e2,1);
+    
+    /*  Find a strip extending from the patch and return the cost */
+    return (Polygon_Output(lpListInfo,face_id,next_bucket,pListHead,TRUE,swaps,bands,color1,color2,color3,TRUE,TRUE));
+}
+
+
diff --git a/Tools/Stripe_u/output.h b/Tools/Stripe_u/output.h
new file mode 100644
index 000000000..d9aed50a9
--- /dev/null
+++ b/Tools/Stripe_u/output.h
@@ -0,0 +1,26 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: output.h
+-----------------------------------------------------------------------*/
+
+
+#define TRIANGLE 3
+#define MAGNITUDE 1000000
+
+void Output_Tri();
+void Sgi_Test();
+int Polygon_Output();
+void Last_Edge();
+void Extend_Backwards();
+int Finished();
+int Extend_Face();
+void Fast_Reset();
+
+
diff --git a/Tools/Stripe_u/outputex.c b/Tools/Stripe_u/outputex.c
new file mode 100644
index 000000000..48d4da147
--- /dev/null
+++ b/Tools/Stripe_u/outputex.c
@@ -0,0 +1,518 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: outputex.c
+     This file contains routines that are used for various functions in
+     the local algorithm.
+*/
+/*---------------------------------------------------------------------*/
+
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "global.h"
+#include "outputex.h"
+#include "triangulatex.h"
+#include "polverts.h"
+#include "ties.h"
+#include "partial.h"
+#include "sturctsex.h"
+#include "options.h"
+#include "output.h"
+#include "common.h"
+#include "util.h"
+
+
+void Output_TriEx(int id1, int id2, int id3, FILE *output, int next_face, int flag,
+		int where)
+{
+     /*   We will save everything into a list, rather than output at once,
+	  as was done in the old routine. This way for future modifications
+	  we can change the strips later on if we want to.
+     */
+
+    int swap,temp1,temp2,temp3;
+    static int total=0;
+    static int tri=0;
+    static int strips = 0;
+    static int cost = 0;
+    
+    if (flag == -20)
+    {
+         cost = cost + where+total+tri+strips+strips;
+         printf("We will need to send %d vertices to the renderer\n",cost);
+         total = 0;
+         tri = 0;
+         strips = 0;
+         return ;
+    }
+
+
+    if (flag == -10)
+	 /*    We are finished, now is time to output the triangle list
+	 */
+    {
+          fprintf(output,"\nt ");
+          tri = tri + Finished(&swap,output,FALSE);
+          total = total + swap;
+          strips++;
+          /*printf("There are %d swaps %d tri %d strips\n",total,tri,strips);*/
+    }
+       
+    else
+    {
+	 Last_Edge(&temp1,&temp2,&temp3,0);
+	 Add_Id_Strips(id1,where);
+	 Add_Id_Strips(id2,where);
+	 Add_Id_Strips(id3,where);
+	 Last_Edge(&id1,&id2,&id3,1);
+    }
+}
+
+		
+
+
+void Extend_BackwardsEx(int face_id, FILE *output, FILE *strip, int *ties, 
+		      int tie, int triangulate, 
+		      int swaps,int *next_id)
+{
+    /*  We just made a strip, now we are going to see if we can extend
+	   backwards from the starting face, which had 2 or more adjacencies
+	   to start with.
+    */
+    int bucket,next_face,num,x,y,z,c,d=1,max,f;
+    ListHead *pListFace;
+    PF_FACES face;
+    P_ADJACENCIES temp;
+
+    /*  Get the first triangle that we have saved the the strip data 
+	   structure, so we can see if there are any polygons adjacent
+	   to this edge or a neighboring one
+    */
+    First_Edge(&x,&y,&z); 
+    
+    pListFace  = PolFaces[face_id];
+    face = (PF_FACES) PeekList(pListFace,LISTHEAD,0);
+
+    num = face->nPolSize;
+
+    /*  Go through the edges to see if there is an adjacency
+	   with a vertex in common to the first triangle that was
+	   outputted in the strip. (maybe edge was deleted....)
+    */
+    for (c=0; c<num ; c++)
+    {
+	   
+	if ( (c != (num-1)) && 
+	     (( (*(face->pPolygon+c) == x) && (*(face->pPolygon+c+1) == y)) ||
+		(*(face->pPolygon+c) == y) && (*(face->pPolygon+c+1) == x)))
+	{
+	    /*  Input edge is still there see if there is an adjacency */
+	    next_face = Find_Face(face_id, x, y, &bucket);
+	    if (next_face == -1)
+		/*  Could not find a face adjacent to the edge */
+	     	break;
+	    pListFace = array[bucket];
+	    max = NumOnList(pListFace);
+	    for (f=0;;f++)
+	    {
+			temp = (P_ADJACENCIES) PeekList(pListFace,LISTHEAD,f);	
+		     if (temp->face_id == next_face)
+		     {
+		          Last_Edge(&z,&y,&x,1);
+		          Polygon_OutputEx(temp,temp->face_id,bucket,pListFace,
+        			  		       output,strip,ties,tie,triangulate,swaps,next_id,0);
+		          return;
+		     }
+
+			if (temp == NULL)
+			{
+					printf("Error in the new buckets%d %d %d\n",bucket,max,0);
+					exit(0);
+			}
+	    }
+
+	}
+	else if ( (c == (num -1)) &&
+	   ( ((*(face->pPolygon) == x) && (*(face->pPolygon+num-1) == y)) ||
+	      (*(face->pPolygon) == y) && (*(face->pPolygon+num-1) == x)))
+	{
+	     next_face = Find_Face(face_id,x,y,&bucket);
+	     if (next_face == -1)
+		/*  Could not find a face adjacent to the edge */
+		     break;
+		pListFace = array[bucket];
+		max = NumOnList(pListFace);
+		for (f=0;;f++)
+		{
+			temp = (P_ADJACENCIES) PeekList(pListFace,LISTHEAD,f);
+		     if (temp->face_id == next_face)
+		     {
+		          Last_Edge(&z,&y,&x,1);
+		          Polygon_OutputEx(temp,temp->face_id,bucket,pListFace,
+				   	            output,strip,ties,tie,triangulate,swaps,next_id,0);
+		          return;
+		     }
+
+			if (temp == NULL)
+			{
+					printf("Error in the new buckets%d %d %d\n",bucket,max,0);
+					exit(0);
+			}
+	    }
+	}
+    
+    }
+
+}
+
+void Polygon_OutputEx(P_ADJACENCIES temp,int face_id,int bucket,
+					ListHead *pListHead, FILE *output, FILE *strips,
+					int *ties, int tie, 
+					int triangulate, int swaps,
+					int *next_id, int where)
+{
+	ListHead *pListFace;
+	PF_FACES face;
+	P_ADJACENCIES pfNode;
+	static BOOL begin = TRUE;
+	int old_face,next_face_id,next_bucket,e1,e2,e3,other1,other2,other3;
+	P_ADJACENCIES lpListInfo; 
+
+	/*      We have a polygon to output, the id is face id, and the number
+		   of adjacent polygons to it is bucket.
+	*/
+
+     Last_Edge(&e1,&e2,&e3,0);
+    
+     /*  Get the polygon with id face_id */
+	pListFace  = PolFaces[face_id];
+	face = (PF_FACES) PeekList(pListFace,LISTHEAD,0);
+
+     if (face->nPolSize == 3)
+	{
+		/*      It is already a triangle */
+		if (bucket == 0)
+		{
+			/*      It is not adjacent to anything so we do not have to
+				   worry about the order of the sides or updating adjacencies
+			*/
+			    
+	          Last_Edge(&e1,&e2,&e3,0);
+	          next_face_id = Different(*(face->pPolygon),*(face->pPolygon+1),*(face->pPolygon+2),
+		                              e1,e2,e3,&other1,&other2);
+	          /*  No input edge, at the start */
+	          if ((e2 ==0) && (e3 == 0))
+	          {
+		          e2 = other1;
+		          e3 = other2;
+	          }
+	    
+			Output_TriEx(e2,e3,next_face_id,strips,-1,begin,where);
+			RemoveList(pListHead,(PLISTINFO) temp);
+			/*      We will be at the beginning of the next strip. */
+			begin = TRUE;
+		}
+		/*      It is a triangle with adjacencies. This means that we
+			   have to:
+				1. Update the adjacencies in the list, because we are
+					using this polygon and it will be deleted.
+				2. Get the next polygon.
+		*/
+		else
+		{
+			/*   Return the face_id of the next polygon we will be using,
+				while updating the adjacency list by decrementing the
+				adjacencies of everything adjacent to the current triangle.
+			*/
+            
+               next_face_id = Update_AdjacenciesEx(face_id, &next_bucket, &e1,&e2,ties);
+			old_face = next_face_id;
+				        
+              /*  Break the tie,  if there was one */
+		    if (tie != FIRST)
+				old_face = Get_Next_Face(tie,face_id,triangulate);
+
+              if (next_face_id == -1)
+              {
+                    Polygon_OutputEx(temp,face_id,0,pListHead,output,strips,ties,tie, 
+	     		    triangulate,swaps,next_id,where);
+                    return;
+              }
+
+
+	        /*  We are using a different face */
+	        if ((tie != FIRST) && (old_face != next_face_id) && (swaps == ON))
+             {
+		        next_face_id = old_face;
+		        /*  Get the new output edge, since e1 and e2 are for the
+		            original next face that we got.
+		        */
+                  e3 = Get_EdgeEx(&e1,&e2,face->pPolygon,next_face_id,face->nPolSize,0,0);
+	        }
+			
+		   /*      Find the other vertex to transmit in the triangle */
+		   e3 = Return_Other(face->pPolygon,e1,e2);
+	        Last_Edge(&other1,&other2,&other3,0);
+	    
+	        if ((other1 != 0) && (other2 != 0))
+	        {
+	               /*   See which vertex in the output edge is not in the input edge */
+	               if ((e1 != other2) && (e1 != other3))
+		               e3 = e1;
+	               else if ((e2 != other2) && (e2 != other3))
+		               e3 = e2;
+	               /* can happen with > 2 polys on an edge  but won't form a good strip so stop
+                       the strip here
+                    */
+                    else
+	               {
+                         Polygon_OutputEx(temp,face_id,0,pListHead,output,strips,ties,tie, 
+         		                           triangulate,swaps,next_id,where);
+                         return;
+	       }
+
+	       /*   See which vertex of the input edge is not in the output edge */
+	       if ((other2 != e1) && (other2 != e2))
+	       {
+		          other1 = other2;
+		          other2 = other3;
+	       }
+	       else if ((other3 != e1) && (other3 != e2))
+		          other1 = other3;
+	       else
+	       {
+                 /* Degenerate triangle just return*/
+               Output_TriEx(other1,other2,e3,strips,next_face_id,begin,where);
+			RemoveList(pListHead,(PLISTINFO) temp);
+			begin = FALSE;
+               return;
+	       }
+		      
+	   }
+	   
+	   /*   There was not an input edge, we are the first triangle in a strip */
+	   else 
+	   {
+	       /*   Find the correct order to transmit the triangle, what is
+		       the output edge that we want ?
+	       */
+	       other1 = e3;
+	       e3 = e2;
+	       other2 = e1;
+	   }
+	   
+	   /*   At this point the adjacencies have been updated  and we
+		   have the next polygon id 
+	   */
+        Output_TriEx(other1,other2,e3,strips,next_face_id,begin,where);
+  	   RemoveList(pListHead,(PLISTINFO) temp);
+	   begin = FALSE;
+
+	   if (Done(next_face_id,59,&next_bucket) == NULL)
+		return;
+
+        pListHead = array[next_bucket];
+	   pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+	   if ( pfNode )
+	  	pfNode->face_id = next_face_id;
+	   lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+				 (int (*)(void *,void *)) (Compare)));
+	   if (lpListInfo == NULL)
+	   {
+				printf("There is an error finding the next polygon3 %d\n",next_face_id);
+				exit(0);
+	   }
+	   Polygon_OutputEx(lpListInfo,next_face_id,next_bucket,
+					pListHead, output, strips,ties,tie,triangulate,swaps,next_id,where);
+
+	}
+}
+
+	else
+	{
+		/*      It is not a triangle, we have to triangulate it .
+			   Since it is not adjacent to anything we can triangulate it
+			   blindly
+		*/
+		if (bucket == 0)
+		{
+			/*  Check to see if there is not an input edge */
+	          Last_Edge(&other1,&other2,&other3,0);
+	          if ((other1 == 0) && (other2 ==0))
+		          Blind_TriangulateEx(face->nPolSize,face->pPolygon, strips,
+						          output,TRUE,where);
+	          else
+		          Blind_TriangulateEx(face->nPolSize,face->pPolygon,strips,
+			                         output,FALSE,where);
+
+			RemoveList(pListHead,(PLISTINFO) temp);
+			/*      We will be at the beginning of the next strip. */
+			begin = TRUE;
+		}
+
+		 /*  If we have specified PARTIAL triangulation then
+			we will go to special routines that will break the
+			polygon and update the data structure. Else everything
+			below will simply triangulate the whole polygon 
+		*/
+		else if (triangulate == PARTIAL)
+		{
+	    
+	          /*  Return the face_id of the next polygon we will be using,
+			*/
+			next_face_id = Min_Face_AdjEx(face_id,&next_bucket,ties);
+
+		
+			/* Don't do it partially, because we can go inside and get
+		        less adjacencies, for a quad we can do the whole thing.
+	          */
+	          if ((face_id == next_face_id) && (face->nPolSize == 4)  && (swaps == ON))
+	          {
+                    next_face_id = Update_AdjacenciesEx(face_id, &next_bucket, &e1,&e2,ties);
+		          if (next_face_id == -1)
+		          {
+		               /*  There is no sequential face to go to, end the strip */
+		               Polygon_OutputEx(temp,face_id,0,pListHead,output,strips,ties,tie, 
+					                 triangulate,swaps,next_id,where);
+		               return;
+		          }
+               
+                    /* Break the tie,  if there was one */
+		          if (tie != FIRST)
+			          next_face_id = Get_Next_Face(tie,face_id,triangulate);
+		          Non_Blind_TriangulateEx(face->nPolSize,face->pPolygon, strips,
+						              output,next_face_id,face_id,where);
+			     RemoveList(pListHead,(PLISTINFO) temp);
+	          }
+	   
+	          /*   Was not a quad but we still do not want to do it partially for
+		          now, since we want to only do one triangle at a time
+	          */
+	          else if ((face_id == next_face_id) && (swaps == ON))
+	               Inside_Polygon(face->nPolSize,face->pPolygon,strips,output,
+		                         next_face_id,face_id,next_id,pListHead,temp,where);
+
+	          else
+	          {
+					 if ((tie != FIRST) && (swaps == ON))
+						 next_face_id = Get_Next_Face(tie,face_id,triangulate);
+					 Partial_Triangulate(face->nPolSize,face->pPolygon,strips,
+						                output,next_face_id,face_id,next_id,pListHead,temp,where);
+					/*    Check the next bucket again ,maybe it changed 
+						 We calculated one less, but that might not be the case
+					*/
+               }
+
+			if (Done(next_face_id,59,&next_bucket) == NULL)
+			{
+     			/*  Check to see if there is not an input edge */
+	               Last_Edge(&other1,&other2,&other3,0);
+	               if ((other1 == 0) && (other2 ==0))
+		               Blind_TriangulateEx(face->nPolSize,face->pPolygon, strips,
+						               output,TRUE,where);
+	               else
+		               Blind_TriangulateEx(face->nPolSize,face->pPolygon,strips,
+			                              output,FALSE,where);
+                    
+                    if (Done(face_id,59,&bucket) != NULL)
+                    {
+                         pListHead = array[bucket];
+			          pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			          if ( pfNode )
+				          pfNode->face_id = face_id;
+			          lpListInfo = (P_ADJACENCIES) (SearchList(array[bucket], pfNode,
+				                  (int (*)(void *,void *)) (Compare)));
+			          RemoveList(pListHead,(PLISTINFO)lpListInfo);
+                    }
+                    begin = TRUE;
+				return;
+			}
+			
+			begin = FALSE;
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = next_face_id;
+			lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+				        (int (*)(void *,void *)) (Compare)));
+			if (lpListInfo == NULL)
+			{
+				printf("There is an error finding the next polygon1 %d %d\n",next_face_id,next_bucket);
+				exit(0);
+			}
+			Polygon_OutputEx(lpListInfo,next_face_id,next_bucket,
+				            pListHead, output, strips,ties,tie,triangulate,swaps,next_id,where);
+		}
+
+          
+		else
+		{
+			/*  WHOLE triangulation */
+	          /*  It is not a triangle and has adjacencies. 
+				This means that we have to:
+				1. TriangulateEx this polygon, not blindly because
+					we have an edge that we want to come out on, that
+					is the edge that is adjacent to a polygon with the
+					least number of adjacencies. Also we must come in
+					on the last seen edge.
+				2. Update the adjacencies in the list, because we are
+					using this polygon .
+				3. Get the next polygon.
+			*/
+			/*   Return the face_id of the next polygon we will be using,
+				while updating the adjacency list by decrementing the
+				adjacencies of everything adjacent to the current polygon.
+			*/
+				
+               next_face_id = Update_AdjacenciesEx(face_id, &next_bucket, &e1,&e2,ties);
+
+               if (Done(next_face_id,59,&next_bucket) == NULL)
+               {
+                    Polygon_OutputEx(temp,face_id,0,pListHead,output,strips,ties,tie, 
+			                      triangulate,swaps,next_id,where);
+                    /*    Because maybe there was more than 2 polygons on the edge */
+                    return;
+		     }
+
+		     /*      Break the tie,  if there was one */
+			else if (tie != FIRST)
+				next_face_id = Get_Next_Face(tie,face_id,triangulate);
+				
+			Non_Blind_TriangulateEx(face->nPolSize,face->pPolygon, strips,
+						         output,next_face_id,face_id,where);
+			RemoveList(pListHead,(PLISTINFO) temp);
+			begin = FALSE;
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = next_face_id;
+			lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+					   (int (*)(void *,void *)) (Compare)));
+			if (lpListInfo == NULL)
+		     {
+					printf("There is an error finding the next polygon2 %d %d\n",next_face_id,next_bucket);
+					exit(0);
+               }
+			Polygon_OutputEx(lpListInfo,next_face_id,next_bucket,
+					       pListHead, output, strips,ties,tie,triangulate,swaps,next_id,where);
+		}
+
+	}
+    Last_Edge(&e1,&e2,&e3,0);
+
+}       
+
+
+
+	
+
+
+
+
diff --git a/Tools/Stripe_u/outputex.h b/Tools/Stripe_u/outputex.h
new file mode 100644
index 000000000..68cff0ca2
--- /dev/null
+++ b/Tools/Stripe_u/outputex.h
@@ -0,0 +1,23 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: outputex.h
+-----------------------------------------------------------------------*/
+
+
+#define TRIANGLE 3
+#define MAGNITUDE 1000000
+
+void Output_TriEx();
+void Sgi_Test();
+void Polygon_OutputEx();
+void Extend_BackwardsEx();
+void FinishedEx();
+
+
diff --git a/Tools/Stripe_u/partial.c b/Tools/Stripe_u/partial.c
new file mode 100644
index 000000000..9afb03c19
--- /dev/null
+++ b/Tools/Stripe_u/partial.c
@@ -0,0 +1,665 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: partial.c
+     This file contains routines that are used partial triangulation of polygons
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "global.h"
+#include "outputex.h"
+#include "polvertsex.h"
+#include "triangulatex.h"
+#include "sturctsex.h"
+#include "polverts.h"
+#include "common.h"
+#include "util.h"
+
+void P_Triangulate_Quad(int out_edge1,int out_edge2,int in_edge1,
+					  int in_edge2,int size,int *index,
+					  FILE *output,FILE *fp,int reversed,int face_id,
+					  int *next_id,ListHead *pListHead, 
+					  P_ADJACENCIES temp,
+                      int where)
+{
+    int vertex4,vertex5,dummy=60;
+	
+    /*	This routine will nonblindly triangulate a quad, meaning
+		that there is a definite input and a definite output
+		edge that we must adhere to. Reversed will tell the orientation
+		of the input edge. (Reversed is -1 is we do not have an input
+		edge, in other words we are at the beginning of a strip.)
+		Out_edge* is the output edge, and in_edge* is the input edge. 
+		Index are the edges of the polygon
+		and size is the size of the polygon. Begin is whether we are
+		at the start of a new strip.
+		Note that we will not necessarily triangulate the whole quad;
+		maybe we will do half and leave the other half (a triangle)
+		for later.
+	*/
+	
+
+    /*	If we do not have an input edge, then we can make our input
+		edge whatever we like, therefore it will be easier to come
+		out on the output edge.	In this case the whole quad is done.
+	*/
+	if (reversed == -1)
+	{
+		vertex4 = AdjacentEx(out_edge1,out_edge2,index,size);
+		vertex5 = Get_Other_Vertex(vertex4,out_edge1,out_edge2,index);
+		Output_TriEx(vertex5,vertex4,out_edge1,output,-1,-1,where);
+		Output_TriEx(vertex4,out_edge1,out_edge2,output,-1,-1,where);
+		dummy = Update_AdjacenciesEx(face_id, &dummy, &dummy,&dummy,&dummy);
+		RemoveList(pListHead,(PLISTINFO) temp);
+		return;
+	}
+	
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*  Are they consecutive so that we form a triangle to
+		peel off, but cannot use the whole quad?
+	*/
+
+	if (in_edge2 == out_edge1) 
+	{
+		/*	Output the triangle that comes out the correct
+			edge. Save the other half for later.
+		*/
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge2,index);
+          Output_TriEx(in_edge1,in_edge2,out_edge2,output,-1,-1,where);
+		/*	Now we have a triangle used, and a triangle that is
+			left for later.
+		*/
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,
+				face_id,&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,in_edge2,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		/*	Put the new face in the proper bucket of adjacencies 
+			There are 2 edges that need to be checked for the triangle
+			that was just outputted. For the output edge we definitely
+			will be decreasing the adjacency, but we must check for the
+			input edge.
+		*/
+
+		dummy = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp,FALSE);
+		dummy = Change_FaceEx(face_id,in_edge2,out_edge2,pListHead,temp,TRUE);
+		
+		/*	Update the face data structure, by deleting the old
+			face and putting in the triangle as the new face 
+		*/
+		New_Face(face_id,in_edge1,out_edge2,vertex4);
+		return;									  
+	}
+	else if (in_edge1 == out_edge1)
+	{
+		/*	We want to output the first triangle (whose output
+			edge is not the one that we want.
+			We have to find the vertex that we need, which is
+			the other vertex which we do not have.
+		*/						
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge2,index);
+		Output_TriEx(in_edge2,in_edge1,out_edge2,output,-1,-1,where);
+		/*	Now we have a triangle used, and a triangle that is
+			left for later.
+		*/
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		dummy = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp,FALSE);
+		dummy = Change_FaceEx(face_id,in_edge1,out_edge2,pListHead,temp,TRUE);
+		
+		/*	Update the face data structure, by deleting the old
+			face and putting in the triangle as the new face 
+		*/
+		New_Face(face_id,in_edge2,out_edge2,vertex4);
+		return;
+	}
+	
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_TriEx(in_edge2,in_edge1,out_edge1,output,-1,-1,where);
+		/*	Now we have a triangle used, and a triangle that is
+			left for later.
+		*/
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		dummy = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp,FALSE);
+		dummy = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp,TRUE);
+		
+		/*	Update the face data structure, by deleting the old
+			face and putting in the triangle as the new face 
+		*/
+		New_Face(face_id,in_edge2,out_edge1,vertex4);
+          return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_TriEx(in_edge1,in_edge2,out_edge1,output,-1,-1,where);
+		/*	Now we have a triangle used, and a triangle that is
+			left for later.
+		*/
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		dummy = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp,FALSE);
+		dummy = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp,TRUE);
+		
+		/*	Update the face data structure, by deleting the old
+			face and putting in the triangle as the new face 
+		*/
+		New_Face(face_id,in_edge1,out_edge1,vertex4);
+		return;
+	}
+
+	/*	The final case is where we want to come out the opposite
+		edge.
+	*/
+	else
+	{
+        if( ((!reversed) && (out_edge1 == (AdjacentEx(in_edge1,in_edge2,index,size)))) ||
+                    ((reversed) && (out_edge2 == (AdjacentEx(in_edge2,in_edge1,index,size)))))
+		{
+			/*	We need to know the orientation of the input
+				edge, so we know which way to put the diagonal.
+                And also the output edge, so that we triangulate
+                correctly. Does not need partial.
+             */
+			Output_TriEx(in_edge1,in_edge2,out_edge2,output,-1,-1,where);
+			Output_TriEx(in_edge2,out_edge2,out_edge1,output,-1,-1,where);
+			dummy = Update_AdjacenciesEx(face_id, &dummy, &dummy,&dummy,&dummy);
+			RemoveList(pListHead,(PLISTINFO) temp);
+		}
+		else
+		{
+			/*      Input and output orientation was reversed, so diagonal will
+					be reversed from above.
+			*/
+			Output_TriEx(in_edge1,in_edge2,out_edge1,output,-1,-1,where);
+			Output_TriEx(in_edge2,out_edge1,out_edge2,output,-1,-1,where);
+			dummy = Update_AdjacenciesEx(face_id, &dummy, &dummy,&dummy,&dummy);
+			RemoveList(pListHead,(PLISTINFO) temp);
+		}
+		return;
+	}
+}
+
+void P_Triangulate_Polygon(int out_edge1,int out_edge2,int in_edge1,
+						   int in_edge2,int size,
+						  int *index,FILE *output,FILE *fp,
+						  int reversed,int face_id,int *next_id,
+						  ListHead *pListHead, P_ADJACENCIES temp2,
+                          int where)
+{
+	/*	We have a polygon greater than 4 sides, which we wish
+		to partially triangulate
+	*/
+	int next_bucket,vertex4,dummy = 60;
+	int *temp;
+	P_ADJACENCIES pfNode;
+
+		
+    /*	Since we are calling this recursively, we have to check whether		
+		we are down to the case of the quad.
+	*/
+	if (size == 4)
+	{
+		P_Triangulate_Quad(out_edge1,out_edge2,in_edge1,in_edge2,size,
+							index,output,fp,reversed,face_id,next_id,
+							pListHead,temp2,where);
+		return;
+	}
+	
+	/*	We do not have a specified input edge, and therefore we
+		can make it anything we like, as long as we still come out 
+		the output edge that we want.
+	*/
+	if (reversed  == -1)
+	{
+		/*	Get the vertex for the last triangle, which is
+			the one coming out the output edge, before we do
+			any deletions to the list. We will be doing this
+			bottom up.
+		*/
+		vertex4 = AdjacentEx(out_edge1,out_edge2,index,size);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_ListEx(out_edge2,index,size);
+		/*	We do not have to partially triangulate, since
+			we will do the whole thing, so use the whole routine
+		*/
+		Triangulate_PolygonEx(vertex4,out_edge1,in_edge2,
+						 vertex4,size-1,index,output,fp,reversed,face_id,
+						 next_id,pListHead,temp2,where);
+		memcpy(index,temp,sizeof(int)*size);
+		/*	Lastly do the triangle that comes out the output
+			edge.
+		*/
+		Output_TriEx(vertex4,out_edge1,out_edge2,output,-1,-1,where);
+		/*	We were able to do the whole polygon, now we
+			can delete the whole thing from our data structure.
+		*/
+		dummy = Update_AdjacenciesEx(face_id, &dummy, &dummy,&dummy,&dummy);
+		RemoveList(pListHead,(PLISTINFO) temp2);
+		return;
+	}	  
+
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*  Are they consecutive so that we form a triangle to
+		peel off that comes out the correct output edge, 
+		but we cannot use the whole polygon?
+	*/
+	if (in_edge2 == out_edge1) 
+	{
+		Output_TriEx(in_edge1,out_edge1,out_edge2,output,-1,-1,where);
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		next_bucket = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp2,TRUE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+          Delete_From_ListEx(in_edge2,index,size);
+		/*	Update the face data structure, by deleting the old
+			face and putting in the polygon minus the triangle 
+			as the new face, here we will be decrementing the size
+			by one.
+		*/
+		New_Size_Face(face_id);
+		return;
+	}
+
+	/*	Next case is where it is again consecutive, but the triangle
+		formed by the consecutive edges do not come out of the
+		correct output edge. (the input edge will be reversed in
+		the next triangle)
+	*/
+	else if (in_edge1 == out_edge1)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		Output_TriEx(in_edge2,in_edge1,out_edge2,output,-1,-1,where);
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		next_bucket = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp2,TRUE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+          Delete_From_ListEx(in_edge1,index,size);
+		/*	Update the face data structure, by deleting the old
+			face and putting in the polygon minus the triangle 
+			as the new face, here we will be decrementing the size
+			by one.
+		*/
+		New_Size_Face(face_id);
+		return;
+	}
+	
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		Output_TriEx(in_edge2,in_edge1,out_edge1,output,-1,-1,where);
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge1,out_edge2,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		next_bucket = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp2,TRUE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+        Delete_From_ListEx(in_edge1,index,size);
+		/*	Update the face data structure, by deleting the old
+			face and putting in the polygon minus the triangle 
+			as the new face, here we will be decrementing the size
+			by one.
+		*/
+		New_Size_Face(face_id);
+		return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		Output_TriEx(in_edge1,in_edge2,out_edge1,output,-1,-1,where);
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		next_bucket = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp2,TRUE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+          Delete_From_ListEx(in_edge2,index,size);
+		/*	Update the face data structure, by deleting the old
+			face and putting in the polygon minus the triangle 
+			as the new face, here we will be decrementing the size
+			by one.
+		*/
+		New_Size_Face(face_id);
+		return;
+	}
+
+	/*	Else the edge is not consecutive, and it is sufficiently
+		far away, for us not to make a conclusion at this time.
+		So we can take off a triangle and recursively call this
+		function.
+	*/
+	else
+	{
+          if (!reversed)
+		{
+			vertex4 = AdjacentEx(in_edge2,in_edge1,index,size);
+			Output_TriEx(in_edge1,in_edge2,vertex4,output,-1,-1,where);
+			
+			/*	Now delete the adjacencies by one for all the faces
+				that are adjacent to the triangle that we just outputted.
+			*/
+			Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+			Delete_AdjEx(in_edge1,vertex4,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+			
+			/*	Put the new face in the proper bucket of adjacencies */
+			next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+			next_bucket = Change_FaceEx(face_id,in_edge1,vertex4,pListHead,temp2,FALSE);
+			
+			/*	Create a new edgelist without the triangle that
+				was just outputted.
+			*/
+			Delete_From_ListEx(in_edge1,index,size);
+			/*	Update the face data structure, by deleting the old
+				face and putting in the polygon minus the triangle 
+				as the new face, here we will be decrementing the size
+				by one.
+			*/
+			New_Size_Face(face_id);
+
+			/*	Save the info for the new bucket, we will need it on
+				the next pass for the variables, pListHead and temp 
+			*/
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = face_id;
+			temp2 = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+				(int (*)(void *,void *)) (Compare)));
+			if (temp2 == NULL)
+			{
+				printf("There is an error finding the next polygon10\n",next_bucket,face_id);
+				exit(0);
+			}
+
+			P_Triangulate_Polygon(out_edge1,out_edge2,in_edge2,
+						 vertex4,size-1,index,output,fp,!reversed,
+						 face_id,next_id,pListHead,temp2,where);
+		}
+		else
+		{
+			vertex4 = AdjacentEx(in_edge1,in_edge2,index,size);
+			Output_TriEx(in_edge2,in_edge1,vertex4,output,-1,-1,where);
+
+			/*	Now delete the adjacencies by one for all the faces
+				that are adjacent to the triangle that we just outputted.
+			*/
+			Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+			Delete_AdjEx(in_edge2,vertex4,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+			
+			/*	Put the new face in the proper bucket of adjacencies */
+			next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+			next_bucket = Change_FaceEx(face_id,in_edge2,vertex4,pListHead,temp2,FALSE);
+			
+			/*	Create a new edgelist without the triangle that
+				was just outputted.
+			*/
+			Delete_From_ListEx(in_edge2,index,size);
+			
+			/*	Update the face data structure, by deleting the old
+				face and putting in the polygon minus the triangle 
+				as the new face, here we will be decrementing the size
+				by one.
+			*/
+			New_Size_Face(face_id);
+			
+			/*	Save the info for the new bucket, we will need it on
+				the next pass for the variables, pListHead and temp 
+			*/
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = face_id;
+			temp2 = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+				(int (*)(void *,void *)) (Compare)));
+			if (temp2 == NULL)
+			{
+				printf("There is an error finding the next polygon11 %d %d\n",face_id,next_bucket);
+				exit(0);
+			}
+
+			P_Triangulate_Polygon(out_edge1,out_edge2,vertex4,
+						       in_edge1,size-1,index,output,fp,!reversed,
+						       face_id,next_id,pListHead,temp2,where);
+		}
+		return;
+	}
+}
+
+void P_Triangulate(int out_edge1,int out_edge2,int in_edge1,
+				 int in_edge2,int size,int *index,
+				 FILE *fp,FILE *output,int reversed,int face_id,
+				 int *next_id,ListHead *pListHead, 
+				 P_ADJACENCIES temp,int where)
+{
+		
+	if (size == 4)
+		P_Triangulate_Quad(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			              index,fp,output,reversed,face_id,next_id,pListHead, temp,where);
+	else
+		P_Triangulate_Polygon(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			                 index,fp,output,reversed,face_id,next_id,pListHead,temp,where);
+}
+
+ void Partial_Triangulate(int size,int *index, FILE *fp,
+						 FILE *output,int next_face_id,int face_id,
+						 int *next_id,ListHead *pListHead,
+						 P_ADJACENCIES temp, int where)
+{
+	int id1,id2,id3;
+	int nedge1,nedge2;
+	int reversed;
+
+	/*	We have a polygon that has to be triangulated and we cannot
+		do it blindly, ie we will try to come out on the edge that
+		has the least number of adjacencies, But also we do not
+		want to triangulate the whole polygon now, so that means 
+		we will output the least number of triangles that we can
+		and then update the data structures, with the polygon
+		that is left after we are done.
+	*/
+	Last_Edge(&id1,&id2,&id3,0);
+	
+	/*	Find the edge that is adjacent to the new face ,
+		also return whether the orientation is reversed in the
+		face of the input edge, which is id2 and id3.
+	*/
+	reversed = Get_EdgeEx(&nedge1,&nedge2,index,next_face_id,size,id2,id3);
+	
+	/*   Input edge and output edge can be the same if there are more than
+          one polygon on an edge 
+     */
+     if ( ((nedge1 == id2) && (nedge2 == id3)) ||
+          ((nedge1 == id3) && (nedge2 == id2)) )
+          /*   Set output edge arbitrarily but when come out of here the
+               next face will be on the old output edge (identical one)
+          */
+          nedge2 = Return_Other(index,id2,id3);
+
+          /*	Do the triangulation */	
+	P_Triangulate(nedge1,nedge2,id2,id3,size,index,fp,output,reversed,
+		         face_id,next_id,pListHead,temp,where);
+}
+
+ void Input_Edge(int face_id, int *index, int size, int in_edge1, int in_edge2, 
+                FILE *fp, FILE *output,ListHead *pListHead, P_ADJACENCIES temp2,
+                int where)
+ {
+     /* The polygon had an input edge, specified by input1 and input2 */
+    
+     int output1,next_bucket;
+     int vertex4, vertex5,dummy=60;
+
+     output1 = Get_Output_Edge(face_id,size,index,in_edge1,in_edge2);
+	vertex5 = AdjacentEx(in_edge2,in_edge1,index,size); 
+     vertex4 = AdjacentEx(in_edge1,in_edge2,index,size);
+
+     if (vertex4 == output1)
+     {
+		Output_TriEx(in_edge2,in_edge1,output1,output,-1,-1,where);
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(in_edge2,output1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		/*	Put the new face in the proper bucket of adjacencies */
+		next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		next_bucket = Change_FaceEx(face_id,in_edge2,output1,pListHead,temp2,FALSE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+          Delete_From_ListEx(in_edge2,index,size);
+
+    }	
+    else if (vertex5 == output1)
+    {
+          Output_TriEx(in_edge1,in_edge2,vertex5,output,-1,-1,where);
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(in_edge1,vertex5,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		/*	Put the new face in the proper bucket of adjacencies */
+		next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		next_bucket = Change_FaceEx(face_id,in_edge1,vertex5,pListHead,temp2,FALSE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+          Delete_From_ListEx(in_edge1,index,size);
+    }
+		
+    /*	Update the face data structure, by deleting the old
+		face and putting in the polygon minus the triangle 
+		as the new face, here we will be decrementing the size
+		by one.
+    */
+    New_Size_Face(face_id);
+    return;
+ }
+ 
+ void Inside_Polygon(int size,int *index,FILE *fp,FILE *output,
+                   int next_face_id,int face_id,int *next_id,
+                   ListHead *pListHead,P_ADJACENCIES temp, int where)
+ {
+     /* We know that we have a polygon that is greater than 4 sides, and
+        that it is better for us to go inside the polygon for the next
+        one, since inside will have less adjacencies than going outside.
+        So, we are not doing partial for a part of the polygon.
+      */
+    int id1,id2,id3;
+    int new1,new2;
+
+    Last_Edge(&id1,&id2,&id3,0);
+
+    /*  See if the input edge existed in the polygon, that will help us */
+	if (Exist(face_id,id2,id3))
+        Input_Edge(face_id,index,size,id2,id3,output,fp,pListHead,temp,where);
+    else
+    {
+        /*  Make one of the input edges 
+            We will choose it by trying to get an edge that has something
+            in common with the last triangle, or by getting the edge that
+            is adjacent to the least number of thigs, with preference given
+            to the first option
+        */
+               
+        Get_Input_Edge(index,id1,id2,id3,&new1,&new2,size,face_id);
+        Input_Edge(face_id,index,size,new1,new2,output,fp,pListHead,temp,where);
+    }
+ }
+
+
diff --git a/Tools/Stripe_u/partial.h b/Tools/Stripe_u/partial.h
new file mode 100644
index 000000000..c9a9439c8
--- /dev/null
+++ b/Tools/Stripe_u/partial.h
@@ -0,0 +1,15 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: partial.h
+-----------------------------------------------------------------------*/
+
+void Partial_Triangulate();
+void Inside_Polygon();
+
diff --git a/Tools/Stripe_u/polverts.h b/Tools/Stripe_u/polverts.h
new file mode 100644
index 000000000..79ece86db
--- /dev/null
+++ b/Tools/Stripe_u/polverts.h
@@ -0,0 +1,87 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: polverts.h
+-----------------------------------------------------------------------*/
+
+#include "queue.h"
+#include <malloc.h>
+
+
+/*      external functions */
+void Find_Adjacencies();
+void Test_Adj_Struct();
+void Test_SGI_Struct();
+void Write_Edges();
+void Build_SGI_Table();
+void Save_Walks();
+void Find_Bands();
+void Save_Rest();
+void Assign_Walk();
+void Save_Walks();
+	
+typedef struct adjacencies
+{
+	Node ListNode;
+	int face_id;
+} ADJACENCIES,*P_ADJACENCIES;
+
+typedef struct FVerts
+{
+	Node ListNode;
+	int *pPolygon;
+	int nPolSize;
+	int nId;
+} F_VERTS, *PF_VERTS;
+
+/*Every time we need to use this, cast it ( ListInfo*)*/
+
+typedef struct FEdges
+{
+	Node ListNode;
+	int edge[3];
+}F_EDGES,*PF_EDGES;
+
+typedef struct FFaces
+{
+	Node ListNode;
+	int *pPolygon;
+	int *pNorms;
+    int     seen;
+    int seen2;
+    int seen3;
+	int nPolSize;
+	F_EDGES **VertandId;
+	int *marked;
+		int *walked;
+} F_FACES,*PF_FACES;
+	
+
+typedef struct Strips
+{
+	Node ListNode;
+	int face_id;
+} Strips,*P_STRIPS;
+
+
+     struct vert_added
+     {
+          int num;
+          int *normal;
+     };
+
+
+/*      Globals */
+ListHead **PolVerts;
+ListHead **PolFaces;
+ListHead **PolEdges;
+ListHead *array[60];
+int     id_array[60];
+ListHead *strips[1];
+ListHead *all_strips[100000]; /*  Assume max 100000 strips */
diff --git a/Tools/Stripe_u/polvertsex.h b/Tools/Stripe_u/polvertsex.h
new file mode 100644
index 000000000..8e05a7dd3
--- /dev/null
+++ b/Tools/Stripe_u/polvertsex.h
@@ -0,0 +1,34 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: polvertsex.h
+-----------------------------------------------------------------------*/
+
+#include "queue.h"
+#include <malloc.h>
+
+
+/*      external functions */
+void Start_Vert_Struct();
+void Start_Face_StructEx();
+void Start_Edge_StructEx();
+void AddNewNode();
+void AddNewFaceEx();      
+void Find_AdjacenciesEx();
+void Test_Adj_Struct();
+void Test_SGI_Struct();
+void Write_Edges();
+void End_Verts_Struct();
+void End_Face_StructEx();
+void End_Edge_StructEx();
+void Build_SGI_TableEx();
+void Add_AdjEdgeEx();
+
+
+
diff --git a/Tools/Stripe_u/queue.c b/Tools/Stripe_u/queue.c
new file mode 100644
index 000000000..29d5e9de0
--- /dev/null
+++ b/Tools/Stripe_u/queue.c
@@ -0,0 +1,226 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: queue.c
+     This file contains the routines used in the data structures lists, which
+     are queues.
+*/
+/*---------------------------------------------------------------------*/
+
+ #include "queue.h"
+ 
+
+
+/*----------------------------------------------------------------------------
+ * InitList:
+ */
+BOOL  InitList  (PLISTHEAD LHead)
+ 
+{
+     if (LHead == NULL) return(FALSE);
+
+     LHead->LHeaders[LISTHEAD] = LHead->LHeaders[LISTTAIL] = NULL;
+     LHead->NumList = 0;
+     return(TRUE);
+}
+
+/*----------------------------------------------------------------------------
+ * AddHead:
+ */
+BOOL  AddHead(PLISTHEAD LHead, PLISTINFO LInfo)
+{
+     if (LHead == NULL || LInfo == NULL)
+          return(FALSE);
+     if (EMPTYLIST(LHead))
+          LHead->LHeaders[LISTTAIL] = LInfo;
+     else LHead->LHeaders[LISTHEAD]->ListNode.Previous = (void  *) LInfo;
+
+     LInfo->ListNode.Next = (void  *) LHead->LHeaders[LISTHEAD];
+     LHead->LHeaders[LISTHEAD] = LInfo;
+     LInfo->ListNode.Previous = NULL;
+     LHead->NumList++;
+     return(TRUE);
+}
+
+/*----------------------------------------------------------------------------
+ * AddTail
+ */
+BOOL  AddTail(PLISTHEAD LHead, PLISTINFO LInfo)
+{
+     if (LHead == NULL || LInfo == NULL)
+          return(FALSE);
+     if (EMPTYLIST(LHead))
+          LHead->LHeaders[LISTHEAD] = LInfo;
+     else LHead->LHeaders[LISTTAIL]->ListNode.Next = (void *) LInfo;
+
+     LInfo->ListNode.Previous = (void  *) LHead->LHeaders[LISTTAIL];
+     LHead->LHeaders[LISTTAIL] = LInfo;
+     LInfo->ListNode.Next = NULL;
+     LHead->NumList++;
+     return(TRUE);
+}
+
+
+BOOL  InsertNode( PLISTHEAD LHead, int nPos, PLISTINFO LInfo )
+{
+PLISTINFO LAddNode;
+
+     if ( LHead == NULL || LInfo == NULL || nPos > NumOnList( LHead ) ) 
+          return( FALSE );
+
+     if ( nPos == 0 )
+          AddHead( LHead, LInfo );
+     else if ( nPos == NumOnList( LHead ) ) 
+          AddTail( LHead, LInfo );
+     else
+     {
+          if ( (LAddNode = PeekList( LHead, LISTHEAD, nPos - 1 )) == NULL )
+               return( FALSE );
+          
+          ((PLISTINFO)LAddNode->ListNode.Next)->ListNode.Previous = LInfo;
+          LInfo->ListNode.Next      = LAddNode->ListNode.Next;
+          LInfo->ListNode.Previous  = LAddNode;
+          LAddNode->ListNode.Next   = LInfo;
+          
+          LHead->NumList++;
+     }
+
+     return( TRUE );
+}
+
+
+
+
+/*----------------------------------------------------------------------------
+ *  RemHead:
+ */
+PLISTINFO  RemHead(PLISTHEAD LHead)
+{
+     PLISTINFO t, t1;
+
+     if ( LHead == NULL || EMPTYLIST(LHead) )
+          return(NULL);
+
+     t = LHead->LHeaders[LISTHEAD];
+     LHead->LHeaders[LISTHEAD] = (PLISTINFO) t->ListNode.Next;
+
+     if (LHead->LHeaders[LISTHEAD] != NULL)
+     {
+          t1 = (PLISTINFO) t->ListNode.Next;
+          t1->ListNode.Previous = NULL;
+     }
+     else
+          LHead->LHeaders[LISTTAIL] = NULL;
+
+     LHead->NumList--;
+
+     return(t);
+}
+
+/*----------------------------------------------------------------------------
+ *  RemTail:
+ */
+PLISTINFO  RemTail(PLISTHEAD   LHead)
+{
+     PLISTINFO   t, t1;
+
+     if ( LHead == NULL || EMPTYLIST(LHead) )
+          return(NULL);
+
+     t = LHead->LHeaders[LISTTAIL];
+     LHead->LHeaders[LISTTAIL] = (PLISTINFO) t->ListNode.Previous;
+     if (LHead->LHeaders[LISTTAIL] != NULL)
+     {
+          t1 = (PLISTINFO) t->ListNode.Previous;
+          t1->ListNode.Next = NULL;
+     }
+     else
+          LHead->LHeaders[LISTHEAD] = NULL;
+
+     LHead->NumList--;
+     return(t);
+}
+
+/*----------------------------------------------------------------------------
+ * PeekList:
+ */
+PLISTINFO  PeekList(PLISTHEAD LHead, int wch, int index )
+{
+     PLISTINFO  t;
+
+     if (LHead == NULL)
+          return(NULL);
+     if ( (t = LHead->LHeaders[wch]) == NULL )
+          return(NULL);
+
+     for (; t != NULL && index > 0; index-- )
+          t = (wch == LISTHEAD)  ? (PLISTINFO) t->ListNode.Next  :
+                                   (PLISTINFO) t->ListNode.Previous;
+     return(t);
+}
+
+
+/*----------------------------------------------------------------------------
+ * RemoveList:
+ */
+PLISTINFO   RemoveList( PLISTHEAD LHead, PLISTINFO LInfo )
+{
+     PLISTINFO     t, t1;
+
+     t = LInfo;
+     if (LHead == NULL)
+          return(NULL);
+     if (LHead->LHeaders[LISTHEAD] == t)
+          t = (PLISTINFO) RemHead(LHead);
+     else if (LHead->LHeaders[LISTTAIL] == t)
+          t = (PLISTINFO) RemTail(LHead);
+     else
+     {
+          t1                    = (PLISTINFO) t->ListNode.Previous;
+          t1->ListNode.Next     = t->ListNode.Next;
+          t1                    = (PLISTINFO) t->ListNode.Next;
+          t1->ListNode.Previous = t->ListNode.Previous;
+          LHead->NumList--;
+     }
+
+     return(t);
+}
+
+/*----------------------------------------------------------------------------
+ * SearchList:
+ *       Try to find a specific node in the queue whose key matches with
+ *  searching key. Return the pointer to that node if found, return NULL
+ *  otherwise
+ *
+ *  Input:
+ *    lpHashTbl       => a far pointer to the hash table
+ *    lpKey           => a far poniter to searching key
+ *    CompareCallBack => comparision function
+ *
+ *  Output: a far pointer to the node to be found
+ *
+ */
+PLISTINFO  SearchList(
+                        PLISTHEAD lpListHead,
+                        PVOID lpSKey,
+                        int (* CompareCallBack) ( PVOID, PVOID ) )
+{
+PLISTINFO lpListInfo;
+
+     lpListInfo = PeekList( lpListHead, LISTHEAD, 0);
+     while ( lpListInfo != NULL )
+     {
+          if ( CompareCallBack( lpListInfo, lpSKey ) )
+               break;
+          lpListInfo = GetNextNode( lpListInfo );
+     }
+
+     return( lpListInfo );
+}
+ 
diff --git a/Tools/Stripe_u/queue.h b/Tools/Stripe_u/queue.h
new file mode 100644
index 000000000..0bf926e0f
--- /dev/null
+++ b/Tools/Stripe_u/queue.h
@@ -0,0 +1,283 @@
+
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE:queue.h
+-----------------------------------------------------------------------*/
+
+#ifndef QUEUE_INCLUDED
+#define QUEUE_INCLUDED
+
+/*        %%s  Node      */
+/*****************************************************************
+     This structure is used to store the List linkage information of a
+ListInfo structure.  It contains all the necessary information for the
+List functions to function properly.  This structure must be the first
+one defined in any block of memory to be linked with the List functions.
+for an example of the used of The Node structure look in the files
+ipd2dms.c and ipd2man.h
+******************************************************************/
+#include <stdio.h>
+#define FALSE 0
+#define TRUE  1
+typedef struct
+{
+     void  *Next;
+     void  *Previous;
+}
+     Node, * PNODE;
+
+/*****************************************************************
+     Next     :  is a pointer to the next structure in this List.
+     Previous :  is a pointer to the previous structure in this List.
+     priority :  this is the priority of this structure in the List.  The
+                 highest priority is 0.  This field is only used by the
+                 functions EnQue and DeQue.
+******************************************************************/
+/*        %%e       */
+
+
+/*        %%s  ListInfo      */
+
+/*****************************************************************
+      This is the general means of linking application defined information into
+Lists and queues.  All structures must begin with the Node Structure.  All
+other data in the structure is user definable.
+******************************************************************/
+
+typedef struct List
+{
+     Node     ListNode;       /*  link to the next Listinfo Structure  */
+     /*  user definable data  */
+}    ListInfo, *PLISTINFO;
+
+/*****************************************************************
+     ListNode  :  this is the required node structure for the List
+                  mainpulation functions.  This must be the first
+                  element of a user definable structure.
+
+     In order for an application to use the List routines, it must define
+a structure with all the needed information.  The first element in the
+user definable structure must be a Node structure.  The Node structure
+contains all the necessary information for the List routines to do their
+magic.  For an example of a user defined List structure see the file
+ipd2i.h.  The User definable structure can be passed to any List function
+that excepts a pointer to a ListInfo structure.
+
+example:
+
+typedef  mstruct
+{
+     Node   ListNode;
+     int    a,b,c,d,e,f,g;
+}
+     mystruct;
+
+     the user definable portion of the above structure is represented by
+the integers a,b,c,d,e,f,g.  When passing this structure to a List
+function a cast of (ListInfo *) must be made to satisify the "C" complier.
+******************************************************************/
+/*        %%e       */
+
+
+/*        %%s ListHead        */
+/*****************************************************************
+     ListHead is used as a header to a List.  LHeaders[0] points to the
+head of the List.  LHeaders[1] points the tail of the list.  When
+accessing these variables use the defines  LISTHEAD, LISTTAIL.
+******************************************************************/
+
+typedef struct LHead
+{
+     PLISTINFO  LHeaders[2];
+     int         NumList;
+}
+ListHead, *PLISTHEAD;
+
+/*****************************************************************
+     LHeaders   :  this is an array of two pointers to ListInfo structures.
+                   This information is used to point to the head and tail of
+                   a list.
+     NumList    :  this integer hold the number of structures linked into this
+                   list.
+
+ListHead #define:
+
+     LISTHEAD  :  when Peeking down a list this specifies you should
+                  start at the Head of the list and search downward.
+
+     LISTTAIL  :  when Peeking down a list this specifies you should
+                  start at the tail of the list and search foward.
+ ******************************************************************/
+
+#define  LISTHEAD  0
+
+#define  LISTTAIL  1
+/*        %%e       */ 
+
+typedef int BOOL;
+typedef void * PVOID;
+
+#define PEEKFROMHEAD( lh, ind )     ( PeekList( (lh), LISTHEAD, (ind) ) )
+#define PEEKFROMTAIL( lh, ind )     ( PeekList( (lh), LISTTAIL, (ind) ) )
+#define EMPTYLIST( lh )             ( ( (lh)->LHeaders[LISTHEAD] == NULL ) )
+
+/*   General utility routines   */
+/*        %%s QueRoutines          */
+BOOL    InitList      ( PLISTHEAD );
+
+/*****************************************************************
+     InitList :  Initialize a new list structure for use with the List
+                 routines
+
+     INPUTS   :  LHead : a pointer to a ListHead structure.
+     OUTPUT   :  a boolean value TRUE if no errors occured FALSE
+                 otherwise
+******************************************************************/
+
+
+PLISTINFO  PeekList      ( PLISTHEAD, int, int   );
+
+/*****************************************************************
+     PeekList :  This funciton peeks down a list for the N'th element
+                 from the HEAD or TAIL of the list
+
+     INPUTS   :  LHead    :  a pointer to a List head structure.
+                 from     :  can either search from the HEAD or TAIL
+                             of the list
+                 where    :  how many nodes from the begining should the
+                             List routines look.
+     OUTPUT   :  a pointer to a ListInfo structure identified by
+                 from/where or NULL if an error occurred.
+******************************************************************/
+
+
+PLISTINFO   RemoveList( PLISTHEAD LHead, PLISTINFO LInfo );
+
+
+/*****************************************************************
+     RemoveList: Remove a ListInfo structure from a List.
+
+     INPUTS    : LHead  :  a pointer to a ListHead structure.
+                 LInfo  :  a pointer to the ListInfo structure to remove
+                           from the list.
+     OUTPUT    : a pointer to the ListInfo structure that was removed or
+                 NULL if an error occurred.
+******************************************************************/
+
+BOOL  InsertNode( PLISTHEAD LHead, int nPos, PLISTINFO LInfo );
+
+/*****************************************************************
+     InsertNode: add a node to a list after a given node
+     
+     INPUTS    : LHead : a pointer to a ListHead structure.
+                 nPos  : the position to insert the node into
+                 LInfo : a pointer to the new node to add to the list.
+     OUTPUT: a boolean value TRUE if all goes well false otherwise
+*****************************************************************/
+
+BOOL   AddHead       ( PLISTHEAD, PLISTINFO );
+
+/*****************************************************************
+     AddHead   : add a ListInfo structure to the HEAD of a list.
+
+     INPUTS    : LHead  : a pointer to a ListHead structure of the list
+                          to add to.
+                 LInfo  : a pointer to the ListInfo structure to add to
+                          the list.
+     OUTPUT    : A boolean value TRUE if no errors occurred FALSE
+                 otherwise.
+******************************************************************/
+
+
+BOOL     AddTail       ( PLISTHEAD, PLISTINFO );
+
+/*****************************************************************
+     AddTail   : Add a ListInfo structure to the TAIL of a list.
+
+     INPUTS    : LHead  : a pointer to a ListHead structure of the List
+                          to add to.
+                 LInfo  : a pointer to the ListInfo structure to add to
+                          the List.
+     OUTPUT    : a boolean value TRUE if no errors occurred FALSE
+                 otherwise.
+******************************************************************/
+
+
+PLISTINFO  RemTail       ( PLISTHEAD );
+
+/*****************************************************************
+     RemTail   : Remove a ListInfo structure from the TAIL of a List.
+
+     INPUTS    : LHead  : a pointer to a ListHead structure of the List
+                          to remove from.
+     OUTPUT    : a pointer to the ListInfo structure that was removed
+                 or NULL if an error occurred.
+******************************************************************/
+
+
+PLISTINFO  RemHead       ( PLISTHEAD );
+
+/*****************************************************************
+     RemHead   : Remove a ListInfo structure from the Head of a List.
+
+     INPUTS    : LHead  : a pointer to a ListHead structure of the List
+                          to remove from.
+     OUTPUT    : a pointer to the ListInfo structure that was removed or
+                 NULL if an error occurred.
+******************************************************************/
+
+PLISTINFO  SearchList(
+                        PLISTHEAD lpListHead,
+                        PVOID lpSKey,
+                        int ( * CompareCallBack) ( PVOID, PVOID ) );
+
+/*****************************************************************
+  SearchList:
+        Try to find a specific node in the queue whose key matches with
+   searching key. Return the pointer to that node if found, return NULL
+   otherwise
+
+   Input:
+     lpHashTbl       => a far pointer to the hash table
+     lpKey           => a far poniter to searching key
+     CompareCallBack => comparision function
+
+   Output: a far pointer to the node to be found
+
+ ******************************************************************/
+
+#define           NumOnList(lh) ( ((lh)->NumList)        )
+
+/*****************************************************************
+     NumOnList: Returns the number of Nodes linked to a ListHead
+                structure.  This number is maintained by the List
+                routines.
+******************************************************************/
+
+#define           GetNextNode(pli) ( ((pli)->ListNode.Next) )
+
+/********************************************************
+     GetNextNode: This macro returns the Next Structure in this list.
+                  This macro will return NULL if no more structures are
+                  in the List.
+*********************************************************/
+
+#define           GetPrevNode(pli) ( ((pli)->ListNode.Previous) )
+
+/********************************************************
+     GetPrevNode: This macro returns the Previous Structure in this list.
+                  This macro will reutrn NULL if no more structures are
+                  in the List.
+********************************************************/
+/*        %%e       */
+
+#endif
+
+
diff --git a/Tools/Stripe_u/sgi_triang.c b/Tools/Stripe_u/sgi_triang.c
new file mode 100644
index 000000000..40dff70f6
--- /dev/null
+++ b/Tools/Stripe_u/sgi_triang.c
@@ -0,0 +1,631 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: sgi_triang.c
+     File contains the routines that do the whole triangulation
+     of polygons.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "global.h"
+#include "output.h"
+#include "polverts.h"
+#include "sturcts.h"
+#include "common.h"
+#include "util.h"
+#include "init.h"
+
+int Adjacent(int id2,int id1, int *list, int size)
+{
+	/*	Return the vertex that is adjacent to id1,
+		but is not id2, in the list of integers.
+	*/
+
+	register int x=0;
+	
+	while (x < size)
+	{
+		if (*(list+x) == id1)
+		{
+			if ((x != (size -1)) && (x != 0))
+			{
+				if ( *(list+x+1) != id2)
+					return *(list+x+1);
+				else
+					return *(list+x-1);
+			}
+			else if (x == (size -1))
+			{
+				if (*(list) != id2)
+					return *(list);
+				else
+					return *(list+x-1);
+			}
+			else
+			{
+				if (*(list+size-1) != id2)
+					return *(list+size-1);
+				else
+					return *(list+x+1);
+			}
+		}
+		x++;
+	}
+	/*   if there are degeneracies */
+     return id1;
+}
+
+
+void Rearrange_Index(int *index, int size)
+{
+	/*	If we are in the middle of a strip we must find the
+		edge to start on, which is the last edge that we had
+		transmitted.
+	*/
+	int x,f,y,e1,e2,e3;
+ 	register int increment = 1;
+     int *temp;
+
+	/*	Find where the input edge is in the input list */
+	Last_Edge(&e1,&e2,&e3,0);
+	for (y = 0; y < size; y++)
+	{
+		if (*(index+y) == e2)
+		{
+			if ((y != (size - 1)) && (*(index+y+1) == e3))
+				break;
+			else if ((y == (size - 1)) && (*(index) == e3))
+				break;
+               else if ((y != 0) && (*(index+y-1) == e3))
+               {
+                    increment = -1;
+                    break;
+               }
+               else if ((y==0) && (*(index+size-1) == e3))
+               {
+                    increment = -1;
+                    break;
+               }
+		}
+		if (*(index+y) == e3)
+		{
+			if ((y != (size - 1)) && (*(index+y+1) == e2))
+				break;
+			else if ((y == (size - 1)) && (*(index) == e2))
+				break;
+            else if ((y != 0) && (*(index+y-1) == e2))
+            {
+                increment = -1;
+                break;
+            }
+            else if ((y==0) && (*(index+size-1) == e2))
+            {
+                increment = -1;
+                break;
+            }
+		}
+		/*	Edge is not here, we are at the beginning */
+		if ((y == (size-1)) && (increment != -1))
+			return;
+	}
+	
+	/*	Now put the list into a new list, starting with the
+		input edge. Increment tells us whether we have to go 
+		forward or backward.
+	*/
+	/*	Was in good position already */
+	if ((y == 0) && (increment == 1)) 
+		return;
+	
+     temp = (int *) malloc(sizeof(int) * size);
+     memcpy(temp,index,sizeof(int)*size);
+
+	if (increment == 1)
+	{
+		x=0;
+		for (f = y ; f< size; f++)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+		/*	Finish the rest of the list */	
+		for(f = 0; f < y ; f++)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+	}
+	else
+	{
+		x=0;
+		for (f = y ; f >= 0; f--)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+		/*	Finish the rest of the list */	
+		for(f = (size - 1); f > y ; f--)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+	}
+}
+
+void Delete_From_List(int id,int *list, int *size)
+{
+	/*	Delete the occurence of id in the list.
+		(list has size size)
+	*/
+
+	int *temp;
+	register int x,y=0;
+
+	temp = (int *) malloc(sizeof(int) * (*size));
+	for (x=0; x<(*size); x++)
+	{
+		if (*(list+x) != id)
+		{
+			*(temp+y) = *(list+x);
+			y++;
+		}
+	}
+	*(temp+y) = -1;
+     *size = *size - (*size - y - 1);
+	memcpy(list,temp,sizeof(int)*(*size));
+}
+
+
+void Build_SGI_Table(int num_verts,int num_faces)
+{
+	/*      Build a table that has the polygons sorted by the
+	        number of adjacent polygons.
+	*/
+	int x,y,size,tally=0;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+
+	/* For each face....*/
+	for (x=0;x < num_faces;x++)
+	{
+		pListHead = PolFaces[x];
+		temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+		/*   Check each edge of the face and tally the number of adjacent
+			polygons to this face. 
+		*/                      
+		if ( temp != NULL )
+		{
+			/*      Size of the polygon */
+			size = temp->nPolSize;
+			if (size != 1)
+               {
+                    for (y = 0; y< size; y++)
+			     {
+				     if (y != (size-1))
+					     tally += Num_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1));
+				     else
+					     tally += Num_Adj(*(temp->pPolygon),*(temp->pPolygon+(size-1)));
+                    }
+			
+			     /*   Tally is the number of polygons that is adjacent to
+				     the current polygon. 
+			     */
+			     /*      Now put the face in the proper bucket depending on tally. */
+			     Add_Sgi_Adj(tally,x);
+			     temp = NULL;
+			     tally=0;
+               }
+		}
+	}
+}
+
+
+void Triangulate_Quad(int out_edge1,int out_edge2,int in_edge1,
+					  int in_edge2,int size,int *index,
+					  FILE *output,int reversed,int face_id,
+                      int where,int color1,int color2,int color3)
+{
+	int vertex4,vertex5;
+	
+	/*	This routine will nonblindly triangulate a quad, meaning
+		that there is a definite input and a definite output
+		edge that we must adhere to. Reversed will tell the orientation
+		of the input edge. (Reversed is -1 is we do not have an input
+		edge, in other words we are at the beginning of a strip.)
+		Out_edge* is the output edge, and in_edge* is the input edge. 
+		Index are the edges of the polygon
+		and size is the size of the polygon. Begin is whether we are
+		at the start of a new strip.
+	*/
+	
+	/*	If we do not have an input edge, then we can make our input
+		edge whatever we like, therefore it will be easier to come
+		out on the output edge.
+	*/
+	if (reversed == -1)
+	{
+		vertex4 = Adjacent(out_edge1,out_edge2,index,size);
+		vertex5 = Get_Other_Vertex(vertex4,out_edge1,out_edge2,index);
+		Output_Tri(vertex5,vertex4,out_edge1,output,color1,color2,color3,where);
+		Output_Tri(vertex4,out_edge1,out_edge2,output,color1,color2,color3,where);
+		return;
+	}
+	
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*  Are they consecutive so that we form a triangle to
+		peel off, but cannot use the whole quad?
+	*/
+
+	if (in_edge2 == out_edge1) 
+	{
+		/*	Output the triangle that comes out the correct
+			edge last. First output the triangle that comes out
+			the wrong edge.
+		*/
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge2,index);
+          Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where);
+          Output_Tri(vertex4,in_edge2,out_edge2,output,color1,color2,color3,where);
+		return;
+	}
+	/*	The next case is where it is impossible to come out the
+		edge that we want. So we will have to start a new strip to
+		come out on that edge. We will output the one triangle
+		that we can, and then start the new strip with the triangle
+		that comes out on the edge that we want to come out on.
+	*/
+	else if (in_edge1 == out_edge1)
+	{
+		/*	We want to output the first triangle (whose output
+			edge is not the one that we want.
+			We have to find the vertex that we need, which is
+			the other vertex which we do not have.
+		*/
+		vertex4 = Get_Other_Vertex(in_edge2,in_edge1,out_edge2,index);
+		Output_Tri(in_edge2,in_edge1,vertex4,output,color1,color2,color3,where);
+		Output_Tri(vertex4,in_edge1,out_edge2,output,color1,color2,color3,where);
+		return;
+	}
+	
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_Tri(in_edge2,in_edge1,vertex4,output,color1,color2,color3,where);
+		Output_Tri(vertex4,in_edge1,out_edge1,output,color1,color2,color3,where);
+		return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where);
+		Output_Tri(vertex4,in_edge2,out_edge1,output,color1,color2,color3,where);
+		return;
+	}
+
+	/*	The final case is where we want to come out the opposite
+		edge.
+	*/
+	else
+	{
+            if( ((!reversed) && (out_edge1 == (Adjacent(in_edge1,in_edge2,index,size)))) ||
+                    ((reversed) && (out_edge2 == (Adjacent(in_edge2,in_edge1,index,size)))))
+			{
+			/*	We need to know the orientation of the input
+				edge, so we know which way to put the diagonal.
+                And also the output edge, so that we triangulate
+                correctly.
+             */
+			Output_Tri(in_edge1,in_edge2,out_edge2,output,color1,color2,color3,where);
+			Output_Tri(in_edge2,out_edge2,out_edge1,output,color1,color2,color3,where);
+		}
+		else
+		{
+			/*      Input and output orientation was reversed, so diagonal will
+					be reversed from above.
+			*/
+			Output_Tri(in_edge1,in_edge2,out_edge1,output,color1,color2,color3,where);
+			Output_Tri(in_edge2,out_edge1,out_edge2,output,color1,color2,color3,where);
+		}
+		return;
+	}
+}
+
+void Triangulate_Polygon(int out_edge1,int out_edge2,int in_edge1,
+						 int in_edge2,int size,int *index,
+						 FILE *output,int reversed,int face_id,
+                         int where,int color1,int color2,int color3)
+{
+	/*	We have a polygon that we need to nonblindly triangulate.
+		We will recursively try to triangulate it, until we are left
+		with a polygon of size 4, which can use the quad routine
+		from above. We will be taking off a triangle at a time
+		and outputting it. We will have 3 cases similar to the
+		cases for the quad above. The inputs to this routine
+		are the same as for the quad routine.
+	*/
+
+	int vertex4;
+	int *temp;
+
+		
+	/*	Since we are calling this recursively, we have to check whether
+		we are down to the case of the quad.
+	*/
+	
+    if (size == 4)
+	{
+		Triangulate_Quad(out_edge1,out_edge2,in_edge1,in_edge2,size,
+							index,output,reversed,face_id,where,color1,color2,color3);
+		return;
+	}
+
+    
+	
+	/*	We do not have a specified input edge, and therefore we
+		can make it anything we like, as long as we still come out 
+		the output edge that we want.
+	*/
+	if (reversed  == -1)
+	{
+		/*	Get the vertex for the last triangle, which is
+			the one coming out the output edge, before we do
+			any deletions to the list. We will be doing this
+			bottom up.
+		*/
+		vertex4 = Adjacent(out_edge1,out_edge2,index,size);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_List(out_edge2,index,&size);
+		Triangulate_Polygon(out_edge1,vertex4,in_edge2,
+						 vertex4,size-1,index,output,reversed,face_id,where,color1,color2,color3);
+		memcpy(index,temp,sizeof(int)*size);
+		/*	Lastly do the triangle that comes out the output
+			edge.
+		*/
+		Output_Tri(vertex4,out_edge1,out_edge2,output,color1,color2,color3,where,where);
+		return;
+	}
+
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*  Are they consecutive so that we form a triangle to
+		peel off that comes out the correct output edge, 
+		but we cannot use the whole polygon?
+	*/
+	if (in_edge2 == out_edge1) 
+	{
+		/*	Output the triangle that comes out the correct
+			edge last. First recursively do the rest of the
+			polygon.
+		*/
+		/*	Do the rest of the polygon without the triangle. 
+			We will be doing a fan triangulation.
+		*/
+		/*	Get the vertex adjacent to in_edge1, but is not
+			in_edge2.
+		*/
+		vertex4 = Adjacent(in_edge2,in_edge1,index,size);
+		Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where);
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+          Delete_From_List(in_edge1,index,&size);
+		Triangulate_Polygon(out_edge1,out_edge2,in_edge2,
+						vertex4,size-1,index,output,!reversed,face_id,where,color1,color2,color3);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+
+	/*	Next case is where it is again consecutive, but the triangle
+		formed by the consecutive edges do not come out of the
+		correct output edge. For this case, we can not do much to
+		keep it sequential. Try and do the fan.
+	*/
+	else if (in_edge1 == out_edge1)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = Adjacent(in_edge1,in_edge2,index,size);
+		Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where,where);
+		/*	Since that triangle goes out of the polygon (the
+			output edge of it), we can make our new input edge
+			anything we like, so we will try to make it good for
+			the strip. (This will be like starting a new strip,
+			all so that we can go out the correct output edge.)
+		*/
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_List(in_edge2,index,&size);
+		Triangulate_Polygon(out_edge1,out_edge2,in_edge1,
+						vertex4,size-1,index,output,reversed,face_id,where,color1,color2,color3);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = Adjacent(in_edge1,in_edge2,index,size);
+		Output_Tri(in_edge2,in_edge1,vertex4,output,color1,color2,color3,where,where);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_List(in_edge2,index,&size);
+          Triangulate_Polygon(out_edge1,out_edge2,in_edge1,
+						vertex4,size-1,index,output,reversed,face_id,where,color1,color2,color3);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = Adjacent(in_edge2,in_edge1,index,size);
+		Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where,where);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_List(in_edge1,index,&size);
+          Triangulate_Polygon(out_edge1,out_edge2,vertex4,
+						in_edge2,size-1,index,output,reversed,face_id,where,color1,color2,color3);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+
+	/*	Else the edge is not consecutive, and it is sufficiently
+		far away, for us not to make a conclusion at this time.
+		So we can take off a triangle and recursively call this
+		function.
+	*/
+	else
+	{
+			vertex4 = Adjacent(in_edge2,in_edge1,index,size);
+			Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where,where);
+			temp = (int *) malloc(sizeof(int) * size);
+			memcpy(temp,index,sizeof(int)*size);
+			Delete_From_List(in_edge1,index,&size);
+               Triangulate_Polygon(out_edge1,out_edge2,in_edge2,
+						     vertex4,size-1,index,output,!reversed,face_id,where,color1,color2,color3);
+			memcpy(index,temp,sizeof(int)*size);
+		     return;
+	}
+}
+
+void Triangulate(int out_edge1,int out_edge2,int in_edge1,
+				 int in_edge2,int size,int *index,
+				 FILE *output,int reversed,int face_id, int where,
+                     int color1, int color2,int color3)
+{
+	/*	We have the info we need to triangulate a polygon */
+
+	if (size == 4)
+		Triangulate_Quad(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			            index,output,reversed,face_id,where,color1,color2,color3);
+	else
+		Triangulate_Polygon(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			               index,output,reversed,face_id,where,color1,color2,color3);
+}
+
+void Non_Blind_Triangulate(int size,int *index,
+					  FILE *output,int next_face_id,int face_id,int where,
+                           int color1,int color2,int color3)
+{
+	int id1,id2,id3;
+	int nedge1,nedge2;
+	int reversed;
+	/*	We have a polygon that has to be triangulated and we cannot
+		do it blindly, ie we will try to come out on the edge that
+		has the least number of adjacencies
+	*/
+
+	Last_Edge(&id1,&id2,&id3,0);
+	/*	Find the edge that is adjacent to the new face ,
+		also return whether the orientation is reversed in the
+		face of the input edge, which is id2 and id3.
+	*/
+	if (next_face_id == -1)
+     {
+        printf("The face is -1 and the size is %d\n",size);
+        exit(0);
+     }
+    
+     reversed = Get_Edge(&nedge1,&nedge2,index,next_face_id,size,id2,id3);
+	/*	Do the triangulation */
+	
+	/*	If reversed is -1, the input edge is not in the polygon, therefore we can have the
+		input edge to be anything we like, since we are at the beginning
+		of a strip
+	*/
+	Triangulate(nedge1,nedge2,id2,id3,size,index,output,reversed,
+		       face_id, where,color1,color2,color3);
+}
+
+
+
+void Blind_Triangulate(int size, int *index, FILE *output,
+				   BOOL begin, int where ,int color1,int color2,
+                       int color3)
+{
+	/*	save sides in temp array, we need it so we know
+		about swaps.
+	*/
+	int mode, decreasing,increasing,e1,e2,e3;
+	int x = 0;
+	BOOL flag = FALSE;
+
+	/*	Rearrange the index list so that the input edge is first
+	*/
+	if (!begin)
+		Rearrange_Index(index,size);
+	
+	/*	We are given a polygon of more than 3 sides
+		and want to triangulate it. We will output the
+		triangles to the output file.
+	*/
+	
+    /*	Find where the input edge is in the input list */
+	Last_Edge(&e1,&e2,&e3,0);
+     if (( (!begin) && (*(index) == e2) ) || (begin))
+     {
+	    Output_Tri(*(index+0),*(index+1),*(index+size-1),output,color1,color2,color3,where,where);
+        /*	If we have a quad, (chances are yes), then we know that
+	   	     we can just add one diagonal and be done. (divide the
+		     quad into 2 triangles.
+        */
+        if (size == 4)
+        {
+		    Output_Tri(*(index+1),*(index+size-1),*(index+2),output,color1,color2,color3,where,where);
+              return;
+        }
+        increasing = 1;
+        mode = 1;
+
+    }
+    else if (!begin)
+    {
+        Output_Tri(*(index+1),*(index+0),*(index+size-1),output,color1,color2,color3,where,where);
+        if (size == 4)
+        {
+            Output_Tri(*(index+0),*(index+size-1),*(index+2),output,color1,color2,color3,where,where);
+            return;
+        }
+        Output_Tri(*(index+0),*(index+size-1),*(index+2),output,color1,color2,color3,where,where);
+        increasing = 2;
+        mode = 0;
+    }
+    if (size != 4)
+    {
+		/*	We do not have a quad, we have something bigger. */
+		decreasing = size - 1;		
+		do
+		{
+			/*	Will be alternating diagonals, so we will be increasing
+				and decreasing around the polygon.
+			*/
+			if (mode)
+			{
+				Output_Tri(*(index+increasing),*(index+decreasing),*(index+increasing+1),output,color1,color2,color3,where,where);
+				increasing++;
+			}
+			else
+			{
+				Output_Tri(*(index+decreasing),*(index+increasing),*(index+decreasing-1),output,color1,color2,color3,where,where);
+                    decreasing--;
+               }
+			mode = !mode;
+		} while ((decreasing - increasing) >= 2);
+
+	}
+}
+
+
+
+
diff --git a/Tools/Stripe_u/sgi_triangex.c b/Tools/Stripe_u/sgi_triangex.c
new file mode 100644
index 000000000..afa2fd7db
--- /dev/null
+++ b/Tools/Stripe_u/sgi_triangex.c
@@ -0,0 +1,584 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: sgi_triangex.c
+     This file contains routines that are used for various functions in
+     the local algorithm.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "global.h"
+#include "outputex.h"
+#include "polverts.h"
+#include "sturctsex.h"
+#include "common.h"
+#include "util.h"
+
+
+int AdjacentEx(int id2,int id1, int *list, int size)
+{
+	/*	Return the vertex that is adjacent to id1,
+		but is not id2, in the list of integers.
+	*/
+
+	register int x=0;
+	
+	while (x < size)
+	{
+		if (*(list+x) == id1)
+		{
+			if ((x != (size -1)) && (x != 0))
+			{
+				if ( *(list+x+1) != id2)
+					return *(list+x+1);
+				else
+					return *(list+x-1);
+			}
+			else if (x == (size -1))
+			{
+				if (*(list) != id2)
+					return *(list);
+				else
+					return *(list+x-1);
+			}
+			else
+			{
+				if (*(list+size-1) != id2)
+					return *(list+size-1);
+				else
+					return *(list+x+1);
+			}
+		}
+		x++;
+	}
+	printf("Error in the list\n");
+	exit(0);
+}
+
+
+void Delete_From_ListEx(int id,int *list, int size)
+{
+	/*	Delete the occurence of id in the list.
+		(list has size size)
+	*/
+
+	int *temp;
+	register int x,y=0;
+
+	temp = (int *) malloc(sizeof(int) * size);
+	for (x=0; x<size; x++)
+	{
+		if (*(list+x) != id)
+		{
+			*(temp+y) = *(list+x);
+			y++;
+		}
+	}
+	if(y != (size-1))
+	{
+		printf("There is an error in the delete\n");
+		exit(0);
+	}
+	*(temp+size-1) = -1;
+	memcpy(list,temp,sizeof(int)*size);
+
+}
+
+
+void Triangulate_QuadEx(int out_edge1,int out_edge2,int in_edge1,
+					  int in_edge2,int size,int *index,
+					  FILE *output,FILE *fp,int reversed,int face_id,
+                      int where)
+{
+	int vertex4,vertex5;
+	
+	/*	This routine will nonblindly triangulate a quad, meaning
+		that there is a definite input and a definite output
+		edge that we must adhere to. Reversed will tell the orientation
+		of the input edge. (Reversed is -1 is we do not have an input
+		edge, in other words we are at the beginning of a strip.)
+		Out_edge* is the output edge, and in_edge* is the input edge. 
+		Index are the edges of the polygon
+		and size is the size of the polygon. Begin is whether we are
+		at the start of a new strip.
+	*/
+	
+	/*	If we do not have an input edge, then we can make our input
+		edge whatever we like, therefore it will be easier to come
+		out on the output edge.
+	*/
+	if (reversed == -1)
+	{
+		vertex4 = AdjacentEx(out_edge1,out_edge2,index,size);
+		vertex5 = Get_Other_Vertex(vertex4,out_edge1,out_edge2,index);
+		Output_TriEx(vertex5,vertex4,out_edge1,output,-1,-1,where);
+		Output_TriEx(vertex4,out_edge1,out_edge2,output,-1,-1,where);
+		return;
+	}
+	
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*   Are they consecutive so that we form a triangle to
+		peel off, but cannot use the whole quad?
+	*/
+
+	if (in_edge2 == out_edge1) 
+	{
+		/*	Output the triangle that comes out the correct
+			edge last. First output the triangle that comes out
+			the wrong edge.
+		*/
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge2,index);
+          Output_TriEx(in_edge1,in_edge2,vertex4,output,-1,-1,where);
+          Output_TriEx(vertex4,in_edge2,out_edge2,output,-1,-1,where);
+		return;
+	}
+	/*	The next case is where it is impossible to come out the
+		edge that we want. So we will have to start a new strip to
+		come out on that edge. We will output the one triangle
+		that we can, and then start the new strip with the triangle
+		that comes out on the edge that we want to come out on.
+	*/
+	else if (in_edge1 == out_edge1)
+	{
+		/*	We want to output the first triangle (whose output
+			edge is not the one that we want.
+			We have to find the vertex that we need, which is
+			the other vertex which we do not have.
+		*/
+		vertex4 = Get_Other_Vertex(in_edge2,in_edge1,out_edge2,index);
+		Output_TriEx(in_edge2,in_edge1,vertex4,output,-1,-1,where);
+		Output_TriEx(vertex4,in_edge1,out_edge2,output,-1,-1,where);
+		return;
+	}
+	
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_TriEx(in_edge2,in_edge1,vertex4,output,-1,-1,where);
+		Output_TriEx(vertex4,in_edge1,out_edge1,output,-1,-1,where);
+		return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_TriEx(in_edge1,in_edge2,vertex4,output,-1,-1,where);
+		Output_TriEx(vertex4,in_edge2,out_edge1,output,-1,-1,where);
+		return;
+	}
+
+	/*	The final case is where we want to come out the opposite edge.*/
+	else
+	{
+           if( ((!reversed) && (out_edge1 == (AdjacentEx(in_edge1,in_edge2,index,size)))) ||
+                    ((reversed) && (out_edge2 == (AdjacentEx(in_edge2,in_edge1,index,size)))))
+		 {
+			/*	We need to know the orientation of the input
+				edge, so we know which way to put the diagonal.
+                    And also the output edge, so that we triangulate correctly.
+               */
+			Output_TriEx(in_edge1,in_edge2,out_edge2,output,-1,-1,where);
+			Output_TriEx(in_edge2,out_edge2,out_edge1,output,-1,-1,where);
+		 }
+		else
+		{
+			/*   Input and output orientation was reversed, so diagonal will
+				be reversed from above.
+			*/
+			Output_TriEx(in_edge1,in_edge2,out_edge1,output,-1,-1,where);
+			Output_TriEx(in_edge2,out_edge1,out_edge2,output,-1,-1,where);
+		}
+		return;
+	}
+}
+
+void Triangulate_PolygonEx(int out_edge1,int out_edge2,int in_edge1,
+					  int in_edge2,int size,int *index,
+					  FILE *output,FILE *fp,int reversed,int face_id,
+                           int where)
+{
+	/*	We have a polygon that we need to nonblindly triangulate.
+		We will recursively try to triangulate it, until we are left
+		with a polygon of size 4, which can use the quad routine
+		from above. We will be taking off a triangle at a time
+		and outputting it. We will have 3 cases similar to the
+		cases for the quad above. The inputs to this routine
+		are the same as for the quad routine.
+	*/
+
+	int vertex4;
+	int *temp;
+
+		
+	/*	Since we are calling this recursively, we have to check whether
+		we are down to the case of the quad.
+	*/
+	
+    if (size == 4)
+	{
+		Triangulate_QuadEx(out_edge1,out_edge2,in_edge1,in_edge2,size,
+					    index,output,fp,reversed,face_id,where);
+		return;
+	}
+
+    
+	
+	/*	We do not have a specified input edge, and therefore we
+		can make it anything we like, as long as we still come out 
+		the output edge that we want.
+	*/
+	if (reversed  == -1)
+	{
+		/*	Get the vertex for the last triangle, which is
+			the one coming out the output edge, before we do
+			any deletions to the list. We will be doing this
+			bottom up.
+		*/
+		vertex4 = AdjacentEx(out_edge1,out_edge2,index,size);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_ListEx(out_edge2,index,size);
+		Triangulate_PolygonEx(out_edge1,vertex4,in_edge2,
+					   	  vertex4,size-1,index,output,fp,reversed,face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		/*	Lastly do the triangle that comes out the output
+			edge.
+		*/
+		Output_TriEx(vertex4,out_edge1,out_edge2,output,-1,-1,where);
+		return;
+	}
+
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*  Are they consecutive so that we form a triangle to
+		peel off that comes out the correct output edge, 
+		but we cannot use the whole polygon?
+	*/
+	if (in_edge2 == out_edge1) 
+	{
+		/*	Output the triangle that comes out the correct
+			edge last. First recursively do the rest of the
+			polygon.
+		*/
+		/*	Do the rest of the polygon without the triangle. 
+			We will be doing a fan triangulation.
+		*/
+		/*	Get the vertex adjacent to in_edge1, but is not
+			in_edge2.
+		*/
+		vertex4 = AdjacentEx(in_edge2,in_edge1,index,size);
+		Output_TriEx(in_edge1,in_edge2,vertex4,output,-1,-1,where);
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+          Delete_From_ListEx(in_edge1,index,size);
+		Triangulate_PolygonEx(out_edge1,out_edge2,in_edge2,
+						  vertex4,size-1,index,output,fp,!reversed,face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+
+	/*	Next case is where it is again consecutive, but the triangle
+		formed by the consecutive edges do not come out of the
+		correct output edge. For this case, we can not do much to
+		keep it sequential. Try and do the fan.
+	*/
+	else if (in_edge1 == out_edge1)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = AdjacentEx(in_edge1,in_edge2,index,size);
+		Output_TriEx(in_edge1,in_edge2,vertex4,fp,-1,-1,where);
+		/*	Since that triangle goes out of the polygon (the
+			output edge of it), we can make our new input edge
+			anything we like, so we will try to make it good for
+			the strip. (This will be like starting a new strip,
+			all so that we can go out the correct output edge.)
+		*/
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_ListEx(in_edge2,index,size);
+		Triangulate_PolygonEx(out_edge1,out_edge2,in_edge1,
+						  vertex4,size-1,index,output,fp,reversed,face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = AdjacentEx(in_edge1,in_edge2,index,size);
+		Output_TriEx(in_edge2,in_edge1,vertex4,fp,-1,-1,where);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_ListEx(in_edge2,index,size);
+          Triangulate_PolygonEx(out_edge1,out_edge2,in_edge1,
+		      		       vertex4,size-1,index,output,fp,reversed,face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = AdjacentEx(in_edge2,in_edge1,index,size);
+		Output_TriEx(in_edge1,in_edge2,vertex4,fp,-1,-1,where);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_ListEx(in_edge1,index,size);
+          Triangulate_PolygonEx(out_edge1,out_edge2,vertex4,
+						  in_edge2,size-1,index,output,fp,reversed,face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+
+	/*	Else the edge is not consecutive, and it is sufficiently
+		far away, for us not to make a conclusion at this time.
+		So we can take off a triangle and recursively call this
+		function.
+	*/
+	else
+	{
+			vertex4 = AdjacentEx(in_edge2,in_edge1,index,size);
+			Output_TriEx(in_edge1,in_edge2,vertex4,fp,-1,-1,where);
+			temp = (int *) malloc(sizeof(int) * size);
+			memcpy(temp,index,sizeof(int)*size);
+			Delete_From_ListEx(in_edge1,index,size);
+               Triangulate_PolygonEx(out_edge1,out_edge2,in_edge2,
+						       vertex4,size-1,index,output,fp,!reversed,face_id,where);
+			memcpy(index,temp,sizeof(int)*size);
+		     return;
+	}
+}
+
+void TriangulateEx(int out_edge1,int out_edge2,int in_edge1,
+				 int in_edge2,int size,int *index,
+				 FILE *fp,FILE *output,int reversed,int face_id, int where)
+{
+	/*	We have the info we need to triangulate a polygon */
+
+	if (size == 4)
+		Triangulate_QuadEx(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			              index,fp,output,reversed,face_id,where);
+	else
+		Triangulate_PolygonEx(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			                 index,fp,output,reversed,face_id,where);
+}
+
+void Non_Blind_TriangulateEx(int size,int *index, FILE *fp,
+						 FILE *output,int next_face_id,int face_id,int where)
+{
+	int id1,id2,id3;
+	int nedge1,nedge2;
+	int reversed;
+	/*	We have a polygon that has to be triangulated and we cannot
+		do it blindly, ie we will try to come out on the edge that
+		has the least number of adjacencies
+	*/
+
+	Last_Edge(&id1,&id2,&id3,0);
+	/*	Find the edge that is adjacent to the new face ,
+		also return whether the orientation is reversed in the
+		face of the input edge, which is id2 and id3.
+	*/
+	if (next_face_id == -1)
+    {
+        printf("The face is -1 and the size is %d\n",size);
+        exit(0);
+    }
+    
+    reversed = Get_EdgeEx(&nedge1,&nedge2,index,next_face_id,size,id2,id3);
+	/*	Do the triangulation */
+	
+	/*	If reversed is -1, the input edge is not in the polygon, therefore we can have the
+		input edge to be anything we like, since we are at the beginning
+		of a strip
+	*/
+	TriangulateEx(nedge1,nedge2,id2,id3,size,index,fp,output,reversed,
+		         face_id, where);
+}
+
+void Rearrange_IndexEx(int *index, int size)
+{
+	/*	If we are in the middle of a strip we must find the
+		edge to start on, which is the last edge that we had
+		transmitted.
+	*/
+	int x,f,y,e1,e2,e3;
+	int increment = 1;
+     int *temp;
+
+	/*	Find where the input edge is in the input list */
+	Last_Edge(&e1,&e2,&e3,0);
+	for (y = 0; y < size; y++)
+	{
+		if (*(index+y) == e2)
+		{
+			if ((y != (size - 1)) && (*(index+y+1) == e3))
+				break;
+			else if ((y == (size - 1)) && (*(index) == e3))
+				break;
+               else if ((y != 0) && (*(index+y-1) == e3))
+               {
+                   increment = -1;
+                   break;
+               }
+               else if ((y==0) && (*(index+size-1) == e3))
+               {
+                   increment = -1;
+                   break;
+               }
+		}
+		if (*(index+y) == e3)
+		{
+			if ((y != (size - 1)) && (*(index+y+1) == e2))
+				break;
+			else if ((y == (size - 1)) && (*(index) == e2))
+				break;
+               else if ((y != 0) && (*(index+y-1) == e2))
+               {
+                   increment = -1;
+                   break;
+               }
+               else if ((y==0) && (*(index+size-1) == e2))
+               {
+                   increment = -1;
+                   break;
+               }
+		}
+		/*	Edge is not here, we are at the beginning */
+		if ((y == (size-1)) && (increment != -1))
+			return;
+	}
+	
+	/*	Now put the list into a new list, starting with the
+		input edge. Increment tells us whether we have to go 
+		forward or backward.
+	*/
+	/*	Was in good position already */
+	if ((y == 0) && (increment == 1)) 
+		return;
+	
+	            
+    temp = (int *) malloc(sizeof(int) * size);
+    memcpy(temp,index,sizeof(int)*size);
+
+	if (increment == 1)
+	{
+		x=0;
+		for (f = y ; f< size; f++)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+		/*	Finish the rest of the list */	
+		for(f = 0; f < y ; f++)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+	}
+	else
+	{
+		x=0;
+		for (f = y ; f >= 0; f--)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+		/*	Finish the rest of the list */	
+		for(f = (size - 1); f > y ; f--)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+	}
+}
+
+void Blind_TriangulateEx(int size, int *index, FILE *fp,
+						 FILE *output, BOOL begin, int where )
+{
+	/*	save sides in temp array, we need it so we know
+		about swaps.
+	*/
+	int mode, decreasing,increasing,e1,e2,e3;
+	int x = 0;
+	BOOL flag = FALSE;
+
+	/*	Rearrange the index list so that the input edge is first
+	*/
+	if (!begin)
+		Rearrange_IndexEx(index,size);
+	
+	/*	We are given a polygon of more than 3 sides
+		and want to triangulate it. We will output the
+		triangles to the output file.
+	*/
+	
+    /*	Find where the input edge is in the input list */
+	Last_Edge(&e1,&e2,&e3,0);
+     if (( (!begin) && (*(index) == e2) ) || (begin))
+     {
+	    Output_TriEx(*(index+0),*(index+1),*(index+size-1),fp,-1,-1,where);
+        /*	If we have a quad, (chances are yes), then we know that
+		we can just add one diagonal and be done. (divide the
+		quad into 2 triangles.
+        */
+        if (size == 4)
+        {
+		    Output_TriEx(*(index+1),*(index+size-1),*(index+2),fp,-1,-1,where);
+              return;
+        }
+        increasing = 1;
+        mode = 1;
+
+    }
+    else if (!begin)
+    {
+        Output_TriEx(*(index+1),*(index+0),*(index+size-1),fp,-1,-1,where);
+        if (size == 4)
+        {
+            Output_TriEx(*(index+0),*(index+size-1),*(index+2),fp,-1,-1,where);
+            return;
+        }
+        Output_TriEx(*(index+0),*(index+size-1),*(index+2),fp,-1,-1,where);
+        increasing = 2;
+        mode = 0;
+    }
+	if (size != 4)
+	{
+		/*	We do not have a quad, we have something bigger. */
+		decreasing = size - 1;
+		
+		do
+		{
+			/*	Will be alternating diagonals, so we will be increasing
+				and decreasing around the polygon.
+			*/
+			if (mode)
+			{
+				Output_TriEx(*(index+increasing),*(index+decreasing),*(index+increasing+1),fp,-1,-1,where);
+				increasing++;
+			}
+			else
+			{
+				Output_TriEx(*(index+decreasing),*(index+increasing),*(index+decreasing-1),fp,-1,-1,where);
+                    decreasing--;
+               }
+			mode = !mode;
+		} while ((decreasing - increasing) >= 2);
+
+	}
+}
+
+
diff --git a/Tools/Stripe_u/struct.c b/Tools/Stripe_u/struct.c
new file mode 100644
index 000000000..f822b1da7
--- /dev/null
+++ b/Tools/Stripe_u/struct.c
@@ -0,0 +1,549 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: struct.c
+     Contains routines that update structures, and micellaneous routines.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdlib.h>
+#include <string.h>
+#include "polverts.h"
+#include "ties.h"
+#include "output.h"
+#include "triangulate.h"
+#include "sturcts.h"
+#include "options.h"
+#include "common.h"
+#include "util.h"
+
+int out1 = -1;
+int out2 = -1;
+
+int Get_Edge(int *edge1,int *edge2,int *index,int face_id,
+	        int size, int id1, int id2)
+{
+	/*	Put the edge that is adjacent to face_id into edge1
+		and edge2. For each edge see if it is adjacent to
+		face_id. Id1 and id2 is the input edge, so see if 
+		the orientation is reversed, and save it in reversed.
+	*/
+	register int x;
+	int reversed = -1;
+	BOOL set = FALSE;
+    
+     for (x=0; x< size; x++)
+	{
+		if (x == (size-1))
+		{
+			if ((*(index) == id1) && (*(index+size-1)==id2))
+			{
+				if (set)
+                         return 1;
+				reversed = 1;
+			}
+			else if ((*(index) == id2) && (*(index+size-1)==id1))
+			{
+				if (set)
+                         return 0;
+				reversed = 0;
+			}
+				
+			if (Look_Up(*(index),*(index+size-1),face_id))
+			{
+				if ( (out1 != -1) && ( (out1 == *(index)) || (out1 == *(index+size-1)) ) &&
+                       ( (out2 == *(index)) || (out2 == *(index+size-1)) ))
+                    {
+                         set = TRUE;
+                         *edge1 = *(index);
+                         *edge2 = *(index+size-1);
+                    }
+				else if (out1 == -1)
+                    {
+                         set = TRUE;
+                         *edge1 = *(index);
+                         *edge2 = *(index+size-1);
+                    }
+				if ((reversed != -1) && (set))  
+					return reversed;
+			}
+		}		
+		else
+		{
+			if ((*(index+x) == id1) && (*(index+x+1)==id2))
+			{
+				if (set)
+                         return 0;
+				reversed = 0;
+			}
+			else if ((*(index+x) == id2) && (*(index+x+1)==id1))
+			{
+				if (set)
+					return 1;
+				reversed = 1;
+			}
+
+			if (Look_Up(*(index+x),*(index+x+1),face_id))
+			{
+				if ( (out1 != -1) && ( (out1 == *(index+x)) || (out1 == *(index+x+1)) ) &&
+                         ((out2 == *(index+x)) || (out2 == *(index+x+1))))
+                    {
+                         set = TRUE;
+                         *edge1 = *(index+x);
+                         *edge2 = *(index+x+1);
+                    }
+				else if (out1 == -1)
+                    {
+                         set = TRUE;
+                         *edge1 = *(index+x);
+				     *edge2 = *(index+x + 1);
+                    }
+				if ((reversed != -1) && (set))
+                         return reversed;
+			}
+		}
+	}			
+	if ((x == size) && (reversed != -1))
+	{
+		/*	Could not find the output edge */
+		printf("Error in the Lookup %d %d %d %d %d %d %d %d\n",face_id,id1,id2,reversed,*edge1,*edge2,out1,out2);
+		exit(0);
+	}
+	return reversed;
+}
+
+
+void Update_Face(int *next_bucket, int *min_face, int face_id, int *e1,
+				 int *e2,int temp1,int temp2,int *ties)
+{
+	/*	We have a face id that needs to be decremented.
+		We have to determine where it is in the structure,
+		so that we can decrement it.
+	*/
+	/*	The number of adjacencies may have changed, so to locate
+		it may be a little tricky. However we know that the number
+		of adjacencies is less than or equal to the original number
+		of adjacencies,
+	*/
+	int y,size,tally=0;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+	PLISTINFO lpListInfo;
+	static int each_poly = 0;
+	BOOL there = FALSE;
+
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	/*	Check each edge of the face and tally the number of adjacent
+		polygons to this face. 
+	*/	      		
+	if ( temp != NULL )
+	{
+		/*	Size of the polygon */
+        size = temp->nPolSize;
+        /*  We did it already */
+        if (size == 1)
+            return;
+        for (y = 0; y< size; y++)
+	   {
+			/*	If we are doing partial triangulation, we must check
+				to see whether the edge is still there in the polygon,
+				since we might have done a portion of the polygon
+				and saved the rest for later.
+			*/
+            if (y != (size-1))
+	  	  {
+				if( ((temp1 == *(temp->pPolygon+y)) && (temp2 ==*(temp->pPolygon+y+1)))
+					|| ((temp2 == *(temp->pPolygon+y)) && (temp1 ==*(temp->pPolygon+y+1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+		  }
+		  else
+		  {
+				if( ((temp1 == *(temp->pPolygon)) && (temp2 == *(temp->pPolygon+size-1)))
+					|| ((temp2 == *(temp->pPolygon)) && (temp1 ==*(temp->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+		  }
+	 }
+		
+      if (!there)
+		/*	Original edge was already used, we cannot use this polygon */
+			return;
+		
+	/*	We have a starting point to start our search to locate
+		this polygon. 
+	*/
+
+	/*	Check to see if this polygon was done */
+	lpListInfo = Done(face_id,59,&y);
+
+	if (lpListInfo == NULL)
+		return;
+
+     /*  Was not done, but there is an error in the adjacency calculations */
+     if (y == 0)
+     {
+            printf("There is an error in finding the adjacencies\n");
+            exit(0);
+     }
+
+     /*	Now put the face in the proper bucket depending on tally. */
+	/*	First add it to the new bucket, then remove it from the old */
+	Add_Sgi_Adj(y-1,face_id);
+	RemoveList(array[y],lpListInfo);
+        
+     /*	Save it if it was the smallest seen so far since then
+		it will be the next face 
+		Here we will have different options depending on
+		what we want for resolving ties:
+			1) First one we see we will use
+			2) Random resolving
+			3) Look ahead
+			4) Alternating direction
+	*/
+	/*	At a new strip */
+	if (*next_bucket == 60)
+		*ties = *ties + each_poly;
+	/*	Have a tie */
+	if (*next_bucket == (y-1))
+	{
+		Add_Ties(face_id);
+		each_poly++;
+	}
+	/*	At a new minimum */
+	if (*next_bucket > (y-1))
+	{
+		*next_bucket = y-1;
+		*min_face = face_id;
+		*e1 = temp1;
+		*e2 = temp2;
+		each_poly = 0;
+		Clear_Ties();
+		Add_Ties(face_id);
+	}
+     }
+}
+
+
+void Delete_Adj(int id1, int id2,int *next_bucket,int *min_face, 
+			 int current_face,int *e1,int *e2,int *ties)
+{
+	/*	Find the face that is adjacent to the edge and is not the
+		current face. Delete one adjacency from it. Save the min
+		adjacency seen so far.
+	*/
+	register int count=0;
+	PF_EDGES temp = NULL;
+	ListHead *pListHead;
+	int next_face;
+
+	/*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+	/*	It could be a new edge that we created. So we can
+		exit, since there is not a face adjacent to it.
+	*/
+		return;
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	Was a new edge that was created and therefore
+				does not have anything adjacent to it
+			*/
+			return;
+     }
+	/*	Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return;
+
+	/*	Was adjacent to something */
+	else
+	{
+		if (temp->edge[2] == current_face)
+			next_face =  temp->edge[1];
+		else 
+			next_face = temp->edge[2];
+	}
+	/*	We have the other face adjacent to this edge, it is 
+		next_face. Now we need to decrement this faces' adjacencies.
+	*/
+	Update_Face(next_bucket, min_face, next_face,e1,e2,id1,id2,ties);
+}
+
+
+int Change_Face(int face_id,int in1,int in2,
+				 ListHead *pListHead, P_ADJACENCIES temp, BOOL no_check)
+{
+	/*	We are doing a partial triangulation and we need to
+		put the new face of triangle into the correct bucket
+	*/
+	int input_adj,y;
+	
+	/*	Find the old number of adjacencies to this face,
+		so we know where to delete it from
+	*/
+	y = Old_Adj(face_id);
+	
+	/*	Do we need to change the adjacency? Maybe the edge on the triangle
+		that was outputted was not adjacent to anything. We know if we
+		have to check by "check". We came out on the output edge
+		that we needed, then we know that the adjacencies will decrease
+		by exactly one.
+	*/
+	if (!no_check)
+	{
+		input_adj = Number_Adj(in1,in2,face_id);
+		/*	If there weren't any then don't do anything */
+		if (input_adj == 0)
+			return y;
+	}
+
+	RemoveList(pListHead,(PLISTINFO)temp);
+	/*	Before we had a quad with y adjacencies. The in edge
+		did not have an adjacency, since it was just deleted,
+		since we came in on it. The outedge must have an adjacency
+		otherwise we would have a bucket 0, and would not be in this
+		routine. Therefore the new adjacency must be y-1
+	*/
+    
+    Add_Sgi_Adj(y-1,face_id);
+    return (y-1);
+}
+
+int Update_Adjacencies(int face_id, int *next_bucket, int *e1, int *e2,
+					   int *ties)
+{
+	/*	Give the face with id face_id, we want to decrement
+		all the faces that are adjacent to it, since we will
+		be deleting face_id from the data structure.
+		We will return the face that has the least number
+		of adjacencies.
+	*/
+	PF_FACES temp = NULL;
+	ListHead *pListHead;
+	int size,y,min_face = -1;
+	
+     *next_bucket = 60;
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	
+	if ( temp == NULL )
+	{
+		printf("The face was already deleted, there is an error\n");
+		exit(0);
+	}
+	
+	/*	Size of the polygon */
+	size = temp->nPolSize;
+	for (y = 0; y< size; y++)
+	{
+		if (y != (size-1))
+			Delete_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1),
+				next_bucket,&min_face,face_id,e1,e2,ties);
+		else
+			Delete_Adj(*(temp->pPolygon),*(temp->pPolygon+(size-1)),
+				next_bucket,&min_face,face_id,e1,e2,ties);
+	}
+	return (min_face);
+}
+
+
+void Find_Adj_Tally(int id1, int id2,int *next_bucket,int *min_face, 
+				int current_face,int *ties)
+{
+	/*	Find the face that is adjacent to the edge and is not the
+		current face. Save the min adjacency seen so far.
+	*/
+	int size,each_poly=0,y,tally=0,count=0;
+	PF_EDGES temp = NULL;
+	PF_FACES temp2 = NULL;
+	ListHead *pListHead;
+	int next_face;
+	BOOL there = FALSE;
+
+    
+    /*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+     /*	This was a new edge that was created, so it is
+		adjacent to nothing.
+	*/
+		return;
+
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	This was a new edge that we created */
+			return;
+     }
+	/*	Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return;
+	else
+	{
+		if (temp->edge[2] == current_face)
+			next_face =  temp->edge[1];
+		else 
+			next_face = temp->edge[2];
+	}
+	/*	We have the other face adjacent to this edge, it is 
+		next_face. Find how many faces it is adjacent to.
+	*/
+	pListHead = PolFaces[next_face];
+	temp2 = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	/*	Check each edge of the face and tally the number of adjacent 
+		polygons to this face. This will be the original number of
+		polygons adjacent to this polygon, we must then see if this
+		number has been decremented
+	*/	      		
+	if ( temp2 != NULL )
+	{
+		/*	Size of the polygon */
+		size = temp2->nPolSize;
+		/*  We did it already */
+          if (size == 1)
+            return;
+          for (y = 0; y< size; y++)
+		{
+			/*	Make sure that the edge is still in the
+				polygon and was not deleted, because if the edge was
+				deleted, then we used it already.
+			*/
+			if (y != (size-1))
+			{
+				if( ((id1 == *(temp2->pPolygon+y)) && (id2 ==*(temp2->pPolygon+y+1)))
+					|| ((id2 == *(temp2->pPolygon+y)) && (id1 ==*(temp2->pPolygon+y+1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+			else
+			{		
+				if( ((id1 == *(temp2->pPolygon)) && (id2 ==*(temp2->pPolygon+size-1)))
+					|| ((id2 == *(temp2->pPolygon)) && (id1 ==*(temp2->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+		}
+		
+		if (!there)
+			/*	Edge already used and deleted from the polygon*/
+			return;
+		
+		/*	See if the face was already deleted, and where
+			it is if it was not
+		*/
+		if (Done(next_face,size,&y) == NULL)
+			return;
+		
+		/*	Save it if it was the smallest seen so far since then
+			it will be the next face 
+			Here we will have different options depending on
+			what we want for resolving ties:
+			1) First one we see we will use
+			2) Random resolving
+			3) Look ahead
+			4) Alternating direction
+		*/
+		
+		/*	At a new strip */
+		if (*next_bucket == 60)
+			*ties = *ties + each_poly;
+		/*	Have a tie */
+		if (*next_bucket == (y-1))
+		{
+			Add_Ties(next_face);
+			each_poly++;
+		}
+		/*	At a new minimum */
+		if (*next_bucket > (y-1))
+		{
+			*next_bucket = y-1;
+			*min_face = next_face;
+			each_poly = 0;
+			Clear_Ties();
+			Add_Ties(next_face);
+		}
+	}
+}
+
+
+int Min_Face_Adj(int face_id, int *next_bucket, int *ties)
+{
+	/*	Used for the Partial triangulation to find the next
+		face. It will return the minimum adjacency face id
+		found at this face.
+	*/
+	PF_FACES temp = NULL;
+	ListHead *pListHead;
+	int size,y,min_face,test_face;
+	
+	*next_bucket = 60;
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	
+	if ( temp == NULL )
+	{
+		printf("The face was already deleted, there is an error\n");
+		exit(0);
+	}
+	
+	/*	Size of the polygon */
+	size = temp->nPolSize;
+	for (y = 0; y< size; y++)
+	{
+		if (y != (size-1))
+			Find_Adj_Tally(*(temp->pPolygon+y),*(temp->pPolygon+y+1),
+				next_bucket,&min_face,face_id,ties);
+		else
+			Find_Adj_Tally(*(temp->pPolygon),*(temp->pPolygon+(size-1)),
+				next_bucket,&min_face,face_id,ties);
+	}
+	/*    Maybe we can do better by triangulating the face, because
+          by triangulating the face we will go to a polygon of lesser
+          adjacencies
+    */
+    if (size == 4)
+    {
+         /*    Checking for a quad whether to do the whole polygon will
+               result in better performance because the triangles in the polygon
+               have less adjacencies
+         */
+         Check_In_Quad(face_id,&test_face);
+         if (*next_bucket > test_face)
+              /*    We can do better by going through the polygon */
+              min_face = face_id;
+    }
+
+    /*  We have a polygon with greater than 4 sides, check to see if going
+        inside is better than going outside the polygon for the output edge.
+    */
+    else
+    {
+        Check_In_Polygon(face_id,&test_face,size);
+        if (*next_bucket > test_face)
+            /*  We can do better by going through the polygon */
+            min_face = face_id;
+    }
+    
+    return (min_face);
+}
+
+
+
diff --git a/Tools/Stripe_u/struct.h b/Tools/Stripe_u/struct.h
new file mode 100644
index 000000000..6eb036cb4
--- /dev/null
+++ b/Tools/Stripe_u/struct.h
@@ -0,0 +1,6 @@
+
+struct vert_struct {
+	VRDATA	x, y, z;	/* point coordinates */
+};
+
+
diff --git a/Tools/Stripe_u/structex.c b/Tools/Stripe_u/structex.c
new file mode 100644
index 000000000..06adba7b5
--- /dev/null
+++ b/Tools/Stripe_u/structex.c
@@ -0,0 +1,553 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: structex.c
+     This file contains routines that are used for various functions in
+     the local algorithm.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdlib.h>
+#include <string.h>
+#include "polverts.h"
+#include "ties.h"
+#include "outputex.h"
+#include "triangulatex.h"
+#include "sturctsex.h"
+#include "options.h"
+#include "common.h"
+#include "util.h"
+
+int out1Ex = -1;
+int out2Ex = -1;
+
+int Get_EdgeEx(int *edge1,int *edge2,int *index,int face_id,
+			int size, int id1, int id2)
+{
+	/*	Put the edge that is adjacent to face_id into edge1
+		and edge2. For each edge see if it is adjacent to
+		face_id. Id1 and id2 is the input edge, so see if 
+		the orientation is reversed, and save it in reversed.
+	*/
+	int x;
+	int reversed = -1;
+	BOOL set = FALSE;
+
+     for (x=0; x< size; x++)
+	{
+		if (x == (size-1))
+		{
+			if ((*(index) == id1) && (*(index+size-1)==id2))
+			{
+				if (set)
+                         return 1;
+				reversed = 1;
+			}
+			else if ((*(index) == id2) && (*(index+size-1)==id1))
+			{
+				if (set)
+                         return 0;
+				reversed = 0;
+			}
+				
+			if (Look_Up(*(index),*(index+size-1),face_id))
+			{
+				if ( (out1Ex != -1) && ( (out1Ex == *(index)) || (out1Ex == *(index+size-1)) ) &&
+                       ( (out2Ex == *(index)) || (out2Ex == *(index+size-1)) ))
+                    {
+                         set = TRUE;
+                         *edge1 = *(index);
+                         *edge2 = *(index+size-1);
+                    }
+				else if (out1Ex == -1)
+                    {
+                         set = TRUE;
+                         *edge1 = *(index);
+                         *edge2 = *(index+size-1);
+                    }
+				if ((reversed != -1) && (set))  
+					return reversed;
+			}
+		}		
+		else
+		{
+			if ((*(index+x) == id1) && (*(index+x+1)==id2))
+			{
+				if (set)
+                         return 0;
+				reversed = 0;
+			}
+			else if ((*(index+x) == id2) && (*(index+x+1)==id1))
+			{
+				if (set)
+					return 1;
+				reversed = 1;
+			}
+
+			if (Look_Up(*(index+x),*(index+x+1),face_id))
+			{
+				if ( (out1Ex != -1) && ( (out1Ex == *(index+x)) || (out1Ex == *(index+x+1)) ) &&
+                        ((out2Ex == *(index+x)) || (out2Ex == *(index+x+1))))
+                    {
+                         set = TRUE;
+                         *edge1 = *(index+x);
+                         *edge2 = *(index+x+1);
+                    }
+				else if (out1Ex == -1)
+                    {
+                         set = TRUE;
+                         *edge1 = *(index+x);
+				     *edge2 = *(index+x + 1);
+                    }
+				if ((reversed != -1) && (set))
+                         return reversed;
+			}
+		}
+	}			
+	if ((x == size) && (reversed != -1))
+	{
+		/*	Could not find the output edge */
+		printf("Error in the Lookup %d %d %d %d %d %d %d %d\n",face_id,id1,id2,reversed,*edge1,*edge2,out1Ex,out2Ex);
+		exit(0);
+	}
+	return reversed;
+}
+
+
+void Update_FaceEx(int *next_bucket, int *min_face, int face_id, int *e1,
+			    int *e2,int temp1,int temp2,int *ties)
+{
+	/*	We have a face id that needs to be decremented.
+		We have to determine where it is in the structure,
+		so that we can decrement it.
+	*/
+	/*	The number of adjacencies may have changed, so to locate
+		it may be a little tricky. However we know that the number
+		of adjacencies is less than or equal to the original number
+		of adjacencies,
+	*/
+	int y,size,tally=0;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+	PLISTINFO lpListInfo;
+	static int each_poly = 0;
+	BOOL there = FALSE;
+
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	/*	Check each edge of the face and tally the number of adjacent
+		polygons to this face. 
+	*/	      		
+	if ( temp != NULL )
+	{
+		/*	Size of the polygon */
+        size = temp->nPolSize;
+        for (y = 0; y< size; y++)
+		{
+			/*	If we are doing partial triangulation, we must check
+				to see whether the edge is still there in the polygon,
+				since we might have done a portion of the polygon
+				and saved the rest for later.
+			*/
+               if (y != (size-1))
+			{
+				if( ((temp1 == *(temp->pPolygon+y)) && (temp2 ==*(temp->pPolygon+y+1)))
+					|| ((temp2 == *(temp->pPolygon+y)) && (temp1 ==*(temp->pPolygon+y+1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+			else
+			{
+				if( ((temp1 == *(temp->pPolygon)) && (temp2 == *(temp->pPolygon+size-1)))
+					|| ((temp2 == *(temp->pPolygon)) && (temp1 ==*(temp->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+		}
+		
+          if (!there)
+		/*	Original edge was already used, we cannot use this polygon */
+			return;
+		
+		/*	We have a starting point to start our search to locate
+			this polygon. 
+		*/
+
+		/*	Check to see if this polygon was done */
+		lpListInfo = Done(face_id,59,&y);
+
+		if (lpListInfo == NULL)
+			return;
+
+          /*  Was not done, but there is an error in the adjacency calculations */
+          /*     If more than one edge is adj to it then maybe it was not updated */
+          if (y == 0)
+            return;
+			
+		/*	Now put the face in the proper bucket depending on tally. */
+		/*	First add it to the new bucket, then remove it from the old */
+		Add_Sgi_Adj(y-1,face_id);
+		RemoveList(array[y],lpListInfo);
+        
+          /*	Save it if it was the smallest seen so far since then
+			it will be the next face 
+			Here we will have different options depending on
+			what we want for resolving ties:
+			1) First one we see we will use
+			2) Random resolving
+			3) Look ahead
+			4) Alternating direction
+		*/
+		/*	At a new strip */
+		if (*next_bucket == 60)
+			*ties = *ties + each_poly;
+		/*	Have a tie */
+		if (*next_bucket == (y-1))
+		{
+			Add_Ties(face_id);
+			each_poly++;
+		}
+		/*	At a new minimum */
+		if (*next_bucket > (y-1))
+		{
+			*next_bucket = y-1;
+			*min_face = face_id;
+			*e1 = temp1;
+			*e2 = temp2;
+			each_poly = 0;
+			Clear_Ties();
+			Add_Ties(face_id);
+		}
+	}
+}
+
+
+void Delete_AdjEx(int id1, int id2,int *next_bucket,int *min_face, 
+				int current_face,int *e1,int *e2,int *ties)
+{
+	/*	Find the face that is adjacent to the edge and is not the
+		current face. Delete one adjacency from it. Save the min
+		adjacency seen so far.
+	*/
+	register int count=0;
+	PF_EDGES temp = NULL;
+	ListHead *pListHead;
+	int next_face;
+
+	/*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+	/*	It could be a new edge that we created. So we can
+		exit, since there is not a face adjacent to it.
+	*/
+		return;
+     while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	Was a new edge that was created and therefore
+				does not have anything adjacent to it
+			*/
+			return;
+    }
+	/*	Was not adjacent to anything else except itself */
+    if (temp->edge[2] == -1)
+		return;
+
+    /*	Was adjacent to something */
+    else
+    {
+		if (temp->edge[2] == current_face)
+			next_face =  temp->edge[1];
+		else 
+			next_face = temp->edge[2];
+	}
+	/*	We have the other face adjacent to this edge, it is 
+		next_face. Now we need to decrement this faces' adjacencies.
+	*/
+	Update_FaceEx(next_bucket, min_face, next_face,e1,e2,id1,id2,ties);
+}
+
+int Change_FaceEx(int face_id,int in1,int in2,
+				 ListHead *pListHead, P_ADJACENCIES temp, BOOL no_check)
+{
+	/*	We are doing a partial triangulation and we need to
+		put the new face of triangle into the correct bucket
+	*/
+	int input_adj,y;
+     P_ADJACENCIES pfNode,lpListInfo;
+	
+     /*	Find the old number of adjacencies to this face,
+		so we know where to delete it from
+	*/
+	y = Old_Adj(face_id);
+	pListHead = array[y];
+
+     pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+	if ( pfNode )
+		pfNode->face_id = face_id;
+	lpListInfo = (P_ADJACENCIES) (SearchList(array[y], pfNode,
+                  (int (*)(void *,void *)) (Compare)));
+	if (lpListInfo == NULL)
+	{
+		printf("There is an error finding the next polygon3 %d\n",face_id);
+		exit(0);
+	}
+
+     /*	Do we need to change the adjacency? Maybe the edge on the triangle
+		that was outputted was not adjacent to anything. We know if we
+		have to check by "check". We came out on the output edge
+		that we needed, then we know that the adjacencies will decrease
+		by exactly one.
+	*/
+	if (!no_check)
+	{
+		input_adj = Number_Adj(in1,in2,face_id);
+		/*	If there weren't any then don't do anything */
+		if (input_adj == 0)
+			return y;
+	}
+     
+	RemoveList(pListHead,(PLISTINFO)/*(temp*/lpListInfo);
+	/*	Before we had a quad with y adjacencies. The in edge
+		did not have an adjacency, since it was just deleted,
+		since we came in on it. The outedge must have an adjacency
+		otherwise we would have a bucket 0, and would not be in this
+		routine. Therefore the new adjacency must be y-1
+	*/
+    
+    Add_Sgi_Adj(y-1,face_id);
+    return (y-1);
+}
+
+int Update_AdjacenciesEx(int face_id, int *next_bucket, int *e1, int *e2,
+					int *ties)
+{
+	/*	Give the face with id face_id, we want to decrement
+		all the faces that are adjacent to it, since we will
+		be deleting face_id from the data structure.
+		We will return the face that has the least number
+		of adjacencies.
+	*/
+	PF_FACES temp = NULL;
+	ListHead *pListHead;
+	int size,y,min_face = -1;
+	
+     *next_bucket = 60;
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	
+	if ( temp == NULL )
+	{
+		printf("The face was already deleted, there is an error\n");
+		exit(0);
+	}
+	
+	/*	Size of the polygon */
+	size = temp->nPolSize;
+	for (y = 0; y< size; y++)
+	{
+		if (y != (size-1))
+			Delete_AdjEx(*(temp->pPolygon+y),*(temp->pPolygon+y+1),
+				next_bucket,&min_face,face_id,e1,e2,ties);
+		else
+			Delete_AdjEx(*(temp->pPolygon),*(temp->pPolygon+(size-1)),
+				next_bucket,&min_face,face_id,e1,e2,ties);
+	}
+	return (min_face);
+}
+
+
+
+void Find_Adj_TallyEx(int id1, int id2,int *next_bucket,int *min_face, 
+			       int current_face,int *ties)
+{
+	/*	Find the face that is adjacent to the edge and is not the
+		current face. Save the min adjacency seen so far.
+	*/
+	int size,each_poly=0,y,tally=0,count=0;
+	PF_EDGES temp = NULL;
+	PF_FACES temp2 = NULL;
+	ListHead *pListHead;
+	int next_face;
+	BOOL there = FALSE;
+
+    
+    /*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+     /*	This was a new edge that was created, so it is
+		adjacent to nothing.
+	*/
+		return;
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	This was a new edge that we created */
+			return;
+     }
+	/*	Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return;
+	else
+	{
+		if (temp->edge[2] == current_face)
+			next_face =  temp->edge[1];
+		else 
+			next_face = temp->edge[2];
+	}
+	/*	We have the other face adjacent to this edge, it is 
+		next_face. Find how many faces it is adjacent to.
+	*/
+	pListHead = PolFaces[next_face];
+	temp2 = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	/*	Check each edge of the face and tally the number of adjacent 
+		polygons to this face. This will be the original number of
+		polygons adjacent to this polygon, we must then see if this
+		number has been decremented
+	*/	      		
+	if ( temp2 != NULL )
+	{
+		/*	Size of the polygon */
+		size = temp2->nPolSize;
+		for (y = 0; y< size; y++)
+		{
+			/*	Make sure that the edge is still in the
+				polygon and was not deleted, because if the edge was
+				deleted, then we used it already.
+			*/
+			if (y != (size-1))
+			{
+				if( ((id1 == *(temp2->pPolygon+y)) && (id2 ==*(temp2->pPolygon+y+1)))
+					|| ((id2 == *(temp2->pPolygon+y)) && (id1 ==*(temp2->pPolygon+y+1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+			else
+			{		
+				if( ((id1 == *(temp2->pPolygon)) && (id2 ==*(temp2->pPolygon+size-1)))
+					|| ((id2 == *(temp2->pPolygon)) && (id1 ==*(temp2->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+		}
+		
+		if (!there)
+			/*	Edge already used and deleted from the polygon*/
+			return;
+		
+		/*	See if the face was already deleted, and where
+			it is if it was not
+		*/
+		if (Done(next_face,size,&y) == NULL)
+			return;
+		
+		/*	Save it if it was the smallest seen so far since then
+			it will be the next face 
+			Here we will have different options depending on
+			what we want for resolving ties:
+			1) First one we see we will use
+			2) Random resolving
+			3) Look ahead
+			4) Alternating direction
+		*/
+					
+		/*	At a new strip */
+		if (*next_bucket == 60)
+			*ties = *ties + each_poly;
+		/*	Have a tie */
+		if (*next_bucket == (y-1))
+		{
+			Add_Ties(next_face);
+			each_poly++;
+		}
+		/*	At a new minimum */
+		if (*next_bucket > (y-1))
+		{
+			*next_bucket = y-1;
+			*min_face = next_face;
+			each_poly = 0;
+			Clear_Ties();
+			Add_Ties(next_face);
+		}
+	}
+}
+
+
+int Min_Face_AdjEx(int face_id, int *next_bucket, int *ties)
+{
+	/*	Used for the Partial triangulation to find the next
+		face. It will return the minimum adjacency face id
+		found at this face.
+	*/
+	PF_FACES temp = NULL;
+	ListHead *pListHead;
+	int size,y,min_face,test_face;
+	
+	*next_bucket = 60;
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	
+	if ( temp == NULL )
+	{
+		printf("The face was already deleted, there is an error\n");
+		exit(0);
+	}
+	
+	/*	Size of the polygon */
+	size = temp->nPolSize;
+	for (y = 0; y< size; y++)
+	{
+		if (y != (size-1))
+			Find_Adj_TallyEx(*(temp->pPolygon+y),*(temp->pPolygon+y+1),
+				next_bucket,&min_face,face_id,ties);
+		else
+			Find_Adj_TallyEx(*(temp->pPolygon),*(temp->pPolygon+(size-1)),
+				next_bucket,&min_face,face_id,ties);
+	}
+	/*    Maybe we can do better by triangulating the face, because
+          by triangulating the face we will go to a polygon of lesser
+          adjacencies
+    */
+    if (size == 4)
+    {
+         /*    Checking for a quad whether to do the whole polygon will
+               result in better performance because the triangles in the polygon
+               have less adjacencies
+         */
+         Check_In_Quad(face_id,&test_face);
+         if (*next_bucket > test_face)
+              /*    We can do better by going through the polygon */
+              min_face = face_id;
+    }
+
+    /*  We have a polygon with greater than 4 sides, check to see if going
+        inside is better than going outside the polygon for the output edge.
+    */
+    else
+    {
+        Check_In_Polygon(face_id,&test_face,size);
+        if (*next_bucket > test_face)
+            /*  We can do better by going through the polygon */
+            min_face = face_id;
+    }
+    
+    return (min_face);
+}
+
+
diff --git a/Tools/Stripe_u/sturcts.h b/Tools/Stripe_u/sturcts.h
new file mode 100644
index 000000000..07a2bbf97
--- /dev/null
+++ b/Tools/Stripe_u/sturcts.h
@@ -0,0 +1,31 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: sturcts.h
+-----------------------------------------------------------------------*/
+
+#define EVEN(x) (((x) & 1) == 0)
+
+BOOL Get_Edge();
+void add_vert_id();
+void Update_Face();
+int Min_Adj();
+int Min_Face_Adj();
+int Change_Face();
+void Delete_Adj();
+int Update_Adjacencies();
+int Get_Output_Edge();
+int Find_Face();
+
+
+
+
+
+
+
diff --git a/Tools/Stripe_u/sturctsex.h b/Tools/Stripe_u/sturctsex.h
new file mode 100644
index 000000000..550228306
--- /dev/null
+++ b/Tools/Stripe_u/sturctsex.h
@@ -0,0 +1,28 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE:sturctsex.h
+-----------------------------------------------------------------------*/
+
+#define EVEN(x) (((x) & 1) == 0)
+
+BOOL Get_EdgeEx();
+void add_vert_idEx();
+void Update_FaceEx();
+int Min_Face_AdjEx();
+int Change_FaceEx();
+void Delete_AdjEx();
+int Number_AdjEx();
+int Update_AdjacenciesEx();
+
+
+
+
+
+
diff --git a/Tools/Stripe_u/ties.c b/Tools/Stripe_u/ties.c
new file mode 100644
index 000000000..e1a64545c
--- /dev/null
+++ b/Tools/Stripe_u/ties.c
@@ -0,0 +1,304 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*	STRIPE: ties.c
+     This file will contain all the routines used to determine the next face if there
+	is a tie
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdlib.h>
+#include "polverts.h"
+#include "ties.h"
+#include "sturctsex.h"
+#include "triangulatex.h"
+#include "options.h"
+#include "common.h"
+#include "util.h"
+
+#define MAX_TIE 60
+int ties_array[60];
+int last = 0;
+
+void Clear_Ties()
+{
+	/*	Clear the buffer, because we do not have the tie
+		any more that we had before */
+	last = 0;
+}
+
+void Add_Ties(int id)
+{
+	/*	We have a tie to add to the buffer */
+	ties_array[last++] = id;
+}
+
+int Alternate_Tie()
+{
+	/*	Alternate in what we choose to break the tie 
+		We are just alternating between the first and
+		second thing that we found
+	*/
+	static int x = 0;
+	register int t;
+	
+	t = ties_array[x];
+	x++;
+	if (x == 2)
+		x = 0;
+	return t;
+}
+
+int Random_Tie()
+{
+	/*	Randomly choose the next face with which
+		to break the tie
+	*/
+	register int num;
+
+	num = rand();
+	while (num >= last)
+		num = num/20;
+	return (ties_array[num]);
+}
+
+int Look_Ahead(int id)
+{
+	/*	Look ahead at this face and save the minimum
+		adjacency of all the faces that are adjacent to
+		this face.
+	*/
+	return Min_Adj(id);
+}
+
+int Random_Look(int id[],int count)
+{
+	/*	We had a tie within a tie in the lookahead, 
+		break it randomly 
+	*/
+	register int num;
+
+	num = rand();
+	while (num >= count)
+		num = num/20;
+	return (id[num]);
+}
+
+
+int Look_Ahead_Tie()
+{
+	/*	Look ahead and find the face to go to that
+		will give the least number of adjacencies
+	*/
+	int id[60],t,x,f=0,min = 60;
+
+	for (x = 0; x < last; x++)
+	{
+		t = Look_Ahead(ties_array[x]);
+		/*	We have a tie */
+		if (t == min)
+			id[f++] = ties_array[x];
+		if (t < min)
+		{
+			f = 0;
+			min = t;
+			id[f++] = ties_array[x];
+		}
+	}
+	/*	No tie within the tie */
+	if ( f == 1)
+		return id[0];
+	/*	Or ties, but we are at the end of strips */
+	if (min == 0)
+		return id[0];
+	return (Random_Look(id,f));
+}
+
+
+int Sequential_Tri(int *index)
+{
+    /*  We have a triangle and need to break the ties at it.
+        We will choose the edge that is sequential. There
+        is definitely one since we know we have a triangle
+        and that there is a tie and there are only 2 edges
+        for the tie.
+    */
+    int reversed, e1,e2,e3,output1,output2,output3,output4;
+
+    /*  e2 and e3 are the input edge to the triangle */
+    Last_Edge(&e1,&e2,&e3,0);
+    
+    if ((e2 == 0) && (e3 == 0))
+        /*  Starting the strip, don't need to do this */
+        return ties_array[0];
+
+    /*  For the 2 ties find the edge adjacent to face id */
+    reversed = Get_EdgeEx(&output1,&output2,index,ties_array[0],3,0,0);
+    reversed = Get_EdgeEx(&output3,&output4,index,ties_array[1],3,0,0);
+
+    if ((output1 == e3) || (output2 == e3))
+        return ties_array[0];
+    if ((output3 == e3) || (output4 == e3))
+        return ties_array[1];
+    printf("There is an error trying to break sequential triangle \n");
+}
+
+int Sequential_Quad(int *index,	int triangulate)
+{
+    /*  We have a quad that need to break its ties, we will try
+        and choose a side that is sequential, otherwise use lookahead
+    */
+    int reversed,output1,output2,x,e1,e2,e3;
+
+    /*  e2 and e3 are the input edge to the quad */
+    Last_Edge(&e1,&e2,&e3,0);
+
+    /*  No input edge */
+    if ((e2 == 0) && (e3 == 0))
+        return ties_array[0];
+
+	/*  Go through the ties and see if there is a sequential one */
+    for (x = 0; x < last; x++)
+	{
+        reversed = Get_EdgeEx(&output1,&output2,index,ties_array[x],4,0,0);
+        /*  Partial and whole triangulation will have different requirements */
+        if (((output1 == e3) || (output2 == e3)) && (triangulate == PARTIAL))
+            return ties_array[x];
+        if (((output1 != e3) && (output1 != e2) &&
+                (output2 != e3) && (output2 != e2)))
+            return ties_array[x];
+    }
+    /*  There was not a tie that was sequential */
+	return Look_Ahead_Tie();
+}
+
+void Whole_Output(int in1,int in2, int *index, int size, int *out1, int *out2)
+{
+    /*  Used to sequentially break ties in the whole triangulation for polygons
+        greater than 4 sides. We will find the output edge that is good
+        for sequential triangulation.
+    */
+
+    int half;
+    
+    /*  Put the input edge first in the list */
+    Rearrange_IndexEx(index,size);
+
+    if (!(EVEN(size)))
+    {
+        if (*(index) == in1)
+            half = size/2 ;
+        else
+            half = size/2 +1;
+    }
+    else
+        half = size/2;
+
+    *out1 = *(index+half);
+    *out2 = *(index+half+1);
+}
+
+int Sequential_Poly(int size, int *index, int triangulate)
+{
+    /*  We have a polygon of greater than 4 sides and wish to break the
+        tie in the most sequential manner.
+    */
+
+    int x,reversed,output1,output2,e1,e2,e3,saved1=-1,saved2=-1,output3,output4;
+    
+    /*  e2 and e3 are the input edge to the quad */
+    Last_Edge(&e1,&e2,&e3,0);
+
+    /*  If we are using whole, find the output edge that is sequential */
+    if (triangulate == WHOLE)
+        Whole_Output(e2,e3,index,size,&output3,&output4);
+
+    /*  No input edge */
+    if ((e2 == 0) && (e3 == 0))
+        return ties_array[0];
+    
+    for (x = 0; x < last ; x++)
+    {
+        reversed = Get_EdgeEx(&output1,&output2,index,ties_array[x],size,0,0);
+        /*  Partial that can be removed in just one triangle */
+        if (((output1 == e3) || (output2 == e3)) && (triangulate == PARTIAL))
+            saved1 = ties_array[x];
+        /*  Partial removed in more than one triangle */
+        if ((output1 != e3) && (output1 != e2) && (output2 != e3) && (output2 != e2) &&
+            (triangulate == PARTIAL) && (saved2 != -1))
+            saved2 = ties_array[x];
+        /*  Whole is not so easy, since the whole polygon must be done. Given
+            an input edge there is only one way to come out, approximately half
+            way around the polygon.
+        */
+        if (((output1 == output3) && (output2 == output4)) ||
+            ((output1 == output4) && (output2 == output3)) &&
+            (triangulate == WHOLE))
+            return ties_array[x];
+    }
+    
+    if (saved1 != -1)
+        return saved1;
+    if (saved2 != -1)
+        return saved2;
+    
+    /*  There was not a tie that was sequential */
+    return Look_Ahead_Tie();
+}
+
+int Sequential_Tie(int face_id,int triangulate)
+{
+    /*  Break the tie by choosing the face that will
+        not give us a swap and is sequential. If there
+        is not one, then do the lookahead to break the
+        tie.
+    */
+    /*  Separate into 3 cases for simplicity, if the current
+        polygon has 3 sides, 4 sides or if the sides were 
+        greater. We can do the smaller cases faster, so that
+        is why I separated the cases.
+    */
+
+     ListHead *pListFace;
+	PF_FACES face;
+
+    /*	Get the polygon with id face_id */
+	pListFace  = PolFaces[face_id];
+	face = (PF_FACES) PeekList(pListFace,LISTHEAD,0);
+
+     if (face->nPolSize == 3)
+        return(Sequential_Tri(face->pPolygon));
+     if (face->nPolSize == 4)
+        return(Sequential_Quad(face->pPolygon,triangulate));
+     else
+        return(Sequential_Poly(face->nPolSize,face->pPolygon,triangulate));
+
+}
+
+int Get_Next_Face(int t, int face_id, int triangulate)
+{
+	/*	Get the next face depending on what
+		the user specified
+	*/
+	
+	/*	Did not have a tie, don't do anything */
+	if (last == 1)
+		return(ties_array[0]);
+	if (t == RANDOM)
+		return Random_Tie();
+	if (t == ALTERNATE)
+		return Alternate_Tie();
+	if (t == LOOK)
+		return Look_Ahead_Tie();
+     if (t == SEQUENTIAL)
+        return Sequential_Tie(face_id,triangulate);
+
+	printf("Illegal option specified for ties, using first \n");
+     return (ties_array[0]);
+}
diff --git a/Tools/Stripe_u/ties.h b/Tools/Stripe_u/ties.h
new file mode 100644
index 000000000..97e051765
--- /dev/null
+++ b/Tools/Stripe_u/ties.h
@@ -0,0 +1,15 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: ties.h
+-----------------------------------------------------------------------*/
+
+void Clear_Ties();
+void Add_Ties();
+int Get_Next_Face();
diff --git a/Tools/Stripe_u/triangulate.h b/Tools/Stripe_u/triangulate.h
new file mode 100644
index 000000000..de612119f
--- /dev/null
+++ b/Tools/Stripe_u/triangulate.h
@@ -0,0 +1,23 @@
+
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: triangulate.h
+-----------------------------------------------------------------------*/
+
+void Blind_Triangulate();
+void Non_Blind_Triangulate();
+int Adjacent();
+void Delete_From_List();
+void Triangulate_Polygon();
+void Rearrange_Index();
+void Find_Local_Strips();
+
+
+
diff --git a/Tools/Stripe_u/triangulatex.h b/Tools/Stripe_u/triangulatex.h
new file mode 100644
index 000000000..1710f0182
--- /dev/null
+++ b/Tools/Stripe_u/triangulatex.h
@@ -0,0 +1,23 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: triangulatex.h
+-----------------------------------------------------------------------*/
+
+enum swap_type
+{ ON, OFF};
+
+void SGI_StripEx();
+void Blind_TriangulateEx();
+void Non_Blind_TriangulateEx();
+int AdjacentEx();
+void Delete_From_ListEx();
+void Triangulate_PolygonEx();
+void Rearrange_IndexEx();
+void Find_StripsEx();
diff --git a/Tools/Stripe_u/util.c b/Tools/Stripe_u/util.c
new file mode 100644
index 000000000..f17fe5f7c
--- /dev/null
+++ b/Tools/Stripe_u/util.c
@@ -0,0 +1,272 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: util.c
+     This file contains routines that are used for various functions
+*/
+/*---------------------------------------------------------------------*/
+
+
+#include <stdlib.h>
+#include "polverts.h"
+
+void switch_lower (int *x, int *y)
+{
+	register int temp;
+	
+	/*	Put lower value in x */
+	if (*y < *x)
+	{
+		temp = *x;
+		*x = *y;
+		*y = temp;
+	}
+}
+
+BOOL member(int x , int id1, int id2, int id3)
+{
+    /*  Is x in the triangle specified by id1,id2,id3 */
+    if ((x != id1) && (x != id2) && (x != id3))
+	return FALSE;
+    return TRUE;
+}
+
+
+int Compare (P_ADJACENCIES node1, P_ADJACENCIES node2)
+{
+	/*	This will only return whether 2 adjacency nodes
+		are equivalent.								  
+	*/
+	if (node1->face_id == node2->face_id)
+		return TRUE;
+	else
+		return FALSE;
+}
+
+
+BOOL Exist(int face_id, int id1, int id2)
+{
+	/*	Does the edge specified by id1 and id2 exist in this
+		face currently? Maybe we deleted in partial triangulation
+	*/
+	ListHead *pListHead;
+	PF_FACES temp;
+	register int x,size;
+	BOOL a=FALSE,b =FALSE; 
+
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	size = temp->nPolSize;
+	for (x=0; x<size; x++)
+	{
+		if (*(temp->pPolygon+x) == id1)
+			a = TRUE;
+		if (*(temp->pPolygon+x) == id2)
+			b = TRUE;
+		if (a && b)
+			return TRUE;
+	}
+	return FALSE;
+}
+
+int Get_Next_Id(int *index,int e3, int size)
+{
+    /*  Return the id following e3 in the list of vertices */
+
+    register int x;
+
+    for (x = 0; x< size; x++)
+    {
+        if ((*(index+x) == e3) && (x != (size-1)))
+            return *(index+x+1);
+        else if (*(index+x) == e3)
+            return *(index);
+    }
+    printf("There is an error in the next id\n");
+    exit(0);
+}
+
+int Different (int id1,int id2,int id3,int id4,int id5, int id6, int *x, int *y)
+{
+    /*    Find the vertex in the first 3 numbers that does not exist in 
+	     the last three numbers
+    */
+    if ((id1 != id4) && (id1 != id5) && (id1 != id6))
+    {
+	*x = id2;
+	*y = id3;
+	return id1;
+    }
+    if ((id2 != id4) && (id2 != id5) && (id2 != id6))
+    {
+	*x = id1;
+	*y = id3;
+	return id2;
+    }
+    if ((id3 != id4) && (id3 != id5) && (id3 != id6))
+    {
+	*x = id1;
+	*y = id2;
+	return id3;
+    }
+    
+    /*  Because there are degeneracies in the data, this might occur */
+    *x = id5;
+    *y = id6;
+    return id4;
+}
+
+int Return_Other(int *index,int e1,int e2)
+{
+	/*   We have a triangle and want to know the third vertex of it */
+	register int x;
+
+	for (x=0;x<3;x++)
+	{
+		if ((*(index+x) != e1) && (*(index+x) != e2))
+			return *(index+x);
+	}
+     /*   If there is a degenerate triangle return arbitrary */
+     return e1;
+}
+
+int Get_Other_Vertex(int id1,int id2,int id3,int *index)
+{
+	/*	We have a list index of 4 numbers and we wish to
+          return the number that is not id1,id2 or id3
+	*/
+	register int x;
+
+	for (x=0; x<4; x++)
+	{
+		if ((*(index+x) != id1) && (*(index+x) != id2) &&
+			(*(index+x) != id3))
+			return *(index+x);
+	}
+	/*   If there is some sort of degeneracy this might occur,
+          return arbitrary 
+     */
+     if (x==4)
+          return id1;
+}
+
+
+PLISTINFO Done(int face_id, int size, int *bucket)
+{
+	/*	Check to see whether the polygon with face_id was used
+		already, return NULL if it was, otherwise return a pointer to the face.
+	*/
+	P_ADJACENCIES pfNode;
+	register int y;
+	PLISTINFO lpListInfo;
+	
+	pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+	if ( pfNode )
+		pfNode->face_id = face_id;
+		
+	for (y=size; ; y--)
+	{
+		lpListInfo = SearchList(array[y], pfNode,
+			(int (*)(void *,void *)) (Compare));
+		if (lpListInfo != NULL)
+		{
+			*bucket = y;
+			return lpListInfo;
+		}
+		if (y == 0)
+		/*	This adjacent face was done already */
+			return lpListInfo;
+	}
+	free (pfNode);
+}
+
+void Output_Edge(int *index,int e2,int e3,int *output1,int *output2)
+{
+    /*  Given a quad and an input edge return the other 2 vertices of the
+        quad.
+    */
+    
+    *output1 = -1;
+    *output2 = -1;
+
+    if ((*(index) != e2) && (*(index) != e3))
+        *output1 = *(index);
+
+    if ((*(index+1) != e2) && (*(index+1) != e3))
+    {
+        if (*output1 == -1)
+            *output1 = *(index+1);
+        else
+        {
+            *output2 = *(index+1);
+            return;
+        }
+    }
+
+    if ((*(index+2) != e2) && (*(index+2) != e3))
+    {
+        if (*output1 == -1)
+            *output1 = *(index+2);
+        else
+        {
+            *output2 = *(index+2);
+            return;
+        }
+    }
+
+    *output2 = *(index+3);
+}
+
+
+void First_Edge(int *id1,int *id2, int *id3)
+{
+    /*  Get the first triangle in the strip we just found, we will use this to
+	   try to extend backwards in the strip
+    */
+
+    ListHead *pListHead;
+    register int num;
+    P_STRIPS temp1,temp2,temp3;
+	 
+    pListHead = strips[0];
+    num = NumOnList(pListHead);
+     
+    /*    Did not have a strip */
+    if (num < 3)
+         return;
+	  
+    temp1 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 0);
+    temp2 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 1);
+    temp3 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 2);
+    *id1 = temp1->face_id;
+    *id2 = temp2->face_id;
+    *id3 = temp3->face_id;
+ 
+}
+
+void Last_Edge(int *id1, int *id2, int *id3, BOOL save)
+{
+	/*   We need the last edge that we had  */
+	static int v1, v2, v3;
+
+	if (save)
+	{
+		v1 = *id1;
+		v2 = *id2;
+		v3 = *id3;
+	}
+	else
+	{
+		*id1 = v1;
+		*id2 = v2;
+		*id3 = v3;
+	}
+}
+
+
diff --git a/Tools/Stripe_u/util.h b/Tools/Stripe_u/util.h
new file mode 100644
index 000000000..2b43a4d35
--- /dev/null
+++ b/Tools/Stripe_u/util.h
@@ -0,0 +1,24 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: util.h
+-----------------------------------------------------------------------*/
+
+void switch_lower ();
+int Compare ();
+BOOL Exist();
+int Get_Next_Id();
+int Different();
+int Return_Other();
+int Get_Other_Vertex();
+PLISTINFO Done();
+void Output_Edge();
+void Last_Edge();
+void First_Edge();
+BOOL member();
diff --git a/Tools/Stripe_w/Makefile.am b/Tools/Stripe_w/Makefile.am
new file mode 100644
index 000000000..ac0280b8a
--- /dev/null
+++ b/Tools/Stripe_w/Makefile.am
@@ -0,0 +1,27 @@
+bin_PROGRAMS = strips
+
+strips_SOURCES = \
+	add.c add.h \
+	bands.c \
+	common.c common.h \
+	extend.h \
+	free.c free.h \
+	global.h \
+	init.c init.h \
+	local.c local.h \
+	newpolve.c \
+	options.c options.h \
+	output.c output.h \
+	outputex.c outputex.h \
+	partial.c partial.h \
+	polverts.h polyvertsex.h \
+	queue.c queue.h \
+	sgi_triang.c sgi_triangex.c \
+	struct.c \
+	structex.c \
+	sturcts.h sturctsex.h \
+	ties.c ties.h \
+	triangulate.h triangulatex.h \
+	util.c util.h
+
+strips_LDADD = $(base_LIBS)
diff --git a/Tools/Stripe_w/add.c b/Tools/Stripe_w/add.c
new file mode 100644
index 000000000..ef6e673d8
--- /dev/null
+++ b/Tools/Stripe_w/add.c
@@ -0,0 +1,384 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: add.c
+     This file contains the procedure code that will add information
+     to our data structures.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include <string.h>
+#include "global.h"
+#include "queue.h"
+#include "polverts.h"
+#include "triangulate.h"
+#include "ties.h"
+#include "outputex.h"
+#include "options.h"
+#include "local.h"
+
+BOOL new_vertex(double difference, int id1,int id2,
+                struct vert_struct *n)
+{
+  /*   Is the difference between id1 and id2 (2 normal vertices that
+       mapped to the same vertex) greater than the
+       threshold that was specified?
+  */
+  struct vert_struct *pn1,*pn2;
+  double dot_product;
+  double distance1, distance2,distance;
+  double rad;
+  char arg1[100];
+  char arg2[100];
+
+  pn1 = n + id1;
+  pn2 = n + id2;
+ 
+  dot_product = ((pn1->x) * (pn2->x)) +
+                ((pn1->y) * (pn2->y)) +
+                ((pn1->z) * (pn2->z));
+  /*   Get the absolute value */
+  if (dot_product < 0)
+    dot_product = dot_product * -1;
+
+  distance1 = sqrt( (pn1->x * pn1->x) +
+                    (pn1->y * pn1->y) +
+                    (pn1->z * pn1->z) );
+  distance2 = sqrt( (pn2->x * pn2->x) +
+                    (pn2->y * pn2->y) +
+                    (pn2->z * pn2->z) );
+  distance = distance1 * distance2;
+
+  rad = acos((double)dot_product/(double)distance);
+  /* convert to degrees */
+  rad = (180 * rad)/PI;
+    
+  if ( rad <= difference)
+    return FALSE;
+     
+  /*   double checking because of imprecision with floating
+       point acos function
+  */
+  sprintf( arg1,"%.5f", rad );
+  sprintf( arg2,"%.5f", difference );
+  if ( strcmp( arg1, arg2 ) <=0 )
+    return( FALSE );
+  if ( rad <= difference)
+    return FALSE;
+  else 
+    return TRUE;
+}
+
+BOOL Check_VN(int vertex,int normal, struct vert_added *added)
+{
+  /*   Check to see if we already added this vertex and normal */
+  register int x,n;
+
+  n = (added+vertex)->num;
+  for (x = 0; x < n; x++)
+  {
+    if (*((added+vertex)->normal+x) == normal)
+      return TRUE;
+  }
+  return FALSE;
+}
+
+BOOL norm_array(int id, int vertex, double normal_difference,
+                struct vert_struct *n, int num_vert)
+{
+  static int last;
+  static struct vert_added *added;
+  register int x;
+  static BOOL first = TRUE;
+
+  if (first)
+  {
+    /*   This is the first time that we are in here, so we will allocate
+         a structure that will save the vertices that we added, so that we
+         do not add the same thing twice
+    */
+    first = FALSE;
+    added = (struct vert_added *) malloc (sizeof (struct vert_added ) * num_vert);
+    /*   The number of vertices added for each vertex must be initialized to
+         zero
+    */
+    for (x = 0; x < num_vert; x++)
+      (added+x)->num = 0;
+  }
+
+  if (vertex)
+    /*   Set the pointer to the vertex, we will be calling again with the
+         normal to fill it with
+    */
+    last = id;
+  else
+  {    
+    /*   Fill the pointer with the id of the normal */
+    if (*(vert_norms + last) == 0)
+      *(vert_norms + last) = id;
+    else if ((*(vert_norms + last) != id) && ((int)normal_difference != 360))
+    {
+      /*   difference is big enough, we need to create a new vertex */
+      if (new_vertex(normal_difference,id,*(vert_norms + last),n))
+      {
+        /*   First check to see if we added this vertex and normal already */
+        if (Check_VN(last,id,added))
+          return FALSE;
+        /*   OK, create the new vertex, and have its id = the number of vertices
+             and its normal what we have here
+        */
+        vert_norms = realloc(vert_norms, sizeof(int) * (num_vert + 1));
+        if (!vert_norms)
+        {
+          printf("Allocation error - aborting\n");
+          exit(1);
+        }
+        *(vert_norms + num_vert) = id;
+        /*   We created a new vertex, now put it in our added structure so
+             we do not add the same thing twice
+        */
+        (added+last)->num = (added+last)->num + 1;
+        if ((added+last)->num == 1)
+        {
+          /*   First time */
+          (added+last)->normal =  (int *) malloc (sizeof (int ) * 1);
+          *((added+last)->normal) =  id;
+        }
+        else
+        {
+          /*   Not the first time, reallocate space */
+          (added+last)->normal = realloc((added+last)->normal,sizeof(int) * (added+last)->num);
+          *((added+last)->normal+((added+last)->num-1)) = id;
+        }
+        return TRUE;
+      }
+    }
+  }
+  return FALSE;
+}
+
+void add_texture(int id,BOOL vertex)
+{
+  /*   Save the texture with its vertex for future use when outputting */
+  static int last;
+
+  if (vertex)
+    last = id;
+  else
+    *(vert_texture+last) = id;
+}
+
+int	add_vert_id(int id, int	index_count)
+{
+  register int x;
+
+  /*   Test if degenerate, if so do not add degenerate vertex */
+  for (x = 1; x < index_count ; x++)
+  {
+    if (ids[x] == id)
+      return 0;
+  }
+  ids[index_count] = id;
+  return 1;
+}
+
+void	add_norm_id(int id, int index_count)
+{
+	norms[index_count] = id;
+}
+
+void AddNewFace(int ids[STRIP_MAX], int vert_count, int face_id, 
+		int norms[STRIP_MAX])
+{
+  PF_FACES pfNode;
+  int	*pTempInt;
+  int *pnorms;
+  F_EDGES **pTempVertptr;
+  int	*pTempmarked, *pTempwalked;
+  register int	y,count = 0;
+	
+	/*   Add a new face into our face data structure */
+
+  pfNode = (PF_FACES) malloc(sizeof(F_FACES) );
+  if ( pfNode )
+  {
+    pfNode->pPolygon = (int*) malloc(sizeof(int) * (vert_count) );
+    pfNode->pNorms = (int*) malloc(sizeof(int) * (vert_count) );
+    pfNode->VertandId = (F_EDGES**)malloc(sizeof(F_EDGES*) * (vert_count)); 
+		pfNode->marked  = (int*)malloc(sizeof(int) * (vert_count));
+		pfNode->walked = (int*)malloc(sizeof(int) * (vert_count));
+	}
+	pTempInt =pfNode->pPolygon;
+	pnorms = pfNode->pNorms;
+  pTempmarked = pfNode->marked;
+	pTempwalked = pfNode->walked;
+	pTempVertptr = pfNode->VertandId;
+	pfNode->nPolSize = vert_count;
+	pfNode->seen = -1;
+  pfNode->seen2 = -1;
+	for (y=1;y<=vert_count;y++)
+	{
+		*(pTempInt + count) = ids[y];
+		*(pnorms + count) = norms[y];
+    *(pTempmarked + count) = FALSE;
+	  *(pTempwalked + count) =  -1;
+		*(pTempVertptr+count) = NULL;
+		count++;
+	}
+	AddHead(PolFaces[face_id-1],(PLISTINFO) pfNode);
+}	
+
+	
+void CopyFace(int ids[STRIP_MAX], int vert_count, int face_id, 
+	      int norms[STRIP_MAX])
+{
+  PF_FACES pfNode;
+  int	*pTempInt;
+  int *pnorms;
+  F_EDGES **pTempVertptr;
+  int	*pTempmarked, *pTempwalked;
+  register int	y,count = 0;
+	
+	/*   Copy a face node into a new node, used after the global algorithm
+       is run, so that we can save whatever is left into a new structure
+  */
+     
+  pfNode = (PF_FACES) malloc(sizeof(F_FACES) );
+  if ( pfNode )
+  {
+    pfNode->pPolygon = (int*) malloc(sizeof(int) * (vert_count) );
+    pfNode->pNorms = (int*) malloc(sizeof(int) * (vert_count) );
+    pfNode->VertandId = (F_EDGES**)malloc(sizeof(F_EDGES*) * (vert_count)); 
+		pfNode->marked  = (int*)malloc(sizeof(int) * (vert_count));
+		pfNode->walked = (int*)malloc(sizeof(int) * (vert_count));
+	}
+	pTempInt =pfNode->pPolygon;
+	pnorms = pfNode->pNorms;
+  pTempmarked = pfNode->marked;
+	pTempwalked = pfNode->walked;
+	pTempVertptr = pfNode->VertandId;
+	pfNode->nPolSize = vert_count;
+	pfNode->seen = -1;
+  pfNode->seen2 = -1;
+	for (y=0;y<vert_count;y++)
+	{
+		*(pTempInt + count) = ids[y];
+		*(pnorms + count) = norms[y];
+    *(pTempmarked + count) = FALSE;
+		*(pTempwalked + count) =  -1;
+		*(pTempVertptr+count) = NULL;
+		count++;
+	}
+	AddHead(PolFaces[face_id-1],(PLISTINFO) pfNode);
+}	
+	
+void Add_Edge(int v1,int v2)
+{
+  PF_EDGES temp  = NULL;
+  ListHead *pListHead;
+  BOOL flag = TRUE;
+  register int t,count = 0;
+	
+	/*   Add a new edge into the edge data structure */
+  if (v1 > v2)
+	{
+		t  = v1;
+		v1 = v2;
+		v2 = t;
+	}
+	
+  pListHead = PolEdges[v1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+	if (temp == NULL)
+  {
+    printf("Have the wrong edge \n:");
+    exit(1);
+  }
+	
+	while (flag)
+	{
+		if (v2 == temp->edge[0])
+      return;
+    else
+    	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,++count);
+	}                	
+}
+
+void Add_AdjEdge(int v1,int v2,int fnum,int index1 )
+{
+  PF_EDGES temp  = NULL;
+  PF_FACES temp2 = NULL;
+  PF_EDGES pfNode;
+  ListHead *pListHead;
+  ListHead *pListFace;
+  BOOL 	flag = TRUE;
+  register int	count = 0;
+  register int	t,v3 = -1;
+	
+	if (v1 > v2)
+	{
+		t  = v1;
+		v1 = v2;
+		v2 = t;
+	}
+	pListFace  = PolFaces[fnum];
+	temp2 = (PF_FACES) PeekList(pListFace,LISTHEAD,0);
+	pListHead = PolEdges[v1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+	if (temp == NULL)
+		flag = FALSE;
+	count++;
+	while (flag)
+	{
+		if (v2 == temp->edge[0])
+		{
+      /*   If greater than 2 polygons adjacent to an edge, then we will
+           only save the first 2 that we found. We will have a small performance
+           hit, but this does not happen often.
+      */
+      if (temp->edge[2] == -1)
+        temp->edge[2] = fnum;
+      else
+        v3 = temp->edge[2];
+      flag = FALSE;
+		}
+		else
+		{
+			temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+			count++;
+			if (temp == NULL)
+				flag = FALSE;
+		}
+	}
+                
+	/*   Did not find it */
+  if (temp == NULL)
+	{
+		pfNode = (PF_EDGES) malloc(sizeof(F_EDGES) );
+    if ( pfNode )
+    {
+      pfNode->edge[0] = v2;
+			pfNode->edge[1] = fnum;
+	    pfNode->edge[2] =  v3;
+			AddTail( PolEdges[v1], (PLISTINFO) pfNode );
+    }
+		else
+    {
+      printf("Out of memory!\n");
+      exit(1);
+    }
+		
+    *(temp2->VertandId+index1) = pfNode;
+	}
+	else
+	  *(temp2->VertandId+index1) =  temp;
+}
diff --git a/Tools/Stripe_w/add.h b/Tools/Stripe_w/add.h
new file mode 100644
index 000000000..fb37f729a
--- /dev/null
+++ b/Tools/Stripe_w/add.h
@@ -0,0 +1,31 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: add.h
+-----------------------------------------------------------------------*/
+
+#include "global.h"
+
+BOOL new_vertex(double difference, int id1,int id2,
+                struct vert_struct *n);
+BOOL Check_VN(int vertex,int normal, struct vert_added *added);
+BOOL norm_array(int id, int vertex, double normal_difference,
+                struct vert_struct *n, int num_vert);
+void add_texture(int id,BOOL vertex);
+int	add_vert_id(int id, int	index_count);
+void	add_norm_id(int id, int index_count);
+void AddNewFace(int ids[STRIP_MAX], int vert_count, int face_id, 
+		int norms[STRIP_MAX]);
+void CopyFace(int ids[STRIP_MAX], int vert_count, int face_id, 
+	      int norms[STRIP_MAX]);
+void Add_Edge(int v1,int v2);
+void Add_AdjEdge(int v1,int v2,int fnum,int index1 );
+
+
+
diff --git a/Tools/Stripe_w/bands.c b/Tools/Stripe_w/bands.c
new file mode 100644
index 000000000..161e8ccde
--- /dev/null
+++ b/Tools/Stripe_w/bands.c
@@ -0,0 +1,569 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: bands.c
+     This file contains the main procedure code that will read in the
+     object and then call the routines that produce the triangle strips.
+*/
+/*---------------------------------------------------------------------*/
+
+
+#ifdef HAVE_CONFIG_H
+#  include <config.h>
+#endif
+  
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include <string.h>
+#include "global.h"
+#include "polverts.h"
+#include "triangulate.h"
+#include "ties.h"
+#include "outputex.h"
+#include "options.h"
+#include "local.h"
+#include "init.h"
+#include "free.h"
+#include "add.h"
+
+/*   TIMING for Windows */
+#ifdef WIN32
+#  include <sys/timeb.h>
+#  include <time.h>
+/*   TIMING for UNIX */
+#else
+#  include <sys/types.h>
+#  include <sys/param.h>
+#  include <sys/times.h>
+#  if defined(__FreeBSD__)
+#    ifndef HZ
+#      include <time.h>
+#      define HZ CLK_TCK
+#    endif /* HZ */
+#  else
+     extern long times( );
+#  endif /* __FreeBSD__ */
+  long elapsed()
+{
+  static long total = 0;
+  long cpu_time, dummy;
+  struct tms buffer;
+  times(&buffer);
+  dummy    = buffer.tms_utime  + buffer.tms_stime +
+             buffer.tms_cutime + buffer.tms_cstime;
+  cpu_time = ((dummy - total) * 1000) / HZ;
+  total    = dummy;
+  return(cpu_time);
+}
+#endif /* WIN32 */
+
+
+int     norms[STRIP_MAX];
+int     *vert_norms;
+int     *vert_texture;
+
+
+void get_time()
+{
+  /*   For timing */
+#ifdef WIN32
+  struct timeb timebuffer;
+  char *timeline;
+#else
+  long timer;
+#endif
+
+
+#ifdef WIN32
+  ftime( &timebuffer );
+  timeline = ctime( & ( timebuffer.time ) );
+  printf( "The time is %.19s.%hu %s", timeline, timebuffer.millitm, &timeline[20] );
+#else
+  timer = elapsed();
+  printf("The time is %ld\n",timer);
+#endif
+}
+
+/*
+** 
+     Here the main program begins. It will start by loading in a .obj file
+     then it will convert the polygonal model into triangle strips.
+**  
+*/
+
+int main (int argc,char *argv[])
+{
+  char	*fname, *oname, *all,buff[255], *ptr, *ptr2;
+	FILE	*file, *bands;
+	int face_id=0;
+  int vert_count=0;
+  int loop=0;
+  int num=0;
+  int num2=0;
+
+	float center[3];
+  int temp[STRIP_MAX],vertex,strips, swaps,tempi,cost,triangles;
+  int f,t,tr,g;
+  char *file_open;
+	int	num_vert	= 0,
+		num_faces	= 0,
+		num_nvert	= 0,
+		num_edges	= 0,
+    num_texture = 0,
+    num_tris = 0;
+  double fra = 0.0;
+  BOOL texture, normal, normal_and_texture,quads = FALSE;
+
+  /*   Options variables */
+  double norm_difference;
+
+	/*   Structures for the object */
+  struct vert_struct	*vertices	= NULL,
+    *nvertices	= NULL,
+		*pvertices	= NULL,
+		*pnvertices	= NULL;
+
+  get_time();
+
+  /*
+    Scan the file once to find out the number of vertices,
+    vertice normals, and faces so we can set up some memory
+    structures 
+    */
+  /* Interpret the options specified */
+  norm_difference = get_options(argc,argv,&f,&t,&tr,&g);
+  if (f == BINARY)
+      file_open = "rb";
+  else
+      file_open = "r";
+  
+  fname = argv[argc-2];
+  oname = argv[argc-1];
+  
+  printf ("Input file: %s  Output file: %s\n", fname, oname);
+  printf ("Scanning...%s ",file_open);
+
+	    
+  /*   File that will contain the triangle strip data */
+  
+  bands = fopen(oname, "w");
+
+  /*   File can be in binary for faster reading */
+  if (file = fopen (fname,file_open))
+	{
+	  while (!feof (file))
+		{
+			/*   Read a line */
+      if (f == BINARY)
+        fread (buff,sizeof(char) * 255,1, file);
+			else
+        fgets (buff, sizeof(char) * 255, file);
+      num++;
+      
+      printf("%d\r",num);
+
+      
+      /*   At a vertex */
+      if (*buff == 'v')
+			{
+				/*   At a normal */
+        if (*(buff+1)=='n')
+					num_nvert++;
+				else if (*(buff+1)=='t')
+          num_texture++;
+        /*   At a regular vertex */
+        else
+				  num_vert++;
+			}
+			/*   At a face */
+      else if (*buff == 'f')
+			{  
+        num_faces++;
+			  strtok(buff, " ");
+			  tempi = 0;
+			  while (strtok(NULL, " ") != NULL) tempi++;
+			  num_tris += tempi - 2;
+      }
+		}
+		fclose (file);
+  }
+	else
+  {
+    printf("Error in the file name\n");
+    exit(1);
+  }
+	
+  printf("%s pass 1\n",fname);
+	
+	/* Allocate structures for the information */
+	Start_Face_Struct(num_faces);
+	vertices = (struct vert_struct *)
+			malloc (sizeof (struct vert_struct) * num_vert);
+
+	if (num_nvert > 0) {
+    nvertices = (struct vert_struct *)
+		malloc (sizeof (struct vert_struct) * num_nvert);
+    vert_norms = (int *) malloc (sizeof (int) * num_vert);
+    /*   
+    Initialize entries to zero, in case there are 2 hits
+    to the same vertex we will know it - used for determining
+    the normal difference
+    */
+    init_vert_norms(num_vert);
+  } else {
+		nvertices = NULL;
+  }
+
+  if (num_texture > 0) {
+    vert_texture = (int *) malloc (sizeof(int) * num_vert);
+    init_vert_texture(num_vert);
+  }
+     
+	/*
+  Set up the temporary 'p' pointers 
+  */
+	pvertices = vertices;
+	pnvertices = nvertices;
+
+	/* Load the object into memory */
+	/*printf (" Loading...");*/
+ 
+   fprintf(bands,"#%s: a triangle strip representation created by STRIPE.\n#This is a .objf file\n#by Francine Evans\n",fname);
+ 
+  /*  File will be put in a list for faster execution if file is in binary */   
+  if (file = fopen(fname,file_open)) {
+    if (f == BINARY) {
+      all = (char *) malloc (sizeof(char) * 255 * num);
+      fread(all,sizeof(char) * 255 * num, 1, file);
+      ptr = all;
+    } else {
+      ptr = (char *) malloc (sizeof(char) * 255 * num);
+    }
+  }
+
+   
+  while (num > 0) {
+    num--;
+
+    printf("%d\r",num);
+
+		if (f == ASCII) {
+      fgets (ptr, sizeof(char) * 255, file);
+    } else {
+      ptr = ptr + 255;
+    }
+
+    /* Load in vertices/normals */
+		if (*ptr == 'v') {
+			if (*(ptr+1)=='n') {
+				sscanf (ptr+3,"%lf%lf%lf",
+					&(pnvertices->x),
+					&(pnvertices->y),
+					&(pnvertices->z));
+	   			fprintf(bands,"vn %f %f %f\n",
+					pnvertices->x,pnvertices->y,pnvertices->z); 
+     			++pnvertices;
+			} else if (*(ptr+1)=='t') {
+				sscanf (ptr+3,"%f%f%f",&center[0],&center[1],&center[2]);
+	   		fprintf(bands,"vt %f %f %f\n",center[0],center[1],center[2]); 
+      } else {
+				sscanf (ptr+2,"%lf%lf%lf",
+					&(pvertices->x), 
+					&(pvertices->y), 
+					&(pvertices->z));
+     			fprintf(bands,"v %f %f %f\n",
+					pvertices->x,pvertices->y,pvertices->z); 
+				++pvertices;
+      }
+		} else if (*ptr == 'f') {
+			/* Read in faces */
+			num2 = 0;
+			face_id++;
+      ptr2 = ptr+1;
+      normal = FALSE; texture = FALSE, normal_and_texture = FALSE;
+      while (*ptr2) {
+			  if (*ptr2 >='0' && *ptr2 <='9') {
+				  num2++;
+				  ++ptr2;
+				  while (*ptr2 && (*ptr2!=' ' && *ptr2!='/')) {
+					  ptr2++;
+          }
+          /*   There are normals in this line */
+          if (*ptr2 == '/') {
+            if (*(ptr2+1) == '/') {
+              normal = TRUE;
+            } else {
+              texture = TRUE;
+            }
+			    } else if (*ptr2 == ' ') {
+            if ((num2 == 3) && (texture)) {
+              normal_and_texture = TRUE;
+            }
+          }
+        } else {
+				  ++ptr2;
+        }
+			}
+
+      ptr2 = ptr+1;
+			
+      /* 
+      loop on the number of numbers in this line of face data 
+      */
+			vert_count = 0;
+								
+			for (loop=0;loop<num2;loop++) {
+				/* skip the whitespace */
+				while (*ptr2<'0' || *ptr2>'9') {
+          if (*ptr2 == '-') {
+            break;
+          }
+          ptr2++;
+        }
+				vertex = atoi(ptr2)-1;
+        if (vertex < 0) {
+          vertex = num_vert + vertex;
+          *ptr2 = ' ';
+          ptr2++;
+        }
+        /*
+        If there are either normals or textures with the vertices
+        in this file, the data alternates so we must read it this way 
+        */
+				if ( (normal) && (!normal_and_texture)) {
+					if (loop%2) {
+            add_norm_id(vertex,vert_count);
+            /*
+            Test here to see if we added a new vertex, since the
+            vertex has more than one normal and the 2 normals are greater
+            than the threshold specified
+            */
+            if (norm_array(vertex,0,norm_difference,nvertices,num_vert)) {
+              /*
+              Add a new vertex and change the
+              id of the vertex that we just read to the id of the new
+              vertex that we just added
+              */
+              /*
+              Put it in the output file, note the added vertices will
+              be after the normals and separated from the rest of the 
+              vertices. Will not affect our viewer
+              */
+              fprintf(bands,"v %f %f %f\n",
+                (vertices + temp[vert_count - 1])->x,
+                (vertices + temp[vert_count - 1])->y,
+                (vertices + temp[vert_count - 1])->z); 
+              num_vert++;
+              temp[vert_count - 1] = num_vert - 1;
+              if (!(add_vert_id(num_vert - 1,vert_count))) {
+                vert_count--;
+              }
+            }
+          } else {
+					  /* the vertex */
+						temp[vert_count] = vertex ;
+						vert_count++;
+            if (!(add_vert_id(vertex,vert_count))) {
+                vert_count--;
+            }
+            norm_array(vertex,1,norm_difference,nvertices,num_vert);
+					}
+        } else if (normal_and_texture) {                      
+          /* Else there are vertices and textures with the data */
+          if( !((loop+1)%3)) {
+            add_norm_id(vertex,vert_count);
+            /*
+            Test here to see if we added a new vertex, since the
+            vertex has more than one normal and the 2 normals are greater
+            than the threshold specified
+            */
+            if (norm_array(vertex,0,norm_difference,nvertices,num_vert)) {
+              /*
+              Add a new vertex and change the
+              id of the vertex that we just read to the id of the new
+              vertex that we just added
+              */
+              /*
+              Put it in the output file, note the added vertices will
+              be after the normals and separated from the rest of the 
+              vertices. Will not affect our viewer
+              */
+              fprintf(bands,"v %f %f %f\n",
+                (vertices + temp[vert_count - 1])->x,
+                (vertices + temp[vert_count - 1])->y,
+                (vertices + temp[vert_count - 1])->z); 
+              num_vert++;
+              temp[vert_count - 1] = num_vert - 1;
+              if (!(add_vert_id(num_vert - 1,vert_count))) {
+                vert_count--;
+              }
+            }
+          } else if ((loop == 0) || (*(ptr2-1) == ' ')) {
+            /*   the vertex */
+            temp[vert_count] = vertex ;
+            vert_count++;
+            if (vert_count == 4) {
+              quads = TRUE;
+            }
+            if (!(add_vert_id(vertex,vert_count))) {
+              vert_count--;
+            }
+            add_texture(vertex,TRUE);
+            norm_array(vertex,1,norm_difference,nvertices,num_vert);
+					} else {
+            /*   The texture */
+            add_texture(vertex,FALSE);
+          }
+        } else if ( texture ) {
+					/*   the vertex */
+          if (!(loop%2)) {
+						temp[vert_count] = vertex ;
+						vert_count++;
+            if (vert_count == 4)
+              quads = TRUE;
+            add_texture(vertex,TRUE);
+            if (!(add_vert_id(vertex,vert_count)))
+              vert_count--;
+            norm_array(vertex,1,norm_difference,nvertices,num_vert);
+					} else {
+            /*   texture */
+            add_texture(vertex,FALSE);
+          }
+        } else {
+				  /*** no nvertices ***/
+					temp[vert_count] = vertex ;
+					vert_count++;
+          if (vert_count == 4)
+            quads = TRUE;
+          if (!(add_vert_id(vertex,vert_count)))
+            vert_count--;
+				}
+				while (*ptr2>='0' && *ptr2<='9')
+					ptr2++;
+      }
+			/* Done with the polygon */
+			num_edges += vert_count;
+			/* add it to face structure */
+			if (vert_count >= 3)
+        AddNewFace(ids,vert_count,face_id,norms);
+      else
+        face_id--;
+      if (vert_count == 4)
+        quads = TRUE;
+    }
+    else if ((g == TRUE) && (face_id > 0)
+         && ((*ptr == 'g') || (*ptr  == 's') || (*ptr == 'm') || (*ptr == 'o')))
+    {
+      /*
+      The user specified that the strips will be contained in each group
+      from the data file, so we just finished a group and will find the
+      triangle strips in it.
+      */
+      Start_Edge_Struct(num_vert);
+	    Find_Adjacencies(face_id);
+	    if (quads)
+      {
+        Init_Table_SGI();
+	      Build_SGI_Table(num_vert,face_id);
+        /* Code for lengths of walks in each direction */
+	      /* Save_Walks(face_id,TRUE); */
+	      Save_Walks(face_id);
+
+        /* Code for finding the bands */
+	      Find_Bands(face_id,bands,&swaps,&strips,&cost,&triangles,num_nvert,vert_norms,num_texture,vert_texture);
+
+        /*
+        Remove the faces that we did  so that we can
+        run the strip code on the rest of the faces that are left
+        */
+        if (cost != 0)
+        {
+          printf("Total %d triangles with %d cost\n",triangles,cost);
+          Save_Rest(&face_id);
+          printf("We saved %d .... now doing the local algorithm\n",face_id);
+          fprintf(bands,"\n#local\n");
+	        End_Edge_Struct(num_vert);
+          Start_Edge_Struct(num_vert);
+	        Find_Adjacencies(face_id);
+        }
+      }
+	       
+      SGI_Strip(num_vert,face_id,bands,t,tr);
+
+      /* Get the total cost */
+      Output_TriEx(-1,-2,-3,NULL,-1,-20,cost);
+
+      End_Face_Struct(num_faces);
+      End_Edge_Struct(num_vert);
+      cost = 0;
+      face_id = 0;
+      quads = FALSE;
+      Start_Face_Struct(num_faces-face_id);
+      num_faces = num_faces - face_id;
+      Free_Strips();
+    }
+  }
+               
+  /*   Done reading in all the information into data structures */
+  num_faces = face_id;
+  fclose (file);
+  
+  printf("Input Done.\n\n");
+
+  free(vertices);
+  free(nvertices);
+
+  printf ("Vertices:	%d\nNormals:	%d\nFaces:		%d\n",num_vert,num_nvert,num_faces);
+
+  Start_Edge_Struct(num_vert);
+  Find_Adjacencies(num_faces);
+
+  /* Initialize it */
+  Init_Table_SGI();
+  /* Build it */
+  Build_SGI_Table(num_vert,num_faces);
+
+  InitStripTable();
+
+  if (quads) {
+    /* Code for lengths of walks in each direction */
+          /* Save_Walks(num_faces,TRUE); */
+	  Save_Walks(num_faces);
+	  
+    /* Code for finding the bands */
+	  Find_Bands(num_faces,bands,&swaps,&strips,&cost,&triangles,num_nvert,vert_norms,num_texture,vert_texture);
+    /*printf("Total %d triangles with %d cost\n",triangles,cost);*/
+
+    /*  
+    Remove the faces that we did  so that we can
+    run the strip code on the rest of the faces that are left
+    */
+    Save_Rest(&num_faces);
+    /*printf("We saved %d .... now doing the local algorithm\n",num_faces);*/
+    fprintf(bands,"\n#local\n");
+	  End_Edge_Struct(num_vert);
+    Start_Edge_Struct(num_vert);
+	  Find_Adjacencies(num_faces);
+  }
+	       
+  SGI_Strip(num_vert,num_faces,bands,t,tr);
+
+  /*   Get the total cost */
+  Output_TriEx(-1,-2,-3,NULL,-1,-20,cost);
+
+  End_Face_Struct(num_faces);
+  End_Edge_Struct(num_vert);
+  fclose(bands);
+
+  get_time();
+
+  return(0);
+}
+
diff --git a/Tools/Stripe_w/common.c b/Tools/Stripe_w/common.c
new file mode 100644
index 000000000..ca836e19f
--- /dev/null
+++ b/Tools/Stripe_w/common.c
@@ -0,0 +1,810 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: common.c
+     This file contains common code used in both the local and global algorithm
+*/
+/*---------------------------------------------------------------------*/
+
+
+#include <stdlib.h>
+#include "polverts.h"
+#include "extend.h"
+#include "output.h"
+#include "triangulate.h"
+#include "util.h"
+#include "add.h"
+
+int  Old_Adj(int face_id)
+{
+	/*	Find the bucket that the face_id is currently in,
+		because maybe we will be deleting it. 
+	*/
+	PF_FACES temp = NULL;
+	ListHead *pListHead;
+	int size,y;
+	
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	if ( temp == NULL )
+	{
+		printf("The face was already deleted, there is an error\n");
+		exit(0);
+	}
+	
+	size = temp->nPolSize;
+	if (Done(face_id,size,&y) == NULL)
+	{
+		printf("There is an error in finding the face\n");
+		exit(0);
+	}
+	return y;
+}
+
+int Number_Adj(int id1, int id2, int curr_id)
+{
+	/*	Given edge whose endpoints are specified by id1 and id2,
+		determine how many polygons share this edge and return that
+		number minus one (since we do not want to include the polygon
+		that the caller has already).
+	*/
+
+	int size,y,count=0;
+	PF_EDGES temp = NULL;
+	PF_FACES temp2 = NULL;
+	ListHead *pListHead;
+	BOOL there= FALSE;
+
+	/*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+     /*	new edge that was created might not be here */
+		return 0;
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	This edge was not there in the original, which
+				mean that we created it in the partial triangulation.
+				So it is adjacent to nothing.
+			*/
+			return 0;
+	}
+	/*	Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return 0;
+	else
+	{
+		/*	It was adjacent to another polygon, but maybe we did this
+			polygon already, and it was done partially so that this edge
+			could have been done
+		*/
+		if (curr_id != temp->edge[1])
+		{
+			/*	Did we use this polygon already?and it was deleted
+				completely from the structure
+			*/
+			pListHead = PolFaces[temp->edge[1]];
+			temp2 = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+			if (Done(temp->edge[1],temp2->nPolSize,&size) == NULL)
+				return 0;
+		}
+		else
+		{
+			pListHead = PolFaces[temp->edge[2]];
+			temp2 = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+			if (Done(temp->edge[2],temp2->nPolSize,&size)== NULL)
+				return 0;
+		}
+
+		/*	Now we have to check whether it was partially done, before
+			we can say definitely if it is adjacent.
+			Check each edge of the face and tally the number of adjacent
+			polygons to this face. 
+		*/	      		
+		if ( temp2 != NULL )
+		{
+			/*	Size of the polygon */
+			size = temp2->nPolSize;
+			for (y = 0; y< size; y++)
+			{
+				/*	If we are doing partial triangulation, we must check
+					to see whether the edge is still there in the polygon,
+					since we might have done a portion of the polygon
+					and saved the rest for later.
+				*/
+				if (y != (size-1))
+				{
+					if( ((id1 == *(temp2->pPolygon+y)) && (id2 ==*(temp2->pPolygon+y+1)))
+						|| ((id2 == *(temp2->pPolygon+y)) && (id1 ==*(temp2->pPolygon+y+1))))
+						/*	edge is still there we are ok */
+						there = TRUE;
+				}
+				else
+				{
+					if( ((id1 == *(temp2->pPolygon)) && (id2 == *(temp2->pPolygon+size-1)))
+					|| ((id2 == *(temp2->pPolygon)) && (id1 ==*(temp2->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+						there = TRUE;
+				}
+			}
+		}
+		
+		if (there )
+			return 1;
+		return 0;
+	}
+}
+
+int Min_Adj(int id)
+{
+	/*	Used for the lookahead to break ties. It will
+		return the minimum adjacency found at this face.
+	*/
+	int y,numverts,t,x=60;
+	PF_FACES temp=NULL;
+	ListHead *pListHead;
+
+	/*	If polygon was used then we can't use this face */
+	if (Done(id,59,&y) == NULL)
+		return 60;
+		
+	/*	It was not used already */
+	pListHead = PolFaces[id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+     if ( temp != NULL )
+	{
+		numverts = temp->nPolSize;
+		for (y = 0; y< numverts; y++)
+		{
+			if (y != (numverts-1))
+				t = Number_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1),id);
+			else
+				t = Number_Adj(*(temp->pPolygon),*(temp->pPolygon+(numverts-1)),id);
+			if (t < x)
+				x = t;
+		}
+	}
+	if (x == -1)
+	{
+		printf("Error in the look\n");
+		exit(0);
+	}
+	return x;
+}
+
+
+
+void Edge_Least(int *index,int *new1,int *new2,int face_id,int size)
+{
+    /*   We had a polygon without an input edge and now we re going to pick one
+         of the edges with the least number of adjacencies to be the input
+         edge
+    */
+    register int x,value,smallest=60;
+
+    for (x = 0; x<size; x++)
+    {
+        if (x != (size -1) )
+            value = Number_Adj(*(index+x),*(index+x+1),face_id);
+        else 
+            value = Number_Adj(*(index),*(index+size-1),face_id);
+        if (value < smallest)
+        {
+            smallest = value;
+            if (x != (size -1))
+            {
+                *new1 = *(index+x);
+                *new2 = *(index+x+1);
+            }
+            else
+            {
+                *new1 = *(index);
+                *new2 = *(index+size-1);
+            }
+        }
+    }
+    if ((smallest == 60) || (smallest < 0))
+    {
+        printf("There is an error in getting the least edge\n");
+        exit(0);
+    }
+}
+
+
+void Check_In_Polygon(int face_id, int *min, int size)
+{
+    /*  Check to see the adjacencies by going into a polygon that has
+        greater than 4 sides.
+    */
+    
+    ListHead *pListHead;
+    PF_FACES temp;
+    int y,id1,id2,id3,x=0,z=0;
+    int saved[2];
+    int big_saved[60];
+
+    pListHead = PolFaces[face_id];
+    temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+
+    /*   Get the input edge that we came in on */
+    Last_Edge(&id1,&id2,&id3,0);
+
+    /*  Find the number of adjacencies to the edges that are adjacent
+        to the input edge.
+    */
+    for (y=0; y< size; y++)
+    {
+        if (y != (size-1))
+        {
+            if (((*(temp->pPolygon+y) == id2) && (*(temp->pPolygon+y+1) != id3))
+                || ((*(temp->pPolygon+y) == id3) && (*(temp->pPolygon+y+1) != id2)))
+            {
+                saved[x++] = Number_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1),face_id);
+                big_saved[z++] = saved[x-1];
+            }
+            else
+                big_saved[z++] = Number_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1),face_id);
+        }
+        else
+        {
+            if (((*(temp->pPolygon) == id2) && (*(temp->pPolygon+size-1) != id3))
+                || ((*(temp->pPolygon) == id3) && (*(temp->pPolygon+size-1) != id2)))
+            {
+                saved[x++] = Number_Adj(*(temp->pPolygon),*(temp->pPolygon+size-1),face_id);
+                big_saved[z++] = saved[x-1];
+            }
+            else
+                big_saved[z++] = Number_Adj(*(temp->pPolygon),*(temp->pPolygon+size-1),face_id);
+        }
+    }
+    /*  There was an input edge */
+    if (x == 2)
+    {
+        if (saved[0] < saved[1])
+            /*  Count the polygon that we will be cutting as another adjacency*/
+            *min = saved[0] + 1;
+        else
+            *min = saved[1] + 1;
+    }
+    /*  There was not an input edge */
+    else
+    {
+        if (z != size)
+        {
+            printf("There is an error with the z %d %d\n",size,z);
+            exit(0);
+        }
+        *min = 60;
+        for (x = 0; x < size; x++)
+        {
+            if (*min > big_saved[x])
+                *min = big_saved[x];
+        }
+    }
+}
+
+
+void New_Face (int face_id, int v1, int v2, int v3)
+{
+	/*	We want to change the face that was face_id, we will
+		change it to a triangle, since the rest of the polygon
+		was already outputtted
+	*/
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+
+	pListHead = PolFaces[face_id];
+     temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0);
+	/*	Check each edge of the face and tally the number of adjacent
+		polygons to this face. 
+	*/	      		
+	if ( temp != NULL )
+	{
+		/*	Size of the polygon */
+		if (temp->nPolSize != 4)
+		{
+			printf("There is a miscalculation in the partial\n");
+			exit (0);
+		}
+		temp->nPolSize = 3;
+		*(temp->pPolygon) = v1;
+		*(temp->pPolygon+1) = v2;
+		*(temp->pPolygon+2) = v3;
+	}
+}
+
+void New_Size_Face (int face_id)
+{
+	/*	We want to change the face that was face_id, we will
+		change it to a triangle, since the rest of the polygon
+		was already outputtted
+	*/
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	/*	Check each edge of the face and tally the number of adjacent
+		polygons to this face. 
+	*/	      		
+	if ( temp != NULL )
+		(temp->nPolSize)--;
+	else
+		printf("There is an error in updating the size\n");
+}
+
+
+
+void  Check_In_Quad(int face_id,int *min)
+{
+     /*   Check to see what the adjacencies are for the polygons that
+          are inside the quad, ie the 2 triangles that we can form.
+     */
+    ListHead *pListHead;
+    int y,id1,id2,id3,x=0;
+    int saved[4];
+    PF_FACES temp;
+    register int size = 4;
+
+    pListHead = PolFaces[face_id];
+    temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	
+     /*   Get the input edge that we came in on */
+    Last_Edge(&id1,&id2,&id3,0);
+	
+    /*    Now find the adjacencies for the inside triangles */
+    for (y = 0; y< size; y++)
+	{
+         /*     Will not do this if the edge is the input edge */
+         if (y != (size-1))
+         {
+              if ((((*(temp->pPolygon+y) == id2) && (*(temp->pPolygon+y+1) == id3))) ||
+             (((*(temp->pPolygon+y) == id3) && (*(temp->pPolygon+y+1) == id2))))
+                    saved[x++] = -1;
+              else
+              {
+                   if (x == 4)
+                   {
+                        printf("There is an error in the check in quad \n");
+                        exit(0);
+                   }
+                   /*    Save the number of Adjacent Polygons to this edge */
+                   saved[x++] = Number_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1),face_id);
+              }
+         }
+		else if ((((*(temp->pPolygon) == id2) && (*(temp->pPolygon+size-1) == id3))) ||
+             (((*(temp->pPolygon) == id3) && (*(temp->pPolygon+size-1) == id2))) )
+             saved[x++] = -1;
+        else
+        {
+               if (x == 4)
+               {
+                    printf("There is an error in the check in quad \n");
+                    exit(0);
+               }
+               /*    Save the number of Adjacent Polygons to this edge */
+               saved[x++] = Number_Adj(*(temp->pPolygon),*(temp->pPolygon+size-1),face_id);
+
+        }
+    }
+    if (x != 4)
+    {
+         printf("Did not enter all the values %d \n",x);
+         exit(0);
+    }
+    
+    *min = 10;
+    for (x=0; x<4; x++)
+    {
+         if (x!= 3)
+         {
+              if ((saved[x] != -1) && (saved[x+1] != -1) && 
+                   ((saved[x] + saved[x+1]) < *min))
+                   *min = saved[x] + saved[x+1];
+         }
+         else
+         {
+              if ((saved[0] != -1) && (saved[x] != -1) &&
+                   ((saved[x] + saved[0]) < *min))
+                   *min = saved[0] + saved[x];
+         }
+    }
+}
+
+
+
+int Get_Output_Edge(int face_id, int size, int *index,int id2,int id3)
+{
+    /*  Return the vertex adjacent to either input1 or input2 that
+        is adjacent to the least number of polygons on the edge that
+        is shared with either input1 or input2.
+    */
+    register int x=0,y;
+    int saved[2];
+    int edges[2][1];
+
+    for (y = 0; y < size; y++)
+    {
+        if (y != (size-1))
+        {
+            if (((*(index+y) == id2) && (*(index+y+1) != id3))
+                || ((*(index+y) == id3) && (*(index+y+1) != id2)))
+            {
+                saved[x++] = Number_Adj(*(index+y),*(index+y+1),face_id);
+                edges[x-1][0] = *(index+y+1);
+            }
+            else if (y != 0)
+            {
+                if (( (*(index+y) == id2) && (*(index+y-1) != id3) ) ||
+                    ( (*(index+y) == id3) && (*(index+y-1) != id2)) )
+                {
+                    saved[x++] = Number_Adj(*(index+y),*(index+y-1),face_id);
+                    edges[x-1][0] = *(index+y-1);
+                }
+            }
+            else if (y == 0)
+            {
+                if (( (*(index) == id2) && (*(index+size-1) != id3) ) ||
+                    ( (*(index) == id3) && (*(index+size-1) != id2)) )
+                {
+                    saved[x++] = Number_Adj(*(index),*(index+size-1),face_id);
+                    edges[x-1][0] = *(index+size-1);
+                }
+            }
+
+        }
+        else
+        {
+            if (((*(index+size-1) == id2) && (*(index) != id3))
+                || ((*(index+size-1) == id3) && (*(index) != id2)))
+            {
+                saved[x++] = Number_Adj(*(index),*(index+size-1),face_id);
+                edges[x-1][0] = *(index);
+            }
+
+            if (( (*(index+size-1) == id2) && (*(index+y-1) != id3) ) ||
+                    ( (*(index+size-1) == id3) && (*(index+y-1) != id2)) )
+                {
+                    saved[x++] = Number_Adj(*(index+size-1),*(index+y-1),face_id);
+                    edges[x-1][0] = *(index+y-1);
+                }
+        }
+    }
+    if ((x != 2))
+    {
+        printf("There is an error in getting the input edge %d \n",x);
+        exit(0);
+    }
+    if (saved[0] < saved[1])
+        return edges[0][0];
+    else
+        return edges[1][0];
+
+}
+
+void Get_Input_Edge(int *index,int id1,int id2,int id3,int *new1,int *new2,int size,
+                    int face_id)
+{
+    /*  We had a polygon without an input edge and now we are going to pick one
+        as the input edge. The last triangle was id1,id2,id3, we will try to
+        get an edge to have something in common with one of those vertices, otherwise
+        we will pick the edge with the least number of adjacencies.
+    */
+
+    register int x;
+    int saved[3];
+
+    saved[0] = -1;
+    saved[1] = -1;
+    saved[2] = -1;
+    
+    /*  Go through the edges to see if there is one in common with one
+        of the vertices of the last triangle that we had, preferably id2 or
+        id3 since those are the last 2 things in the stack of size 2.
+    */
+    for (x=0; x< size; x++)
+    {
+        if (*(index+x) == id1)
+        {
+            if (x != (size-1))
+                saved[0] = *(index+x+1);
+            else
+                saved[0] = *(index);
+        }
+
+        if (*(index+x) == id2)
+        {
+            if (x != (size-1))
+                saved[1] = *(index+x+1);
+            else
+                saved[1] = *(index);
+        }
+        
+        if (*(index+x) == id3)
+        {
+            if (x != (size -1))
+                saved[2] = *(index+x+1);
+            else
+                saved[2] = *(index);
+        }
+    }
+    /*  Now see what we saved */
+    if (saved[2] != -1)
+    {
+        *new1 = id3;
+        *new2 = saved[2];
+        return;
+    }
+    else if (saved[1] != -1)
+    {
+        *new1 = id2;
+        *new2 = saved[1];
+        return;
+    }
+    else if (saved[0] != -1)
+    {
+        *new1 = id1;
+        *new2 = saved[0];
+        return;
+    }
+    /*  We did not find anything so get the edge with the least number of adjacencies */
+    Edge_Least(index,new1,new2,face_id,size);
+
+}
+
+int Find_Face(int current_face, int id1, int id2, int *bucket)
+{
+	/*	Find the face that is adjacent to the edge and is not the
+		current face.
+	*/
+	register int size,y,count=0;
+	PF_EDGES temp = NULL;
+	PF_FACES temp2 = NULL;
+	ListHead *pListHead;
+	int next_face;
+	BOOL there = FALSE;
+
+    
+    /*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     /*  The input edge was a new edge */
+     if (temp == NULL)
+        return -1;
+        
+     while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          /*  The input edge was a new edge */
+          if (temp == NULL)
+            return -1;
+     }
+	/*	Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return -1;
+	else
+	{
+		if (temp->edge[2] == current_face)
+			next_face =  temp->edge[1];
+		else 
+			next_face = temp->edge[2];
+	}
+	/*	We have the other face adjacent to this edge, it is 
+		next_face. 
+	*/
+	pListHead = PolFaces[next_face];
+	temp2 = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+		
+     /*	See if the face was already deleted, and where
+              it is if it was not
+     */
+		
+     if (Done(next_face,59,bucket) == NULL)
+        return -1;
+
+     /*  Make sure the edge is still in this polygon, and that it is not
+         done
+     */
+		/*	Size of the polygon */
+		size = temp2->nPolSize;
+		for (y = 0; y< size; y++)
+		{
+			/*	Make sure that the edge is still in the
+				polygon and was not deleted, because if the edge was
+				deleted, then we used it already.
+			*/
+			if (y != (size-1))
+			{
+				if( ((id1 == *(temp2->pPolygon+y)) && (id2 ==*(temp2->pPolygon+y+1)))
+					|| ((id2 == *(temp2->pPolygon+y)) && (id1 ==*(temp2->pPolygon+y+1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+			else
+			{		
+				if( ((id1 == *(temp2->pPolygon)) && (id2 ==*(temp2->pPolygon+size-1)))
+					|| ((id2 == *(temp2->pPolygon)) && (id1 ==*(temp2->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+		}
+		
+		if (!there)
+			/*	Edge already used and deleted from the polygon*/
+			return -1;
+         else
+            return next_face;
+}
+
+BOOL Look_Up(int id1,int id2,int face_id)
+{
+	/*	See if the endpoints of the edge specified by id1 and id2
+		are adjacent to the face with face_id 
+	*/
+	register int count = 0;
+	PF_EDGES temp  = NULL;
+	ListHead *pListHead;
+		
+	/*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+     /*	Was a new edge that we created */
+		return 0;
+	
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	Was a new edge that we created */
+			return 0;
+     }
+	/*	Was not adjacent to anything else except itself */
+	if ((temp->edge[2] == face_id) || (temp->edge[1] == face_id))
+	{
+		/*	Edge was adjacent to face, make sure that edge is 
+			still there
+		*/
+		if (Exist(face_id,id1,id2))
+			return 1;
+		else
+			return 0;
+	}
+	else
+		return 0;
+}
+
+
+void Add_Id_Strips(int id, int where)
+{
+     /*    Just save the triangle for later  */
+     P_STRIPS pfNode;
+
+	pfNode = (P_STRIPS) malloc(sizeof(Strips) );
+	if ( pfNode )
+	{
+	     pfNode->face_id = id;
+	     if (where == 1)
+     		 AddTail(strips[0],(PLISTINFO) pfNode);
+	     /* We are backtracking in the strip */
+	     else
+		 AddHead(strips[0],(PLISTINFO) pfNode);
+	}
+	else
+	{
+	     printf("There is not enough memory to allocate for the strips\n");
+	     exit(0);
+	}
+}
+
+
+int Num_Adj(int id1, int id2)
+{
+	/*   Given edge whose endpoints are specified by id1 and id2,
+		determine how many polygons share this edge and return that
+		number minus one (since we do not want to include the polygon
+		that the caller has already).
+	*/
+
+	PF_EDGES temp = NULL;
+	ListHead *pListHead;
+	register count=-1;
+
+	/*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+	{
+		printf("There is an error in the creation of the table \n");
+		exit(0);
+	}
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+	     if (temp == NULL)
+		{
+			printf("There is an error in the creation of the table\n");
+			exit(0);
+		}
+	}
+	/*      Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return 0;
+	return 1;
+}
+
+
+void Add_Sgi_Adj(int bucket,int face_id)
+{
+	/*   This routine will add the face to the proper bucket,
+		depending on how many faces are adjacent to it (what the
+		value bucket should be).
+	*/
+	P_ADJACENCIES pfNode;
+
+	pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+     if ( pfNode )
+     {
+		pfNode->face_id = face_id;
+	     AddHead(array[bucket],(PLISTINFO) pfNode);
+	}
+	else
+	{
+		printf("Out of memory for the SGI adj list!\n");
+		exit(0);
+	}
+}
+
+void Find_Adjacencies(int num_faces)
+{
+     register int	x,y;
+     register int	numverts;
+     PF_FACES temp=NULL;
+     ListHead *pListHead;
+
+	/*   Fill in the adjacencies data structure for all the faces */
+     for (x=0;x<num_faces;x++)
+	{
+        	pListHead = PolFaces[x];
+		temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+     	if ( temp != NULL )
+		{
+			numverts = temp->nPolSize;
+			if (numverts != 1)
+               {
+                    for (y = 0; y< numverts; y++)
+			     {
+				     if (y != (numverts-1))
+					     Add_AdjEdge(*(temp->pPolygon+y),*(temp->pPolygon+y+1),x,y);
+			
+				     else 
+					     Add_AdjEdge(*(temp->pPolygon),*(temp->pPolygon+(numverts-1)),x,numverts-1);
+			
+                    }
+               }
+			temp = NULL;
+		}
+	}
+}
+
+
diff --git a/Tools/Stripe_w/common.h b/Tools/Stripe_w/common.h
new file mode 100644
index 000000000..aca19824b
--- /dev/null
+++ b/Tools/Stripe_w/common.h
@@ -0,0 +1,42 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: common.h
+-----------------------------------------------------------------------*/
+
+void Add_AdjEdge(int v1,int v2,int fnum,int index1 );
+void Find_Adjacencies(int num_faces);
+void Add_Sgi_Adj(int bucket,int face_id);
+int Num_Adj(int id1, int id2);
+void Add_Id_Strips(int id, int where);
+BOOL Look_Up(int id1,int id2,int face_id);
+int Number_Adj(int id1, int id2, int curr_id);
+int  Old_Adj(int face_id);
+int Min_Adj(int id);
+int Find_Face(int current_face, int id1, int id2, int *bucket);
+void Edge_Least(int *index,int *new1,int *new2,int face_id,int size);
+void Get_Input_Edge(int *index,int id1,int id2,int id3,int *new1,int *new2,
+		    int size, int face_id);
+int Get_Output_Edge(int face_id, int size, int *index,int id2,int id3);
+void Check_In_Polygon(int face_id, int *min, int size);
+void  Check_In_Quad(int face_id,int *min);
+void New_Size_Face (int face_id);
+void New_Face (int face_id, int v1, int v2, int v3);
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/Tools/Stripe_w/extend.h b/Tools/Stripe_w/extend.h
new file mode 100644
index 000000000..78c135e3a
--- /dev/null
+++ b/Tools/Stripe_w/extend.h
@@ -0,0 +1,17 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: extend.h
+-----------------------------------------------------------------------*/
+
+int Bottom_Left();
+int Top_Left();
+void Start_Edge();
+
+
diff --git a/Tools/Stripe_w/free.c b/Tools/Stripe_w/free.c
new file mode 100644
index 000000000..ad655fcf7
--- /dev/null
+++ b/Tools/Stripe_w/free.c
@@ -0,0 +1,112 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: free.c
+     This file contains the code used to free the data structures.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "polverts.h"
+
+ListHead *array[60];
+int     id_array[60];
+ListHead *strips[1];
+ListHead *all_strips[100000]; /*  Assume max 100000 strips */
+
+void ParseAndFreeList( ListHead *pListHead )
+{
+    register int c,num;
+	  
+    /*    Freeing a linked list */
+    num = NumOnList(pListHead);
+    for (c = 0; c< num; c++)
+	     RemHead(pListHead);
+} 
+
+void FreePolygonNode( PF_VERTS pfVerts)
+{
+	/*   Free a vertex node */
+     if ( pfVerts->pPolygon )
+		free( pfVerts->pPolygon );
+	free( pfVerts );
+
+}
+ 
+void Free_Strips()
+{
+    /*    Free strips data structure */
+    if (strips[0] == NULL)
+         return;
+    else
+         ParseAndFreeList(strips[0]);
+}
+
+void FreeFaceNode( PF_FACES pfFaces)
+{
+	/*   Free face node */
+     if ( pfFaces->pPolygon )
+                free( pfFaces->pPolygon );
+        free( pfFaces );
+}
+
+
+void FreeFaceTable(int nSize)
+{
+     register int nIndex;
+
+     for ( nIndex=0; nIndex < nSize; nIndex++ )
+     { 
+    		if ( PolFaces[nIndex] != NULL ) 
+             ParseAndFreeList( PolFaces[nIndex] );
+     }
+     free( PolFaces );
+}
+
+void FreeEdgeTable(int nSize)
+{
+        register int nIndex;
+
+        for ( nIndex=0; nIndex < nSize; nIndex++ )
+        {
+                if ( PolEdges[nIndex] != NULL )
+                        ParseAndFreeList( PolEdges[nIndex] );
+        }
+        free( PolEdges );
+}
+
+
+void Free_All_Strips()
+{
+
+	ListHead *pListHead;
+	register int y;
+
+	for (y =0; ; y++)
+	{
+		pListHead = all_strips[y];
+		if (pListHead == NULL)
+			return;
+		else
+			ParseAndFreeList(all_strips[y]);
+	}
+}
+
+void End_Face_Struct(int numfaces)
+{
+     FreeFaceTable(numfaces);
+}
+
+void End_Edge_Struct(int numverts)
+{
+     FreeEdgeTable(numverts);
+}	
+
+
diff --git a/Tools/Stripe_w/free.h b/Tools/Stripe_w/free.h
new file mode 100644
index 000000000..4c1d055c6
--- /dev/null
+++ b/Tools/Stripe_w/free.h
@@ -0,0 +1,22 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: free.h
+-----------------------------------------------------------------------*/
+
+void Free_All_Strips();
+void ParseAndFreeList( ListHead *pListHead );
+void FreePolygonNode( PF_VERTS pfVerts);
+void Free_Strips();
+void FreeFaceTable(int nSize);
+void FreeEdgeTable(int nSize);
+void End_Face_Struct(int numfaces);
+void End_Edge_Struct(int numverts);
+
+
diff --git a/Tools/Stripe_w/global.h b/Tools/Stripe_w/global.h
new file mode 100644
index 000000000..3538f82f4
--- /dev/null
+++ b/Tools/Stripe_w/global.h
@@ -0,0 +1,44 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: global.h
+-----------------------------------------------------------------------*/
+
+#ifndef _GLOBAL_H
+#define _GLOBAL_H
+
+
+#define   VRDATA		double
+#define   STRIP_MAX            60
+	
+#define	TRUE	      	1
+#define	FALSE		0
+
+#ifndef PI
+#define   PI	     	3.1415926573
+#endif
+
+#define   ATOI(C)        (C -'0')
+#define   X              0
+#define   Y              1
+#define   Z              2
+#define   EVEN(x)       (((x) & 1) == 0)
+#define   MAX_BAND      10000
+
+struct vert_struct {
+	VRDATA	x, y, z;	/* point coordinates */
+};
+
+extern int     ids[STRIP_MAX];
+extern int     norms[STRIP_MAX];
+extern int     *vert_norms;
+extern int     *vert_texture;
+
+
+#endif _GLOBAL_H
diff --git a/Tools/Stripe_w/init.c b/Tools/Stripe_w/init.c
new file mode 100644
index 000000000..2e0f25885
--- /dev/null
+++ b/Tools/Stripe_w/init.c
@@ -0,0 +1,217 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: init.c
+     This file contains the initialization of data structures.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "global.h"
+#include "polverts.h"
+
+void init_vert_norms(int num_vert)
+{
+     /*   Initialize vertex/normal array to have all zeros to
+          start with.
+     */
+     register int x;
+
+     for (x = 0; x < num_vert; x++)
+          *(vert_norms + x) = 0;
+}
+
+void init_vert_texture(int num_vert)
+{
+     /*   Initialize vertex/normal array to have all zeros to
+          start with.
+     */
+     register int x;
+
+     for (x = 0; x < num_vert; x++)
+          *(vert_texture + x) = 0;
+}
+
+BOOL InitVertTable( int nSize )
+{
+     register int nIndex;
+
+	/*   Initialize the vertex table */
+     PolVerts = (ListHead**) malloc(sizeof(ListHead*) * nSize ); 
+	if ( PolVerts )
+	{
+		for ( nIndex=0; nIndex < nSize; nIndex++ )
+		{
+			PolVerts[nIndex] = NULL;
+		}
+		return( TRUE );	
+	}
+	return( FALSE );
+}  
+
+BOOL InitFaceTable( int nSize )
+{
+        register int nIndex;
+
+        /*     Initialize the face table */
+        PolFaces = (ListHead**) malloc(sizeof(ListHead*) * nSize ); 
+        if ( PolFaces )
+        {
+                for ( nIndex=0; nIndex < nSize; nIndex++ )
+                {
+                        PolFaces[nIndex] = NULL;
+                }
+                return( TRUE );
+        }
+        return( FALSE );
+} 
+
+BOOL InitEdgeTable( int nSize )
+{
+        register int nIndex;
+
+        /*     Initialize the edge table */
+        PolEdges = (ListHead**) malloc(sizeof(ListHead*) * nSize );
+        if ( PolEdges )
+        {
+                for ( nIndex=0; nIndex < nSize; nIndex++ )
+                {
+                        PolEdges[nIndex] = NULL;
+                }
+                return( TRUE );
+        }
+        return( FALSE );
+}
+
+
+void InitStripTable(  )
+{
+
+     PLISTHEAD pListHead;
+
+     /*   Initialize the strip table */
+     pListHead = ( PLISTHEAD ) malloc(sizeof(ListHead));
+	if ( pListHead )
+     {
+		InitList( pListHead );
+		strips[0] = pListHead;
+	}
+     else
+	{
+	     printf("Out of memory !\n");
+		exit(0);
+	}
+
+}
+
+void Init_Table_SGI()
+{
+	PLISTHEAD pListHead;
+	int max_adj = 60;
+	register int x;
+	
+	/*   This routine will initialize the table that will
+		have the faces sorted by the number of adjacent polygons
+		to it.
+	*/
+
+	for (x=0; x< max_adj; x++)
+	{
+		/* We are allowing the max number of sides of a polygon
+       to be max_adj.
+		*/                      
+		pListHead = ( PLISTHEAD ) malloc(sizeof(ListHead));
+		if ( pListHead )
+	  {
+		  InitList( pListHead );
+			array[x] = pListHead;
+		}
+    else
+		{
+		  printf("Out of memory !\n");
+			exit(0);
+		}
+	}
+}
+
+void BuildVertTable( int nSize )
+{
+  register int nIndex;
+  PLISTHEAD pListHead;
+	
+	for ( nIndex=0; nIndex < nSize; nIndex++ )
+	{
+		pListHead = ( PLISTHEAD ) malloc(sizeof(ListHead));
+		if ( pListHead )
+    {
+			InitList( pListHead );
+			PolVerts[nIndex] = pListHead;
+		}
+    else
+      return;	
+		
+	}
+}
+   
+
+void BuildFaceTable( int nSize )
+{
+        register int nIndex;
+        PLISTHEAD pListHead;
+        
+        for ( nIndex=0; nIndex < nSize; nIndex++ )
+        {
+                pListHead = ( PLISTHEAD ) malloc(sizeof(ListHead));
+                if ( pListHead )
+                {
+                        InitList( pListHead );
+                        PolFaces[nIndex] = pListHead;
+                }
+                else
+                        return; 
+                
+        }
+}
+   
+void BuildEdgeTable( int nSize )
+{
+        register int nIndex;
+        PLISTHEAD pListHead;
+
+        for ( nIndex=0; nIndex < nSize; nIndex++ )
+        {
+                pListHead = ( PLISTHEAD ) malloc(sizeof(ListHead));
+                if ( pListHead )
+                {
+                        InitList( pListHead );
+                        PolEdges[nIndex] = pListHead;
+                }
+                else
+                        return;
+        }
+}
+
+void Start_Face_Struct(int numfaces)
+{
+	if (InitFaceTable(numfaces))
+	{
+		BuildFaceTable(numfaces);
+	}
+}
+
+void Start_Edge_Struct(int numverts)
+{
+        if (InitEdgeTable(numverts))
+        {
+                BuildEdgeTable(numverts);
+        }
+}
+
+
diff --git a/Tools/Stripe_w/init.h b/Tools/Stripe_w/init.h
new file mode 100644
index 000000000..fe9a05fd7
--- /dev/null
+++ b/Tools/Stripe_w/init.h
@@ -0,0 +1,30 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: init.h
+-----------------------------------------------------------------------*/
+
+void init_vert_norms(int num_vert);
+void init_vert_texture(int num_vert);
+BOOL InitVertTable( int nSize );
+BOOL InitFaceTable( int nSize );
+BOOL InitEdgeTable( int nSize );
+void InitStripTable(  );
+void Init_Table_SGI();
+void BuildVertTable( int nSize );
+void BuildFaceTable( int nSize );
+void BuildEdgeTable( int nSize );
+void Start_Face_Struct(int numfaces);
+void Start_Edge_Struct(int numverts);
+
+
+
+
+
+
diff --git a/Tools/Stripe_w/local.c b/Tools/Stripe_w/local.c
new file mode 100644
index 000000000..3f3e69da1
--- /dev/null
+++ b/Tools/Stripe_w/local.c
@@ -0,0 +1,119 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: local.c
+     This file contains the code that initializes the data structures for
+     the local algorithm, and starts the local algorithm going.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "polverts.h"
+#include "local.h"
+#include "triangulatex.h"
+#include "sturctsex.h"
+#include "common.h"
+#include "outputex.h"
+#include "util.h"
+#include "init.h"
+
+void Find_StripsEx(FILE *output, FILE *strip,int *ties, int tie, 
+		   int triangulate, int swaps, int *next_id)
+{
+	/*	This routine will peel off the strips from the model */
+
+	ListHead *pListHead;
+	P_ADJACENCIES temp = NULL;
+	register int max,bucket=0;
+	BOOL whole_flag = TRUE;
+     int dummy = 0;
+	
+	/* Set the last known input edge to be null */
+  Last_Edge(&dummy,&dummy,&dummy,1);
+    
+  /* Search for lowest adjacency polygon and output strips */
+	while (whole_flag)
+	{
+		bucket = -1;
+		/* Search for polygons in increasing number of adjacencies */
+		while (bucket < 59)
+		{
+			bucket++;
+			pListHead = array[bucket];
+			max = NumOnList(pListHead);
+			if (max > 0)
+			{
+				temp = (P_ADJACENCIES) PeekList(pListHead,LISTHEAD,0);
+				if (temp == NULL)
+				{
+					printf("Error in the buckets%d %d %d\n",bucket,max,0);
+					exit(0);
+				}
+				Polygon_OutputEx(temp,temp->face_id,bucket,pListHead,
+	       				       output,strip,ties,tie,triangulate,swaps,next_id,1);
+				/* Try to extend backwards, if the starting polygon in the
+           strip had 2 or more adjacencies to begin with
+        */
+        if (bucket >= 2)
+          Extend_BackwardsEx(temp->face_id,output,strip,ties,tie,triangulate,swaps,next_id);
+        break;  
+			}
+		}
+		/*	Went through the whole structure, it is empty and we are done.
+		*/
+		if ((bucket == 59) && (max == 0))
+			whole_flag = FALSE;
+        
+    /*  We just finished a strip, send dummy data to signal the end
+        of the strip so that we can output it.
+    */
+    else
+    {
+      Output_TriEx(-1,-2,-3,output,-1,-10,1);
+      Last_Edge(&dummy,&dummy,&dummy,1);
+    }
+  }
+}
+
+
+void SGI_Strip(int num_verts,int num_faces,FILE *output,
+			   int ties,int triangulate)
+               
+{
+	FILE *strip;
+  int next_id = -1,t=0;
+
+  strip = fopen("output.d","w");
+  /* We are going to output and find triangle strips
+   	 according the the method that SGI uses, ie always
+		 choosing as the next triangle in our strip the triangle
+		 that has the least number of adjacencies. We do not have
+		 all triangles and will be triangulating on the fly those
+		 polygons that have more than 3 sides.
+	*/
+
+	/*	Build a table that has all the polygons sorted by the number
+		of polygons adjacent to it.
+	*/
+	/*	Initialize it */
+	Init_Table_SGI();
+	/*	Build it */
+	Build_SGI_Table(num_verts,num_faces);
+
+	/*    We will have a structure to hold all the strips, until
+        outputted.
+  */
+  InitStripTable();
+  /* Now we have the structure built to find the polygons according
+		 to the number of adjacencies. Now use the SGI Method to find
+		 strips according to the adjacencies
+	*/
+  Find_StripsEx(output,strip,&t,ties,triangulate,ON,&next_id);
+}
diff --git a/Tools/Stripe_w/local.h b/Tools/Stripe_w/local.h
new file mode 100644
index 000000000..df5256f6a
--- /dev/null
+++ b/Tools/Stripe_w/local.h
@@ -0,0 +1,20 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE:local.h
+-----------------------------------------------------------------------*/
+
+void Local_Polygon_Output();
+void Local_Output_Tri();
+int Different();
+void Local_Non_Blind_Triangulate();
+void Local_Blind_Triangulate();
+void Local_Triangulate_Polygon();
+void SGI_Strip(int num_verts,int num_faces,FILE *output,
+	       int ties,int triangulate);
diff --git a/Tools/Stripe_w/newpolve.c b/Tools/Stripe_w/newpolve.c
new file mode 100644
index 000000000..6267bbc42
--- /dev/null
+++ b/Tools/Stripe_w/newpolve.c
@@ -0,0 +1,1659 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: newpolve.c
+     This routine contains the bulk of the code that will find the
+     patches of quads in the data model
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdlib.h>
+#include "polverts.h"
+#include "extend.h"
+#include "output.h"
+#include "triangulate.h"
+#include "common.h"
+#include "util.h"
+#include "global.h"        
+#include "init.h"
+#include "add.h"
+
+ListHead **PolVerts;
+ListHead **PolFaces;
+ListHead **PolEdges;
+int length;
+BOOL resetting = FALSE;
+int     ids[STRIP_MAX];
+int 	added_quad = 0;
+BOOL reversed = FALSE;
+int patch = 0;
+extern int *vn;
+extern int *vt;
+
+int Calculate_Walks(int lastvert,int y, PF_FACES temp2)
+{
+	/* Find the length of the walk */
+	
+	int previous_edge1, previous_edge2;
+	register int nextvert,numverts,counter,walk=0;
+	BOOL flag;
+	F_EDGES *node;
+     ListHead *pListHead;
+     static int seen = 0;
+     
+	/* Find the edge that we are currently on */
+	if (y != 3)
+	{
+		previous_edge1 = *(temp2->pPolygon +y);
+		previous_edge2 = *(temp2->pPolygon + y + 1);
+	}
+	else
+	{
+		previous_edge1 = *(temp2->pPolygon +y);
+		previous_edge2 = *(temp2->pPolygon);
+	}
+
+	temp2->seen = seen;
+     counter = y;
+
+     /*Find the adjacent face to this edge */
+	node = *(temp2->VertandId+y);			
+	if (node->edge[2] != lastvert)
+        nextvert = node->edge[2];
+     else
+        nextvert = node->edge[1];
+					
+	/* Keep walking in this direction until we cannot do so */
+	while ((nextvert != lastvert) && (nextvert != -1))
+	{
+		walk++;
+		pListHead = PolFaces[nextvert];
+		temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+		numverts = temp2->nPolSize;
+		if ((numverts != 4) || (temp2->seen == seen))
+		{
+			walk--;
+			nextvert = -1;
+		}
+		else
+		{
+			temp2->seen = seen;
+               /* Find edge that is not adjacent to the previous one */
+			counter = 0;
+			flag = TRUE;
+			while ((counter < 3) && (flag))
+			{
+				if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+					(*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+					((*(temp2->pPolygon+counter) == previous_edge2) || 
+					(*(temp2->pPolygon+counter+1) == previous_edge1)) )
+					counter++;		
+				else
+					flag = FALSE;	
+			}
+	     	/* Get the IDs of the next edge */
+		     if (counter < 3)
+		     {
+			     previous_edge1 = *(temp2->pPolygon + counter);
+			     previous_edge2 = *(temp2->pPolygon + counter + 1);
+		     }
+		     else
+		     {
+                    previous_edge1 = *(temp2->pPolygon + counter);
+                    previous_edge2 = *(temp2->pPolygon);
+		     }
+	
+		     node = *(temp2->VertandId + counter);
+		     if (node->edge[1] == nextvert)
+			     nextvert = node->edge[2];
+		     else
+			     nextvert = node->edge[1];
+		}
+	}
+     seen++;
+	return walk;
+}
+
+
+BOOL Check_Right(int last_seen,PF_FACES temp2,int y,int face_id)
+{
+	/* Check when we last saw the face to the right of the current
+	   one. We want to have seen it just before we started this strip
+	*/
+
+	F_EDGES *node;
+	ListHead *pListHead;
+	register int nextvert,oldy;
+	PF_FACES t;
+	
+     oldy = y;
+	if (y != 3)
+		y = y+1;
+	else
+		y = 0;
+	node = *(temp2->VertandId + y);
+	if (face_id == node->edge[1])
+		nextvert = node->edge[2];
+	else
+		nextvert = node->edge[1];
+	
+     if (nextvert == -1)
+          return FALSE;
+     
+     pListHead = PolFaces[nextvert];
+	t = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+	if (t->seen != (last_seen - 1))
+	{
+		 /* maybe because of the numbering, we are not
+		    on the right orientation, so we have to check the
+		    opposite one to be sure 
+           */
+		if (oldy != 0)
+			y = oldy-1;
+		else
+			y = 3;
+		node = *(temp2->VertandId + y);
+		if (face_id == node->edge[1])
+			nextvert = node->edge[2];
+		else
+			nextvert = node->edge[1];
+		if (nextvert == -1)
+               return FALSE;
+          pListHead = PolFaces[nextvert];
+		t = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+		if (t->seen != (last_seen - 1))
+		 	return FALSE;
+	}
+	return TRUE;
+}
+
+
+int Update_and_Test(PF_FACES temp2,int y,BOOL first,int distance,int lastvert, int val)
+{
+	     
+        static int last_seen = 17;
+        int previous_edge1, previous_edge2;
+        register int original_distance,nextvert,numverts,counter;
+        BOOL flag;
+        F_EDGES *node;
+        ListHead *pListHead;
+                                                        
+        original_distance = distance;
+        /* Find the edge that we are currently on */
+        if (y != 3)
+        {
+                previous_edge1 = *(temp2->pPolygon +y);
+                previous_edge2 = *(temp2->pPolygon + y + 1);
+        }
+        else
+        {
+                previous_edge1 = *(temp2->pPolygon +y);
+                previous_edge2 = *(temp2->pPolygon);
+        }
+
+        temp2->seen = val;
+        temp2->seen2 = val;
+		
+        node = *(temp2->VertandId+y);                   
+        if (lastvert != node->edge[2])
+			nextvert = node->edge[2];
+	   else
+			nextvert = node->edge[1];
+                                        
+        /* Keep walking in this direction until we cannot do so  or
+		we go to distance */
+        while ((distance > 0)  && (nextvert != lastvert) && (nextvert != -1))
+        {
+                distance--;
+			           
+                pListHead = PolFaces[nextvert];
+                temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+                temp2->seen = val;
+				
+                if (temp2->seen2 == val)
+                {
+                     last_seen++;
+                     return (original_distance - distance);
+                }
+                
+                temp2->seen2 = val;
+                
+                numverts = temp2->nPolSize;
+                                
+	     	 if (numverts != 4)
+          	     nextvert = -1;
+		
+                else if ((!first) && (!(Check_Right(last_seen,temp2,y,nextvert))))
+                {
+                    last_seen++;
+                    return (original_distance - distance);
+                }
+		      else
+                {
+                        /* Find edge that is not adjacent to the previous one */
+                        counter = 0;
+                        flag = TRUE;
+                        while ((counter < 3) && (flag))
+                        {
+                                if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                                        (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                                        ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                                        (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                                        counter++;
+                                else
+                                        flag = FALSE;
+                        }
+                        /* Get the IDs of the next edge */
+                        if (counter < 3)
+                        {
+                              previous_edge1 = *(temp2->pPolygon + counter);
+                              previous_edge2 = *(temp2->pPolygon + counter + 1);
+                        }
+                        else
+                        {
+                              previous_edge1 = *(temp2->pPolygon + counter);
+                              previous_edge2 = *(temp2->pPolygon);
+                        }
+                        if      ( ((*(temp2->walked+counter) == -1) && 
+                                (*(temp2->walked+counter+2) == -1)))
+                        {
+                                printf("There is an error in the walks!\n");
+                                printf("1Code %d %d \n",*(temp2->walked+counter),*(temp2->walked+counter+2));
+                                exit(0);
+                        }
+                        else
+                        {
+                                if      ((*(temp2->walked+counter) == -1) && 
+                                        (*(temp2->walked+counter-2) ==  -1))
+                                {
+                                        printf("There is an error in the walks!\n");
+                                        printf("2Code %d %d \n",*(temp2->walked+counter),*(temp2->walked+counter-2));
+                                        exit(0);
+                                }
+                        }
+                        node = *(temp2->VertandId + counter);
+                        y = counter;
+		              if (node->edge[1] == nextvert)
+                              nextvert = node->edge[2];
+                        else
+                              nextvert = node->edge[1];
+             }
+    }
+	
+    last_seen++;
+
+    if  (distance != 0)  
+    {
+		if (((nextvert == -1) || (nextvert == lastvert)) && (distance != 1))
+			return (original_distance - distance);
+    }
+    return original_distance;
+}
+
+
+int Test_Adj(PF_FACES temp2,int x,int north,int distance,int lastvert, int value)
+{
+	/* if first time, then just update the last seen field */
+	if (x==1)
+		return(Update_and_Test(temp2,north,TRUE,distance,lastvert,value));
+	/* else we have to check if we are adjacent to the last strip */
+	else
+		return(Update_and_Test(temp2,north,FALSE,distance,lastvert,value));
+}
+  
+void Get_Band_Walk(PF_FACES temp2,int face_id,int *dir1,int *dir2, 
+					int orientation,int cutoff_length)
+{
+	int previous_edge1, previous_edge2;
+	F_EDGES *node;
+	ListHead *pListHead;
+	register int walk = 0, nextvert,numverts,counter;
+	BOOL flag;
+	
+	/*	Get the largest band that will include this face, starting
+		from orientation. Save the values of the largest band
+		(either north and south together, or east and west together)
+		in the direction variables.
+	*/
+	/* Find the edge that we are currently on */
+     if (orientation != 3)
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation);
+                previous_edge2 = *(temp2->pPolygon + orientation + 1);
+     }
+     else
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation );
+                previous_edge2 = *(temp2->pPolygon);
+     }
+		
+     if (orientation == 0)
+     {
+			 if (*dir1 > *(temp2->walked + 1))
+				*dir1 = *(temp2->walked + 1);
+			 if (*dir2 > *(temp2->walked + 3))
+				*dir2 = *(temp2->walked + 3);
+	}
+	else if (orientation == 3)
+	{
+			if (*dir1 > *(temp2->walked + orientation - 3))
+			     *dir1 = *(temp2->walked + orientation - 3) ;
+			if (*dir2 > *(temp2->walked + orientation -1 ))
+				*dir2 = *(temp2->walked + orientation - 1);
+	}
+	else
+	{
+			if (*dir1 > *(temp2->walked + orientation - 1))
+				*dir1 = *(temp2->walked + orientation -1) ;
+			if (*dir2 > *(temp2->walked+ orientation + 1))
+				*dir2 = *(temp2->walked + orientation + 1);
+	}
+        
+     /*	if we know already that we can't extend the
+        	band from this face, we do not need to do the walk
+     */
+     if ((*dir1 != 0) && (*dir2 != 0))
+     {
+		/* Find the adjacent face to this edge */
+        	node = *(temp2->VertandId+orientation);                   
+        	if (face_id == node->edge[1])
+			nextvert = node->edge[2];
+        	else 
+			nextvert = node->edge[1];
+	}
+     else
+        	nextvert = -1; /* leave w/o walking */                                
+	
+	/* Keep walking in this direction until we cannot do so */
+     while ((nextvert != face_id) && (nextvert != -1))
+     {
+            walk++;
+            pListHead = PolFaces[nextvert];
+            temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+            numverts = temp2->nPolSize;
+            if ((numverts != 4)	|| (walk > cutoff_length))
+                   nextvert = -1;
+            else
+            {
+	  		  /* Find edge that is not adjacent to the previous one */
+                 counter = 0;
+                 flag = TRUE;
+                 while ((counter < 3) && (flag))
+                 {
+                           if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                                (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                                ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                                (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                                     counter++;
+                           else
+                                flag = FALSE;
+                 }
+                 /* Get the IDs of the next edge */
+                 if (counter < 3)
+                 {
+                        previous_edge1 = *(temp2->pPolygon + counter);
+                        previous_edge2 = *(temp2->pPolygon + counter + 1);
+                 }
+                 else
+                 {
+                        previous_edge1 = *(temp2->pPolygon + counter);
+                        previous_edge2 = *(temp2->pPolygon);
+                 }
+                
+			  /* 	find out how far we can extend in the 2 directions
+					along this new face in the walk
+			  */
+			  if (counter == 0)
+			  {
+					if (*dir1 > *(temp2->walked + 1))
+						*dir1 = *(temp2->walked + 1);
+					if (*dir2 > *(temp2->walked + 3))
+						*dir2 = *(temp2->walked + 3);
+			  }
+			  else if (counter == 3)
+			  {
+					if (*dir1 > *(temp2->walked + counter - 3))
+						*dir1 = *(temp2->walked + counter - 3) ;
+					if (*dir2 > *(temp2->walked + counter -1 ))
+						*dir2 = *(temp2->walked + counter -1);
+			  }
+			  else
+			  {
+					if (*dir1 > *(temp2->walked + counter - 1))
+						*dir1 = *(temp2->walked + counter -1) ;
+					if (*dir2 > *(temp2->walked + counter + 1))
+						*dir2 = *(temp2->walked + counter + 1);
+			  }
+        
+        	      /*	if we know already that we can't extend the
+        	     	band from this face, we do not need to do the walk
+        	      */
+	        	 if ((*dir1 == 0) || (*dir2 == 0))
+                	nextvert = -1;
+                if (nextvert != -1)
+                {
+                	node = *(temp2->VertandId + counter);
+                	if (node->edge[1] == nextvert)
+                        nextvert = node->edge[2];
+                	else
+                        nextvert = node->edge[1];
+                }
+
+           }
+        }
+}
+
+
+
+
+int Find_Max(PF_FACES temp2,int lastvert,int north,int left,
+			int *lastminup,int *lastminleft)
+{
+	int temp,walk,counter,minup,x,band_value;
+	int previous_edge1, previous_edge2;
+	F_EDGES	*node;
+	ListHead *pListHead;
+	BOOL flag;	
+	static int last_seen = 0;
+	register int smallest_so_far,nextvert,max=-1;
+	        
+     *lastminup = MAX_BAND;
+	*lastminleft = 1;
+
+     if (left == 3)
+	{
+          previous_edge1 = *(temp2->pPolygon + left);
+          previous_edge2 = *(temp2->pPolygon);
+	}
+                
+	else
+	{
+          previous_edge1 = *(temp2->pPolygon + left + 1);
+          previous_edge2 = *(temp2->pPolygon + left);
+	}
+
+	temp2->seen = last_seen;
+     walk = *(temp2->walked + left);
+
+     for (x=1;x<=(walk+1); x++)
+	{
+		/*   test to see if we have a true band
+		     that is, are they adjacent to each other
+		*/
+        
+         minup = *(temp2->walked + north) + 1;
+
+	    /*	if we are at the very first face, then we do not
+	    	     have to check the adjacent faces going up
+	    	     and our north distance is the distance of this face's
+			north direction. 
+	    */
+         if (x == 1) 
+	    {
+			*lastminup = minup;
+			minup = Test_Adj(temp2,x,north,*lastminup,lastvert,last_seen);
+			*lastminup = minup;
+               smallest_so_far = minup;	
+         }
+		
+	
+	    /* find the largest band that we can have */
+	    if (minup < (*lastminup))
+	    {
+			/*	see if we really can go up all the way 
+				temp should by less than our equal to minup
+				if it is less, then one of the faces was not
+				adjacent to those next to it and the band height
+				will be smaller
+			*/
+			temp = Test_Adj(temp2,x,north,minup,lastvert,last_seen);
+			if (temp > minup)
+			{
+				printf("There is an error in the test adj\n");
+				exit(0);
+			}
+			minup = temp;
+			band_value = x * minup;
+			if (minup < smallest_so_far)
+			{
+				if (band_value > max)
+               	{
+					smallest_so_far = minup;
+					*lastminup = minup;
+					*lastminleft = x;
+                         max = band_value;
+                    }
+				else
+					smallest_so_far = minup;
+			}
+			else
+			{
+				band_value = x * smallest_so_far;
+     	          if (band_value > max)
+                    {
+                	     *lastminup = smallest_so_far;
+                         *lastminleft = x;
+                         max = band_value;
+                    }
+			}
+		}
+		else
+		{
+			if (x != 1)
+               {
+                    temp = Test_Adj(temp2,x,north,smallest_so_far,lastvert,last_seen);
+			     if (temp > smallest_so_far)
+			     {
+				    printf("There is an error in the test adj\n");
+				    exit(0);
+			     }
+			    smallest_so_far = temp;
+               }
+               band_value = x * smallest_so_far; 
+			if (band_value > max)
+			{
+				*lastminup = smallest_so_far;
+				*lastminleft = x;
+				max = band_value;
+			}
+		}
+		if ( x != (walk + 1))
+		{
+			node = *(temp2->VertandId+left);
+			if (lastvert == node->edge[1])
+				nextvert = node->edge[2];
+			else
+				nextvert = node->edge[1];
+
+               lastvert = nextvert;
+               
+               if (nextvert == -1)
+                    return max;
+               
+               pListHead = PolFaces[nextvert];
+			temp2 = (PF_FACES) PeekList(pListHead, LISTHEAD, 0);
+			
+               /* if we have visited this face before, then there is an error */
+               if (((*(temp2->walked) == -1) && (*(temp2->walked+1) == -1) &&
+				(*(temp2->walked+2) == -1) && (*(temp2->walked+3) == -1))
+				|| (temp2->nPolSize !=4) || (temp2->seen == last_seen))
+			{
+
+                    if (lastvert == node->edge[1])
+                         nextvert = node->edge[2];
+                    else
+                         nextvert = node->edge[1];
+                    if (nextvert == -1)
+                         return max;
+                    lastvert = nextvert;
+                    /*   Last attempt to get the face ... */
+                    pListHead = PolFaces[nextvert];
+     			temp2 = (PF_FACES) PeekList(pListHead, LISTHEAD, 0);
+                    if (((*(temp2->walked) == -1) && (*(temp2->walked+1) == -1) &&
+				     (*(temp2->walked+2) == -1) && (*(temp2->walked+3) == -1))
+				     || (temp2->nPolSize !=4) || (temp2->seen == last_seen))
+                         return max;    /*   The polygon was not saved with the edge, not
+                                             enough room. We will get the walk when we come
+                                             to that polygon later.
+                                        */
+			}
+			/*else
+			{*/
+				counter = 0;
+				flag = TRUE;
+				temp2->seen = last_seen;
+
+                    while ((counter < 3) && (flag))
+			     {
+
+                         if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                                        (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                                        ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                                        (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                                        counter++;
+				     else
+                                        flag = FALSE;
+                    }
+               /*}*/
+		
+               /* Get the IDs of the next edge */
+               left = counter;
+		     north = left+1;
+               if (left ==3)
+			     north = 0;	
+		     if (counter < 3)
+               {
+                        previous_edge1 = *(temp2->pPolygon + counter + 1);
+                        previous_edge2 = *(temp2->pPolygon + counter);
+               }
+               else
+               {
+                        previous_edge1 = *(temp2->pPolygon + counter);
+                        previous_edge2 = *(temp2->pPolygon);
+               }
+
+          } 
+
+}
+last_seen++;
+return max;
+}
+
+void Mark_Face(PF_FACES temp2, int color1, int color2,
+				int color3, FILE *output_file, BOOL end, int *edge1, int *edge2, 
+                    int *face_id, int norms, int texture)
+{
+     static int last_quad[4];
+     int x,y,z=0;
+     int saved[2];
+     static int output1, output2,last_id;
+     BOOL cptexture = FALSE;
+
+     /*   Are we done with the patch? If so return the last edge that
+          we will come out on, and that will be the edge that we will
+          start to extend upon.
+     */
+
+     if (end)
+     {
+          *edge1 = output1;
+          *edge2 = output2;
+          *face_id = last_id;
+          return;
+     }
+
+     cptexture = texture;
+     last_id = *face_id;
+	*(temp2->walked) = -1;
+	*(temp2->walked+1) = -1;
+	*(temp2->walked+2) = -1;
+	*(temp2->walked+3) = -1;
+	added_quad++;
+	temp2->nPolSize = 1;
+
+     if (patch == 0)
+     {
+          /*   At the first quad in the strip -- save it */
+          last_quad[0] = *(temp2->pPolygon);
+          last_quad[1] = *(temp2->pPolygon+1);
+          last_quad[2] = *(temp2->pPolygon+2);
+          last_quad[3] = *(temp2->pPolygon+3);
+          patch++;
+     }
+     else
+     {
+          /*   Now we have a triangle to output, find the edge in common */
+          for (x=0; x < 4 ;x++)
+          {
+              for (y=0; y< 4; y++)
+              {
+                   if (last_quad[x] == *(temp2->pPolygon+y))
+                   {
+                        saved[z++] = last_quad[x];               
+                        if (z > 2)
+                        {
+                             /*    This means that there was a non convex or
+                                   an overlapping polygon
+                             */
+                             z--;
+                             break;
+                        }
+                   }                             
+              }
+          }
+          
+          if (z != 2)
+          {
+               printf("Z is not 2 %d \n",patch);
+               printf("4 %d %d %d %d %d %d %d\n",*(temp2->pPolygon),
+				*(temp2->pPolygon+1),*(temp2->pPolygon+2),*(temp2->pPolygon+3),
+				color1,color2,color3);
+               printf("%d %d %d %d\n",last_quad[0],last_quad[1],last_quad[2],last_quad[3]);
+               exit(1);
+          }
+          
+          if (patch == 1)
+          {
+               /*   First one to output, there was no output edge */
+               patch++;
+               x = Adjacent(saved[0],saved[1],last_quad,4);
+               y = Adjacent(saved[1],saved[0],last_quad,4);
+               
+               /*   Data might be mixed and we do not have textures for some of the vertices */
+               if ((texture) && ( ((vt[x]) == 0) || ((vt[y])==0) || ((vt[saved[1]])==0)))
+                    cptexture = FALSE;
+
+               if ((!norms) && (!cptexture))
+               {
+                    fprintf(output_file,"\nt %d %d %d ",x+1,y+1,saved[1]+1);
+                    fprintf(output_file,"%d ",saved[0]+1);
+               }
+               else if ((norms) && (!cptexture))
+               {
+                    fprintf(output_file,"\nt %d//%d %d//%d %d//%d ",x+1,vn[x] +1,
+                                                                    y+1,vn[y] +1,
+                                                                    saved[1]+1,vn[saved[1]]+1);
+                    fprintf(output_file,"%d//%d ",saved[0]+1,vn[saved[0]]+1);
+               }
+               else if ((cptexture) && (!norms))
+               {
+                    fprintf(output_file,"\nt %d/%d %d/%d %d/%d ",x+1,vt[x] +1,
+                                                                    y+1,vt[y] +1,
+                                                                    saved[1]+1,vt[saved[1]]+1);
+                    fprintf(output_file,"%d//%d ",saved[0]+1,vt[saved[0]]+1);
+               }
+               else
+               {
+                    fprintf(output_file,"\nt %d/%d/%d %d/%d/%d %d/%d/%d ",x+1,vt[x]+1,vn[x] +1,
+                                                                    y+1,vt[y]+1,vn[y] +1,
+                                                                    saved[1]+1,vt[saved[1]]+1,vn[saved[1]]+1);
+                    fprintf(output_file,"%d/%d/%d ",saved[0]+1,vt[saved[0]]+1,vn[saved[0]]+1);
+               }
+
+               x = Adjacent(saved[0],saved[1],temp2->pPolygon,4);
+               y = Adjacent(saved[1],saved[0],temp2->pPolygon,4);
+
+               /*   Data might be mixed and we do not have textures for some of the vertices */
+               if ((texture) && ( (vt[x] == 0) || (vt[y]==0)))
+               {
+                    if (cptexture)
+                         fprintf(output_file,"\nq ");
+                    cptexture = FALSE;
+               }
+               if ((!norms) && (!cptexture))
+               {
+                    fprintf(output_file,"%d ",x+1);
+                    fprintf(output_file,"%d ",y+1);
+               }
+               else if ((norms) && (!cptexture))
+               {
+                    fprintf(output_file,"%d//%d ",x+1,vn[x]+1);
+                    fprintf(output_file,"%d//%d ",y+1,vn[y]+1);
+               }
+               else if ((cptexture) && (!norms))
+               {
+                    fprintf(output_file,"%d/%d ",x+1,vt[x]+1);
+                    fprintf(output_file,"%d/%d ",y+1,vt[y]+1);
+               }
+               else
+               {
+                    fprintf(output_file,"%d/%d/%d ",x+1,vt[x]+1,vn[x]+1);
+                    fprintf(output_file,"%d/%d/%d ",y+1,vt[y]+1,vn[y]+1);
+               }
+
+               output1 = x;
+               output2 = y;
+          }
+          
+          else 
+          {
+               x = Adjacent(output2,output1,temp2->pPolygon,4);
+               y = Adjacent(output1,output2,temp2->pPolygon,4);
+               /*   Data might be mixed and we do not have textures for some of the vertices */
+               if ((texture) && ( ((vt[x]) == 0) || ((vt[y])==0) ))
+                    texture = FALSE;
+
+               if ((!norms) && (!texture))
+               {
+                    fprintf(output_file,"\nq %d ",x+1);
+                    fprintf(output_file,"%d ",y+1);
+               }
+               else if ((norms) && (!texture))
+               {
+                    fprintf(output_file,"\nq %d//%d ",x+1,vn[x]+1);
+                    fprintf(output_file,"%d//%d ",y+1,vn[y]+1);
+               }
+               else if ((texture) && (!norms))
+               {
+                    fprintf(output_file,"\nq %d/%d ",x+1,vt[x]+1);
+                    fprintf(output_file,"%d/%d ",y+1,vt[y]+1);
+               }
+               else
+               {
+                    fprintf(output_file,"\nq %d/%d/%d ",x+1,vt[x]+1,vn[x]+1);
+                    fprintf(output_file,"%d/%d/%d ",y+1,vt[y]+1,vn[y]+1);
+               }
+               
+               output1 = x;
+               output2 = y;
+          }
+          
+          last_quad[0] = *(temp2->pPolygon);
+          last_quad[1] = *(temp2->pPolygon+1);
+          last_quad[2] = *(temp2->pPolygon+2);
+          last_quad[3] = *(temp2->pPolygon+3);
+     }
+}
+
+void Fast_Reset(int x)
+{
+	register int y,numverts;
+	register int front_walk, back_walk;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+
+     pListHead = PolFaces[x];
+	temp = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+	numverts = temp->nPolSize;
+     
+     front_walk = 0; 
+     back_walk = 0;          
+     resetting = TRUE;
+          
+     /* we are doing this only for quads */
+	if (numverts == 4)
+	{
+			/* 	for each face not seen yet, do North and South together
+				and East and West together
+			*/
+			for (y=0;y<2;y++)
+			{
+				/* Check if the opposite sides were seen already */
+	     		/* Find walk for the first edge */
+				front_walk = Calculate_Walks(x,y,temp);
+				/* Find walk in the opposite direction */
+				back_walk = Calculate_Walks(x,y+2,temp);
+				/* 	Now put into the data structure the numbers that
+		          	we have found
+				*/
+                    Assign_Walk(x,temp,front_walk,y,back_walk);
+				Assign_Walk(x,temp,back_walk,y+2,front_walk);
+			}
+	}
+     resetting = FALSE;
+}
+
+
+void Reset_Max(PF_FACES temp2,int face_id,int north,int last_north, int orientation,
+		int last_left,FILE *output_file,int color1,int color2,int color3,
+		BOOL start)
+{
+	int previous_edge1,previous_edge2;
+	F_EDGES *node;
+	ListHead *pListHead;
+	int f,t,nextvert,counter;
+     BOOL flag;
+
+ 
+     /*   Reset walks on faces, since we just found a patch */
+     if (orientation !=3)
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation+1);
+                previous_edge2 = *(temp2->pPolygon + orientation );
+     }
+     else
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation );
+                previous_edge2 = *(temp2->pPolygon);
+     }
+
+	/* only if we are going left, otherwise there will be -1 there */
+	/*Find the adjacent face to this edge */
+        
+     for (t = 0; t <=3 ; t++)
+     {
+             node = *(temp2->VertandId+t);
+              
+             if (face_id == node->edge[1])
+                f = node->edge[2];
+             else
+               f = node->edge[1];
+       
+             if (f != -1)
+                  Fast_Reset(f);
+        }
+
+        node = *(temp2->VertandId+orientation);
+        if (face_id == node->edge[1])
+             nextvert = node->edge[2];
+        else
+             nextvert = node->edge[1];
+
+	while ((last_left--) > 1)
+	{
+               
+          if (start)
+               Reset_Max(temp2,face_id,orientation,last_left,north,last_north,output_file,color1,color2,color3,FALSE);		
+        
+          face_id = nextvert;
+          pListHead = PolFaces[nextvert];                
+          temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+          if ((temp2->nPolSize != 4) && (temp2->nPolSize != 1))
+          {
+             /*   There is more than 2 polygons on the edge, and we could have
+                  gotten the wrong one
+             */
+             if (nextvert != node->edge[1])
+                  nextvert = node->edge[1];
+             else
+                  nextvert = node->edge[2];
+             pListHead = PolFaces[nextvert];          
+             temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+             node = *(temp2->VertandId+orientation);
+          }
+
+                
+         if (!start)
+         {
+             for (t = 0; t <=3 ; t++)
+             {
+                    node = *(temp2->VertandId+t);
+              
+                    if (face_id == node->edge[1])
+                         f = node->edge[2];
+                    else
+                         f = node->edge[1];
+          
+                    if (f != -1)
+                         Fast_Reset(f);
+             }
+        }
+
+
+        counter = 0;
+	   flag = TRUE;
+	   while ((counter < 3) && (flag))
+        {
+             if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                   (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                  ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                   (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                   counter++;
+             else
+                  flag = FALSE;
+        }
+
+        /* Get the IDs of the next edge */
+        if (counter < 3)
+        {
+             previous_edge1 = *(temp2->pPolygon + counter+1);
+             previous_edge2 = *(temp2->pPolygon + counter);
+        }
+        else
+        {
+             previous_edge1 = *(temp2->pPolygon + counter);
+             previous_edge2 = *(temp2->pPolygon);
+        }
+        orientation = counter;
+
+        node = *(temp2->VertandId + counter);
+	   if (node->edge[1] == nextvert)
+			nextvert = node->edge[2];
+	   else
+			nextvert = node->edge[1];
+
+        if (!reversed)
+        {
+               if (counter != 3)
+			     north = counter +1;
+		     else
+			     north = 0;
+        }
+        else
+        {
+               if (counter != 0)
+                    north = counter -1;
+               else
+                    north = 3;
+    
+        }
+     }
+if (start)
+	Reset_Max(temp2,face_id,orientation,last_left,north,last_north,output_file,color1,color2,color3,FALSE);
+else if (nextvert != -1)       
+     Fast_Reset(nextvert);
+
+}
+
+
+int Peel_Max(PF_FACES temp2,int face_id,int north,int last_north, int orientation,
+		int last_left,FILE *output_file,int color1,int color2,int color3,
+		BOOL start, int *swaps_added, int norms, int texture)
+{
+	int end1,end2,last_id,s=0,walk = 0;
+	int previous_edge1,previous_edge2;
+	static int last_seen = 1000;
+	F_EDGES *node;
+	ListHead *pListHead;
+	int nextvert,numverts,counter,dummy,tris=0;
+     BOOL flag;
+
+     /*   Peel the patch from the model.
+          We will try and extend off the end of each strip in the patch. We will return the
+          number of triangles completed by this extension only, and the number of swaps
+          in the extension only.
+     */	
+     patch = 0;
+     
+     if (orientation !=3)
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation+1);
+                previous_edge2 = *(temp2->pPolygon + orientation );
+     }
+     else
+     {
+                previous_edge1 = *(temp2->pPolygon + orientation );
+                previous_edge2 = *(temp2->pPolygon);
+     }
+
+
+     walk = *(temp2->walked + orientation);
+	
+     /* only if we are going left, otherwise there will be -1 there */
+	if ((start) && ((walk+1) < last_left))
+	{
+		printf("There is an error in the left %d %d\n",walk,last_left);
+		exit(0);
+	}
+	
+     /* Find the adjacent face to this edge */
+     node = *(temp2->VertandId+orientation);
+     if (face_id == node->edge[1])
+          nextvert = node->edge[2];
+     else
+          nextvert = node->edge[1];
+	temp2->seen = last_seen;
+
+
+	while ((last_left--) > 1)
+	{
+ 		if (start)
+             tris += Peel_Max(temp2,face_id,orientation,last_left,north,last_north,output_file,
+                              color1,color2,color3,FALSE,swaps_added,norms,texture);		    
+          else
+             Mark_Face(temp2,color1,color2,color3,output_file,FALSE,&dummy,&dummy,&face_id,norms,texture);
+		
+
+          pListHead = PolFaces[nextvert];      
+          temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+          numverts = temp2->nPolSize;
+	
+          if ((numverts != 4) || (temp2->seen == last_seen) 
+			||  (nextvert == -1))
+          {
+  	
+             /*   There is more than 2 polygons on the edge, and we could have
+                  gotten the wrong one
+             */
+             if (nextvert != node->edge[1])
+                  nextvert = node->edge[1];
+             else
+                  nextvert = node->edge[2];
+             pListHead = PolFaces[nextvert];
+             temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+             numverts = temp2->nPolSize;
+             if ((numverts != 4) || (temp2->seen == last_seen) )
+             {
+                  printf("Peel 2 %d\n",numverts);
+                  exit(1);
+             }
+        }
+
+        face_id = nextvert;
+        temp2->seen = last_seen;
+                
+        counter = 0;
+        flag = TRUE;
+	   while ((counter < 3) && (flag))
+        {
+             if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                   (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                  ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                   (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                   counter++;
+             else
+                  flag = FALSE;
+        }
+        /* Get the IDs of the next edge */
+        if (counter < 3)
+        {
+             previous_edge1 = *(temp2->pPolygon + counter+1);
+             previous_edge2 = *(temp2->pPolygon + counter);
+        }
+        else
+        {
+             previous_edge1 = *(temp2->pPolygon + counter);
+             previous_edge2 = *(temp2->pPolygon);
+        }
+        orientation = counter;
+		              
+	   node = *(temp2->VertandId + counter);
+	   if (node->edge[1] == nextvert)
+			nextvert = node->edge[2];
+	   else
+			nextvert = node->edge[1];
+
+	   if (!reversed)
+        {
+               if (counter != 3)
+			     north = counter +1;
+		     else
+			     north = 0;
+        }
+        else
+        {
+               if (counter != 0)
+                    north = counter -1;
+               else
+                    north = 3;
+        }
+}
+
+if (start)
+	tris += Peel_Max(temp2,face_id,orientation,last_left,north,last_north,output_file,
+                        color1,color2,color3,FALSE,swaps_added,norms,texture);	
+else
+     Mark_Face(temp2,color1,color2,color3,output_file,FALSE,&dummy,&dummy,&face_id,norms,texture);/* do the last face */
+
+last_seen++;
+
+/*    Get the edge that we came out on the last strip of the patch */
+Mark_Face(NULL,0,0,0,output_file,TRUE,&end1,&end2,&last_id,norms,texture);
+tris += Extend_Face(last_id,end1,end2,&s,output_file,color1,color2,color3,vn,norms,vt,texture);
+*swaps_added = *swaps_added + s;
+return tris;
+}
+
+
+
+void Find_Bands(int numfaces, FILE *output_file, int *swaps, int *bands, 
+                int *cost, int *tri, int norms, int *vert_norms, int texture, int *vert_texture)
+{
+
+	register int x,y,max1,max2,numverts,face_id,flag,maximum = 25;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+	int color1 = 0, color2 = 100, color3 = 255;
+	int larger,smaller;
+	int north_length1,last_north,left_length1,last_left,north_length2,left_length2;
+  int total_tri = 0, total_swaps = 0,last_id;
+  int end1, end2,s=0;
+  register int cutoff = 20;
+    
+  /* Code that will find the patches. "Cutoff" will be
+     the cutoff of the area of the patches that we will be allowing. After
+     we reach this cutoff length, then we will run the local algorithm on the
+     remaining faces.
+  */
+
+	/* For each faces that is left find the largest possible band that we can
+		 have with the remaining faces. Note that we will only be finding patches
+     consisting of quads.
+	*/
+
+  vn = vert_norms;
+  vt = vert_texture;
+  y=1;
+  *bands = 0;
+
+  while ((maximum >= cutoff))
+  {
+	  y++;
+    maximum = -1;
+	  for (x=0; x<numfaces; x++)
+	  { 
+      /*   Used to produce the triangle strips */
+ 
+      /* for each face, get the face */
+		  pListHead = PolFaces[x];
+		  temp = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+		  numverts = temp->nPolSize;
+		  
+      /* we are doing this only for quads */
+		  if (numverts == 4)
+		  {
+			  /* We want a face that is has not been used yet,
+           since we know that that face must be part of
+				   a band. Then we will find the largest band that
+				   the face may be contained in
+			  */
+			  
+        /*  Doing the north and the left */
+			  if ((*(temp->walked) != -1) && (*(temp->walked+3) != -1))
+				  max1 = Find_Max(temp,x,0,3,&north_length1,&left_length1);
+			  if ((*(temp->walked+1) != -1) && (*(temp->walked+2) != -1))
+				  max2 = Find_Max(temp,x,2,1,&north_length2,&left_length2);
+			  if ((max1 != (north_length1 * left_length1)) ||
+			      (max2 != (north_length2 * left_length2)))
+			  {
+				  printf("Max1 %d, %d %d	Max2 %d, %d %d\n",max1,north_length1,left_length1,max2,north_length2,left_length2);
+				  exit(0);
+			  }
+                
+                    
+        if ((max1 > max2) && (max1 > maximum))
+			  {
+          maximum = max1;
+          face_id = x;
+          flag = 1; 
+          last_north = north_length1;
+          last_left = left_length1;
+          /* so we know we saved max1 */
+			  }
+			  else if ((max2 > maximum) )
+			  {
+          maximum = max2;
+          face_id = x;
+          flag = 2; 
+          last_north = north_length2;
+          last_left = left_length2;
+          /* so we know we saved max2 */
+        }
+      }
+    }
+    if ((maximum < cutoff) && (*bands == 0))
+      return;
+    pListHead = PolFaces[face_id];
+    temp = (PF_FACES) PeekList(pListHead,LISTHEAD,0);	
+    /*   There are no patches that we found in this pass */
+    if (maximum == -1)
+      break;
+    printf("The maximum is  face %d area %d: lengths %d %d\n",face_id,maximum,last_north,last_left);
+    if (maximum == 16)
+      printf("Fran");
+
+    if (last_north > last_left)
+    {
+      larger = last_north;
+      smaller = last_left;
+    }
+    else
+    {
+      larger = last_left;
+      smaller = last_north;
+    }
+
+    length = larger;
+
+    if (flag == 1)
+    {
+	    if (last_north > last_left) /*     go north sequentially */
+      {
+        total_tri += Peel_Max(temp,face_id,0,last_north,3,last_left,output_file,color1,color2,color3,TRUE,&s,norms,texture);
+        Reset_Max(temp,face_id,0,last_north,3,last_left,output_file,color1,color2,color3,TRUE);
+        total_swaps += s;
+      }
+      else
+      {
+        reversed = TRUE;
+        total_tri += Peel_Max(temp,face_id,3,last_left,0,last_north,output_file,color1,color2,color3,TRUE,&s,norms,texture);
+        Reset_Max(temp,face_id,3,last_left,0,last_north,output_file,color1,color2,color3,TRUE);
+        reversed = FALSE;
+        total_swaps += s;
+      }
+
+
+      /*    Get the edge that we came out on the last strip of the patch */
+      Mark_Face(NULL,0,0,0,NULL,TRUE,&end1,&end2,&last_id,norms,texture);
+      total_tri += Extend_Face(last_id,end1,end2,&s,output_file,color1,color2,color3,vn,norms,vt,texture);
+      total_swaps += s;
+
+    }
+    else
+    {
+       if (last_north > last_left)
+       {
+            total_tri += Peel_Max(temp,face_id,2,last_north,1,last_left,output_file,color1,color2,color3,TRUE,&s,norms,texture); 
+            Reset_Max(temp,face_id,2,last_north,1,last_left,output_file,color1,color2,color3,TRUE); 
+            total_swaps += s;
+       }
+       else
+       {
+            reversed = TRUE;
+            total_tri += Peel_Max(temp,face_id,1,last_left,2,last_north,output_file,color1,color2,color3,TRUE,&s,norms,texture);
+            Reset_Max(temp,face_id,1,last_left,2,last_north,output_file,color1,color2,color3,TRUE);
+            reversed = FALSE;
+            total_swaps += s;
+       }
+
+       /*    Get the edge that we came out on on the patch */
+      Mark_Face(NULL,0,0,0,NULL,TRUE,&end1,&end2,&last_id,norms,texture);
+      total_tri += Extend_Face(last_id,end1,end2,&s,output_file,color1,color2,color3,vn,norms,vt,texture);
+      total_swaps += s;
+    }
+
+    /* Now compute the cost of transmitting this band, is equal to 
+       going across the larger portion sequentially,
+       and swapping 3 times per other dimension
+    */
+
+    total_tri += (maximum * 2);
+    *bands = *bands + smaller;
+  }
+
+  printf("We transmitted %d triangles,using %d swaps and %d strips\n",total_tri,total_swaps, *bands);
+  printf("COST %d\n",total_tri + total_swaps + *bands + *bands);
+
+  *cost = total_tri + total_swaps + *bands + *bands;
+  *tri = total_tri;
+  added_quad = added_quad * 4;
+  *swaps = total_swaps;
+}
+
+ 
+void Save_Rest(int *numfaces)
+{
+    /*  Put the polygons that are left into a data structure so that we can run the
+        stripping code on it.
+    */
+    register int x,y=0,numverts;
+    ListHead *pListHead;
+    PF_FACES temp=NULL;
+
+    for (x=0; x<*numfaces; x++)
+    { 
+			/* for each face, get the face */
+			pListHead = PolFaces[x];
+			temp = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+			numverts = temp->nPolSize;
+               /*  If we did not do the face before add it to data structure with new 
+                   face id number
+               */
+               if (numverts != 1)
+               {
+                   CopyFace(temp->pPolygon,numverts,y+1,temp->pNorms);
+                   y++;
+               }
+               /*   Used it, so remove it */
+               else
+                    RemoveList(pListHead,(PLISTINFO) temp);
+
+    }
+    *numfaces = y;
+}
+
+void Assign_Walk(int lastvert,PF_FACES temp2, int front_walk,int y,
+				int back_walk)
+{
+/*      Go back and do the walk again, but this time save the lengths inside
+        the data structure.
+        y was the starting edge number for the front_walk length
+        back_walk is the length of the walk along the opposite edge
+ */
+        int previous_edge1, previous_edge2;
+        register int walk = 0,nextvert,numverts,counter;
+        BOOL flag;
+        F_EDGES *node;
+        ListHead *pListHead;
+        static int seen = 0;
+        static BOOL first = TRUE;         
+        BOOL wrap = FALSE, set = FALSE;
+             
+        /*     In the "Fast_Reset" resetting will be true */
+        if ((resetting) && (first))
+        {
+             seen = 0;
+             first = FALSE;
+        }
+
+        seen++;
+        /*     Had a band who could be a cycle  */
+        if (front_walk == back_walk)
+             wrap = TRUE;
+             
+        /* Find the edge that we are currently on */
+        if (y != 3)
+        {
+                previous_edge1 = *(temp2->pPolygon +y);
+                previous_edge2 = *(temp2->pPolygon + y + 1);
+        }
+        else
+        {
+                previous_edge1 = *(temp2->pPolygon +y);
+                previous_edge2 = *(temp2->pPolygon);
+        }
+
+        /* Assign the lengths */
+	   if (y < 2) 
+	   {
+                *(temp2->walked+y) = front_walk--;
+         		 *(temp2->walked+y+2) = back_walk++;
+    	   }
+	   else
+	   {				
+               *(temp2->walked+y) = front_walk--;
+              	*(temp2->walked+y-2) = back_walk++;
+  	   }
+
+	   /*Find the adjacent face to this edge */
+        node = *(temp2->VertandId+y);                   
+
+        if (node->edge[2] != lastvert)
+          nextvert = node->edge[2];
+        else
+          nextvert = node->edge[1];
+                                       
+        temp2->seen3 = seen;
+        
+        /* Keep walking in this direction until we cannot do so */
+        while ((nextvert != lastvert) && (nextvert != -1) && (front_walk >= 0))
+        {
+		     walk++;
+               pListHead = PolFaces[nextvert];
+               
+               temp2 = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+               numverts = temp2->nPolSize;
+               if ((numverts != 4))
+               {
+                    nextvert = -1;
+                    /* Don't include this face in the walk */
+                    walk--;
+               }
+               else
+               {
+                    /* Find edge that is not adjacent to the previous one */
+                    counter = 0;
+                    flag = TRUE;
+                    while ((counter < 3) && (flag))
+                    {
+                         if ( ((*(temp2->pPolygon+counter) == previous_edge1) ||
+                               (*(temp2->pPolygon+counter+1) == previous_edge2)) ||
+                              ((*(temp2->pPolygon+counter) == previous_edge2) ||
+                               (*(temp2->pPolygon+counter+1) == previous_edge1)) )
+                              counter++;
+                         else
+                              flag = FALSE;
+                    }
+                    /* Get the IDs of the next edge */
+                    if (counter < 3)
+                    {
+                         previous_edge1 = *(temp2->pPolygon + counter);
+                         previous_edge2 = *(temp2->pPolygon + counter + 1);
+                    }
+                    else
+                    {
+                         previous_edge1 = *(temp2->pPolygon + counter);
+                         previous_edge2 = *(temp2->pPolygon);
+                    }
+               
+
+		          /*      Put in the walk lengths */
+		          if (counter < 2)
+		          {
+                        if (((*(temp2->walked + counter) >= 0)
+			          || (*(temp2->walked +counter + 2) >= 0)))
+			          {
+				          if ((resetting == FALSE) && ((temp2->seen3) != (seen-1)))
+				          {
+					          /*   If there are more than 2 polygons adjacent
+                                        to an edge then we can be trying to assign more than
+                                        once. We will save the smaller one
+                                   */
+                                   temp2->seen3 = seen;
+                                   if ( (*(temp2->walked+counter) <= front_walk) &&
+                                        (*(temp2->walked+counter+2) <= back_walk) )
+                                        return;
+                                   if (*(temp2->walked+counter) > front_walk)
+                                       *(temp2->walked+counter) = front_walk--;
+                                   else
+                                        front_walk--;
+                                   if (*(temp2->walked+counter+2) > back_walk)
+                                       *(temp2->walked+counter+2) = back_walk++;
+                                   else
+                                        back_walk++;
+				          }
+				          else if (resetting == FALSE)
+				          {
+					          /* if there was a cycle then all lengths are the same */
+					          walk--;
+					          back_walk--;
+					          front_walk++;
+                                   temp2->seen3 = seen;
+                                   *(temp2->walked+counter) = front_walk--;
+                                   *(temp2->walked+counter+2) = back_walk++;
+                              }
+                              else if (((temp2->seen3 == (seen-1))
+                                   && (wrap) && (walk == 1)) || (set))
+                              {
+					          /* if there was a cycle then all lengths are the same */
+					          set = TRUE;
+                                   walk--;
+					          back_walk--;
+					          front_walk++;
+                                   temp2->seen3 = seen;
+                                   *(temp2->walked+counter) = front_walk--;
+                                   *(temp2->walked+counter+2) = back_walk++;
+                              }
+                              else
+                              {
+                                   temp2->seen3 = seen;
+                                   *(temp2->walked+counter) = front_walk--;
+                                   *(temp2->walked+counter+2) = back_walk++;
+                              }
+                        } /* if was > 0 */	
+                        else
+                        {
+                             temp2->seen3 = seen;
+                             *(temp2->walked+counter) = front_walk--;
+                             *(temp2->walked+counter+2) = back_walk++;
+                        }
+                    }
+		
+               else
+               {
+                    if (((*(temp2->walked + counter) >= 0 )
+                        || (*(temp2->walked +counter - 2) >= 0)) )
+                    {
+                         if ((temp2->seen3 != (seen-1))  && (resetting == FALSE))
+                         {
+                              /*   If there are more than 2 polygons adjacent
+                                   to an edge then we can be trying to assign more than
+                                   once. We will save the smaller one
+                              */
+                              temp2->seen3 = seen;
+                              if ( (*(temp2->walked+counter) <= front_walk) &&
+                                   (*(temp2->walked+counter-2) <= back_walk) )
+                                   return;
+                              if (*(temp2->walked+counter) > front_walk)
+                                   *(temp2->walked+counter) = front_walk--;
+                              else
+                                   front_walk--;
+                              if (*(temp2->walked+counter-2) > back_walk)
+                                   *(temp2->walked+counter-2) = back_walk++;
+                              else
+                                   back_walk++;
+                        	}
+				     else if (resetting == FALSE)
+	     			{
+     					walk--;
+		     			back_walk--;
+			     		front_walk++;
+	                         temp2->seen3 = seen;
+                              *(temp2->walked+counter) = front_walk--;
+                              *(temp2->walked+counter-2) = back_walk++;
+                         }
+                         else if (((temp2->seen3 == (seen-1)) && (walk == 1) && (wrap))
+                              || (set))
+                         {
+					     /* if there was a cycle then all lengths are the same */
+					     set = TRUE;
+                              walk--;
+					     back_walk--;
+					     front_walk++;
+                              temp2->seen3 = seen;
+                              *(temp2->walked+counter) = front_walk--;
+                              *(temp2->walked+counter-2) = back_walk++;
+                         }
+                         else
+                         {
+                              temp2->seen3 = seen;
+                              *(temp2->walked+counter) = front_walk--;
+                              *(temp2->walked+counter-2) = back_walk++;
+                         }
+     			}
+                    else
+                    {
+                         temp2->seen3 = seen;
+                         *(temp2->walked+counter) = front_walk--;
+                         *(temp2->walked+counter-2) = back_walk++;
+                    }
+		                
+  		     } 
+		     if (nextvert != -1)
+		     {
+			     node = *(temp2->VertandId + counter);
+                	if (node->edge[1] == nextvert)
+                        	nextvert = node->edge[2];
+                	else
+                        	nextvert = node->edge[1];
+               }
+		
+     }
+}
+if ((EVEN(seen)) )
+     seen+=2;
+}
+
+void Save_Walks(int numfaces)
+{
+	int x,y,numverts;
+	int front_walk, back_walk;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+
+	for (x=0; x<numfaces; x++)
+	{ 
+		/* for each face, get the face */
+		pListHead = PolFaces[x];
+		temp = (PF_FACES) PeekList(pListHead,LISTHEAD,0);
+		numverts = temp->nPolSize;
+		front_walk = 0; 
+          back_walk = 0;
+
+          /* we are finding patches only for quads */
+		if (numverts == 4)
+		{
+			/* 	for each face not seen yet, do North and South together
+				and East and West together
+			*/
+			for (y=0;y<2;y++)
+			{
+				/*   Check if the opposite sides were seen already from another
+                         starting face, if they were then there is no need to do the walk again
+                    */
+
+				if 	( ((*(temp->walked+y) == -1) &&
+					(*(temp->walked+y+2) == -1) ))
+				{
+					/* Find walk for the first edge */
+					front_walk = Calculate_Walks(x,y,temp);
+					/* Find walk in the opposite direction */
+					back_walk = Calculate_Walks(x,y+2,temp);
+					/* 	Now put into the data structure the numbers that
+						we have found
+					*/
+                         Assign_Walk(x,temp,front_walk,y,back_walk);
+					Assign_Walk(x,temp,back_walk,y+2,front_walk);
+	     		}
+			}
+		}
+	}
+}
+
+
diff --git a/Tools/Stripe_w/options.c b/Tools/Stripe_w/options.c
new file mode 100644
index 000000000..7e1243e24
--- /dev/null
+++ b/Tools/Stripe_w/options.c
@@ -0,0 +1,181 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: options.c
+     This file contains routines that are used to determine the options
+     that were specified by the user
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "options.h"
+#include "global.h"
+
+int power_10(int power)
+{
+	/*	Raise 10 to the power */
+	register int i,p;
+
+	p = 1;
+	for (i = 1; i <= power; ++i)
+		p = p * 10;
+	return p;
+}
+
+float power_negative(int power)
+{
+     /*   Raise 10 to the negative power */
+
+     register int i;
+     float p;
+     
+     p = (float)1;
+     for (i = 1; i<=power; i++)
+          p = p * (float).1;
+     return p;
+}
+
+float convert_array(int num[],int stack_size)
+{
+	/* Convert an array of characters to an integer */
+	
+	register int counter,c;
+	float temp =(float)0.0;
+
+	for (c=(stack_size-1), counter = 0; c>=0; c--, counter++)
+     {
+          if (num[c] == -1)
+          /*   We are at the decimal point, convert to decimal
+               less than 1
+          */
+          {
+               counter = -1;
+               temp = power_negative(stack_size - c - 1) * temp;
+          }
+          else 
+               temp += power_10(counter) * num[c];
+     }
+			
+	return(temp);
+}
+
+double get_options(int argc, char **argv, int *f, int *t, int *tr, int *group)
+{
+     char c;
+     int count = 0;
+     int buffer[STRIP_MAX];
+     int next = 0;
+     /*    tie variable */
+     enum tie_options tie = SEQUENTIAL;
+     /*   triangulation variable */
+     enum triangulation_options triangulate = PARTIAL;
+     /*   normal difference variable (in degrees) */
+     float norm_difference = (float)360.0;
+     /*   file-type variable */
+     enum file_options file_type = ASCII;
+
+     /*      User has the wrong number of options */
+	if ((argc > 5) || (argc < 2))
+	{
+		printf("Usage: bands -[file_option][ties_option][triangulation_option][normal_difference] in_file_name out_file_name\n");
+		exit(0);
+	}
+	
+     /* Interpret the options specified */
+	while (--argc > 0 && (*++argv)[0] == '-')
+     {
+          /*   At the next option that was specified */
+          next = 1;
+          while (c = *++argv[0])
+			switch (c)
+		{
+				case 'f': 
+					/*      Use the first polygon we see. */
+                         tie = FIRST;
+					break;
+				
+				case 'r':
+					/*      Randomly choose the next polygon */
+                         tie = RANDOM;
+					break;
+
+				case 'a':
+					/*      Alternate direction in choosing the next polygon */
+                         tie = ALTERNATE;
+					break;
+
+				case 'l':
+					/*      Use lookahead to choose the next polygon */
+                         tie = LOOK;
+					break;
+
+				case 'q':
+					/*  Try to reduce swaps */
+                         tie = SEQUENTIAL;
+					break;
+
+				case 'p':
+					/*      Use partial triangulation of polygons */
+                         triangulate = PARTIAL;
+					break;
+
+				case 'w':
+					/*      Use whole triangulation of polygons */
+                         triangulate = WHOLE;
+					break;
+
+                    case 'b':
+                         /*      Input file is in binary */
+                         file_type = BINARY;
+                         break;
+
+                    case 'g':
+                         /*   Strips will be grouped according to the groups in 
+                              the data file. We will have to restrict strips to be
+                              in the grouping of the data file.
+                         */
+                         *group = 1;
+  		    
+                         /*	Get each the value of the integer */
+                         /*	We have an integer */
+                    default:
+                         if ((c >= '0') && (c <= '9'))
+                         {
+                              /*   More than one normal difference specified, use the last one */
+                              if (next == 1)
+                              {
+                                   count = 0;
+                                   next = 0;
+                              }
+                              buffer[count++] = ATOI(c);
+                         }
+                              /*   At the decimal point */
+                         else if (c == '.')
+                         {
+                              /*   More than one normal difference specified, use the last one */
+                              if (next == 1)
+                              {
+                                   count = 0;
+                                   next = 0;
+                              }
+                              buffer[count++] = -1;
+                         }
+                         else 
+                              break;
+		}
+     }
+     /*   Convert the buffer of characters to a floating pt integer */
+     if (count != 0) 
+          norm_difference = convert_array(buffer,count);
+     *f = file_type;
+     *t = tie;
+     *tr = triangulate;
+     return norm_difference;
+}
diff --git a/Tools/Stripe_w/options.h b/Tools/Stripe_w/options.h
new file mode 100644
index 000000000..34c10bcc1
--- /dev/null
+++ b/Tools/Stripe_w/options.h
@@ -0,0 +1,17 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: options.h
+-----------------------------------------------------------------------*/
+
+double get_options(int argc, char **argv, int *f, int *t, int *tr, int *group);
+enum file_options {ASCII,BINARY};
+enum tie_options {FIRST, RANDOM, ALTERNATE, LOOK, SEQUENTIAL};
+enum triangulation_options {PARTIAL,WHOLE};
+     
diff --git a/Tools/Stripe_w/output.c b/Tools/Stripe_w/output.c
new file mode 100644
index 000000000..16eb6abe6
--- /dev/null
+++ b/Tools/Stripe_w/output.c
@@ -0,0 +1,579 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: output.c
+     This file contains routines that are finding and outputting the
+     strips from the local algorithm
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "global.h"
+#include "polverts.h"
+#include "triangulate.h"
+#include "partial.h"
+#include "sturcts.h"
+#include "ties.h"
+#include "options.h"
+#include "common.h"
+#include "util.h"
+#include "free.h"
+
+int *vn;
+int *vt;
+int norm;
+int text;
+
+int Finished(int *swap, FILE *output, BOOL global)
+{
+  /* We have finished all the triangles, now is time to output to
+     the data file. In the strips data structure, every three ids
+     is a triangle. Now we see whether we can swap, or make a new strip
+     or continue the strip, and output the data accordingly to the
+     data file. 
+  */
+  int num,x,vertex1,vertex2;
+  ListHead *pListHead;
+  int id[2],other1,other2,index = 0,a,b,c;
+  P_STRIPS temp1,temp2,temp3,temp4,temp5,temp6;
+  BOOL cptexture;
+  *swap =0;
+   
+  cptexture = text;
+  pListHead = strips[0];
+  if (pListHead == NULL)
+    return 0;
+
+  num = NumOnList(pListHead);
+  // WILBUR
+  // printf ("There are %d triangles in the extend\n",num/3);
+
+  /* Go through the list triangle by triangle */
+	temp1 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 0);
+	temp2 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 1);
+	temp3 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 2);
+	
+  /* Next triangle for lookahead */
+  temp4 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 3);
+	  
+
+  /*    There is only one polygon in the strip */
+  if (temp4 == NULL)
+  {
+    /* Data might be mixed and we do not have textures for some of the vertices */
+    if ((text) &&  (vt[temp3->face_id] == 0))
+      cptexture = FALSE;
+    if ((norm) && (!cptexture))
+      fprintf(output,"%d//%d %d//%d %d//%d",temp3->face_id+1,vn[temp3->face_id]+1,
+                temp2->face_id+1,vn[temp2->face_id]+1,
+                temp1->face_id+1,vn[temp1->face_id]+1);
+    else if ((cptexture) && (!norm))
+      fprintf(output,"%d/%d %d/%d %d/%d",temp3->face_id+1,vt[temp3->face_id]+1,
+                temp2->face_id+1,vt[temp2->face_id]+1,
+                temp1->face_id+1,vt[temp1->face_id]+1);
+    else if ((cptexture)&& (norm))
+      fprintf(output,"%d/%d/%d %d/%d/%d %d/%d/%d",temp3->face_id+1,vt[temp3->face_id]+1,vn[temp3->face_id]+1,
+                temp2->face_id+1,vt[temp2->face_id]+1,vn[temp2->face_id]+1,
+                temp1->face_id+1,vt[temp1->face_id]+1,vn[temp1->face_id]+1);
+    else 
+      fprintf(output,"%d %d %d",temp3->face_id+1,temp2->face_id+1,temp1->face_id+1);
+    Free_Strips();
+	  return 1;
+	}
+	  
+	/* We have a real strip */
+	temp5 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 4);
+	temp6 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 5);
+	  
+	if ((temp1 == NULL) || (temp2 == NULL) || (temp3 == NULL) || (temp5 == NULL) || (temp6 == NULL))
+	{
+	  printf("There is an error in the output of the triangles\n");
+	  exit(0);
+	}
+
+	/* Find the vertex in the first triangle that is not in the second */
+	vertex1 = Different(temp1->face_id,temp2->face_id,temp3->face_id,temp4->face_id,temp5->face_id,temp6->face_id,&other1,&other2);
+	/* Find the vertex in the second triangle that is not in the first */
+	vertex2 = Different(temp4->face_id,temp5->face_id,temp6->face_id,temp1->face_id,temp2->face_id,temp3->face_id,&other1,&other2);
+
+	/* Lookahead for the correct order of the 2nd and 3rd vertex of the first triangle */
+  temp1 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 6);
+	temp2 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 7);
+	temp3 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 8);
+       
+  if (temp1 != NULL)
+    other1 = Different(temp3->face_id,temp4->face_id,temp5->face_id,temp1->face_id,temp2->face_id,temp3->face_id,&other1,&a);
+	   
+	id[index] = vertex1; index = !index;
+	id[index] = other1; index = !index;
+	id[index] = other2; index = !index;
+
+	a = temp4->face_id; 
+	b = temp5->face_id; 
+	c = temp6->face_id;
+
+  /* If we need to rearrange the first sequence because otherwise
+     there would have been a swap.
+  */
+
+  if ((temp3 != NULL) && (text) && ( vt[temp3->face_id]==0))
+    cptexture = FALSE;
+  if ((norm) && (!cptexture))
+    fprintf(output,"%d//%d %d//%d %d//%d ",vertex1+1,vn[vertex1]+1,
+               other1+1,vn[other1]+1,other2+1,vn[other2]+1);
+  else if ((cptexture) && (!norm))
+    fprintf(output,"%d/%d %d/%d %d/%d ",vertex1+1,vt[vertex1]+1,
+               other1+1,vt[other1]+1,other2+1,vt[other2]+1);
+  else if ((cptexture) && (norm))
+    fprintf(output,"%d/%d/%d %d/%d/%d %d/%d/%d ",vertex1+1,vt[vertex1]+1,vn[vertex1]+1,
+              other1+1,vt[other1]+1,vn[other1]+1,other2+1,vt[other2]+1,vn[other2]+1);
+  else {
+    fprintf(output,"%d %d %d ",vertex1+1,other1+1,other2+1);
+  }
+
+  // original line
+  // for (x = 6; x < num ; x = x+3)
+  // Wilbur modified line
+  for (x = 6; x < num ; x = x+3)
+	{
+    /* Get the next triangle */
+	  temp1 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, x);
+	  temp2 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, x+1);
+	  temp3 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, x+2);
+
+    /* Error checking */
+	  if (!(member(id[0],a,b,c)) || !(member(id[1],a,b,c)) || !(member(vertex2,a,b,c)))
+	  {
+		  /* If we used partial we might have a break in the middle of a strip */
+		  fprintf(output,"\nt ");
+	    /* Find the vertex in the first triangle that is not in the second */
+	    vertex1 = Different(a,b,c,temp1->face_id,temp2->face_id,temp3->face_id,&other1,&other2);
+	    /* Find the vertex in the second triangle that is not in the first */
+	    vertex2 = Different(temp1->face_id,temp2->face_id,temp3->face_id,a,b,c,&other1,&other2);
+	   
+	    id[index] = vertex1; index = !index;
+	    id[index] = other1; index = !index;
+	    id[index] = other2; index = !index;
+	  }
+
+	  if ((temp1 == NULL ) || (temp2 == NULL) || (temp3 == NULL))
+	  {
+		  printf("There is an error in the triangle list \n");
+		  exit(0);
+	  }
+         
+    if ((id[0] == id[1]) || (id[0] == vertex2))
+      continue;
+
+    if ( (member(id[index],temp1->face_id,temp2->face_id,temp3->face_id)) )
+    {
+      if ((text) && ( vt[id[index]]==0)) {
+        cptexture = FALSE;
+      }
+      if ((!norm) && (!cptexture)) {
+        fprintf(output,"%d ",id[index]+1);
+      } else if ((norm) && (!cptexture)) {
+        fprintf(output,"%d//%d ",id[index]+1,vn[id[index]]+1);
+      } else if ((!norm) && (cptexture)) {
+        fprintf(output,"%d/%d ",id[index]+1,vt[id[index]]+1);
+      } else {
+        fprintf(output,"%d/%d/%d ",id[index]+1,vt[id[index]]+1,vn[id[index]]+1);
+      }
+
+      index = !index;
+      *swap = *swap + 1;
+    }
+           
+    if ((text) && ( vt[vertex2]==0))
+      cptexture = FALSE;
+	  if ((!norm) && (!cptexture))
+      fprintf(output,"\nq %d ",vertex2+1);
+    else if ((norm) && (!cptexture))
+      fprintf(output,"\nq %d//%d ",vertex2+1,vn[vertex2]+1);
+    else if ((!norm) && (cptexture))
+      fprintf(output,"\nq %d/%d ",vertex2+1,vt[vertex2]+1);
+    else
+      fprintf(output,"\nq %d/%d/%d ",vertex2+1,vt[vertex2]+1,vn[vertex2]+1);
+
+    id[index] = vertex2; index = !index;
+
+	  /* Get the next vertex not in common */
+	  vertex2 = Different(temp1->face_id,temp2->face_id,temp3->face_id,a,b,c,&other1,&other2);
+	  a = temp1->face_id;
+	  b = temp2->face_id;
+	  c = temp3->face_id;
+	}
+
+  /* Do the last vertex */
+  if ((!norm) && (!cptexture))
+    fprintf(output,"\nq %d ",vertex2+1);
+  else if ((norm) && (!cptexture))
+    fprintf(output,"\nq %d//%d ",vertex2+1,vn[vertex2]+1);
+  else if ((!norm) && (cptexture))
+    fprintf(output,"\nq %d/%d ",vertex2+1,vt[vertex2]+1);
+  else
+    fprintf(output,"\nq %d/%d/%d ",vertex2+1,vt[vertex2]+1,vn[vertex2]+1);
+
+  Free_Strips();
+  return (num/3);
+}
+
+
+
+
+
+void Output_Tri(int id1, int id2, int id3,FILE *bands, int color1, int color2, int color3,BOOL end)
+{
+     /*   We will save everything into a list, rather than output at once,
+	     as was done in the old routine. This way for future modifications
+	     we can change the strips later on if we want to.
+     */
+
+    int temp1,temp2,temp3;
+    
+    /*  Make sure we do not have an error */
+    /*    There are degeneracies in some of the files */
+	if ( (id1 == id2) || (id1 == id3) || (id2 == id3))
+	{
+		printf("Degenerate triangle %d %d %d\n",id1,id2,id3);
+		exit(0);
+	}
+     else
+     {
+          Last_Edge(&temp1,&temp2,&temp3,0);
+	     Add_Id_Strips(id1,end);
+	     Add_Id_Strips(id2,end);
+	     Add_Id_Strips(id3,end);
+	     Last_Edge(&id1,&id2,&id3,1);
+     }
+}
+
+
+int Polygon_Output(P_ADJACENCIES temp,int face_id,int bucket,
+					ListHead *pListHead, BOOL first, int *swaps,
+                         FILE *bands,int color1,int color2,int color3,BOOL global, BOOL end)
+{
+	ListHead *pListFace;
+	PF_FACES face;
+	P_ADJACENCIES pfNode;
+	int next_face_id,next_bucket,e1,e2,e3,other1,other2,other3;
+	P_ADJACENCIES lpListInfo; 
+     int ties=0;
+     
+     /* We have a polygon to output, the id is face id, and the number
+	   of adjacent polygons to it is bucket. This routine extends the patches from
+        either end to make longer triangle strips.
+	*/
+                
+                   
+     /*  Now get the edge */
+     Last_Edge(&e1,&e2,&e3,0);
+    
+     /*  Get the polygon with id face_id */
+	pListFace  = PolFaces[face_id];
+	face = (PF_FACES) PeekList(pListFace,LISTHEAD,0);
+
+     /*  We can't go any more */
+     if ((face->nPolSize == 1) || ((face->nPolSize == 4) && (global))) /* if global, then we are still doing patches */
+     {
+        /*     Remove it from the list so we do not have to waste
+               time visiting it in the future, or winding up in an infinite loop
+               if it is the first on that we are looking at for a possible strip
+        */
+        if (face->nPolSize == 1)
+             RemoveList(pListHead,(PLISTINFO) temp);
+        if (first)
+             return 0;
+        else
+             return (Finished(swaps,bands,global));
+    }
+
+    if (face->nPolSize == 3)
+    {
+		/*      It is already a triangle */
+		if (bucket == 0)
+		{
+			/*      It is not adjacent to anything so we do not have to
+	 			   worry about the order of the sides or updating adjacencies
+			*/
+			    
+	          next_face_id = Different(*(face->pPolygon),*(face->pPolygon+1),*(face->pPolygon+2),
+		                              e1,e2,e3,&other1,&other2);  
+			face->nPolSize = 1;
+                       
+               /* If this is the first triangle in the strip */
+               if ((e2 == 0) && (e3 ==0))
+               {
+                    e2 = other1;
+                    e3 = other2;
+               }
+
+               Output_Tri(e2,e3,next_face_id,bands,color1,color2,color3,end);
+               RemoveList(pListHead,(PLISTINFO) temp);
+               return (Finished(swaps,bands,global));
+          }
+		
+        
+          /*  It is a triangle with adjacencies. This means that we
+		    have to:
+				1. Update the adjacencies in the list, because we are
+					using this polygon and it will be deleted.
+				2. Get the next polygon.
+		*/
+		else
+		{
+			/*   Return the face_id of the next polygon we will be using,
+				while updating the adjacency list by decrementing the
+				adjacencies of everything adjacent to the current triangle.
+			*/
+            
+               next_face_id = Update_Adjacencies(face_id, &next_bucket, &e1,&e2,&ties);
+               /*  Maybe we deleted something in a patch and could not find an adj polygon */
+               if (next_face_id == -1)
+               {
+                       Output_Tri(*(face->pPolygon),*(face->pPolygon+1),*(face->pPolygon+2),bands,color1,
+                                  color2,color3,end);
+                       face->nPolSize = 1;
+                       RemoveList(pListHead,(PLISTINFO) temp);
+                       return (Finished(swaps,bands,global));
+               }
+		  
+		     /*      Find the other vertex to transmit in the triangle */
+		     e3 = Return_Other(face->pPolygon,e1,e2);
+	          Last_Edge(&other1,&other2,&other3,0);
+	    
+	          if ((other2 != 0) && (other3 != 0))
+	          {
+	              /*   See which vertex in the output edge is not in the input edge */
+	              if ((e1 != other2) && (e1 != other3))
+		            e3 = e1;
+	              else if ((e2 != other2) && (e2 != other3))
+		             e3 = e2;
+	              else
+	              {
+		            printf("There is an error in the tri with adj\n");
+		            exit(0);
+	              }
+
+	              /*   See which vertex of the input edge is not in the output edge */
+	              if ((other2 != e1) && (other2 != e2))
+	              {
+		            other1 = other2;
+		            other2 = other3;
+	              }
+	              else if ((other3 != e1) && (other3 != e2))
+		            other1 = other3;
+	              else
+	              {
+		            printf("There is an error in getting the tri with adj\n");
+		            exit(0);
+	              }
+		      
+	          }
+               else
+               {
+                  /*     We are the first triangle in the strip and the starting edge
+                         has not been set yet
+                  */
+                  /*  Maybe we deleted something in a patch and could not find an adj polygon */
+                  if (next_face_id == -1)
+                  {
+                       Output_Tri(*(face->pPolygon),*(face->pPolygon+1),*(face->pPolygon+2),bands,color1,
+                                  color2,color3,end);
+                       face->nPolSize = 1;
+                       RemoveList(pListHead,(PLISTINFO) temp);
+                       return (Finished(swaps,bands,global));
+                  }
+
+                  other1 = e3;
+                  e3 = e2;
+                  other2 = e1;
+               }
+	   
+	          /*   At this point the adjacencies have been updated  and we
+				have the next polygon id 
+	          */
+
+               Output_Tri(other1,other2,e3,bands,color1,color2,color3,end);
+               face->nPolSize = 1;
+		     RemoveList(pListHead,(PLISTINFO) temp);
+	          
+               /*  Maybe we deleted something in a patch and could not find an adj polygon */
+               if (next_face_id == -1)
+                    return (Finished(swaps,bands,global));
+        
+               if (Done(next_face_id,59,&next_bucket) == NULL)
+		     {
+			     printf("We deleted the next face 4%d\n",next_face_id);
+			     exit(0);
+	          }
+
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = next_face_id;
+			lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+				(int (*)(void *,void *)) (Compare)));
+			if (lpListInfo == NULL)
+			{
+				printf("There is an error finding the next polygon3 %d\n",next_face_id);
+				exit(0);
+			}
+			return (Polygon_Output(lpListInfo,next_face_id,next_bucket,
+					             pListHead, FALSE, swaps,bands,color1,color2,color3,global,end));
+
+		}
+	}
+
+	else
+	{
+		/*   It is not a triangle, we have to triangulate it .
+			Since it is not adjacent to anything we can triangulate it
+			blindly
+		*/
+		if (bucket == 0)
+		{
+		          /*   It is the first polygon in the strip, therefore there is no
+                         input edge to start with.
+                    */
+                    if ((e2 == 0) && (e3 ==0))
+                       Blind_Triangulate(face->nPolSize,face->pPolygon,bands,
+			                          TRUE,1,color1,color2,color3);
+
+                    else
+                       Blind_Triangulate(face->nPolSize,face->pPolygon,bands,
+			                          FALSE,1,color1,color2,color3);
+
+			     RemoveList(pListHead,(PLISTINFO) temp);
+			               
+                    /*      We will be at the beginning of the next strip. */
+                    face->nPolSize = 1;
+                    return (Finished(swaps,bands,global));
+		}
+
+
+		else
+		{
+			
+             
+               /*  WHOLE triangulation */
+	          /*  It is not a triangle and has adjacencies. 
+				This means that we have to:
+				1. Triangulate this polygon, not blindly because
+					we have an edge that we want to come out on, that
+					is the edge that is adjacent to a polygon with the
+					least number of adjacencies. Also we must come in
+					on the last seen edge.
+				2. Update the adjacencies in the list, because we are
+					using this polygon .
+				3. Get the next polygon.
+			*/
+			/*      Return the face_id of the next polygon we will be using,
+				while updating the adjacency list by decrementing the
+				adjacencies of everything adjacent to the current polygon.
+			*/
+				
+               next_face_id = Update_Adjacencies(face_id, &next_bucket, &e1,&e2,&ties);
+	    
+               /*  Maybe we deleted something in a patch and could not find an adj polygon */
+               if (next_face_id == -1)
+               {
+ 
+                    /*   If we are at the first polygon in the strip and there is no input
+                         edge, then begin is TRUE
+                    */
+                    if ((e2 == 0) && (e3 == 0))
+                         Blind_Triangulate(face->nPolSize,face->pPolygon,
+			                            bands,TRUE,1,color1,color2,color3);
+
+                    else
+                         Blind_Triangulate(face->nPolSize,face->pPolygon,
+			                            bands,FALSE,1,color1,color2,color3);
+
+		          RemoveList(pListHead,(PLISTINFO) temp);
+		              
+    	               /*      We will be at the beginning of the next strip. */
+                    face->nPolSize = 1;
+                    return (Finished(swaps,bands,global));
+               }
+
+               if (Done(next_face_id,59,&next_bucket) == NULL)
+	          {
+			    printf("We deleted the next face 6 %d %d\n",next_face_id,face_id);
+			    exit(0);
+		     }
+			
+			Non_Blind_Triangulate(face->nPolSize,face->pPolygon, 
+				                 bands,next_face_id,face_id,1,color1,color2,color3);
+				     
+               RemoveList(pListHead,(PLISTINFO) temp);
+               face->nPolSize = 1;
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = next_face_id;
+			lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+					   (int (*)(void *,void *)) (Compare)));
+			if (lpListInfo == NULL)
+		     {
+				printf("There is an error finding the next polygon2 %d %d\n",next_face_id,next_bucket);
+				exit(0);
+			}
+			return (Polygon_Output(lpListInfo,next_face_id,next_bucket,
+					             pListHead, FALSE, swaps,bands,color1,color2,color3,global,end));
+		}
+
+	}
+    Last_Edge(&e1,&e2,&e3,0);
+
+}       
+
+
+int Extend_Face(int face_id,int e1,int e2,int *swaps,FILE *bands,
+                int color1,int color2,int color3,int *vert_norm, int normals,
+                int *vert_texture, int texture)
+{
+    int dummy=0,next_bucket;
+    P_ADJACENCIES pfNode,lpListInfo;
+    ListHead *pListHead;
+
+    /*    Try to extend backwards off of the local strip that we just found */
+    
+    vn = vert_norm;
+    vt = vert_texture;
+    norm = normals;
+    text = texture;
+
+    *swaps = 0;
+    /*	Find the face that is adjacent to the edge and is not the
+		current face.
+    */
+    face_id = Find_Face(face_id, e1, e2,&next_bucket);
+    if (face_id == -1)
+          return 0;
+			
+    pListHead = array[next_bucket];
+    pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+    if ( pfNode )
+		pfNode->face_id = face_id;
+    lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+		       (int (*)(void *,void *)) (Compare)));
+    if (lpListInfo == NULL)
+    {
+		printf("There is an error finding the next polygon3 %d\n",face_id);
+		exit(0);
+    }
+    Last_Edge(&dummy,&e1,&e2,1);
+    
+    /*  Find a strip extending from the patch and return the cost */
+    return (Polygon_Output(lpListInfo,face_id,next_bucket,pListHead,TRUE,swaps,bands,color1,color2,color3,TRUE,TRUE));
+}
+
+
diff --git a/Tools/Stripe_w/output.h b/Tools/Stripe_w/output.h
new file mode 100644
index 000000000..fd4b34c27
--- /dev/null
+++ b/Tools/Stripe_w/output.h
@@ -0,0 +1,34 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: output.h
+-----------------------------------------------------------------------*/
+
+
+#include "polverts.h"
+
+#define TRIANGLE 3
+#define MAGNITUDE 1000000
+
+void Output_Tri(int id1, int id2, int id3,FILE *bands, int color1, 
+		int color2, int color3,BOOL end);
+void Sgi_Test();
+int Polygon_Output(P_ADJACENCIES temp,int face_id,int bucket,
+		   ListHead *pListHead, BOOL first, int *swaps,
+		   FILE *bands,int color1,int color2,int color3,
+		   BOOL global, BOOL end);
+void Last_Edge();
+void Extend_Backwards();
+int Finished(int *swap, FILE *output, BOOL global);
+int Extend_Face(int face_id,int e1,int e2,int *swaps,FILE *bands,
+                int color1,int color2,int color3,int *vert_norm, int normals,
+                int *vert_texture, int texture);
+void Fast_Reset();
+
+
diff --git a/Tools/Stripe_w/outputex.c b/Tools/Stripe_w/outputex.c
new file mode 100644
index 000000000..10bfb741f
--- /dev/null
+++ b/Tools/Stripe_w/outputex.c
@@ -0,0 +1,514 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: outputex.c
+     This file contains routines that are used for various functions in
+     the local algorithm.
+*/
+/*---------------------------------------------------------------------*/
+
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "global.h"
+#include "outputex.h"
+#include "triangulatex.h"
+#include "polverts.h"
+#include "ties.h"
+#include "partial.h"
+#include "sturctsex.h"
+#include "options.h"
+#include "output.h"
+#include "common.h"
+#include "util.h"
+
+
+void Output_TriEx(int id1, int id2, int id3, FILE *output, int next_face, int flag,
+		int where)
+{
+   /* We will save everything into a list, rather than output at once,
+      as was done in the old routine. This way for future modifications
+      we can change the strips later on if we want to.
+   */
+
+  int swap,temp1,temp2,temp3;
+  static int total=0;
+  static int tri=0;
+  static int strips = 0;
+  static int cost = 0;
+
+  if (flag == -20)
+  {
+    cost = cost + where+total+tri+strips+strips;
+    printf("We will need to send %d vertices to the renderer\n",cost);
+    total = 0;
+    tri = 0;
+    strips = 0;
+    return ;
+  }
+
+
+  if (flag == -10) /* We are finished, now is time to output the triangle list */
+  {
+    fprintf(output,"\nt ");
+    tri = tri + Finished(&swap,output,FALSE);
+    total = total + swap;
+    strips++;
+    /*printf("There are %d swaps %d tri %d strips\n",total,tri,strips);*/
+  }
+   
+  else
+  {
+    Last_Edge(&temp1,&temp2,&temp3,0);
+    Add_Id_Strips(id1,where);
+    Add_Id_Strips(id2,where);
+    Add_Id_Strips(id3,where);
+    Last_Edge(&id1,&id2,&id3,1);
+  }
+}
+
+		
+
+
+void Extend_BackwardsEx(int face_id, FILE *output, FILE *strip, int *ties, 
+			int tie, int triangulate, int swaps, int *next_id)
+{
+    /*  We just made a strip, now we are going to see if we can extend
+	   backwards from the starting face, which had 2 or more adjacencies
+	   to start with.
+    */
+    int bucket,next_face,num,x,y,z,c,max,f;
+    ListHead *pListFace;
+    PF_FACES face;
+    P_ADJACENCIES temp;
+
+    /*  Get the first triangle that we have saved the the strip data 
+	   structure, so we can see if there are any polygons adjacent
+	   to this edge or a neighboring one
+    */
+    First_Edge(&x,&y,&z); 
+    
+    pListFace  = PolFaces[face_id];
+    face = (PF_FACES) PeekList(pListFace,LISTHEAD,0);
+
+    num = face->nPolSize;
+
+    /*  Go through the edges to see if there is an adjacency
+	   with a vertex in common to the first triangle that was
+	   outputted in the strip. (maybe edge was deleted....)
+    */
+    for (c=0; c<num ; c++)
+    {
+	   
+	if ( (c != (num-1)) && 
+	     (( (*(face->pPolygon+c) == x) && (*(face->pPolygon+c+1) == y)) ||
+		(*(face->pPolygon+c) == y) && (*(face->pPolygon+c+1) == x)))
+	{
+	    /*  Input edge is still there see if there is an adjacency */
+	    next_face = Find_Face(face_id, x, y, &bucket);
+	    if (next_face == -1)
+		/*  Could not find a face adjacent to the edge */
+	     	break;
+	    pListFace = array[bucket];
+	    max = NumOnList(pListFace);
+	    for (f=0;;f++)
+	    {
+			temp = (P_ADJACENCIES) PeekList(pListFace,LISTHEAD,f);	
+		     if (temp->face_id == next_face)
+		     {
+		          Last_Edge(&z,&y,&x,1);
+		          Polygon_OutputEx(temp,temp->face_id,bucket,pListFace,
+        			  		       output,strip,ties,tie,triangulate,swaps,next_id,0);
+		          return;
+		     }
+
+			if (temp == NULL)
+			{
+					printf("Error in the new buckets%d %d %d\n",bucket,max,0);
+					exit(0);
+			}
+	    }
+
+	}
+	else if ( (c == (num -1)) &&
+	   ( ((*(face->pPolygon) == x) && (*(face->pPolygon+num-1) == y)) ||
+	      (*(face->pPolygon) == y) && (*(face->pPolygon+num-1) == x)))
+	{
+	     next_face = Find_Face(face_id,x,y,&bucket);
+	     if (next_face == -1)
+		/*  Could not find a face adjacent to the edge */
+		     break;
+		pListFace = array[bucket];
+		max = NumOnList(pListFace);
+		for (f=0;;f++)
+		{
+			temp = (P_ADJACENCIES) PeekList(pListFace,LISTHEAD,f);
+		     if (temp->face_id == next_face)
+		     {
+		          Last_Edge(&z,&y,&x,1);
+		          Polygon_OutputEx(temp,temp->face_id,bucket,pListFace,
+				   	            output,strip,ties,tie,triangulate,swaps,next_id,0);
+		          return;
+		     }
+
+			if (temp == NULL)
+			{
+					printf("Error in the new buckets%d %d %d\n",bucket,max,0);
+					exit(0);
+			}
+	    }
+	}
+    
+    }
+
+}
+
+void Polygon_OutputEx(P_ADJACENCIES temp,int face_id,int bucket,
+		      ListHead *pListHead, FILE *output, FILE *strips,
+		      int *ties, int tie, int triangulate, int swaps,
+		      int *next_id, int where)
+{
+	ListHead *pListFace;
+	PF_FACES face;
+	P_ADJACENCIES pfNode;
+	static BOOL begin = TRUE;
+	int old_face,next_face_id,next_bucket,e1,e2,e3,other1,other2,other3;
+	P_ADJACENCIES lpListInfo; 
+
+	/*      We have a polygon to output, the id is face id, and the number
+		   of adjacent polygons to it is bucket.
+	*/
+
+     Last_Edge(&e1,&e2,&e3,0);
+    
+     /*  Get the polygon with id face_id */
+	pListFace  = PolFaces[face_id];
+	face = (PF_FACES) PeekList(pListFace,LISTHEAD,0);
+
+     if (face->nPolSize == 3)
+	{
+		/*      It is already a triangle */
+		if (bucket == 0)
+		{
+			/*      It is not adjacent to anything so we do not have to
+				   worry about the order of the sides or updating adjacencies
+			*/
+			    
+	          Last_Edge(&e1,&e2,&e3,0);
+	          next_face_id = Different(*(face->pPolygon),*(face->pPolygon+1),*(face->pPolygon+2),
+		                              e1,e2,e3,&other1,&other2);
+	          /*  No input edge, at the start */
+	          if ((e2 ==0) && (e3 == 0))
+	          {
+		          e2 = other1;
+		          e3 = other2;
+	          }
+	    
+			Output_TriEx(e2,e3,next_face_id,strips,-1,begin,where);
+			RemoveList(pListHead,(PLISTINFO) temp);
+			/*      We will be at the beginning of the next strip. */
+			begin = TRUE;
+		}
+		/*      It is a triangle with adjacencies. This means that we
+			   have to:
+				1. Update the adjacencies in the list, because we are
+					using this polygon and it will be deleted.
+				2. Get the next polygon.
+		*/
+		else
+		{
+			/*   Return the face_id of the next polygon we will be using,
+				while updating the adjacency list by decrementing the
+				adjacencies of everything adjacent to the current triangle.
+			*/
+            
+               next_face_id = Update_AdjacenciesEx(face_id, &next_bucket, &e1,&e2,ties);
+			old_face = next_face_id;
+				        
+              /*  Break the tie,  if there was one */
+		    if (tie != FIRST)
+				old_face = Get_Next_Face(tie,face_id,triangulate);
+
+              if (next_face_id == -1)
+              {
+                    Polygon_OutputEx(temp,face_id,0,pListHead,output,strips,ties,tie, 
+	     		    triangulate,swaps,next_id,where);
+                    return;
+              }
+
+
+	        /*  We are using a different face */
+	        if ((tie != FIRST) && (old_face != next_face_id) && (swaps == ON))
+             {
+		        next_face_id = old_face;
+		        /*  Get the new output edge, since e1 and e2 are for the
+		            original next face that we got.
+		        */
+                  e3 = Get_EdgeEx(&e1,&e2,face->pPolygon,next_face_id,face->nPolSize,0,0);
+	        }
+			
+		   /*      Find the other vertex to transmit in the triangle */
+		   e3 = Return_Other(face->pPolygon,e1,e2);
+	        Last_Edge(&other1,&other2,&other3,0);
+	    
+	        if ((other1 != 0) && (other2 != 0))
+	        {
+	               /*   See which vertex in the output edge is not in the input edge */
+	               if ((e1 != other2) && (e1 != other3))
+		               e3 = e1;
+	               else if ((e2 != other2) && (e2 != other3))
+		               e3 = e2;
+	               /* can happen with > 2 polys on an edge  but won't form a good strip so stop
+                       the strip here
+                    */
+                    else
+	               {
+                         Polygon_OutputEx(temp,face_id,0,pListHead,output,strips,ties,tie, 
+         		                           triangulate,swaps,next_id,where);
+                         return;
+	       }
+
+	       /*   See which vertex of the input edge is not in the output edge */
+	       if ((other2 != e1) && (other2 != e2))
+	       {
+		          other1 = other2;
+		          other2 = other3;
+	       }
+	       else if ((other3 != e1) && (other3 != e2))
+		          other1 = other3;
+	       else
+	       {
+                 /* Degenerate triangle just return*/
+               Output_TriEx(other1,other2,e3,strips,next_face_id,begin,where);
+			RemoveList(pListHead,(PLISTINFO) temp);
+			begin = FALSE;
+               return;
+	       }
+		      
+	   }
+	   
+	   /*   There was not an input edge, we are the first triangle in a strip */
+	   else 
+	   {
+	       /*   Find the correct order to transmit the triangle, what is
+		       the output edge that we want ?
+	       */
+	       other1 = e3;
+	       e3 = e2;
+	       other2 = e1;
+	   }
+	   
+	   /*   At this point the adjacencies have been updated  and we
+		   have the next polygon id 
+	   */
+        Output_TriEx(other1,other2,e3,strips,next_face_id,begin,where);
+  	   RemoveList(pListHead,(PLISTINFO) temp);
+	   begin = FALSE;
+
+	   if (Done(next_face_id,59,&next_bucket) == NULL)
+		return;
+
+        pListHead = array[next_bucket];
+	   pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+	   if ( pfNode )
+	  	pfNode->face_id = next_face_id;
+	   lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+				 (int (*)(void *,void *)) (Compare)));
+	   if (lpListInfo == NULL)
+	   {
+				printf("There is an error finding the next polygon3 %d\n",next_face_id);
+				exit(0);
+	   }
+	   Polygon_OutputEx(lpListInfo,next_face_id,next_bucket,
+					pListHead, output, strips,ties,tie,triangulate,swaps,next_id,where);
+
+	}
+}
+
+	else
+	{
+		/*      It is not a triangle, we have to triangulate it .
+			   Since it is not adjacent to anything we can triangulate it
+			   blindly
+		*/
+		if (bucket == 0)
+		{
+			/*  Check to see if there is not an input edge */
+	          Last_Edge(&other1,&other2,&other3,0);
+	          if ((other1 == 0) && (other2 ==0))
+		          Blind_TriangulateEx(face->nPolSize,face->pPolygon, strips,
+						          output,TRUE,where);
+	          else
+		          Blind_TriangulateEx(face->nPolSize,face->pPolygon,strips,
+			                         output,FALSE,where);
+
+			RemoveList(pListHead,(PLISTINFO) temp);
+			/*      We will be at the beginning of the next strip. */
+			begin = TRUE;
+		}
+
+		 /*  If we have specified PARTIAL triangulation then
+			we will go to special routines that will break the
+			polygon and update the data structure. Else everything
+			below will simply triangulate the whole polygon 
+		*/
+		else if (triangulate == PARTIAL)
+		{
+	    
+	          /*  Return the face_id of the next polygon we will be using,
+			*/
+			next_face_id = Min_Face_AdjEx(face_id,&next_bucket,ties);
+
+		
+			/* Don't do it partially, because we can go inside and get
+		        less adjacencies, for a quad we can do the whole thing.
+	          */
+	          if ((face_id == next_face_id) && (face->nPolSize == 4)  && (swaps == ON))
+	          {
+                    next_face_id = Update_AdjacenciesEx(face_id, &next_bucket, &e1,&e2,ties);
+		          if (next_face_id == -1)
+		          {
+		               /*  There is no sequential face to go to, end the strip */
+		               Polygon_OutputEx(temp,face_id,0,pListHead,output,strips,ties,tie, 
+					                 triangulate,swaps,next_id,where);
+		               return;
+		          }
+               
+                    /* Break the tie,  if there was one */
+		          if (tie != FIRST)
+			          next_face_id = Get_Next_Face(tie,face_id,triangulate);
+		          Non_Blind_TriangulateEx(face->nPolSize,face->pPolygon, strips,
+						              output,next_face_id,face_id,where);
+			     RemoveList(pListHead,(PLISTINFO) temp);
+	          }
+	   
+	          /*   Was not a quad but we still do not want to do it partially for
+		          now, since we want to only do one triangle at a time
+	          */
+	          else if ((face_id == next_face_id) && (swaps == ON))
+	               Inside_Polygon(face->nPolSize,face->pPolygon,strips,output,
+		                         next_face_id,face_id,next_id,pListHead,temp,where);
+
+	          else
+	          {
+					 if ((tie != FIRST) && (swaps == ON))
+						 next_face_id = Get_Next_Face(tie,face_id,triangulate);
+					 Partial_Triangulate(face->nPolSize,face->pPolygon,strips,
+						                output,next_face_id,face_id,next_id,pListHead,temp,where);
+					/*    Check the next bucket again ,maybe it changed 
+						 We calculated one less, but that might not be the case
+					*/
+               }
+
+			if (Done(next_face_id,59,&next_bucket) == NULL)
+			{
+     			/*  Check to see if there is not an input edge */
+	               Last_Edge(&other1,&other2,&other3,0);
+	               if ((other1 == 0) && (other2 ==0))
+		               Blind_TriangulateEx(face->nPolSize,face->pPolygon, strips,
+						               output,TRUE,where);
+	               else
+		               Blind_TriangulateEx(face->nPolSize,face->pPolygon,strips,
+			                              output,FALSE,where);
+                    
+                    if (Done(face_id,59,&bucket) != NULL)
+                    {
+                         pListHead = array[bucket];
+			          pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			          if ( pfNode )
+				          pfNode->face_id = face_id;
+			          lpListInfo = (P_ADJACENCIES) (SearchList(array[bucket], pfNode,
+				                  (int (*)(void *,void *)) (Compare)));
+			          RemoveList(pListHead,(PLISTINFO)lpListInfo);
+                    }
+                    begin = TRUE;
+				return;
+			}
+			
+			begin = FALSE;
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = next_face_id;
+			lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+				        (int (*)(void *,void *)) (Compare)));
+			if (lpListInfo == NULL)
+			{
+				printf("There is an error finding the next polygon1 %d %d\n",next_face_id,next_bucket);
+				exit(0);
+			}
+			Polygon_OutputEx(lpListInfo,next_face_id,next_bucket,
+				            pListHead, output, strips,ties,tie,triangulate,swaps,next_id,where);
+		}
+
+          
+		else
+		{
+			/*  WHOLE triangulation */
+	          /*  It is not a triangle and has adjacencies. 
+				This means that we have to:
+				1. TriangulateEx this polygon, not blindly because
+					we have an edge that we want to come out on, that
+					is the edge that is adjacent to a polygon with the
+					least number of adjacencies. Also we must come in
+					on the last seen edge.
+				2. Update the adjacencies in the list, because we are
+					using this polygon .
+				3. Get the next polygon.
+			*/
+			/*   Return the face_id of the next polygon we will be using,
+				while updating the adjacency list by decrementing the
+				adjacencies of everything adjacent to the current polygon.
+			*/
+				
+               next_face_id = Update_AdjacenciesEx(face_id, &next_bucket, &e1,&e2,ties);
+
+               if (Done(next_face_id,59,&next_bucket) == NULL)
+               {
+                    Polygon_OutputEx(temp,face_id,0,pListHead,output,strips,ties,tie, 
+			                      triangulate,swaps,next_id,where);
+                    /*    Because maybe there was more than 2 polygons on the edge */
+                    return;
+		     }
+
+		     /*      Break the tie,  if there was one */
+			else if (tie != FIRST)
+				next_face_id = Get_Next_Face(tie,face_id,triangulate);
+				
+			Non_Blind_TriangulateEx(face->nPolSize,face->pPolygon, strips,
+						         output,next_face_id,face_id,where);
+			RemoveList(pListHead,(PLISTINFO) temp);
+			begin = FALSE;
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = next_face_id;
+			lpListInfo = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+					   (int (*)(void *,void *)) (Compare)));
+			if (lpListInfo == NULL)
+		     {
+					printf("There is an error finding the next polygon2 %d %d\n",next_face_id,next_bucket);
+					exit(0);
+               }
+			Polygon_OutputEx(lpListInfo,next_face_id,next_bucket,
+					       pListHead, output, strips,ties,tie,triangulate,swaps,next_id,where);
+		}
+
+	}
+    Last_Edge(&e1,&e2,&e3,0);
+
+}       
+
+
+
+	
+
+
+
+
diff --git a/Tools/Stripe_w/outputex.h b/Tools/Stripe_w/outputex.h
new file mode 100644
index 000000000..f59f7e75c
--- /dev/null
+++ b/Tools/Stripe_w/outputex.h
@@ -0,0 +1,31 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: outputex.h
+-----------------------------------------------------------------------*/
+
+
+#include "polverts.h"
+
+
+#define TRIANGLE 3
+#define MAGNITUDE 1000000
+
+void Output_TriEx(int id1, int id2, int id3, FILE *output, int next_face, 
+		  int flag, int where);
+void Sgi_Test();
+void Polygon_OutputEx(P_ADJACENCIES temp,int face_id,int bucket,
+		      ListHead *pListHead, FILE *output, FILE *strips,
+		      int *ties, int tie, int triangulate, int swaps,
+		      int *next_id, int where);
+void Extend_BackwardsEx(int face_id, FILE *output, FILE *strip, int *ties, 
+			int tie, int triangulate, int swaps,int *next_id);
+void FinishedEx();
+
+
diff --git a/Tools/Stripe_w/partial.c b/Tools/Stripe_w/partial.c
new file mode 100644
index 000000000..847b40501
--- /dev/null
+++ b/Tools/Stripe_w/partial.c
@@ -0,0 +1,668 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: partial.c
+     This file contains routines that are used partial triangulation of polygons
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "global.h"
+#include "outputex.h"
+#include "polyvertsex.h"
+#include "triangulatex.h"
+#include "sturctsex.h"
+#include "polverts.h"
+#include "common.h"
+#include "util.h"
+
+void P_Triangulate_Quad(int out_edge1,int out_edge2,int in_edge1,
+					  int in_edge2,int size,int *index,
+					  FILE *output,FILE *fp,int reversed,int face_id,
+					  int *next_id,ListHead *pListHead, 
+					  P_ADJACENCIES temp,
+                      int where)
+{
+    int vertex4,vertex5,dummy=60;
+	
+    /*	This routine will nonblindly triangulate a quad, meaning
+		that there is a definite input and a definite output
+		edge that we must adhere to. Reversed will tell the orientation
+		of the input edge. (Reversed is -1 is we do not have an input
+		edge, in other words we are at the beginning of a strip.)
+		Out_edge* is the output edge, and in_edge* is the input edge. 
+		Index are the edges of the polygon
+		and size is the size of the polygon. Begin is whether we are
+		at the start of a new strip.
+		Note that we will not necessarily triangulate the whole quad;
+		maybe we will do half and leave the other half (a triangle)
+		for later.
+	*/
+	
+
+    /*	If we do not have an input edge, then we can make our input
+		edge whatever we like, therefore it will be easier to come
+		out on the output edge.	In this case the whole quad is done.
+	*/
+	if (reversed == -1)
+	{
+		vertex4 = AdjacentEx(out_edge1,out_edge2,index,size);
+		vertex5 = Get_Other_Vertex(vertex4,out_edge1,out_edge2,index);
+		Output_TriEx(vertex5,vertex4,out_edge1,output,-1,-1,where);
+		Output_TriEx(vertex4,out_edge1,out_edge2,output,-1,-1,where);
+		dummy = Update_AdjacenciesEx(face_id, &dummy, &dummy,&dummy,&dummy);
+		RemoveList(pListHead,(PLISTINFO) temp);
+		return;
+	}
+	
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*  Are they consecutive so that we form a triangle to
+		peel off, but cannot use the whole quad?
+	*/
+
+	if (in_edge2 == out_edge1) 
+	{
+		/*	Output the triangle that comes out the correct
+			edge. Save the other half for later.
+		*/
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge2,index);
+          Output_TriEx(in_edge1,in_edge2,out_edge2,output,-1,-1,where);
+		/*	Now we have a triangle used, and a triangle that is
+			left for later.
+		*/
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,
+				face_id,&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,in_edge2,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		/*	Put the new face in the proper bucket of adjacencies 
+			There are 2 edges that need to be checked for the triangle
+			that was just outputted. For the output edge we definitely
+			will be decreasing the adjacency, but we must check for the
+			input edge.
+		*/
+
+		dummy = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp,FALSE);
+		dummy = Change_FaceEx(face_id,in_edge2,out_edge2,pListHead,temp,TRUE);
+		
+		/*	Update the face data structure, by deleting the old
+			face and putting in the triangle as the new face 
+		*/
+		New_Face(face_id,in_edge1,out_edge2,vertex4);
+		return;									  
+	}
+	else if (in_edge1 == out_edge1)
+	{
+		/*	We want to output the first triangle (whose output
+			edge is not the one that we want.
+			We have to find the vertex that we need, which is
+			the other vertex which we do not have.
+		*/						
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge2,index);
+		Output_TriEx(in_edge2,in_edge1,out_edge2,output,-1,-1,where);
+		/*	Now we have a triangle used, and a triangle that is
+			left for later.
+		*/
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		dummy = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp,FALSE);
+		dummy = Change_FaceEx(face_id,in_edge1,out_edge2,pListHead,temp,TRUE);
+		
+		/*	Update the face data structure, by deleting the old
+			face and putting in the triangle as the new face 
+		*/
+		New_Face(face_id,in_edge2,out_edge2,vertex4);
+		return;
+	}
+	
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_TriEx(in_edge2,in_edge1,out_edge1,output,-1,-1,where);
+		/*	Now we have a triangle used, and a triangle that is
+			left for later.
+		*/
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		dummy = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp,FALSE);
+		dummy = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp,TRUE);
+		
+		/*	Update the face data structure, by deleting the old
+			face and putting in the triangle as the new face 
+		*/
+		New_Face(face_id,in_edge2,out_edge1,vertex4);
+          return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_TriEx(in_edge1,in_edge2,out_edge1,output,-1,-1,where);
+		/*	Now we have a triangle used, and a triangle that is
+			left for later.
+		*/
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		dummy = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp,FALSE);
+		dummy = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp,TRUE);
+		
+		/*	Update the face data structure, by deleting the old
+			face and putting in the triangle as the new face 
+		*/
+		New_Face(face_id,in_edge1,out_edge1,vertex4);
+		return;
+	}
+
+	/*	The final case is where we want to come out the opposite
+		edge.
+	*/
+	else
+	{
+        if( ((!reversed) && (out_edge1 == (AdjacentEx(in_edge1,in_edge2,index,size)))) ||
+                    ((reversed) && (out_edge2 == (AdjacentEx(in_edge2,in_edge1,index,size)))))
+		{
+			/*	We need to know the orientation of the input
+				edge, so we know which way to put the diagonal.
+                And also the output edge, so that we triangulate
+                correctly. Does not need partial.
+             */
+			Output_TriEx(in_edge1,in_edge2,out_edge2,output,-1,-1,where);
+			Output_TriEx(in_edge2,out_edge2,out_edge1,output,-1,-1,where);
+			dummy = Update_AdjacenciesEx(face_id, &dummy, &dummy,&dummy,&dummy);
+			RemoveList(pListHead,(PLISTINFO) temp);
+		}
+		else
+		{
+			/*      Input and output orientation was reversed, so diagonal will
+					be reversed from above.
+			*/
+			Output_TriEx(in_edge1,in_edge2,out_edge1,output,-1,-1,where);
+			Output_TriEx(in_edge2,out_edge1,out_edge2,output,-1,-1,where);
+			dummy = Update_AdjacenciesEx(face_id, &dummy, &dummy,&dummy,&dummy);
+			RemoveList(pListHead,(PLISTINFO) temp);
+		}
+		return;
+	}
+}
+
+void P_Triangulate_Polygon(int out_edge1,int out_edge2,int in_edge1,
+						   int in_edge2,int size,
+						  int *index,FILE *output,FILE *fp,
+						  int reversed,int face_id,int *next_id,
+						  ListHead *pListHead, P_ADJACENCIES temp2,
+                          int where)
+{
+	/*	We have a polygon greater than 4 sides, which we wish
+		to partially triangulate
+	*/
+	int next_bucket,vertex4,dummy = 60;
+	int *temp;
+	P_ADJACENCIES pfNode;
+
+		
+    /*	Since we are calling this recursively, we have to check whether		
+		we are down to the case of the quad.
+	*/
+	if (size == 4)
+	{
+		P_Triangulate_Quad(out_edge1,out_edge2,in_edge1,in_edge2,size,
+							index,output,fp,reversed,face_id,next_id,
+							pListHead,temp2,where);
+		return;
+	}
+	
+	/*	We do not have a specified input edge, and therefore we
+		can make it anything we like, as long as we still come out 
+		the output edge that we want.
+	*/
+	if (reversed  == -1)
+	{
+		/*	Get the vertex for the last triangle, which is
+			the one coming out the output edge, before we do
+			any deletions to the list. We will be doing this
+			bottom up.
+		*/
+		vertex4 = AdjacentEx(out_edge1,out_edge2,index,size);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_ListEx(out_edge2,index,size);
+		/*	We do not have to partially triangulate, since
+			we will do the whole thing, so use the whole routine
+		*/
+		/* Triangulate_PolygonEx(vertex4,out_edge1,in_edge2,
+				      vertex4,size-1,index,output,fp,reversed,
+				      face_id,next_id,pListHead,temp2,where); */
+		Triangulate_PolygonEx(vertex4,out_edge1,in_edge2,
+				      vertex4,size-1,index,output,fp,reversed,
+				      face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		/*	Lastly do the triangle that comes out the output
+			edge.
+		*/
+		Output_TriEx(vertex4,out_edge1,out_edge2,output,-1,-1,where);
+		/*	We were able to do the whole polygon, now we
+			can delete the whole thing from our data structure.
+		*/
+		dummy = Update_AdjacenciesEx(face_id, &dummy, &dummy,&dummy,&dummy);
+		RemoveList(pListHead,(PLISTINFO) temp2);
+		return;
+	}	  
+
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*  Are they consecutive so that we form a triangle to
+		peel off that comes out the correct output edge, 
+		but we cannot use the whole polygon?
+	*/
+	if (in_edge2 == out_edge1) 
+	{
+		Output_TriEx(in_edge1,out_edge1,out_edge2,output,-1,-1,where);
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		next_bucket = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp2,TRUE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+          Delete_From_ListEx(in_edge2,index,size);
+		/*	Update the face data structure, by deleting the old
+			face and putting in the polygon minus the triangle 
+			as the new face, here we will be decrementing the size
+			by one.
+		*/
+		New_Size_Face(face_id);
+		return;
+	}
+
+	/*	Next case is where it is again consecutive, but the triangle
+		formed by the consecutive edges do not come out of the
+		correct output edge. (the input edge will be reversed in
+		the next triangle)
+	*/
+	else if (in_edge1 == out_edge1)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		Output_TriEx(in_edge2,in_edge1,out_edge2,output,-1,-1,where);
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		next_bucket = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp2,TRUE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+          Delete_From_ListEx(in_edge1,index,size);
+		/*	Update the face data structure, by deleting the old
+			face and putting in the polygon minus the triangle 
+			as the new face, here we will be decrementing the size
+			by one.
+		*/
+		New_Size_Face(face_id);
+		return;
+	}
+	
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		Output_TriEx(in_edge2,in_edge1,out_edge1,output,-1,-1,where);
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge1,out_edge2,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		next_bucket = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp2,TRUE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+        Delete_From_ListEx(in_edge1,index,size);
+		/*	Update the face data structure, by deleting the old
+			face and putting in the polygon minus the triangle 
+			as the new face, here we will be decrementing the size
+			by one.
+		*/
+		New_Size_Face(face_id);
+		return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		Output_TriEx(in_edge1,in_edge2,out_edge1,output,-1,-1,where);
+		
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(out_edge2,out_edge1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		
+		/*	Put the new face in the proper bucket of adjacencies */
+		next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		next_bucket = Change_FaceEx(face_id,out_edge1,out_edge2,pListHead,temp2,TRUE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+          Delete_From_ListEx(in_edge2,index,size);
+		/*	Update the face data structure, by deleting the old
+			face and putting in the polygon minus the triangle 
+			as the new face, here we will be decrementing the size
+			by one.
+		*/
+		New_Size_Face(face_id);
+		return;
+	}
+
+	/*	Else the edge is not consecutive, and it is sufficiently
+		far away, for us not to make a conclusion at this time.
+		So we can take off a triangle and recursively call this
+		function.
+	*/
+	else
+	{
+          if (!reversed)
+		{
+			vertex4 = AdjacentEx(in_edge2,in_edge1,index,size);
+			Output_TriEx(in_edge1,in_edge2,vertex4,output,-1,-1,where);
+			
+			/*	Now delete the adjacencies by one for all the faces
+				that are adjacent to the triangle that we just outputted.
+			*/
+			Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+			Delete_AdjEx(in_edge1,vertex4,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+			
+			/*	Put the new face in the proper bucket of adjacencies */
+			next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+			next_bucket = Change_FaceEx(face_id,in_edge1,vertex4,pListHead,temp2,FALSE);
+			
+			/*	Create a new edgelist without the triangle that
+				was just outputted.
+			*/
+			Delete_From_ListEx(in_edge1,index,size);
+			/*	Update the face data structure, by deleting the old
+				face and putting in the polygon minus the triangle 
+				as the new face, here we will be decrementing the size
+				by one.
+			*/
+			New_Size_Face(face_id);
+
+			/*	Save the info for the new bucket, we will need it on
+				the next pass for the variables, pListHead and temp 
+			*/
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = face_id;
+			temp2 = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+				(int (*)(void *,void *)) (Compare)));
+			if (temp2 == NULL)
+			{
+				printf("There is an error finding the next polygon10 %d %d\n",next_bucket,face_id);
+				exit(0);
+			}
+
+			P_Triangulate_Polygon(out_edge1,out_edge2,in_edge2,
+						 vertex4,size-1,index,output,fp,!reversed,
+						 face_id,next_id,pListHead,temp2,where);
+		}
+		else
+		{
+			vertex4 = AdjacentEx(in_edge1,in_edge2,index,size);
+			Output_TriEx(in_edge2,in_edge1,vertex4,output,-1,-1,where);
+
+			/*	Now delete the adjacencies by one for all the faces
+				that are adjacent to the triangle that we just outputted.
+			*/
+			Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+			Delete_AdjEx(in_edge2,vertex4,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+			
+			/*	Put the new face in the proper bucket of adjacencies */
+			next_bucket = Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+			next_bucket = Change_FaceEx(face_id,in_edge2,vertex4,pListHead,temp2,FALSE);
+			
+			/*	Create a new edgelist without the triangle that
+				was just outputted.
+			*/
+			Delete_From_ListEx(in_edge2,index,size);
+			
+			/*	Update the face data structure, by deleting the old
+				face and putting in the polygon minus the triangle 
+				as the new face, here we will be decrementing the size
+				by one.
+			*/
+			New_Size_Face(face_id);
+			
+			/*	Save the info for the new bucket, we will need it on
+				the next pass for the variables, pListHead and temp 
+			*/
+			pListHead = array[next_bucket];
+			pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+			if ( pfNode )
+				pfNode->face_id = face_id;
+			temp2 = (P_ADJACENCIES) (SearchList(array[next_bucket], pfNode,
+				(int (*)(void *,void *)) (Compare)));
+			if (temp2 == NULL)
+			{
+				printf("There is an error finding the next polygon11 %d %d\n",face_id,next_bucket);
+				exit(0);
+			}
+
+			P_Triangulate_Polygon(out_edge1,out_edge2,vertex4,
+						       in_edge1,size-1,index,output,fp,!reversed,
+						       face_id,next_id,pListHead,temp2,where);
+		}
+		return;
+	}
+}
+
+void P_Triangulate(int out_edge1,int out_edge2,int in_edge1,
+				 int in_edge2,int size,int *index,
+				 FILE *fp,FILE *output,int reversed,int face_id,
+				 int *next_id,ListHead *pListHead, 
+				 P_ADJACENCIES temp,int where)
+{
+		
+	if (size == 4)
+		P_Triangulate_Quad(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			              index,fp,output,reversed,face_id,next_id,pListHead, temp,where);
+	else
+		P_Triangulate_Polygon(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			                 index,fp,output,reversed,face_id,next_id,pListHead,temp,where);
+}
+
+ void Partial_Triangulate(int size,int *index, FILE *fp,
+						 FILE *output,int next_face_id,int face_id,
+						 int *next_id,ListHead *pListHead,
+						 P_ADJACENCIES temp, int where)
+{
+	int id1,id2,id3;
+	int nedge1,nedge2;
+	int reversed;
+
+	/*	We have a polygon that has to be triangulated and we cannot
+		do it blindly, ie we will try to come out on the edge that
+		has the least number of adjacencies, But also we do not
+		want to triangulate the whole polygon now, so that means 
+		we will output the least number of triangles that we can
+		and then update the data structures, with the polygon
+		that is left after we are done.
+	*/
+	Last_Edge(&id1,&id2,&id3,0);
+	
+	/*	Find the edge that is adjacent to the new face ,
+		also return whether the orientation is reversed in the
+		face of the input edge, which is id2 and id3.
+	*/
+	reversed = Get_EdgeEx(&nedge1,&nedge2,index,next_face_id,size,id2,id3);
+	
+	/*   Input edge and output edge can be the same if there are more than
+          one polygon on an edge 
+     */
+     if ( ((nedge1 == id2) && (nedge2 == id3)) ||
+          ((nedge1 == id3) && (nedge2 == id2)) )
+          /*   Set output edge arbitrarily but when come out of here the
+               next face will be on the old output edge (identical one)
+          */
+          nedge2 = Return_Other(index,id2,id3);
+
+          /*	Do the triangulation */	
+	P_Triangulate(nedge1,nedge2,id2,id3,size,index,fp,output,reversed,
+		         face_id,next_id,pListHead,temp,where);
+}
+
+ void Input_Edge(int face_id, int *index, int size, int in_edge1, int in_edge2, 
+                FILE *fp, FILE *output,ListHead *pListHead, P_ADJACENCIES temp2,
+                int where)
+ {
+     /* The polygon had an input edge, specified by input1 and input2 */
+    
+     int output1;
+     int vertex4, vertex5,dummy=60;
+
+     output1 = Get_Output_Edge(face_id,size,index,in_edge1,in_edge2);
+	vertex5 = AdjacentEx(in_edge2,in_edge1,index,size); 
+     vertex4 = AdjacentEx(in_edge1,in_edge2,index,size);
+
+     if (vertex4 == output1)
+     {
+		Output_TriEx(in_edge2,in_edge1,output1,output,-1,-1,where);
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(in_edge2,output1,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		/*	Put the new face in the proper bucket of adjacencies */
+		Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		Change_FaceEx(face_id,in_edge2,output1,pListHead,temp2,FALSE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+          Delete_From_ListEx(in_edge2,index,size);
+
+    }	
+    else if (vertex5 == output1)
+    {
+          Output_TriEx(in_edge1,in_edge2,vertex5,output,-1,-1,where);
+		/*	Now delete the adjacencies by one for all the faces
+			that are adjacent to the triangle that we just outputted.
+		*/
+		Delete_AdjEx(in_edge1,in_edge2,&dummy,&dummy,face_id,
+				&dummy,&dummy,&dummy);
+		Delete_AdjEx(in_edge1,vertex5,&dummy,&dummy, 
+				face_id,&dummy,&dummy,&dummy);
+		/*	Put the new face in the proper bucket of adjacencies */
+		Change_FaceEx(face_id,in_edge1,in_edge2,pListHead,temp2,FALSE);
+		Change_FaceEx(face_id,in_edge1,vertex5,pListHead,temp2,FALSE);
+		
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+          Delete_From_ListEx(in_edge1,index,size);
+    }
+		
+    /*	Update the face data structure, by deleting the old
+		face and putting in the polygon minus the triangle 
+		as the new face, here we will be decrementing the size
+		by one.
+    */
+    New_Size_Face(face_id);
+    return;
+ }
+ 
+ void Inside_Polygon(int size,int *index,FILE *fp,FILE *output,
+                   int next_face_id,int face_id,int *next_id,
+                   ListHead *pListHead,P_ADJACENCIES temp, int where)
+ {
+     /* We know that we have a polygon that is greater than 4 sides, and
+        that it is better for us to go inside the polygon for the next
+        one, since inside will have less adjacencies than going outside.
+        So, we are not doing partial for a part of the polygon.
+      */
+    int id1,id2,id3;
+    int new1,new2;
+
+    Last_Edge(&id1,&id2,&id3,0);
+
+    /*  See if the input edge existed in the polygon, that will help us */
+	if (Exist(face_id,id2,id3))
+        Input_Edge(face_id,index,size,id2,id3,output,fp,pListHead,temp,where);
+    else
+    {
+        /*  Make one of the input edges 
+            We will choose it by trying to get an edge that has something
+            in common with the last triangle, or by getting the edge that
+            is adjacent to the least number of thigs, with preference given
+            to the first option
+        */
+               
+        Get_Input_Edge(index,id1,id2,id3,&new1,&new2,size,face_id);
+        Input_Edge(face_id,index,size,new1,new2,output,fp,pListHead,temp,where);
+    }
+ }
+
+
diff --git a/Tools/Stripe_w/partial.h b/Tools/Stripe_w/partial.h
new file mode 100644
index 000000000..6a4e3a5b1
--- /dev/null
+++ b/Tools/Stripe_w/partial.h
@@ -0,0 +1,20 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: partial.h
+-----------------------------------------------------------------------*/
+
+void Partial_Triangulate(int size,int *index, FILE *fp,
+			 FILE *output,int next_face_id,int face_id,
+			 int *next_id,ListHead *pListHead,
+			 P_ADJACENCIES temp, int where);
+void Inside_Polygon(int size,int *index,FILE *fp,FILE *output,
+		    int next_face_id,int face_id,int *next_id,
+		    ListHead *pListHead,P_ADJACENCIES temp, int where);
+
diff --git a/Tools/Stripe_w/polverts.h b/Tools/Stripe_w/polverts.h
new file mode 100644
index 000000000..b3979eb4b
--- /dev/null
+++ b/Tools/Stripe_w/polverts.h
@@ -0,0 +1,108 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: polverts.h
+-----------------------------------------------------------------------*/
+
+
+#ifndef _POLVERTS_H
+#define _POLVERTS_H
+
+
+#ifdef HAVE_CONFIG_H
+#  include <config.h>
+#endif
+
+#include "queue.h"
+
+#ifdef HAVE_STDLIB_H
+#  include <stdlib.h>
+#else
+#  include <malloc.h>
+#endif
+
+
+typedef struct adjacencies
+{
+	Node ListNode;
+	int face_id;
+} ADJACENCIES,*P_ADJACENCIES;
+
+typedef struct FVerts
+{
+	Node ListNode;
+	int *pPolygon;
+	int nPolSize;
+	int nId;
+} F_VERTS, *PF_VERTS;
+
+/*Every time we need to use this, cast it ( ListInfo*)*/
+
+typedef struct FEdges
+{
+	Node ListNode;
+	int edge[3];
+}F_EDGES,*PF_EDGES;
+
+typedef struct FFaces
+{
+	Node ListNode;
+	int *pPolygon;
+	int *pNorms;
+    int     seen;
+    int seen2;
+    int seen3;
+	int nPolSize;
+	F_EDGES **VertandId;
+	int *marked;
+		int *walked;
+} F_FACES,*PF_FACES;
+	
+
+typedef struct Strips
+{
+	Node ListNode;
+	int face_id;
+} Strips,*P_STRIPS;
+
+
+     struct vert_added
+     {
+          int num;
+          int *normal;
+     };
+
+
+/*      external functions */
+void Find_Adjacencies(int num_faces);
+void Test_Adj_Struct();
+void Test_SGI_Struct();
+void Write_Edges();
+void Build_SGI_Table(int num_verts,int num_faces);
+void Save_Walks(int numfaces);
+void Find_Bands(int numfaces, FILE *output_file, int *swaps, int *bands, 
+                int *cost, int *tri, int norms, int *vert_norms, int texture,
+		int *vert_texture);
+void Save_Rest(int *numfaces);
+void Assign_Walk(int lastvert, PF_FACES temp2, int front_walk,int y,
+				int back_walk);
+void Save_Walks(int numfaces);
+	
+
+/*      Globals */
+extern ListHead **PolVerts;
+extern ListHead **PolFaces;
+extern ListHead **PolEdges;
+extern ListHead *array[60];
+extern int     id_array[60];
+extern ListHead *strips[1];
+extern ListHead *all_strips[100000]; /*  Assume max 100000 strips */
+
+
+#endif _POLVERTS_H
diff --git a/Tools/Stripe_w/polyvertsex.h b/Tools/Stripe_w/polyvertsex.h
new file mode 100644
index 000000000..4c541f7bc
--- /dev/null
+++ b/Tools/Stripe_w/polyvertsex.h
@@ -0,0 +1,42 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: polvertsex.h
+-----------------------------------------------------------------------*/
+
+#ifdef HAVE_CONFIG_H
+#  include <config.h>
+#endif
+
+#ifdef HAVE_STDLIB_H
+#  include <stdlib.h>
+#else
+#  include <malloc.h>
+#endif
+
+#include "queue.h"
+
+/*      external functions */
+void Start_Vert_Struct();
+void Start_Face_StructEx();
+void Start_Edge_StructEx();
+void AddNewNode();
+void AddNewFaceEx();      
+void Find_AdjacenciesEx();
+void Test_Adj_Struct();
+void Test_SGI_Struct();
+void Write_Edges();
+void End_Verts_Struct();
+void End_Face_StructEx();
+void End_Edge_StructEx();
+void Build_SGI_TableEx();
+void Add_AdjEdgeEx();
+
+
+
diff --git a/Tools/Stripe_w/queue.c b/Tools/Stripe_w/queue.c
new file mode 100644
index 000000000..966f20379
--- /dev/null
+++ b/Tools/Stripe_w/queue.c
@@ -0,0 +1,226 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: queue.c
+     This file contains the routines used in the data structures lists, which
+     are queues.
+*/
+/*---------------------------------------------------------------------*/
+
+ #include "queue.h"
+ 
+
+
+/*----------------------------------------------------------------------------
+ * InitList:
+ */
+BOOL  InitList  (PLISTHEAD LHead)
+ 
+{
+  if (LHead == NULL) return(FALSE);
+
+  LHead->LHeaders[LISTHEAD] = LHead->LHeaders[LISTTAIL] = NULL;
+  LHead->NumList = 0;
+  return(TRUE);
+}
+
+/*----------------------------------------------------------------------------
+ * AddHead:
+ */
+BOOL  AddHead(PLISTHEAD LHead, PLISTINFO LInfo)
+{
+     if (LHead == NULL || LInfo == NULL)
+          return(FALSE);
+     if (EMPTYLIST(LHead))
+          LHead->LHeaders[LISTTAIL] = LInfo;
+     else LHead->LHeaders[LISTHEAD]->ListNode.Previous = (void  *) LInfo;
+
+     LInfo->ListNode.Next = (void  *) LHead->LHeaders[LISTHEAD];
+     LHead->LHeaders[LISTHEAD] = LInfo;
+     LInfo->ListNode.Previous = NULL;
+     LHead->NumList++;
+     return(TRUE);
+}
+
+/*----------------------------------------------------------------------------
+ * AddTail
+ */
+BOOL  AddTail(PLISTHEAD LHead, PLISTINFO LInfo)
+{
+     if (LHead == NULL || LInfo == NULL)
+          return(FALSE);
+     if (EMPTYLIST(LHead))
+          LHead->LHeaders[LISTHEAD] = LInfo;
+     else LHead->LHeaders[LISTTAIL]->ListNode.Next = (void *) LInfo;
+
+     LInfo->ListNode.Previous = (void  *) LHead->LHeaders[LISTTAIL];
+     LHead->LHeaders[LISTTAIL] = LInfo;
+     LInfo->ListNode.Next = NULL;
+     LHead->NumList++;
+     return(TRUE);
+}
+
+
+BOOL  InsertNode( PLISTHEAD LHead, int nPos, PLISTINFO LInfo )
+{
+PLISTINFO LAddNode;
+
+     if ( LHead == NULL || LInfo == NULL || nPos > NumOnList( LHead ) ) 
+          return( FALSE );
+
+     if ( nPos == 0 )
+          AddHead( LHead, LInfo );
+     else if ( nPos == NumOnList( LHead ) ) 
+          AddTail( LHead, LInfo );
+     else
+     {
+          if ( (LAddNode = PeekList( LHead, LISTHEAD, nPos - 1 )) == NULL )
+               return( FALSE );
+          
+          ((PLISTINFO)LAddNode->ListNode.Next)->ListNode.Previous = LInfo;
+          LInfo->ListNode.Next      = LAddNode->ListNode.Next;
+          LInfo->ListNode.Previous  = LAddNode;
+          LAddNode->ListNode.Next   = LInfo;
+          
+          LHead->NumList++;
+     }
+
+     return( TRUE );
+}
+
+
+
+
+/*----------------------------------------------------------------------------
+ *  RemHead:
+ */
+PLISTINFO  RemHead(PLISTHEAD LHead)
+{
+     PLISTINFO t, t1;
+
+     if ( LHead == NULL || EMPTYLIST(LHead) )
+          return(NULL);
+
+     t = LHead->LHeaders[LISTHEAD];
+     LHead->LHeaders[LISTHEAD] = (PLISTINFO) t->ListNode.Next;
+
+     if (LHead->LHeaders[LISTHEAD] != NULL)
+     {
+          t1 = (PLISTINFO) t->ListNode.Next;
+          t1->ListNode.Previous = NULL;
+     }
+     else
+          LHead->LHeaders[LISTTAIL] = NULL;
+
+     LHead->NumList--;
+
+     return(t);
+}
+
+/*----------------------------------------------------------------------------
+ *  RemTail:
+ */
+PLISTINFO  RemTail(PLISTHEAD   LHead)
+{
+     PLISTINFO   t, t1;
+
+     if ( LHead == NULL || EMPTYLIST(LHead) )
+          return(NULL);
+
+     t = LHead->LHeaders[LISTTAIL];
+     LHead->LHeaders[LISTTAIL] = (PLISTINFO) t->ListNode.Previous;
+     if (LHead->LHeaders[LISTTAIL] != NULL)
+     {
+          t1 = (PLISTINFO) t->ListNode.Previous;
+          t1->ListNode.Next = NULL;
+     }
+     else
+          LHead->LHeaders[LISTHEAD] = NULL;
+
+     LHead->NumList--;
+     return(t);
+}
+
+/*----------------------------------------------------------------------------
+ * PeekList:
+ */
+PLISTINFO  PeekList(PLISTHEAD LHead, int wch, int index )
+{
+     PLISTINFO  t;
+
+     if (LHead == NULL)
+          return(NULL);
+     if ( (t = LHead->LHeaders[wch]) == NULL )
+          return(NULL);
+
+     for (; t != NULL && index > 0; index-- )
+          t = (wch == LISTHEAD)  ? (PLISTINFO) t->ListNode.Next  :
+                                   (PLISTINFO) t->ListNode.Previous;
+     return(t);
+}
+
+
+/*----------------------------------------------------------------------------
+ * RemoveList:
+ */
+PLISTINFO   RemoveList( PLISTHEAD LHead, PLISTINFO LInfo )
+{
+     PLISTINFO     t, t1;
+
+     t = LInfo;
+     if (LHead == NULL)
+          return(NULL);
+     if (LHead->LHeaders[LISTHEAD] == t)
+          t = (PLISTINFO) RemHead(LHead);
+     else if (LHead->LHeaders[LISTTAIL] == t)
+          t = (PLISTINFO) RemTail(LHead);
+     else
+     {
+          t1                    = (PLISTINFO) t->ListNode.Previous;
+          t1->ListNode.Next     = t->ListNode.Next;
+          t1                    = (PLISTINFO) t->ListNode.Next;
+          t1->ListNode.Previous = t->ListNode.Previous;
+          LHead->NumList--;
+     }
+
+     return(t);
+}
+
+/*----------------------------------------------------------------------------
+ * SearchList:
+ *       Try to find a specific node in the queue whose key matches with
+ *  searching key. Return the pointer to that node if found, return NULL
+ *  otherwise
+ *
+ *  Input:
+ *    lpHashTbl       => a far pointer to the hash table
+ *    lpKey           => a far poniter to searching key
+ *    CompareCallBack => comparision function
+ *
+ *  Output: a far pointer to the node to be found
+ *
+ */
+PLISTINFO  SearchList(
+                        PLISTHEAD lpListHead,
+                        PVOID lpSKey,
+                        int (* CompareCallBack) ( PVOID, PVOID ) )
+{
+PLISTINFO lpListInfo;
+
+     lpListInfo = PeekList( lpListHead, LISTHEAD, 0);
+     while ( lpListInfo != NULL )
+     {
+          if ( CompareCallBack( lpListInfo, lpSKey ) )
+               break;
+          lpListInfo = GetNextNode( lpListInfo );
+     }
+
+     return( lpListInfo );
+}
+ 
diff --git a/Tools/Stripe_w/queue.h b/Tools/Stripe_w/queue.h
new file mode 100644
index 000000000..0bf926e0f
--- /dev/null
+++ b/Tools/Stripe_w/queue.h
@@ -0,0 +1,283 @@
+
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE:queue.h
+-----------------------------------------------------------------------*/
+
+#ifndef QUEUE_INCLUDED
+#define QUEUE_INCLUDED
+
+/*        %%s  Node      */
+/*****************************************************************
+     This structure is used to store the List linkage information of a
+ListInfo structure.  It contains all the necessary information for the
+List functions to function properly.  This structure must be the first
+one defined in any block of memory to be linked with the List functions.
+for an example of the used of The Node structure look in the files
+ipd2dms.c and ipd2man.h
+******************************************************************/
+#include <stdio.h>
+#define FALSE 0
+#define TRUE  1
+typedef struct
+{
+     void  *Next;
+     void  *Previous;
+}
+     Node, * PNODE;
+
+/*****************************************************************
+     Next     :  is a pointer to the next structure in this List.
+     Previous :  is a pointer to the previous structure in this List.
+     priority :  this is the priority of this structure in the List.  The
+                 highest priority is 0.  This field is only used by the
+                 functions EnQue and DeQue.
+******************************************************************/
+/*        %%e       */
+
+
+/*        %%s  ListInfo      */
+
+/*****************************************************************
+      This is the general means of linking application defined information into
+Lists and queues.  All structures must begin with the Node Structure.  All
+other data in the structure is user definable.
+******************************************************************/
+
+typedef struct List
+{
+     Node     ListNode;       /*  link to the next Listinfo Structure  */
+     /*  user definable data  */
+}    ListInfo, *PLISTINFO;
+
+/*****************************************************************
+     ListNode  :  this is the required node structure for the List
+                  mainpulation functions.  This must be the first
+                  element of a user definable structure.
+
+     In order for an application to use the List routines, it must define
+a structure with all the needed information.  The first element in the
+user definable structure must be a Node structure.  The Node structure
+contains all the necessary information for the List routines to do their
+magic.  For an example of a user defined List structure see the file
+ipd2i.h.  The User definable structure can be passed to any List function
+that excepts a pointer to a ListInfo structure.
+
+example:
+
+typedef  mstruct
+{
+     Node   ListNode;
+     int    a,b,c,d,e,f,g;
+}
+     mystruct;
+
+     the user definable portion of the above structure is represented by
+the integers a,b,c,d,e,f,g.  When passing this structure to a List
+function a cast of (ListInfo *) must be made to satisify the "C" complier.
+******************************************************************/
+/*        %%e       */
+
+
+/*        %%s ListHead        */
+/*****************************************************************
+     ListHead is used as a header to a List.  LHeaders[0] points to the
+head of the List.  LHeaders[1] points the tail of the list.  When
+accessing these variables use the defines  LISTHEAD, LISTTAIL.
+******************************************************************/
+
+typedef struct LHead
+{
+     PLISTINFO  LHeaders[2];
+     int         NumList;
+}
+ListHead, *PLISTHEAD;
+
+/*****************************************************************
+     LHeaders   :  this is an array of two pointers to ListInfo structures.
+                   This information is used to point to the head and tail of
+                   a list.
+     NumList    :  this integer hold the number of structures linked into this
+                   list.
+
+ListHead #define:
+
+     LISTHEAD  :  when Peeking down a list this specifies you should
+                  start at the Head of the list and search downward.
+
+     LISTTAIL  :  when Peeking down a list this specifies you should
+                  start at the tail of the list and search foward.
+ ******************************************************************/
+
+#define  LISTHEAD  0
+
+#define  LISTTAIL  1
+/*        %%e       */ 
+
+typedef int BOOL;
+typedef void * PVOID;
+
+#define PEEKFROMHEAD( lh, ind )     ( PeekList( (lh), LISTHEAD, (ind) ) )
+#define PEEKFROMTAIL( lh, ind )     ( PeekList( (lh), LISTTAIL, (ind) ) )
+#define EMPTYLIST( lh )             ( ( (lh)->LHeaders[LISTHEAD] == NULL ) )
+
+/*   General utility routines   */
+/*        %%s QueRoutines          */
+BOOL    InitList      ( PLISTHEAD );
+
+/*****************************************************************
+     InitList :  Initialize a new list structure for use with the List
+                 routines
+
+     INPUTS   :  LHead : a pointer to a ListHead structure.
+     OUTPUT   :  a boolean value TRUE if no errors occured FALSE
+                 otherwise
+******************************************************************/
+
+
+PLISTINFO  PeekList      ( PLISTHEAD, int, int   );
+
+/*****************************************************************
+     PeekList :  This funciton peeks down a list for the N'th element
+                 from the HEAD or TAIL of the list
+
+     INPUTS   :  LHead    :  a pointer to a List head structure.
+                 from     :  can either search from the HEAD or TAIL
+                             of the list
+                 where    :  how many nodes from the begining should the
+                             List routines look.
+     OUTPUT   :  a pointer to a ListInfo structure identified by
+                 from/where or NULL if an error occurred.
+******************************************************************/
+
+
+PLISTINFO   RemoveList( PLISTHEAD LHead, PLISTINFO LInfo );
+
+
+/*****************************************************************
+     RemoveList: Remove a ListInfo structure from a List.
+
+     INPUTS    : LHead  :  a pointer to a ListHead structure.
+                 LInfo  :  a pointer to the ListInfo structure to remove
+                           from the list.
+     OUTPUT    : a pointer to the ListInfo structure that was removed or
+                 NULL if an error occurred.
+******************************************************************/
+
+BOOL  InsertNode( PLISTHEAD LHead, int nPos, PLISTINFO LInfo );
+
+/*****************************************************************
+     InsertNode: add a node to a list after a given node
+     
+     INPUTS    : LHead : a pointer to a ListHead structure.
+                 nPos  : the position to insert the node into
+                 LInfo : a pointer to the new node to add to the list.
+     OUTPUT: a boolean value TRUE if all goes well false otherwise
+*****************************************************************/
+
+BOOL   AddHead       ( PLISTHEAD, PLISTINFO );
+
+/*****************************************************************
+     AddHead   : add a ListInfo structure to the HEAD of a list.
+
+     INPUTS    : LHead  : a pointer to a ListHead structure of the list
+                          to add to.
+                 LInfo  : a pointer to the ListInfo structure to add to
+                          the list.
+     OUTPUT    : A boolean value TRUE if no errors occurred FALSE
+                 otherwise.
+******************************************************************/
+
+
+BOOL     AddTail       ( PLISTHEAD, PLISTINFO );
+
+/*****************************************************************
+     AddTail   : Add a ListInfo structure to the TAIL of a list.
+
+     INPUTS    : LHead  : a pointer to a ListHead structure of the List
+                          to add to.
+                 LInfo  : a pointer to the ListInfo structure to add to
+                          the List.
+     OUTPUT    : a boolean value TRUE if no errors occurred FALSE
+                 otherwise.
+******************************************************************/
+
+
+PLISTINFO  RemTail       ( PLISTHEAD );
+
+/*****************************************************************
+     RemTail   : Remove a ListInfo structure from the TAIL of a List.
+
+     INPUTS    : LHead  : a pointer to a ListHead structure of the List
+                          to remove from.
+     OUTPUT    : a pointer to the ListInfo structure that was removed
+                 or NULL if an error occurred.
+******************************************************************/
+
+
+PLISTINFO  RemHead       ( PLISTHEAD );
+
+/*****************************************************************
+     RemHead   : Remove a ListInfo structure from the Head of a List.
+
+     INPUTS    : LHead  : a pointer to a ListHead structure of the List
+                          to remove from.
+     OUTPUT    : a pointer to the ListInfo structure that was removed or
+                 NULL if an error occurred.
+******************************************************************/
+
+PLISTINFO  SearchList(
+                        PLISTHEAD lpListHead,
+                        PVOID lpSKey,
+                        int ( * CompareCallBack) ( PVOID, PVOID ) );
+
+/*****************************************************************
+  SearchList:
+        Try to find a specific node in the queue whose key matches with
+   searching key. Return the pointer to that node if found, return NULL
+   otherwise
+
+   Input:
+     lpHashTbl       => a far pointer to the hash table
+     lpKey           => a far poniter to searching key
+     CompareCallBack => comparision function
+
+   Output: a far pointer to the node to be found
+
+ ******************************************************************/
+
+#define           NumOnList(lh) ( ((lh)->NumList)        )
+
+/*****************************************************************
+     NumOnList: Returns the number of Nodes linked to a ListHead
+                structure.  This number is maintained by the List
+                routines.
+******************************************************************/
+
+#define           GetNextNode(pli) ( ((pli)->ListNode.Next) )
+
+/********************************************************
+     GetNextNode: This macro returns the Next Structure in this list.
+                  This macro will return NULL if no more structures are
+                  in the List.
+*********************************************************/
+
+#define           GetPrevNode(pli) ( ((pli)->ListNode.Previous) )
+
+/********************************************************
+     GetPrevNode: This macro returns the Previous Structure in this list.
+                  This macro will reutrn NULL if no more structures are
+                  in the List.
+********************************************************/
+/*        %%e       */
+
+#endif
+
+
diff --git a/Tools/Stripe_w/sgi_triang.c b/Tools/Stripe_w/sgi_triang.c
new file mode 100644
index 000000000..1a130906e
--- /dev/null
+++ b/Tools/Stripe_w/sgi_triang.c
@@ -0,0 +1,628 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: sgi_triang.c
+     File contains the routines that do the whole triangulation
+     of polygons.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "global.h"
+#include "output.h"
+#include "polverts.h"
+#include "sturcts.h"
+#include "common.h"
+#include "util.h"
+#include "init.h"
+
+int Adjacent(int id2,int id1, int *list, int size)
+{
+	/*	Return the vertex that is adjacent to id1,
+		but is not id2, in the list of integers.
+	*/
+
+	register int x=0;
+	
+	while (x < size)
+	{
+		if (*(list+x) == id1)
+		{
+			if ((x != (size -1)) && (x != 0))
+			{
+				if ( *(list+x+1) != id2)
+					return *(list+x+1);
+				else
+					return *(list+x-1);
+			}
+			else if (x == (size -1))
+			{
+				if (*(list) != id2)
+					return *(list);
+				else
+					return *(list+x-1);
+			}
+			else
+			{
+				if (*(list+size-1) != id2)
+					return *(list+size-1);
+				else
+					return *(list+x+1);
+			}
+		}
+		x++;
+	}
+	/*   if there are degeneracies */
+     return id1;
+}
+
+
+void Rearrange_Index(int *index, int size)
+{
+	/*	If we are in the middle of a strip we must find the
+		edge to start on, which is the last edge that we had
+		transmitted.
+	*/
+	int x,f,y,e1,e2,e3;
+ 	register int increment = 1;
+     int *temp;
+
+	/*	Find where the input edge is in the input list */
+	Last_Edge(&e1,&e2,&e3,0);
+	for (y = 0; y < size; y++)
+	{
+		if (*(index+y) == e2)
+		{
+			if ((y != (size - 1)) && (*(index+y+1) == e3))
+				break;
+			else if ((y == (size - 1)) && (*(index) == e3))
+				break;
+               else if ((y != 0) && (*(index+y-1) == e3))
+               {
+                    increment = -1;
+                    break;
+               }
+               else if ((y==0) && (*(index+size-1) == e3))
+               {
+                    increment = -1;
+                    break;
+               }
+		}
+		if (*(index+y) == e3)
+		{
+			if ((y != (size - 1)) && (*(index+y+1) == e2))
+				break;
+			else if ((y == (size - 1)) && (*(index) == e2))
+				break;
+            else if ((y != 0) && (*(index+y-1) == e2))
+            {
+                increment = -1;
+                break;
+            }
+            else if ((y==0) && (*(index+size-1) == e2))
+            {
+                increment = -1;
+                break;
+            }
+		}
+		/*	Edge is not here, we are at the beginning */
+		if ((y == (size-1)) && (increment != -1))
+			return;
+	}
+	
+	/*	Now put the list into a new list, starting with the
+		input edge. Increment tells us whether we have to go 
+		forward or backward.
+	*/
+	/*	Was in good position already */
+	if ((y == 0) && (increment == 1)) 
+		return;
+	
+     temp = (int *) malloc(sizeof(int) * size);
+     memcpy(temp,index,sizeof(int)*size);
+
+	if (increment == 1)
+	{
+		x=0;
+		for (f = y ; f< size; f++)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+		/*	Finish the rest of the list */	
+		for(f = 0; f < y ; f++)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+	}
+	else
+	{
+		x=0;
+		for (f = y ; f >= 0; f--)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+		/*	Finish the rest of the list */	
+		for(f = (size - 1); f > y ; f--)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+	}
+}
+
+void Delete_From_List(int id,int *list, int *size)
+{
+	/*	Delete the occurence of id in the list.
+		(list has size size)
+	*/
+
+	int *temp;
+	register int x,y=0;
+
+	temp = (int *) malloc(sizeof(int) * (*size));
+	for (x=0; x<(*size); x++)
+	{
+		if (*(list+x) != id)
+		{
+			*(temp+y) = *(list+x);
+			y++;
+		}
+	}
+	*(temp+y) = -1;
+     *size = *size - (*size - y - 1);
+	memcpy(list,temp,sizeof(int)*(*size));
+}
+
+
+void Build_SGI_Table(int num_verts,int num_faces)
+{
+	/*      Build a table that has the polygons sorted by the
+	        number of adjacent polygons.
+	*/
+	int x,y,size,tally=0;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+
+	/* For each face....*/
+	for (x=0;x < num_faces;x++)
+	{
+		pListHead = PolFaces[x];
+		temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+		/*   Check each edge of the face and tally the number of adjacent
+			polygons to this face. 
+		*/                      
+		if ( temp != NULL )
+		{
+			/*      Size of the polygon */
+			size = temp->nPolSize;
+			if (size != 1)
+      {
+        for (y = 0; y< size; y++)
+			  {
+				  if (y != (size-1))
+					  tally += Num_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1));
+				  else
+					  tally += Num_Adj(*(temp->pPolygon),*(temp->pPolygon+(size-1)));
+        }
+			
+			  /* Tally is the number of polygons that is adjacent to
+				   the current polygon. 
+			  */
+			  /* Now put the face in the proper bucket depending on tally. */
+			  Add_Sgi_Adj(tally,x);
+			  temp = NULL;
+			  tally=0;
+      }
+		}
+	}
+}
+
+
+void Triangulate_Quad(int out_edge1,int out_edge2,int in_edge1,
+					  int in_edge2,int size,int *index,
+					  FILE *output,int reversed,int face_id,
+                      int where,int color1,int color2,int color3)
+{
+	int vertex4,vertex5;
+	
+	/*	This routine will nonblindly triangulate a quad, meaning
+		that there is a definite input and a definite output
+		edge that we must adhere to. Reversed will tell the orientation
+		of the input edge. (Reversed is -1 is we do not have an input
+		edge, in other words we are at the beginning of a strip.)
+		Out_edge* is the output edge, and in_edge* is the input edge. 
+		Index are the edges of the polygon
+		and size is the size of the polygon. Begin is whether we are
+		at the start of a new strip.
+	*/
+	
+	/*	If we do not have an input edge, then we can make our input
+		edge whatever we like, therefore it will be easier to come
+		out on the output edge.
+	*/
+	if (reversed == -1)
+	{
+		vertex4 = Adjacent(out_edge1,out_edge2,index,size);
+		vertex5 = Get_Other_Vertex(vertex4,out_edge1,out_edge2,index);
+		Output_Tri(vertex5,vertex4,out_edge1,output,color1,color2,color3,where);
+		Output_Tri(vertex4,out_edge1,out_edge2,output,color1,color2,color3,where);
+		return;
+	}
+	
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*  Are they consecutive so that we form a triangle to
+		peel off, but cannot use the whole quad?
+	*/
+
+	if (in_edge2 == out_edge1) 
+	{
+		/* Output the triangle that comes out the correct
+			 edge last. First output the triangle that comes out
+			 the wrong edge.
+		*/
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge2,index);
+    Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where);
+    Output_Tri(vertex4,in_edge2,out_edge2,output,color1,color2,color3,where);
+		return;
+	}
+	/* The next case is where it is impossible to come out the
+		 edge that we want. So we will have to start a new strip to
+		 come out on that edge. We will output the one triangle
+		 that we can, and then start the new strip with the triangle
+		 that comes out on the edge that we want to come out on.
+	*/
+	else if (in_edge1 == out_edge1)
+	{
+		/* We want to output the first triangle (whose output
+			 edge is not the one that we want.
+			 We have to find the vertex that we need, which is
+			 the other vertex which we do not have.
+		*/
+		vertex4 = Get_Other_Vertex(in_edge2,in_edge1,out_edge2,index);
+		Output_Tri(in_edge2,in_edge1,vertex4,output,color1,color2,color3,where);
+		Output_Tri(vertex4,in_edge1,out_edge2,output,color1,color2,color3,where);
+		return;
+	}
+	
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_Tri(in_edge2,in_edge1,vertex4,output,color1,color2,color3,where);
+		Output_Tri(vertex4,in_edge1,out_edge1,output,color1,color2,color3,where);
+		return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where);
+		Output_Tri(vertex4,in_edge2,out_edge1,output,color1,color2,color3,where);
+		return;
+	}
+
+	/*	The final case is where we want to come out the opposite
+		edge.
+	*/
+	else
+	{
+    if( ((!reversed) && (out_edge1 == (Adjacent(in_edge1,in_edge2,index,size)))) ||
+        ((reversed) && (out_edge2 == (Adjacent(in_edge2,in_edge1,index,size)))))
+		{
+		  /* We need to know the orientation of the input
+				 edge, so we know which way to put the diagonal.
+         And also the output edge, so that we triangulate
+         correctly.
+      */
+			Output_Tri(in_edge1,in_edge2,out_edge2,output,color1,color2,color3,where);
+			Output_Tri(in_edge2,out_edge2,out_edge1,output,color1,color2,color3,where);
+		}
+		else
+		{
+			/* Input and output orientation was reversed, so diagonal will
+				 be reversed from above.
+			*/
+			Output_Tri(in_edge1,in_edge2,out_edge1,output,color1,color2,color3,where);
+			Output_Tri(in_edge2,out_edge1,out_edge2,output,color1,color2,color3,where);
+		}
+		return;
+	}
+}
+
+void Triangulate_Polygon(int out_edge1, int out_edge2, int in_edge1,
+			                   int in_edge2, int size, int *index,
+						             FILE *output, int reversed, int face_id,
+                         int where, int color1, int color2, int color3)
+{
+	/* We have a polygon that we need to nonblindly triangulate.
+		 We will recursively try to triangulate it, until we are left
+		 with a polygon of size 4, which can use the quad routine
+		 from above. We will be taking off a triangle at a time
+		 and outputting it. We will have 3 cases similar to the
+		 cases for the quad above. The inputs to this routine
+		 are the same as for the quad routine.
+	*/
+
+	int vertex4;
+	int *temp;
+		
+	/* Since we are calling this recursively, we have to check whether
+		 we are down to the case of the quad.
+	*/
+	
+  if (size == 4)
+	{
+	  Triangulate_Quad(out_edge1,out_edge2,in_edge1,in_edge2,size,
+				index,output,reversed,face_id,where,color1,color2,color3);
+		return;
+	}
+
+    
+	
+	/*	We do not have a specified input edge, and therefore we
+		can make it anything we like, as long as we still come out 
+		the output edge that we want.
+	*/
+	if (reversed  == -1)
+	{
+		/*	Get the vertex for the last triangle, which is
+			the one coming out the output edge, before we do
+			any deletions to the list. We will be doing this
+			bottom up.
+		*/
+		vertex4 = Adjacent(out_edge1,out_edge2,index,size);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_List(out_edge2,index,&size);
+		Triangulate_Polygon(out_edge1,vertex4,in_edge2,
+						 vertex4,size-1,index,output,reversed,face_id,where,color1,color2,color3);
+		memcpy(index,temp,sizeof(int)*size);
+		/*	Lastly do the triangle that comes out the output
+			edge.
+		*/
+		Output_Tri(vertex4,out_edge1,out_edge2,output,color1,color2,color3,where);
+		return;
+	}
+
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*  Are they consecutive so that we form a triangle to
+		peel off that comes out the correct output edge, 
+		but we cannot use the whole polygon?
+	*/
+	if (in_edge2 == out_edge1) 
+	{
+		/*	Output the triangle that comes out the correct
+			edge last. First recursively do the rest of the
+			polygon.
+		*/
+		/*	Do the rest of the polygon without the triangle. 
+			We will be doing a fan triangulation.
+		*/
+		/*	Get the vertex adjacent to in_edge1, but is not
+			in_edge2.
+		*/
+		vertex4 = Adjacent(in_edge2,in_edge1,index,size);
+		Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where);
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+          Delete_From_List(in_edge1,index,&size);
+		Triangulate_Polygon(out_edge1,out_edge2,in_edge2,
+						vertex4,size-1,index,output,!reversed,face_id,where,color1,color2,color3);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+
+	/*	Next case is where it is again consecutive, but the triangle
+		formed by the consecutive edges do not come out of the
+		correct output edge. For this case, we can not do much to
+		keep it sequential. Try and do the fan.
+	*/
+	else if (in_edge1 == out_edge1)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = Adjacent(in_edge1,in_edge2,index,size);
+		Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where);
+		/*	Since that triangle goes out of the polygon (the
+			output edge of it), we can make our new input edge
+			anything we like, so we will try to make it good for
+			the strip. (This will be like starting a new strip,
+			all so that we can go out the correct output edge.)
+		*/
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_List(in_edge2,index,&size);
+		Triangulate_Polygon(out_edge1,out_edge2,in_edge1,
+						vertex4,size-1,index,output,reversed,face_id,where,color1,color2,color3);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = Adjacent(in_edge1,in_edge2,index,size);
+		Output_Tri(in_edge2,in_edge1,vertex4,output,color1,color2,color3,where);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_List(in_edge2,index,&size);
+          Triangulate_Polygon(out_edge1,out_edge2,in_edge1,
+						vertex4,size-1,index,output,reversed,face_id,where,color1,color2,color3);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = Adjacent(in_edge2,in_edge1,index,size);
+		Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_List(in_edge1,index,&size);
+          Triangulate_Polygon(out_edge1,out_edge2,vertex4,
+						in_edge2,size-1,index,output,reversed,face_id,where,color1,color2,color3);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+
+	/*	Else the edge is not consecutive, and it is sufficiently
+		far away, for us not to make a conclusion at this time.
+		So we can take off a triangle and recursively call this
+		function.
+	*/
+	else
+	{
+			vertex4 = Adjacent(in_edge2,in_edge1,index,size);
+			Output_Tri(in_edge1,in_edge2,vertex4,output,color1,color2,color3,where);
+			temp = (int *) malloc(sizeof(int) * size);
+			memcpy(temp,index,sizeof(int)*size);
+			Delete_From_List(in_edge1,index,&size);
+               Triangulate_Polygon(out_edge1,out_edge2,in_edge2,
+						     vertex4,size-1,index,output,!reversed,face_id,where,color1,color2,color3);
+			memcpy(index,temp,sizeof(int)*size);
+		     return;
+	}
+}
+
+void Triangulate(int out_edge1,int out_edge2,int in_edge1,
+				 int in_edge2,int size,int *index,
+				 FILE *output,int reversed,int face_id, int where,
+                     int color1, int color2,int color3)
+{
+	/*	We have the info we need to triangulate a polygon */
+
+	if (size == 4)
+		Triangulate_Quad(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			            index,output,reversed,face_id,where,color1,color2,color3);
+	else
+		Triangulate_Polygon(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			               index,output,reversed,face_id,where,color1,color2,color3);
+}
+
+void Non_Blind_Triangulate(int size,int *index,
+					  FILE *output,int next_face_id,int face_id,int where,
+                           int color1,int color2,int color3)
+{
+	int id1,id2,id3;
+	int nedge1,nedge2;
+	int reversed;
+	/*	We have a polygon that has to be triangulated and we cannot
+		do it blindly, ie we will try to come out on the edge that
+		has the least number of adjacencies
+	*/
+
+	Last_Edge(&id1,&id2,&id3,0);
+	/*	Find the edge that is adjacent to the new face ,
+		also return whether the orientation is reversed in the
+		face of the input edge, which is id2 and id3.
+	*/
+	if (next_face_id == -1)
+     {
+        printf("The face is -1 and the size is %d\n",size);
+        exit(0);
+     }
+    
+     reversed = Get_Edge(&nedge1,&nedge2,index,next_face_id,size,id2,id3);
+	/*	Do the triangulation */
+	
+	/*	If reversed is -1, the input edge is not in the polygon, therefore we can have the
+		input edge to be anything we like, since we are at the beginning
+		of a strip
+	*/
+	Triangulate(nedge1,nedge2,id2,id3,size,index,output,reversed,
+		       face_id, where,color1,color2,color3);
+}
+
+
+
+void Blind_Triangulate(int size, int *index, FILE *output,
+				   BOOL begin, int where ,int color1,int color2,
+                       int color3)
+{
+	/*	save sides in temp array, we need it so we know
+		about swaps.
+	*/
+	int mode, decreasing,increasing,e1,e2,e3;
+
+	/*	Rearrange the index list so that the input edge is first
+	*/
+	if (!begin)
+		Rearrange_Index(index,size);
+	
+	/*	We are given a polygon of more than 3 sides
+		and want to triangulate it. We will output the
+		triangles to the output file.
+	*/
+	
+    /*	Find where the input edge is in the input list */
+	Last_Edge(&e1,&e2,&e3,0);
+     if (( (!begin) && (*(index) == e2) ) || (begin))
+     {
+	    Output_Tri(*(index+0),*(index+1),*(index+size-1),output,color1,color2,color3,where);
+        /*	If we have a quad, (chances are yes), then we know that
+	   	     we can just add one diagonal and be done. (divide the
+		     quad into 2 triangles.
+        */
+        if (size == 4)
+        {
+		    Output_Tri(*(index+1),*(index+size-1),*(index+2),output,color1,color2,color3,where);
+              return;
+        }
+        increasing = 1;
+        mode = 1;
+
+    }
+    else if (!begin)
+    {
+        Output_Tri(*(index+1),*(index+0),*(index+size-1),output,color1,color2,color3,where);
+        if (size == 4)
+        {
+            Output_Tri(*(index+0),*(index+size-1),*(index+2),output,color1,color2,color3,where);
+            return;
+        }
+        Output_Tri(*(index+0),*(index+size-1),*(index+2),output,color1,color2,color3,where);
+        increasing = 2;
+        mode = 0;
+    }
+    if (size != 4)
+    {
+		/*	We do not have a quad, we have something bigger. */
+		decreasing = size - 1;		
+		do
+		{
+			/*	Will be alternating diagonals, so we will be increasing
+				and decreasing around the polygon.
+			*/
+			if (mode)
+			{
+				Output_Tri(*(index+increasing),*(index+decreasing),*(index+increasing+1),output,color1,color2,color3,where);
+				increasing++;
+			}
+			else
+			{
+				Output_Tri(*(index+decreasing),*(index+increasing),*(index+decreasing-1),output,color1,color2,color3,where);
+                    decreasing--;
+               }
+			mode = !mode;
+		} while ((decreasing - increasing) >= 2);
+
+	}
+}
+
+
+
+
diff --git a/Tools/Stripe_w/sgi_triangex.c b/Tools/Stripe_w/sgi_triangex.c
new file mode 100644
index 000000000..9f153a1e8
--- /dev/null
+++ b/Tools/Stripe_w/sgi_triangex.c
@@ -0,0 +1,582 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: sgi_triangex.c
+     This file contains routines that are used for various functions in
+     the local algorithm.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "global.h"
+#include "outputex.h"
+#include "polverts.h"
+#include "sturctsex.h"
+#include "common.h"
+#include "util.h"
+
+
+int AdjacentEx(int id2,int id1, int *list, int size)
+{
+	/*	Return the vertex that is adjacent to id1,
+		but is not id2, in the list of integers.
+	*/
+
+	register int x=0;
+	
+	while (x < size)
+	{
+		if (*(list+x) == id1)
+		{
+			if ((x != (size -1)) && (x != 0))
+			{
+				if ( *(list+x+1) != id2)
+					return *(list+x+1);
+				else
+					return *(list+x-1);
+			}
+			else if (x == (size -1))
+			{
+				if (*(list) != id2)
+					return *(list);
+				else
+					return *(list+x-1);
+			}
+			else
+			{
+				if (*(list+size-1) != id2)
+					return *(list+size-1);
+				else
+					return *(list+x+1);
+			}
+		}
+		x++;
+	}
+	printf("Error in the list\n");
+	exit(0);
+}
+
+
+void Delete_From_ListEx(int id,int *list, int size)
+{
+	/*	Delete the occurence of id in the list.
+		(list has size size)
+	*/
+
+	int *temp;
+	register int x,y=0;
+
+	temp = (int *) malloc(sizeof(int) * size);
+	for (x=0; x<size; x++)
+	{
+		if (*(list+x) != id)
+		{
+			*(temp+y) = *(list+x);
+			y++;
+		}
+	}
+	if(y != (size-1))
+	{
+		printf("There is an error in the delete\n");
+		exit(0);
+	}
+	*(temp+size-1) = -1;
+	memcpy(list,temp,sizeof(int)*size);
+
+}
+
+
+void Triangulate_QuadEx(int out_edge1,int out_edge2,int in_edge1,
+					  int in_edge2,int size,int *index,
+					  FILE *output,FILE *fp,int reversed,int face_id,
+                      int where)
+{
+	int vertex4,vertex5;
+	
+	/*	This routine will nonblindly triangulate a quad, meaning
+		that there is a definite input and a definite output
+		edge that we must adhere to. Reversed will tell the orientation
+		of the input edge. (Reversed is -1 is we do not have an input
+		edge, in other words we are at the beginning of a strip.)
+		Out_edge* is the output edge, and in_edge* is the input edge. 
+		Index are the edges of the polygon
+		and size is the size of the polygon. Begin is whether we are
+		at the start of a new strip.
+	*/
+	
+	/*	If we do not have an input edge, then we can make our input
+		edge whatever we like, therefore it will be easier to come
+		out on the output edge.
+	*/
+	if (reversed == -1)
+	{
+		vertex4 = AdjacentEx(out_edge1,out_edge2,index,size);
+		vertex5 = Get_Other_Vertex(vertex4,out_edge1,out_edge2,index);
+		Output_TriEx(vertex5,vertex4,out_edge1,output,-1,-1,where);
+		Output_TriEx(vertex4,out_edge1,out_edge2,output,-1,-1,where);
+		return;
+	}
+	
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*   Are they consecutive so that we form a triangle to
+		peel off, but cannot use the whole quad?
+	*/
+
+	if (in_edge2 == out_edge1) 
+	{
+		/*	Output the triangle that comes out the correct
+			edge last. First output the triangle that comes out
+			the wrong edge.
+		*/
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge2,index);
+          Output_TriEx(in_edge1,in_edge2,vertex4,output,-1,-1,where);
+          Output_TriEx(vertex4,in_edge2,out_edge2,output,-1,-1,where);
+		return;
+	}
+	/*	The next case is where it is impossible to come out the
+		edge that we want. So we will have to start a new strip to
+		come out on that edge. We will output the one triangle
+		that we can, and then start the new strip with the triangle
+		that comes out on the edge that we want to come out on.
+	*/
+	else if (in_edge1 == out_edge1)
+	{
+		/*	We want to output the first triangle (whose output
+			edge is not the one that we want.
+			We have to find the vertex that we need, which is
+			the other vertex which we do not have.
+		*/
+		vertex4 = Get_Other_Vertex(in_edge2,in_edge1,out_edge2,index);
+		Output_TriEx(in_edge2,in_edge1,vertex4,output,-1,-1,where);
+		Output_TriEx(vertex4,in_edge1,out_edge2,output,-1,-1,where);
+		return;
+	}
+	
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_TriEx(in_edge2,in_edge1,vertex4,output,-1,-1,where);
+		Output_TriEx(vertex4,in_edge1,out_edge1,output,-1,-1,where);
+		return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		vertex4 = Get_Other_Vertex(in_edge1,in_edge2,out_edge1,index);
+		Output_TriEx(in_edge1,in_edge2,vertex4,output,-1,-1,where);
+		Output_TriEx(vertex4,in_edge2,out_edge1,output,-1,-1,where);
+		return;
+	}
+
+	/*	The final case is where we want to come out the opposite edge.*/
+	else
+	{
+           if( ((!reversed) && (out_edge1 == (AdjacentEx(in_edge1,in_edge2,index,size)))) ||
+                    ((reversed) && (out_edge2 == (AdjacentEx(in_edge2,in_edge1,index,size)))))
+		 {
+			/*	We need to know the orientation of the input
+				edge, so we know which way to put the diagonal.
+                    And also the output edge, so that we triangulate correctly.
+               */
+			Output_TriEx(in_edge1,in_edge2,out_edge2,output,-1,-1,where);
+			Output_TriEx(in_edge2,out_edge2,out_edge1,output,-1,-1,where);
+		 }
+		else
+		{
+			/*   Input and output orientation was reversed, so diagonal will
+				be reversed from above.
+			*/
+			Output_TriEx(in_edge1,in_edge2,out_edge1,output,-1,-1,where);
+			Output_TriEx(in_edge2,out_edge1,out_edge2,output,-1,-1,where);
+		}
+		return;
+	}
+}
+
+void Triangulate_PolygonEx(int out_edge1,int out_edge2,int in_edge1,
+					  int in_edge2,int size,int *index,
+					  FILE *output,FILE *fp,int reversed,int face_id,
+                           int where)
+{
+	/*	We have a polygon that we need to nonblindly triangulate.
+		We will recursively try to triangulate it, until we are left
+		with a polygon of size 4, which can use the quad routine
+		from above. We will be taking off a triangle at a time
+		and outputting it. We will have 3 cases similar to the
+		cases for the quad above. The inputs to this routine
+		are the same as for the quad routine.
+	*/
+
+	int vertex4;
+	int *temp;
+
+		
+	/*	Since we are calling this recursively, we have to check whether
+		we are down to the case of the quad.
+	*/
+	
+    if (size == 4)
+	{
+		Triangulate_QuadEx(out_edge1,out_edge2,in_edge1,in_edge2,size,
+					    index,output,fp,reversed,face_id,where);
+		return;
+	}
+
+    
+	
+	/*	We do not have a specified input edge, and therefore we
+		can make it anything we like, as long as we still come out 
+		the output edge that we want.
+	*/
+	if (reversed  == -1)
+	{
+		/*	Get the vertex for the last triangle, which is
+			the one coming out the output edge, before we do
+			any deletions to the list. We will be doing this
+			bottom up.
+		*/
+		vertex4 = AdjacentEx(out_edge1,out_edge2,index,size);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_ListEx(out_edge2,index,size);
+		Triangulate_PolygonEx(out_edge1,vertex4,in_edge2,
+					   	  vertex4,size-1,index,output,fp,reversed,face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		/*	Lastly do the triangle that comes out the output
+			edge.
+		*/
+		Output_TriEx(vertex4,out_edge1,out_edge2,output,-1,-1,where);
+		return;
+	}
+
+	/*	These are the 5 cases that we can have for the output edge */
+	
+	/*  Are they consecutive so that we form a triangle to
+		peel off that comes out the correct output edge, 
+		but we cannot use the whole polygon?
+	*/
+	if (in_edge2 == out_edge1) 
+	{
+		/*	Output the triangle that comes out the correct
+			edge last. First recursively do the rest of the
+			polygon.
+		*/
+		/*	Do the rest of the polygon without the triangle. 
+			We will be doing a fan triangulation.
+		*/
+		/*	Get the vertex adjacent to in_edge1, but is not
+			in_edge2.
+		*/
+		vertex4 = AdjacentEx(in_edge2,in_edge1,index,size);
+		Output_TriEx(in_edge1,in_edge2,vertex4,output,-1,-1,where);
+		/*	Create a new edgelist without the triangle that
+			was just outputted.
+		*/
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+          Delete_From_ListEx(in_edge1,index,size);
+		Triangulate_PolygonEx(out_edge1,out_edge2,in_edge2,
+						  vertex4,size-1,index,output,fp,!reversed,face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+
+	/*	Next case is where it is again consecutive, but the triangle
+		formed by the consecutive edges do not come out of the
+		correct output edge. For this case, we can not do much to
+		keep it sequential. Try and do the fan.
+	*/
+	else if (in_edge1 == out_edge1)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = AdjacentEx(in_edge1,in_edge2,index,size);
+		Output_TriEx(in_edge1,in_edge2,vertex4,fp,-1,-1,where);
+		/*	Since that triangle goes out of the polygon (the
+			output edge of it), we can make our new input edge
+			anything we like, so we will try to make it good for
+			the strip. (This will be like starting a new strip,
+			all so that we can go out the correct output edge.)
+		*/
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_ListEx(in_edge2,index,size);
+		Triangulate_PolygonEx(out_edge1,out_edge2,in_edge1,
+						  vertex4,size-1,index,output,fp,reversed,face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+	/*	Consecutive cases again, but with the output edge reversed */
+	else if (in_edge1 == out_edge2)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = AdjacentEx(in_edge1,in_edge2,index,size);
+		Output_TriEx(in_edge2,in_edge1,vertex4,fp,-1,-1,where);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_ListEx(in_edge2,index,size);
+          Triangulate_PolygonEx(out_edge1,out_edge2,in_edge1,
+		      		       vertex4,size-1,index,output,fp,reversed,face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+	else if (in_edge2 == out_edge2)
+	{
+		/*	Get vertex adjacent to in_edge2, but is not in_edge1 */
+		vertex4 = AdjacentEx(in_edge2,in_edge1,index,size);
+		Output_TriEx(in_edge1,in_edge2,vertex4,fp,-1,-1,where);
+		temp = (int *) malloc(sizeof(int) * size);
+		memcpy(temp,index,sizeof(int)*size);
+		Delete_From_ListEx(in_edge1,index,size);
+          Triangulate_PolygonEx(out_edge1,out_edge2,vertex4,
+						  in_edge2,size-1,index,output,fp,reversed,face_id,where);
+		memcpy(index,temp,sizeof(int)*size);
+		return;
+	}
+
+	/*	Else the edge is not consecutive, and it is sufficiently
+		far away, for us not to make a conclusion at this time.
+		So we can take off a triangle and recursively call this
+		function.
+	*/
+	else
+	{
+			vertex4 = AdjacentEx(in_edge2,in_edge1,index,size);
+			Output_TriEx(in_edge1,in_edge2,vertex4,fp,-1,-1,where);
+			temp = (int *) malloc(sizeof(int) * size);
+			memcpy(temp,index,sizeof(int)*size);
+			Delete_From_ListEx(in_edge1,index,size);
+               Triangulate_PolygonEx(out_edge1,out_edge2,in_edge2,
+						       vertex4,size-1,index,output,fp,!reversed,face_id,where);
+			memcpy(index,temp,sizeof(int)*size);
+		     return;
+	}
+}
+
+void TriangulateEx(int out_edge1,int out_edge2,int in_edge1,
+				 int in_edge2,int size,int *index,
+				 FILE *fp,FILE *output,int reversed,int face_id, int where)
+{
+	/*	We have the info we need to triangulate a polygon */
+
+	if (size == 4)
+		Triangulate_QuadEx(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			              index,fp,output,reversed,face_id,where);
+	else
+		Triangulate_PolygonEx(out_edge1,out_edge2,in_edge1,in_edge2,size,
+			                 index,fp,output,reversed,face_id,where);
+}
+
+void Non_Blind_TriangulateEx(int size,int *index, FILE *fp,
+						 FILE *output,int next_face_id,int face_id,int where)
+{
+	int id1,id2,id3;
+	int nedge1,nedge2;
+	int reversed;
+	/*	We have a polygon that has to be triangulated and we cannot
+		do it blindly, ie we will try to come out on the edge that
+		has the least number of adjacencies
+	*/
+
+	Last_Edge(&id1,&id2,&id3,0);
+	/*	Find the edge that is adjacent to the new face ,
+		also return whether the orientation is reversed in the
+		face of the input edge, which is id2 and id3.
+	*/
+	if (next_face_id == -1)
+    {
+        printf("The face is -1 and the size is %d\n",size);
+        exit(0);
+    }
+    
+    reversed = Get_EdgeEx(&nedge1,&nedge2,index,next_face_id,size,id2,id3);
+	/*	Do the triangulation */
+	
+	/*	If reversed is -1, the input edge is not in the polygon, therefore we can have the
+		input edge to be anything we like, since we are at the beginning
+		of a strip
+	*/
+	TriangulateEx(nedge1,nedge2,id2,id3,size,index,fp,output,reversed,
+		         face_id, where);
+}
+
+void Rearrange_IndexEx(int *index, int size)
+{
+	/*	If we are in the middle of a strip we must find the
+		edge to start on, which is the last edge that we had
+		transmitted.
+	*/
+	int x,f,y,e1,e2,e3;
+	int increment = 1;
+     int *temp;
+
+	/*	Find where the input edge is in the input list */
+	Last_Edge(&e1,&e2,&e3,0);
+	for (y = 0; y < size; y++)
+	{
+		if (*(index+y) == e2)
+		{
+			if ((y != (size - 1)) && (*(index+y+1) == e3))
+				break;
+			else if ((y == (size - 1)) && (*(index) == e3))
+				break;
+               else if ((y != 0) && (*(index+y-1) == e3))
+               {
+                   increment = -1;
+                   break;
+               }
+               else if ((y==0) && (*(index+size-1) == e3))
+               {
+                   increment = -1;
+                   break;
+               }
+		}
+		if (*(index+y) == e3)
+		{
+			if ((y != (size - 1)) && (*(index+y+1) == e2))
+				break;
+			else if ((y == (size - 1)) && (*(index) == e2))
+				break;
+               else if ((y != 0) && (*(index+y-1) == e2))
+               {
+                   increment = -1;
+                   break;
+               }
+               else if ((y==0) && (*(index+size-1) == e2))
+               {
+                   increment = -1;
+                   break;
+               }
+		}
+		/*	Edge is not here, we are at the beginning */
+		if ((y == (size-1)) && (increment != -1))
+			return;
+	}
+	
+	/*	Now put the list into a new list, starting with the
+		input edge. Increment tells us whether we have to go 
+		forward or backward.
+	*/
+	/*	Was in good position already */
+	if ((y == 0) && (increment == 1)) 
+		return;
+	
+	            
+    temp = (int *) malloc(sizeof(int) * size);
+    memcpy(temp,index,sizeof(int)*size);
+
+	if (increment == 1)
+	{
+		x=0;
+		for (f = y ; f< size; f++)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+		/*	Finish the rest of the list */	
+		for(f = 0; f < y ; f++)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+	}
+	else
+	{
+		x=0;
+		for (f = y ; f >= 0; f--)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+		/*	Finish the rest of the list */	
+		for(f = (size - 1); f > y ; f--)
+		{
+			*(index+x) = *(temp+f);
+			x++;
+		}
+	}
+}
+
+void Blind_TriangulateEx(int size, int *index, FILE *fp,
+						 FILE *output, BOOL begin, int where )
+{
+	/*	save sides in temp array, we need it so we know
+		about swaps.
+	*/
+	int mode, decreasing,increasing,e1,e2,e3;
+
+	/*	Rearrange the index list so that the input edge is first
+	*/
+	if (!begin)
+		Rearrange_IndexEx(index,size);
+	
+	/*	We are given a polygon of more than 3 sides
+		and want to triangulate it. We will output the
+		triangles to the output file.
+	*/
+	
+    /*	Find where the input edge is in the input list */
+	Last_Edge(&e1,&e2,&e3,0);
+     if (( (!begin) && (*(index) == e2) ) || (begin))
+     {
+	    Output_TriEx(*(index+0),*(index+1),*(index+size-1),fp,-1,-1,where);
+        /*	If we have a quad, (chances are yes), then we know that
+		we can just add one diagonal and be done. (divide the
+		quad into 2 triangles.
+        */
+        if (size == 4)
+        {
+		    Output_TriEx(*(index+1),*(index+size-1),*(index+2),fp,-1,-1,where);
+              return;
+        }
+        increasing = 1;
+        mode = 1;
+
+    }
+    else if (!begin)
+    {
+        Output_TriEx(*(index+1),*(index+0),*(index+size-1),fp,-1,-1,where);
+        if (size == 4)
+        {
+            Output_TriEx(*(index+0),*(index+size-1),*(index+2),fp,-1,-1,where);
+            return;
+        }
+        Output_TriEx(*(index+0),*(index+size-1),*(index+2),fp,-1,-1,where);
+        increasing = 2;
+        mode = 0;
+    }
+	if (size != 4)
+	{
+		/*	We do not have a quad, we have something bigger. */
+		decreasing = size - 1;
+		
+		do
+		{
+			/*	Will be alternating diagonals, so we will be increasing
+				and decreasing around the polygon.
+			*/
+			if (mode)
+			{
+				Output_TriEx(*(index+increasing),*(index+decreasing),*(index+increasing+1),fp,-1,-1,where);
+				increasing++;
+			}
+			else
+			{
+				Output_TriEx(*(index+decreasing),*(index+increasing),*(index+decreasing-1),fp,-1,-1,where);
+                    decreasing--;
+               }
+			mode = !mode;
+		} while ((decreasing - increasing) >= 2);
+
+	}
+}
+
+
diff --git a/Tools/Stripe_w/struct.c b/Tools/Stripe_w/struct.c
new file mode 100644
index 000000000..7010012b7
--- /dev/null
+++ b/Tools/Stripe_w/struct.c
@@ -0,0 +1,549 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: struct.c
+     Contains routines that update structures, and micellaneous routines.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdlib.h>
+#include <string.h>
+#include "polverts.h"
+#include "ties.h"
+#include "output.h"
+#include "triangulate.h"
+#include "sturcts.h"
+#include "options.h"
+#include "common.h"
+#include "util.h"
+
+int out1 = -1;
+int out2 = -1;
+
+int Get_Edge(int *edge1,int *edge2,int *index,int face_id,
+	        int size, int id1, int id2)
+{
+	/*	Put the edge that is adjacent to face_id into edge1
+		and edge2. For each edge see if it is adjacent to
+		face_id. Id1 and id2 is the input edge, so see if 
+		the orientation is reversed, and save it in reversed.
+	*/
+	register int x;
+	int reversed = -1;
+	BOOL set = FALSE;
+    
+     for (x=0; x< size; x++)
+	{
+		if (x == (size-1))
+		{
+			if ((*(index) == id1) && (*(index+size-1)==id2))
+			{
+				if (set)
+                         return 1;
+				reversed = 1;
+			}
+			else if ((*(index) == id2) && (*(index+size-1)==id1))
+			{
+				if (set)
+                         return 0;
+				reversed = 0;
+			}
+				
+			if (Look_Up(*(index),*(index+size-1),face_id))
+			{
+				if ( (out1 != -1) && ( (out1 == *(index)) || (out1 == *(index+size-1)) ) &&
+                       ( (out2 == *(index)) || (out2 == *(index+size-1)) ))
+                    {
+                         set = TRUE;
+                         *edge1 = *(index);
+                         *edge2 = *(index+size-1);
+                    }
+				else if (out1 == -1)
+                    {
+                         set = TRUE;
+                         *edge1 = *(index);
+                         *edge2 = *(index+size-1);
+                    }
+				if ((reversed != -1) && (set))  
+					return reversed;
+			}
+		}		
+		else
+		{
+			if ((*(index+x) == id1) && (*(index+x+1)==id2))
+			{
+				if (set)
+                         return 0;
+				reversed = 0;
+			}
+			else if ((*(index+x) == id2) && (*(index+x+1)==id1))
+			{
+				if (set)
+					return 1;
+				reversed = 1;
+			}
+
+			if (Look_Up(*(index+x),*(index+x+1),face_id))
+			{
+				if ( (out1 != -1) && ( (out1 == *(index+x)) || (out1 == *(index+x+1)) ) &&
+                         ((out2 == *(index+x)) || (out2 == *(index+x+1))))
+                    {
+                         set = TRUE;
+                         *edge1 = *(index+x);
+                         *edge2 = *(index+x+1);
+                    }
+				else if (out1 == -1)
+                    {
+                         set = TRUE;
+                         *edge1 = *(index+x);
+				     *edge2 = *(index+x + 1);
+                    }
+				if ((reversed != -1) && (set))
+                         return reversed;
+			}
+		}
+	}			
+	if ((x == size) && (reversed != -1))
+	{
+		/*	Could not find the output edge */
+		printf("Error in the Lookup %d %d %d %d %d %d %d %d\n",face_id,id1,id2,reversed,*edge1,*edge2,out1,out2);
+		exit(0);
+	}
+	return reversed;
+}
+
+
+void Update_Face(int *next_bucket, int *min_face, int face_id, int *e1,
+				 int *e2,int temp1,int temp2,int *ties)
+{
+	/*	We have a face id that needs to be decremented.
+		We have to determine where it is in the structure,
+		so that we can decrement it.
+	*/
+	/*	The number of adjacencies may have changed, so to locate
+		it may be a little tricky. However we know that the number
+		of adjacencies is less than or equal to the original number
+		of adjacencies,
+	*/
+	int y,size;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+	PLISTINFO lpListInfo;
+	static int each_poly = 0;
+	BOOL there = FALSE;
+
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	/*	Check each edge of the face and tally the number of adjacent
+		polygons to this face. 
+	*/	      		
+	if ( temp != NULL )
+	{
+		/*	Size of the polygon */
+        size = temp->nPolSize;
+        /*  We did it already */
+        if (size == 1)
+            return;
+        for (y = 0; y< size; y++)
+	   {
+			/*	If we are doing partial triangulation, we must check
+				to see whether the edge is still there in the polygon,
+				since we might have done a portion of the polygon
+				and saved the rest for later.
+			*/
+            if (y != (size-1))
+	  	  {
+				if( ((temp1 == *(temp->pPolygon+y)) && (temp2 ==*(temp->pPolygon+y+1)))
+					|| ((temp2 == *(temp->pPolygon+y)) && (temp1 ==*(temp->pPolygon+y+1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+		  }
+		  else
+		  {
+				if( ((temp1 == *(temp->pPolygon)) && (temp2 == *(temp->pPolygon+size-1)))
+					|| ((temp2 == *(temp->pPolygon)) && (temp1 ==*(temp->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+		  }
+	 }
+		
+      if (!there)
+		/*	Original edge was already used, we cannot use this polygon */
+			return;
+		
+	/*	We have a starting point to start our search to locate
+		this polygon. 
+	*/
+
+	/*	Check to see if this polygon was done */
+	lpListInfo = Done(face_id,59,&y);
+
+	if (lpListInfo == NULL)
+		return;
+
+     /*  Was not done, but there is an error in the adjacency calculations */
+     if (y == 0)
+     {
+            printf("There is an error in finding the adjacencies\n");
+            exit(0);
+     }
+
+     /*	Now put the face in the proper bucket depending on tally. */
+	/*	First add it to the new bucket, then remove it from the old */
+	Add_Sgi_Adj(y-1,face_id);
+	RemoveList(array[y],lpListInfo);
+        
+     /*	Save it if it was the smallest seen so far since then
+		it will be the next face 
+		Here we will have different options depending on
+		what we want for resolving ties:
+			1) First one we see we will use
+			2) Random resolving
+			3) Look ahead
+			4) Alternating direction
+	*/
+	/*	At a new strip */
+	if (*next_bucket == 60)
+		*ties = *ties + each_poly;
+	/*	Have a tie */
+	if (*next_bucket == (y-1))
+	{
+		Add_Ties(face_id);
+		each_poly++;
+	}
+	/*	At a new minimum */
+	if (*next_bucket > (y-1))
+	{
+		*next_bucket = y-1;
+		*min_face = face_id;
+		*e1 = temp1;
+		*e2 = temp2;
+		each_poly = 0;
+		Clear_Ties();
+		Add_Ties(face_id);
+	}
+     }
+}
+
+
+void Delete_Adj(int id1, int id2,int *next_bucket,int *min_face, 
+			 int current_face,int *e1,int *e2,int *ties)
+{
+	/*	Find the face that is adjacent to the edge and is not the
+		current face. Delete one adjacency from it. Save the min
+		adjacency seen so far.
+	*/
+	register int count=0;
+	PF_EDGES temp = NULL;
+	ListHead *pListHead;
+	int next_face;
+
+	/*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+	/*	It could be a new edge that we created. So we can
+		exit, since there is not a face adjacent to it.
+	*/
+		return;
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	Was a new edge that was created and therefore
+				does not have anything adjacent to it
+			*/
+			return;
+     }
+	/*	Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return;
+
+	/*	Was adjacent to something */
+	else
+	{
+		if (temp->edge[2] == current_face)
+			next_face =  temp->edge[1];
+		else 
+			next_face = temp->edge[2];
+	}
+	/*	We have the other face adjacent to this edge, it is 
+		next_face. Now we need to decrement this faces' adjacencies.
+	*/
+	Update_Face(next_bucket, min_face, next_face,e1,e2,id1,id2,ties);
+}
+
+
+int Change_Face(int face_id,int in1,int in2,
+				 ListHead *pListHead, P_ADJACENCIES temp, BOOL no_check)
+{
+	/*	We are doing a partial triangulation and we need to
+		put the new face of triangle into the correct bucket
+	*/
+	int input_adj,y;
+	
+	/*	Find the old number of adjacencies to this face,
+		so we know where to delete it from
+	*/
+	y = Old_Adj(face_id);
+	
+	/*	Do we need to change the adjacency? Maybe the edge on the triangle
+		that was outputted was not adjacent to anything. We know if we
+		have to check by "check". We came out on the output edge
+		that we needed, then we know that the adjacencies will decrease
+		by exactly one.
+	*/
+	if (!no_check)
+	{
+		input_adj = Number_Adj(in1,in2,face_id);
+		/*	If there weren't any then don't do anything */
+		if (input_adj == 0)
+			return y;
+	}
+
+	RemoveList(pListHead,(PLISTINFO)temp);
+	/*	Before we had a quad with y adjacencies. The in edge
+		did not have an adjacency, since it was just deleted,
+		since we came in on it. The outedge must have an adjacency
+		otherwise we would have a bucket 0, and would not be in this
+		routine. Therefore the new adjacency must be y-1
+	*/
+    
+    Add_Sgi_Adj(y-1,face_id);
+    return (y-1);
+}
+
+int Update_Adjacencies(int face_id, int *next_bucket, int *e1, int *e2,
+					   int *ties)
+{
+	/*	Give the face with id face_id, we want to decrement
+		all the faces that are adjacent to it, since we will
+		be deleting face_id from the data structure.
+		We will return the face that has the least number
+		of adjacencies.
+	*/
+	PF_FACES temp = NULL;
+	ListHead *pListHead;
+	int size,y,min_face = -1;
+	
+     *next_bucket = 60;
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	
+	if ( temp == NULL )
+	{
+		printf("The face was already deleted, there is an error\n");
+		exit(0);
+	}
+	
+	/*	Size of the polygon */
+	size = temp->nPolSize;
+	for (y = 0; y< size; y++)
+	{
+		if (y != (size-1))
+			Delete_Adj(*(temp->pPolygon+y),*(temp->pPolygon+y+1),
+				next_bucket,&min_face,face_id,e1,e2,ties);
+		else
+			Delete_Adj(*(temp->pPolygon),*(temp->pPolygon+(size-1)),
+				next_bucket,&min_face,face_id,e1,e2,ties);
+	}
+	return (min_face);
+}
+
+
+void Find_Adj_Tally(int id1, int id2,int *next_bucket,int *min_face, 
+				int current_face,int *ties)
+{
+	/*	Find the face that is adjacent to the edge and is not the
+		current face. Save the min adjacency seen so far.
+	*/
+	int size,each_poly=0,y,count=0;
+	PF_EDGES temp = NULL;
+	PF_FACES temp2 = NULL;
+	ListHead *pListHead;
+	int next_face;
+	BOOL there = FALSE;
+
+    
+    /*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+     /*	This was a new edge that was created, so it is
+		adjacent to nothing.
+	*/
+		return;
+
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	This was a new edge that we created */
+			return;
+     }
+	/*	Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return;
+	else
+	{
+		if (temp->edge[2] == current_face)
+			next_face =  temp->edge[1];
+		else 
+			next_face = temp->edge[2];
+	}
+	/*	We have the other face adjacent to this edge, it is 
+		next_face. Find how many faces it is adjacent to.
+	*/
+	pListHead = PolFaces[next_face];
+	temp2 = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	/*	Check each edge of the face and tally the number of adjacent 
+		polygons to this face. This will be the original number of
+		polygons adjacent to this polygon, we must then see if this
+		number has been decremented
+	*/	      		
+	if ( temp2 != NULL )
+	{
+		/*	Size of the polygon */
+		size = temp2->nPolSize;
+		/*  We did it already */
+          if (size == 1)
+            return;
+          for (y = 0; y< size; y++)
+		{
+			/*	Make sure that the edge is still in the
+				polygon and was not deleted, because if the edge was
+				deleted, then we used it already.
+			*/
+			if (y != (size-1))
+			{
+				if( ((id1 == *(temp2->pPolygon+y)) && (id2 ==*(temp2->pPolygon+y+1)))
+					|| ((id2 == *(temp2->pPolygon+y)) && (id1 ==*(temp2->pPolygon+y+1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+			else
+			{		
+				if( ((id1 == *(temp2->pPolygon)) && (id2 ==*(temp2->pPolygon+size-1)))
+					|| ((id2 == *(temp2->pPolygon)) && (id1 ==*(temp2->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+		}
+		
+		if (!there)
+			/*	Edge already used and deleted from the polygon*/
+			return;
+		
+		/*	See if the face was already deleted, and where
+			it is if it was not
+		*/
+		if (Done(next_face,size,&y) == NULL)
+			return;
+		
+		/*	Save it if it was the smallest seen so far since then
+			it will be the next face 
+			Here we will have different options depending on
+			what we want for resolving ties:
+			1) First one we see we will use
+			2) Random resolving
+			3) Look ahead
+			4) Alternating direction
+		*/
+		
+		/*	At a new strip */
+		if (*next_bucket == 60)
+			*ties = *ties + each_poly;
+		/*	Have a tie */
+		if (*next_bucket == (y-1))
+		{
+			Add_Ties(next_face);
+			each_poly++;
+		}
+		/*	At a new minimum */
+		if (*next_bucket > (y-1))
+		{
+			*next_bucket = y-1;
+			*min_face = next_face;
+			each_poly = 0;
+			Clear_Ties();
+			Add_Ties(next_face);
+		}
+	}
+}
+
+
+int Min_Face_Adj(int face_id, int *next_bucket, int *ties)
+{
+	/*	Used for the Partial triangulation to find the next
+		face. It will return the minimum adjacency face id
+		found at this face.
+	*/
+	PF_FACES temp = NULL;
+	ListHead *pListHead;
+	int size,y,min_face,test_face;
+	
+	*next_bucket = 60;
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	
+	if ( temp == NULL )
+	{
+		printf("The face was already deleted, there is an error\n");
+		exit(0);
+	}
+	
+	/*	Size of the polygon */
+	size = temp->nPolSize;
+	for (y = 0; y< size; y++)
+	{
+		if (y != (size-1))
+			Find_Adj_Tally(*(temp->pPolygon+y),*(temp->pPolygon+y+1),
+				next_bucket,&min_face,face_id,ties);
+		else
+			Find_Adj_Tally(*(temp->pPolygon),*(temp->pPolygon+(size-1)),
+				next_bucket,&min_face,face_id,ties);
+	}
+	/*    Maybe we can do better by triangulating the face, because
+          by triangulating the face we will go to a polygon of lesser
+          adjacencies
+    */
+    if (size == 4)
+    {
+         /*    Checking for a quad whether to do the whole polygon will
+               result in better performance because the triangles in the polygon
+               have less adjacencies
+         */
+         Check_In_Quad(face_id,&test_face);
+         if (*next_bucket > test_face)
+              /*    We can do better by going through the polygon */
+              min_face = face_id;
+    }
+
+    /*  We have a polygon with greater than 4 sides, check to see if going
+        inside is better than going outside the polygon for the output edge.
+    */
+    else
+    {
+        Check_In_Polygon(face_id,&test_face,size);
+        if (*next_bucket > test_face)
+            /*  We can do better by going through the polygon */
+            min_face = face_id;
+    }
+    
+    return (min_face);
+}
+
+
+
diff --git a/Tools/Stripe_w/structex.c b/Tools/Stripe_w/structex.c
new file mode 100644
index 000000000..70359ddc0
--- /dev/null
+++ b/Tools/Stripe_w/structex.c
@@ -0,0 +1,553 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: structex.c
+     This file contains routines that are used for various functions in
+     the local algorithm.
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdlib.h>
+#include <string.h>
+#include "polverts.h"
+#include "ties.h"
+#include "outputex.h"
+#include "triangulatex.h"
+#include "sturctsex.h"
+#include "options.h"
+#include "common.h"
+#include "util.h"
+
+int out1Ex = -1;
+int out2Ex = -1;
+
+int Get_EdgeEx(int *edge1,int *edge2,int *index,int face_id,
+			int size, int id1, int id2)
+{
+	/*	Put the edge that is adjacent to face_id into edge1
+		and edge2. For each edge see if it is adjacent to
+		face_id. Id1 and id2 is the input edge, so see if 
+		the orientation is reversed, and save it in reversed.
+	*/
+	int x;
+	int reversed = -1;
+	BOOL set = FALSE;
+
+     for (x=0; x< size; x++)
+	{
+		if (x == (size-1))
+		{
+			if ((*(index) == id1) && (*(index+size-1)==id2))
+			{
+				if (set)
+                         return 1;
+				reversed = 1;
+			}
+			else if ((*(index) == id2) && (*(index+size-1)==id1))
+			{
+				if (set)
+                         return 0;
+				reversed = 0;
+			}
+				
+			if (Look_Up(*(index),*(index+size-1),face_id))
+			{
+				if ( (out1Ex != -1) && ( (out1Ex == *(index)) || (out1Ex == *(index+size-1)) ) &&
+                       ( (out2Ex == *(index)) || (out2Ex == *(index+size-1)) ))
+                    {
+                         set = TRUE;
+                         *edge1 = *(index);
+                         *edge2 = *(index+size-1);
+                    }
+				else if (out1Ex == -1)
+                    {
+                         set = TRUE;
+                         *edge1 = *(index);
+                         *edge2 = *(index+size-1);
+                    }
+				if ((reversed != -1) && (set))  
+					return reversed;
+			}
+		}		
+		else
+		{
+			if ((*(index+x) == id1) && (*(index+x+1)==id2))
+			{
+				if (set)
+                         return 0;
+				reversed = 0;
+			}
+			else if ((*(index+x) == id2) && (*(index+x+1)==id1))
+			{
+				if (set)
+					return 1;
+				reversed = 1;
+			}
+
+			if (Look_Up(*(index+x),*(index+x+1),face_id))
+			{
+				if ( (out1Ex != -1) && ( (out1Ex == *(index+x)) || (out1Ex == *(index+x+1)) ) &&
+                        ((out2Ex == *(index+x)) || (out2Ex == *(index+x+1))))
+                    {
+                         set = TRUE;
+                         *edge1 = *(index+x);
+                         *edge2 = *(index+x+1);
+                    }
+				else if (out1Ex == -1)
+                    {
+                         set = TRUE;
+                         *edge1 = *(index+x);
+				     *edge2 = *(index+x + 1);
+                    }
+				if ((reversed != -1) && (set))
+                         return reversed;
+			}
+		}
+	}			
+	if ((x == size) && (reversed != -1))
+	{
+		/*	Could not find the output edge */
+		printf("Error in the Lookup %d %d %d %d %d %d %d %d\n",face_id,id1,id2,reversed,*edge1,*edge2,out1Ex,out2Ex);
+		exit(0);
+	}
+	return reversed;
+}
+
+
+void Update_FaceEx(int *next_bucket, int *min_face, int face_id, int *e1,
+			    int *e2,int temp1,int temp2,int *ties)
+{
+	/*	We have a face id that needs to be decremented.
+		We have to determine where it is in the structure,
+		so that we can decrement it.
+	*/
+	/*	The number of adjacencies may have changed, so to locate
+		it may be a little tricky. However we know that the number
+		of adjacencies is less than or equal to the original number
+		of adjacencies,
+	*/
+	int y,size;
+	ListHead *pListHead;
+	PF_FACES temp = NULL;
+	PLISTINFO lpListInfo;
+	static int each_poly = 0;
+	BOOL there = FALSE;
+
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	/*	Check each edge of the face and tally the number of adjacent
+		polygons to this face. 
+	*/	      		
+	if ( temp != NULL )
+	{
+		/*	Size of the polygon */
+        size = temp->nPolSize;
+        for (y = 0; y< size; y++)
+		{
+			/*	If we are doing partial triangulation, we must check
+				to see whether the edge is still there in the polygon,
+				since we might have done a portion of the polygon
+				and saved the rest for later.
+			*/
+               if (y != (size-1))
+			{
+				if( ((temp1 == *(temp->pPolygon+y)) && (temp2 ==*(temp->pPolygon+y+1)))
+					|| ((temp2 == *(temp->pPolygon+y)) && (temp1 ==*(temp->pPolygon+y+1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+			else
+			{
+				if( ((temp1 == *(temp->pPolygon)) && (temp2 == *(temp->pPolygon+size-1)))
+					|| ((temp2 == *(temp->pPolygon)) && (temp1 ==*(temp->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+		}
+		
+          if (!there)
+		/*	Original edge was already used, we cannot use this polygon */
+			return;
+		
+		/*	We have a starting point to start our search to locate
+			this polygon. 
+		*/
+
+		/*	Check to see if this polygon was done */
+		lpListInfo = Done(face_id,59,&y);
+
+		if (lpListInfo == NULL)
+			return;
+
+          /*  Was not done, but there is an error in the adjacency calculations */
+          /*     If more than one edge is adj to it then maybe it was not updated */
+          if (y == 0)
+            return;
+			
+		/*	Now put the face in the proper bucket depending on tally. */
+		/*	First add it to the new bucket, then remove it from the old */
+		Add_Sgi_Adj(y-1,face_id);
+		RemoveList(array[y],lpListInfo);
+        
+          /*	Save it if it was the smallest seen so far since then
+			it will be the next face 
+			Here we will have different options depending on
+			what we want for resolving ties:
+			1) First one we see we will use
+			2) Random resolving
+			3) Look ahead
+			4) Alternating direction
+		*/
+		/*	At a new strip */
+		if (*next_bucket == 60)
+			*ties = *ties + each_poly;
+		/*	Have a tie */
+		if (*next_bucket == (y-1))
+		{
+			Add_Ties(face_id);
+			each_poly++;
+		}
+		/*	At a new minimum */
+		if (*next_bucket > (y-1))
+		{
+			*next_bucket = y-1;
+			*min_face = face_id;
+			*e1 = temp1;
+			*e2 = temp2;
+			each_poly = 0;
+			Clear_Ties();
+			Add_Ties(face_id);
+		}
+	}
+}
+
+
+void Delete_AdjEx(int id1, int id2,int *next_bucket,int *min_face, 
+				int current_face,int *e1,int *e2,int *ties)
+{
+	/*	Find the face that is adjacent to the edge and is not the
+		current face. Delete one adjacency from it. Save the min
+		adjacency seen so far.
+	*/
+	register int count=0;
+	PF_EDGES temp = NULL;
+	ListHead *pListHead;
+	int next_face;
+
+	/*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+	/*	It could be a new edge that we created. So we can
+		exit, since there is not a face adjacent to it.
+	*/
+		return;
+     while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	Was a new edge that was created and therefore
+				does not have anything adjacent to it
+			*/
+			return;
+    }
+	/*	Was not adjacent to anything else except itself */
+    if (temp->edge[2] == -1)
+		return;
+
+    /*	Was adjacent to something */
+    else
+    {
+		if (temp->edge[2] == current_face)
+			next_face =  temp->edge[1];
+		else 
+			next_face = temp->edge[2];
+	}
+	/*	We have the other face adjacent to this edge, it is 
+		next_face. Now we need to decrement this faces' adjacencies.
+	*/
+	Update_FaceEx(next_bucket, min_face, next_face,e1,e2,id1,id2,ties);
+}
+
+int Change_FaceEx(int face_id,int in1,int in2,
+				 ListHead *pListHead, P_ADJACENCIES temp, BOOL no_check)
+{
+	/*	We are doing a partial triangulation and we need to
+		put the new face of triangle into the correct bucket
+	*/
+	int input_adj,y;
+     P_ADJACENCIES pfNode,lpListInfo;
+	
+     /*	Find the old number of adjacencies to this face,
+		so we know where to delete it from
+	*/
+	y = Old_Adj(face_id);
+	pListHead = array[y];
+
+     pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+	if ( pfNode )
+		pfNode->face_id = face_id;
+	lpListInfo = (P_ADJACENCIES) (SearchList(array[y], pfNode,
+                  (int (*)(void *,void *)) (Compare)));
+	if (lpListInfo == NULL)
+	{
+		printf("There is an error finding the next polygon3 %d\n",face_id);
+		exit(0);
+	}
+
+     /*	Do we need to change the adjacency? Maybe the edge on the triangle
+		that was outputted was not adjacent to anything. We know if we
+		have to check by "check". We came out on the output edge
+		that we needed, then we know that the adjacencies will decrease
+		by exactly one.
+	*/
+	if (!no_check)
+	{
+		input_adj = Number_Adj(in1,in2,face_id);
+		/*	If there weren't any then don't do anything */
+		if (input_adj == 0)
+			return y;
+	}
+     
+	RemoveList(pListHead,(PLISTINFO)/*(temp*/lpListInfo);
+	/*	Before we had a quad with y adjacencies. The in edge
+		did not have an adjacency, since it was just deleted,
+		since we came in on it. The outedge must have an adjacency
+		otherwise we would have a bucket 0, and would not be in this
+		routine. Therefore the new adjacency must be y-1
+	*/
+    
+    Add_Sgi_Adj(y-1,face_id);
+    return (y-1);
+}
+
+int Update_AdjacenciesEx(int face_id, int *next_bucket, int *e1, int *e2,
+					int *ties)
+{
+	/*	Give the face with id face_id, we want to decrement
+		all the faces that are adjacent to it, since we will
+		be deleting face_id from the data structure.
+		We will return the face that has the least number
+		of adjacencies.
+	*/
+	PF_FACES temp = NULL;
+	ListHead *pListHead;
+	int size,y,min_face = -1;
+	
+     *next_bucket = 60;
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	
+	if ( temp == NULL )
+	{
+		printf("The face was already deleted, there is an error\n");
+		exit(0);
+	}
+	
+	/*	Size of the polygon */
+	size = temp->nPolSize;
+	for (y = 0; y< size; y++)
+	{
+		if (y != (size-1))
+			Delete_AdjEx(*(temp->pPolygon+y),*(temp->pPolygon+y+1),
+				next_bucket,&min_face,face_id,e1,e2,ties);
+		else
+			Delete_AdjEx(*(temp->pPolygon),*(temp->pPolygon+(size-1)),
+				next_bucket,&min_face,face_id,e1,e2,ties);
+	}
+	return (min_face);
+}
+
+
+
+void Find_Adj_TallyEx(int id1, int id2,int *next_bucket,int *min_face, 
+			       int current_face,int *ties)
+{
+	/*	Find the face that is adjacent to the edge and is not the
+		current face. Save the min adjacency seen so far.
+	*/
+	int size,each_poly=0,y,tally=0,count=0;
+	PF_EDGES temp = NULL;
+	PF_FACES temp2 = NULL;
+	ListHead *pListHead;
+	int next_face;
+	BOOL there = FALSE;
+
+    
+    /*	Always want smaller id first */
+	switch_lower(&id1,&id2);
+	
+	pListHead = PolEdges[id1];
+	temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+     if (temp == NULL)
+     /*	This was a new edge that was created, so it is
+		adjacent to nothing.
+	*/
+		return;
+	while (temp->edge[0] != id2)
+     {
+		count++;
+		temp = (PF_EDGES) PeekList(pListHead,LISTHEAD,count);
+          if (temp == NULL)
+			/*	This was a new edge that we created */
+			return;
+     }
+	/*	Was not adjacent to anything else except itself */
+	if (temp->edge[2] == -1)
+		return;
+	else
+	{
+		if (temp->edge[2] == current_face)
+			next_face =  temp->edge[1];
+		else 
+			next_face = temp->edge[2];
+	}
+	/*	We have the other face adjacent to this edge, it is 
+		next_face. Find how many faces it is adjacent to.
+	*/
+	pListHead = PolFaces[next_face];
+	temp2 = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	/*	Check each edge of the face and tally the number of adjacent 
+		polygons to this face. This will be the original number of
+		polygons adjacent to this polygon, we must then see if this
+		number has been decremented
+	*/	      		
+	if ( temp2 != NULL )
+	{
+		/*	Size of the polygon */
+		size = temp2->nPolSize;
+		for (y = 0; y< size; y++)
+		{
+			/*	Make sure that the edge is still in the
+				polygon and was not deleted, because if the edge was
+				deleted, then we used it already.
+			*/
+			if (y != (size-1))
+			{
+				if( ((id1 == *(temp2->pPolygon+y)) && (id2 ==*(temp2->pPolygon+y+1)))
+					|| ((id2 == *(temp2->pPolygon+y)) && (id1 ==*(temp2->pPolygon+y+1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+			else
+			{		
+				if( ((id1 == *(temp2->pPolygon)) && (id2 ==*(temp2->pPolygon+size-1)))
+					|| ((id2 == *(temp2->pPolygon)) && (id1 ==*(temp2->pPolygon+size-1))))
+					/*	edge is still there we are ok */
+					there = TRUE;
+			}
+		}
+		
+		if (!there)
+			/*	Edge already used and deleted from the polygon*/
+			return;
+		
+		/*	See if the face was already deleted, and where
+			it is if it was not
+		*/
+		if (Done(next_face,size,&y) == NULL)
+			return;
+		
+		/*	Save it if it was the smallest seen so far since then
+			it will be the next face 
+			Here we will have different options depending on
+			what we want for resolving ties:
+			1) First one we see we will use
+			2) Random resolving
+			3) Look ahead
+			4) Alternating direction
+		*/
+					
+		/*	At a new strip */
+		if (*next_bucket == 60)
+			*ties = *ties + each_poly;
+		/*	Have a tie */
+		if (*next_bucket == (y-1))
+		{
+			Add_Ties(next_face);
+			each_poly++;
+		}
+		/*	At a new minimum */
+		if (*next_bucket > (y-1))
+		{
+			*next_bucket = y-1;
+			*min_face = next_face;
+			each_poly = 0;
+			Clear_Ties();
+			Add_Ties(next_face);
+		}
+	}
+}
+
+
+int Min_Face_AdjEx(int face_id, int *next_bucket, int *ties)
+{
+	/*	Used for the Partial triangulation to find the next
+		face. It will return the minimum adjacency face id
+		found at this face.
+	*/
+	PF_FACES temp = NULL;
+	ListHead *pListHead;
+	int size,y,min_face,test_face;
+	
+	*next_bucket = 60;
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	
+	if ( temp == NULL )
+	{
+		printf("The face was already deleted, there is an error\n");
+		exit(0);
+	}
+	
+	/*	Size of the polygon */
+	size = temp->nPolSize;
+	for (y = 0; y< size; y++)
+	{
+		if (y != (size-1))
+			Find_Adj_TallyEx(*(temp->pPolygon+y),*(temp->pPolygon+y+1),
+				next_bucket,&min_face,face_id,ties);
+		else
+			Find_Adj_TallyEx(*(temp->pPolygon),*(temp->pPolygon+(size-1)),
+				next_bucket,&min_face,face_id,ties);
+	}
+	/*    Maybe we can do better by triangulating the face, because
+          by triangulating the face we will go to a polygon of lesser
+          adjacencies
+    */
+    if (size == 4)
+    {
+         /*    Checking for a quad whether to do the whole polygon will
+               result in better performance because the triangles in the polygon
+               have less adjacencies
+         */
+         Check_In_Quad(face_id,&test_face);
+         if (*next_bucket > test_face)
+              /*    We can do better by going through the polygon */
+              min_face = face_id;
+    }
+
+    /*  We have a polygon with greater than 4 sides, check to see if going
+        inside is better than going outside the polygon for the output edge.
+    */
+    else
+    {
+        Check_In_Polygon(face_id,&test_face,size);
+        if (*next_bucket > test_face)
+            /*  We can do better by going through the polygon */
+            min_face = face_id;
+    }
+    
+    return (min_face);
+}
+
+
diff --git a/Tools/Stripe_w/sturcts.h b/Tools/Stripe_w/sturcts.h
new file mode 100644
index 000000000..57490a695
--- /dev/null
+++ b/Tools/Stripe_w/sturcts.h
@@ -0,0 +1,36 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: sturcts.h
+-----------------------------------------------------------------------*/
+
+#define EVEN(x) (((x) & 1) == 0)
+
+int Get_Edge(int *edge1,int *edge2,int *index,int face_id,
+	     int size, int id1, int id2);
+void add_vert_id();
+void Update_Face(int *next_bucket, int *min_face, int face_id, int *e1,
+		 int *e2,int temp1,int temp2,int *ties);
+int Min_Adj();
+int Min_Face_Adj(int face_id, int *next_bucket, int *ties);
+int Change_Face(int face_id,int in1,int in2, ListHead *pListHead, 
+		P_ADJACENCIES temp, BOOL no_check);
+void Delete_Adj(int id1, int id2,int *next_bucket,int *min_face, 
+		int current_face,int *e1,int *e2,int *ties);
+int Update_Adjacencies(int face_id, int *next_bucket, int *e1, int *e2,
+		       int *ties);
+int Get_Output_Edge();
+int Find_Face();
+
+
+
+
+
+
+
diff --git a/Tools/Stripe_w/sturctsex.h b/Tools/Stripe_w/sturctsex.h
new file mode 100644
index 000000000..6a4a76dbe
--- /dev/null
+++ b/Tools/Stripe_w/sturctsex.h
@@ -0,0 +1,33 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE:sturctsex.h
+-----------------------------------------------------------------------*/
+
+#define EVEN(x) (((x) & 1) == 0)
+
+int Get_EdgeEx(int *edge1,int *edge2,int *index,int face_id,
+	       int size, int id1, int id2);
+void add_vert_idEx();
+void Update_FaceEx(int *next_bucket, int *min_face, int face_id, int *e1,
+		   int *e2,int temp1,int temp2,int *ties);
+int Min_Face_AdjEx(int face_id, int *next_bucket, int *ties);
+int Change_FaceEx(int face_id,int in1,int in2,
+		  ListHead *pListHead, P_ADJACENCIES temp, BOOL no_check);
+void Delete_AdjEx(int id1, int id2,int *next_bucket,int *min_face, 
+		  int current_face,int *e1,int *e2,int *ties);
+int Number_AdjEx();
+int Update_AdjacenciesEx(int face_id, int *next_bucket, int *e1, int *e2,
+			 int *ties);
+
+
+
+
+
+
diff --git a/Tools/Stripe_w/ties.c b/Tools/Stripe_w/ties.c
new file mode 100644
index 000000000..e3fd31f78
--- /dev/null
+++ b/Tools/Stripe_w/ties.c
@@ -0,0 +1,304 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*	STRIPE: ties.c
+     This file will contain all the routines used to determine the next face if there
+	is a tie
+*/
+/*---------------------------------------------------------------------*/
+
+#include <stdlib.h>
+#include "polverts.h"
+#include "ties.h"
+#include "sturctsex.h"
+#include "triangulatex.h"
+#include "options.h"
+#include "common.h"
+#include "util.h"
+
+#define MAX_TIE 60
+int ties_array[60];
+int last = 0;
+
+void Clear_Ties()
+{
+	/*	Clear the buffer, because we do not have the tie
+		any more that we had before */
+	last = 0;
+}
+
+void Add_Ties(int id)
+{
+	/*	We have a tie to add to the buffer */
+	ties_array[last++] = id;
+}
+
+int Alternate_Tie()
+{
+	/*	Alternate in what we choose to break the tie 
+		We are just alternating between the first and
+		second thing that we found
+	*/
+	static int x = 0;
+	register int t;
+	
+	t = ties_array[x];
+	x++;
+	if (x == 2)
+		x = 0;
+	return t;
+}
+
+int Random_Tie()
+{
+	/*	Randomly choose the next face with which
+		to break the tie
+	*/
+	register int num;
+
+	num = rand();
+	while (num >= last)
+		num = num/20;
+	return (ties_array[num]);
+}
+
+int Look_Ahead(int id)
+{
+	/*	Look ahead at this face and save the minimum
+		adjacency of all the faces that are adjacent to
+		this face.
+	*/
+	return Min_Adj(id);
+}
+
+int Random_Look(int id[],int count)
+{
+	/*	We had a tie within a tie in the lookahead, 
+		break it randomly 
+	*/
+	register int num;
+
+	num = rand();
+	while (num >= count)
+		num = num/20;
+	return (id[num]);
+}
+
+
+int Look_Ahead_Tie()
+{
+	/*	Look ahead and find the face to go to that
+		will give the least number of adjacencies
+	*/
+	int id[60],t,x,f=0,min = 60;
+
+	for (x = 0; x < last; x++)
+	{
+		t = Look_Ahead(ties_array[x]);
+		/*	We have a tie */
+		if (t == min)
+			id[f++] = ties_array[x];
+		if (t < min)
+		{
+			f = 0;
+			min = t;
+			id[f++] = ties_array[x];
+		}
+	}
+	/*	No tie within the tie */
+	if ( f == 1)
+		return id[0];
+	/*	Or ties, but we are at the end of strips */
+	if (min == 0)
+		return id[0];
+	return (Random_Look(id,f));
+}
+
+
+int Sequential_Tri(int *index)
+{
+    /*  We have a triangle and need to break the ties at it.
+        We will choose the edge that is sequential. There
+        is definitely one since we know we have a triangle
+        and that there is a tie and there are only 2 edges
+        for the tie.
+    */
+    int e1,e2,e3,output1,output2,output3,output4;
+
+    /*  e2 and e3 are the input edge to the triangle */
+    Last_Edge(&e1,&e2,&e3,0);
+    
+    if ((e2 == 0) && (e3 == 0))
+        /*  Starting the strip, don't need to do this */
+        return ties_array[0];
+
+    /*  For the 2 ties find the edge adjacent to face id */
+    Get_EdgeEx(&output1,&output2,index,ties_array[0],3,0,0);
+    Get_EdgeEx(&output3,&output4,index,ties_array[1],3,0,0);
+
+    if ((output1 == e3) || (output2 == e3))
+        return ties_array[0];
+    if ((output3 == e3) || (output4 == e3))
+        return ties_array[1];
+    printf("There is an error trying to break sequential triangle \n");
+}
+
+int Sequential_Quad(int *index,	int triangulate)
+{
+    /*  We have a quad that need to break its ties, we will try
+        and choose a side that is sequential, otherwise use lookahead
+    */
+    int output1,output2,x,e1,e2,e3;
+
+    /*  e2 and e3 are the input edge to the quad */
+    Last_Edge(&e1,&e2,&e3,0);
+
+    /*  No input edge */
+    if ((e2 == 0) && (e3 == 0))
+        return ties_array[0];
+
+	/*  Go through the ties and see if there is a sequential one */
+    for (x = 0; x < last; x++)
+	{
+        Get_EdgeEx(&output1,&output2,index,ties_array[x],4,0,0);
+        /*  Partial and whole triangulation will have different requirements */
+        if (((output1 == e3) || (output2 == e3)) && (triangulate == PARTIAL))
+            return ties_array[x];
+        if (((output1 != e3) && (output1 != e2) &&
+                (output2 != e3) && (output2 != e2)))
+            return ties_array[x];
+    }
+    /*  There was not a tie that was sequential */
+	return Look_Ahead_Tie();
+}
+
+void Whole_Output(int in1,int in2, int *index, int size, int *out1, int *out2)
+{
+    /*  Used to sequentially break ties in the whole triangulation for polygons
+        greater than 4 sides. We will find the output edge that is good
+        for sequential triangulation.
+    */
+
+    int half;
+    
+    /*  Put the input edge first in the list */
+    Rearrange_IndexEx(index,size);
+
+    if (!(EVEN(size)))
+    {
+        if (*(index) == in1)
+            half = size/2 ;
+        else
+            half = size/2 +1;
+    }
+    else
+        half = size/2;
+
+    *out1 = *(index+half);
+    *out2 = *(index+half+1);
+}
+
+int Sequential_Poly(int size, int *index, int triangulate)
+{
+    /*  We have a polygon of greater than 4 sides and wish to break the
+        tie in the most sequential manner.
+    */
+
+    int x,output1,output2,e1,e2,e3,saved1=-1,saved2=-1,output3,output4;
+    
+    /*  e2 and e3 are the input edge to the quad */
+    Last_Edge(&e1,&e2,&e3,0);
+
+    /*  If we are using whole, find the output edge that is sequential */
+    if (triangulate == WHOLE)
+        Whole_Output(e2,e3,index,size,&output3,&output4);
+
+    /*  No input edge */
+    if ((e2 == 0) && (e3 == 0))
+        return ties_array[0];
+    
+    for (x = 0; x < last ; x++)
+    {
+        Get_EdgeEx(&output1,&output2,index,ties_array[x],size,0,0);
+        /*  Partial that can be removed in just one triangle */
+        if (((output1 == e3) || (output2 == e3)) && (triangulate == PARTIAL))
+            saved1 = ties_array[x];
+        /*  Partial removed in more than one triangle */
+        if ((output1 != e3) && (output1 != e2) && (output2 != e3) && (output2 != e2) &&
+            (triangulate == PARTIAL) && (saved2 != -1))
+            saved2 = ties_array[x];
+        /*  Whole is not so easy, since the whole polygon must be done. Given
+            an input edge there is only one way to come out, approximately half
+            way around the polygon.
+        */
+        if (((output1 == output3) && (output2 == output4)) ||
+            ((output1 == output4) && (output2 == output3)) &&
+            (triangulate == WHOLE))
+            return ties_array[x];
+    }
+    
+    if (saved1 != -1)
+        return saved1;
+    if (saved2 != -1)
+        return saved2;
+    
+    /*  There was not a tie that was sequential */
+    return Look_Ahead_Tie();
+}
+
+int Sequential_Tie(int face_id, int triangulate)
+{
+    /*  Break the tie by choosing the face that will
+        not give us a swap and is sequential. If there
+        is not one, then do the lookahead to break the
+        tie.
+    */
+    /*  Separate into 3 cases for simplicity, if the current
+        polygon has 3 sides, 4 sides or if the sides were 
+        greater. We can do the smaller cases faster, so that
+        is why I separated the cases.
+    */
+
+     ListHead *pListFace;
+	PF_FACES face;
+
+    /*	Get the polygon with id face_id */
+	pListFace  = PolFaces[face_id];
+	face = (PF_FACES) PeekList(pListFace,LISTHEAD,0);
+
+     if (face->nPolSize == 3)
+        return(Sequential_Tri(face->pPolygon));
+     if (face->nPolSize == 4)
+        return(Sequential_Quad(face->pPolygon,triangulate));
+     else
+        return(Sequential_Poly(face->nPolSize,face->pPolygon,triangulate));
+
+}
+
+int Get_Next_Face(int t, int face_id, int triangulate)
+{
+	/*	Get the next face depending on what
+		the user specified
+	*/
+	
+	/*	Did not have a tie, don't do anything */
+	if (last == 1)
+		return(ties_array[0]);
+	if (t == RANDOM)
+		return Random_Tie();
+	if (t == ALTERNATE)
+		return Alternate_Tie();
+	if (t == LOOK)
+		return Look_Ahead_Tie();
+     if (t == SEQUENTIAL)
+        return Sequential_Tie(face_id,triangulate);
+
+	printf("Illegal option specified for ties, using first \n");
+     return (ties_array[0]);
+}
diff --git a/Tools/Stripe_w/ties.h b/Tools/Stripe_w/ties.h
new file mode 100644
index 000000000..502aabf4d
--- /dev/null
+++ b/Tools/Stripe_w/ties.h
@@ -0,0 +1,15 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: ties.h
+-----------------------------------------------------------------------*/
+
+void Clear_Ties();
+void Add_Ties(int id);
+int Get_Next_Face(int t, int face_id, int triangulate);
diff --git a/Tools/Stripe_w/triangulate.h b/Tools/Stripe_w/triangulate.h
new file mode 100644
index 000000000..1f677430a
--- /dev/null
+++ b/Tools/Stripe_w/triangulate.h
@@ -0,0 +1,27 @@
+
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: triangulate.h
+-----------------------------------------------------------------------*/
+
+void Blind_Triangulate(int size, int *index, FILE *output,
+		       BOOL begin, int where ,int color1,int color2,
+                       int color3);
+void Non_Blind_Triangulate(int size,int *index, FILE *output,
+			   int next_face_id,int face_id,int where,
+                           int color1,int color2,int color3);
+int Adjacent(int id2,int id1, int *list, int size);
+void Delete_From_List(int id,int *list, int *size);
+void Triangulate_Polygon(int out_edge1, int out_edge2, int in_edge1,
+			 int in_edge2, int size, int *index,
+			 FILE *output, int reversed, int face_id,
+                         int where, int color1, int color2, int color3);
+void Rearrange_Index(int *index, int size);
+void Find_Local_Strips();
diff --git a/Tools/Stripe_w/triangulatex.h b/Tools/Stripe_w/triangulatex.h
new file mode 100644
index 000000000..3b2d8fb5c
--- /dev/null
+++ b/Tools/Stripe_w/triangulatex.h
@@ -0,0 +1,28 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: triangulatex.h
+-----------------------------------------------------------------------*/
+
+enum swap_type
+{ ON, OFF};
+
+void SGI_StripEx();
+void Blind_TriangulateEx(int size, int *index, FILE *fp, FILE *output, 
+			 BOOL begin, int where );
+void Non_Blind_TriangulateEx(int size,int *index, FILE *fp, FILE *output,
+			     int next_face_id,int face_id,int where);
+int AdjacentEx(int id2,int id1, int *list, int size);
+void Delete_From_ListEx(int id,int *list, int size);
+void Triangulate_PolygonEx(int out_edge1,int out_edge2,int in_edge1,
+			   int in_edge2,int size,int *index,
+			   FILE *output,FILE *fp,int reversed,int face_id,
+                           int where);
+void Rearrange_IndexEx(int *index, int size);
+void Find_StripsEx();
diff --git a/Tools/Stripe_w/util.c b/Tools/Stripe_w/util.c
new file mode 100644
index 000000000..f17fe5f7c
--- /dev/null
+++ b/Tools/Stripe_w/util.c
@@ -0,0 +1,272 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: util.c
+     This file contains routines that are used for various functions
+*/
+/*---------------------------------------------------------------------*/
+
+
+#include <stdlib.h>
+#include "polverts.h"
+
+void switch_lower (int *x, int *y)
+{
+	register int temp;
+	
+	/*	Put lower value in x */
+	if (*y < *x)
+	{
+		temp = *x;
+		*x = *y;
+		*y = temp;
+	}
+}
+
+BOOL member(int x , int id1, int id2, int id3)
+{
+    /*  Is x in the triangle specified by id1,id2,id3 */
+    if ((x != id1) && (x != id2) && (x != id3))
+	return FALSE;
+    return TRUE;
+}
+
+
+int Compare (P_ADJACENCIES node1, P_ADJACENCIES node2)
+{
+	/*	This will only return whether 2 adjacency nodes
+		are equivalent.								  
+	*/
+	if (node1->face_id == node2->face_id)
+		return TRUE;
+	else
+		return FALSE;
+}
+
+
+BOOL Exist(int face_id, int id1, int id2)
+{
+	/*	Does the edge specified by id1 and id2 exist in this
+		face currently? Maybe we deleted in partial triangulation
+	*/
+	ListHead *pListHead;
+	PF_FACES temp;
+	register int x,size;
+	BOOL a=FALSE,b =FALSE; 
+
+	pListHead = PolFaces[face_id];
+	temp = ( PF_FACES ) PeekList( pListHead, LISTHEAD, 0 );
+	size = temp->nPolSize;
+	for (x=0; x<size; x++)
+	{
+		if (*(temp->pPolygon+x) == id1)
+			a = TRUE;
+		if (*(temp->pPolygon+x) == id2)
+			b = TRUE;
+		if (a && b)
+			return TRUE;
+	}
+	return FALSE;
+}
+
+int Get_Next_Id(int *index,int e3, int size)
+{
+    /*  Return the id following e3 in the list of vertices */
+
+    register int x;
+
+    for (x = 0; x< size; x++)
+    {
+        if ((*(index+x) == e3) && (x != (size-1)))
+            return *(index+x+1);
+        else if (*(index+x) == e3)
+            return *(index);
+    }
+    printf("There is an error in the next id\n");
+    exit(0);
+}
+
+int Different (int id1,int id2,int id3,int id4,int id5, int id6, int *x, int *y)
+{
+    /*    Find the vertex in the first 3 numbers that does not exist in 
+	     the last three numbers
+    */
+    if ((id1 != id4) && (id1 != id5) && (id1 != id6))
+    {
+	*x = id2;
+	*y = id3;
+	return id1;
+    }
+    if ((id2 != id4) && (id2 != id5) && (id2 != id6))
+    {
+	*x = id1;
+	*y = id3;
+	return id2;
+    }
+    if ((id3 != id4) && (id3 != id5) && (id3 != id6))
+    {
+	*x = id1;
+	*y = id2;
+	return id3;
+    }
+    
+    /*  Because there are degeneracies in the data, this might occur */
+    *x = id5;
+    *y = id6;
+    return id4;
+}
+
+int Return_Other(int *index,int e1,int e2)
+{
+	/*   We have a triangle and want to know the third vertex of it */
+	register int x;
+
+	for (x=0;x<3;x++)
+	{
+		if ((*(index+x) != e1) && (*(index+x) != e2))
+			return *(index+x);
+	}
+     /*   If there is a degenerate triangle return arbitrary */
+     return e1;
+}
+
+int Get_Other_Vertex(int id1,int id2,int id3,int *index)
+{
+	/*	We have a list index of 4 numbers and we wish to
+          return the number that is not id1,id2 or id3
+	*/
+	register int x;
+
+	for (x=0; x<4; x++)
+	{
+		if ((*(index+x) != id1) && (*(index+x) != id2) &&
+			(*(index+x) != id3))
+			return *(index+x);
+	}
+	/*   If there is some sort of degeneracy this might occur,
+          return arbitrary 
+     */
+     if (x==4)
+          return id1;
+}
+
+
+PLISTINFO Done(int face_id, int size, int *bucket)
+{
+	/*	Check to see whether the polygon with face_id was used
+		already, return NULL if it was, otherwise return a pointer to the face.
+	*/
+	P_ADJACENCIES pfNode;
+	register int y;
+	PLISTINFO lpListInfo;
+	
+	pfNode = (P_ADJACENCIES) malloc(sizeof(ADJACENCIES) );
+	if ( pfNode )
+		pfNode->face_id = face_id;
+		
+	for (y=size; ; y--)
+	{
+		lpListInfo = SearchList(array[y], pfNode,
+			(int (*)(void *,void *)) (Compare));
+		if (lpListInfo != NULL)
+		{
+			*bucket = y;
+			return lpListInfo;
+		}
+		if (y == 0)
+		/*	This adjacent face was done already */
+			return lpListInfo;
+	}
+	free (pfNode);
+}
+
+void Output_Edge(int *index,int e2,int e3,int *output1,int *output2)
+{
+    /*  Given a quad and an input edge return the other 2 vertices of the
+        quad.
+    */
+    
+    *output1 = -1;
+    *output2 = -1;
+
+    if ((*(index) != e2) && (*(index) != e3))
+        *output1 = *(index);
+
+    if ((*(index+1) != e2) && (*(index+1) != e3))
+    {
+        if (*output1 == -1)
+            *output1 = *(index+1);
+        else
+        {
+            *output2 = *(index+1);
+            return;
+        }
+    }
+
+    if ((*(index+2) != e2) && (*(index+2) != e3))
+    {
+        if (*output1 == -1)
+            *output1 = *(index+2);
+        else
+        {
+            *output2 = *(index+2);
+            return;
+        }
+    }
+
+    *output2 = *(index+3);
+}
+
+
+void First_Edge(int *id1,int *id2, int *id3)
+{
+    /*  Get the first triangle in the strip we just found, we will use this to
+	   try to extend backwards in the strip
+    */
+
+    ListHead *pListHead;
+    register int num;
+    P_STRIPS temp1,temp2,temp3;
+	 
+    pListHead = strips[0];
+    num = NumOnList(pListHead);
+     
+    /*    Did not have a strip */
+    if (num < 3)
+         return;
+	  
+    temp1 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 0);
+    temp2 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 1);
+    temp3 = ( P_STRIPS ) PeekList( pListHead, LISTHEAD, 2);
+    *id1 = temp1->face_id;
+    *id2 = temp2->face_id;
+    *id3 = temp3->face_id;
+ 
+}
+
+void Last_Edge(int *id1, int *id2, int *id3, BOOL save)
+{
+	/*   We need the last edge that we had  */
+	static int v1, v2, v3;
+
+	if (save)
+	{
+		v1 = *id1;
+		v2 = *id2;
+		v3 = *id3;
+	}
+	else
+	{
+		*id1 = v1;
+		*id2 = v2;
+		*id3 = v3;
+	}
+}
+
+
diff --git a/Tools/Stripe_w/util.h b/Tools/Stripe_w/util.h
new file mode 100644
index 000000000..64c2f2334
--- /dev/null
+++ b/Tools/Stripe_w/util.h
@@ -0,0 +1,24 @@
+/********************************************************************/
+/*   STRIPE: converting a polygonal model to triangle strips    
+     Francine Evans, 1996.
+     SUNY @ Stony Brook
+     Advisors: Steven Skiena and Amitabh Varshney
+*/
+/********************************************************************/
+
+/*---------------------------------------------------------------------*/
+/*   STRIPE: util.h
+-----------------------------------------------------------------------*/
+
+void switch_lower (int *x, int *y);
+int Compare (P_ADJACENCIES node1, P_ADJACENCIES node2);
+BOOL Exist(int face_id, int id1, int id2);
+int Get_Next_Id(int *index,int e3, int size);
+int Different(int id1,int id2,int id3,int id4,int id5, int id6, int *x, int *y);
+int Return_Other(int *index,int e1,int e2);
+int Get_Other_Vertex(int id1,int id2,int id3,int *index);
+PLISTINFO Done(int face_id, int size, int *bucket);
+void Output_Edge(int *index,int e2,int e3,int *output1,int *output2);
+void Last_Edge(int *id1, int *id2, int *id3, BOOL save);
+void First_Edge(int *id1,int *id2, int *id3);
+BOOL member(int x , int id1, int id2, int id3);
diff --git a/Tools/Tools/Makefile.am b/Tools/Tools/Makefile.am
new file mode 100644
index 000000000..034024ed4
--- /dev/null
+++ b/Tools/Tools/Makefile.am
@@ -0,0 +1,15 @@
+EXTRA_DIST = process-dem.pl scenery_version.hxx
+
+SUBDIRS = \
+	Lib \
+	Prep \
+	Construct \
+	Utils \
+	Areas \
+	AssemTris \
+	FixObj \
+	SplitTris \
+	Stripe_w \
+	Tri2obj
+
+bin_SCRIPTS = process-dem.pl
diff --git a/Tools/Tools/README b/Tools/Tools/README
new file mode 100644
index 000000000..253e47e04
--- /dev/null
+++ b/Tools/Tools/README
@@ -0,0 +1,75 @@
+FG Scenery Tools README
+=======================
+
+Contained here-in are the FG scenery creation tools.  These can be
+used to convert 3 arcsec ASCII format DEM files and 30 arcsec binary
+format DEM files into Flight Gear scenery.
+
+Eventually these tools will expand to support insertion of airports,
+roads, rivers, lakes, etc.
+
+
+Building the Tools
+==================
+
+These tools are compiled and tested under Linux.  I'm all for
+portability, but I just haven't been as motivated to port these tools,
+since scenery creation is less of a general need ... especially at
+this stage.  However, if anyone wants to work on porting to other
+platforms, I will be happy to incorporate patches.
+
+The process for building these tools is very similar to building the
+main FG source code.
+
+1.  Set the FG_ROOT, FG_ROOT_SRC, and FG_ROOT_LIB environment
+    variables.
+
+2.  Run ``make depend''
+
+3.  Run ``make clean''
+
+4.  Run ``make''
+
+
+3 Arcsec ASCII DEM files
+========================
+
+Data files for the USA are available in this format from:
+
+    http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html
+
+To generate FG scenery from one of these dem files, run:
+
+    ./process-dem.pl <error-tolerance-squared> dem-file-1 [ dem-file-2 ...]
+
+You can vary the error tolerance to control the level of detail (and
+size) of the resulting scenery.  Note, you must specify the error
+tolerance squared.  So, if you wish to allow up to a 10 meter error
+margin (very high level of detail) you would specify a value of 100.
+If you desire an error tolerance of 200 meters (medium detail level)
+you would specify a value of 40000.
+
+The process-dem.pl script will automatically dump the resulting .obj
+files in the proper directory tree.
+
+
+30 Arcsec Binary DEM files
+==========================
+
+These data files have world wide coverage and are available from:
+
+    http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html
+
+To process these data files, you must first run:
+
+    DemRaw2Ascii/raw2ascii <input_file_basename> <output_dir>
+
+For example:
+
+    DemRaw2Ascii/raw2ascii /tmp/W020N90 asciidems/ 
+
+This will create ASCII DEM files for each 1 degree x 1 degree area in
+the specified output dir.
+
+Then, you can take these ascii dem files and feed them through the
+same procedure you use with the 3 arcsec dem files.
\ No newline at end of file
diff --git a/Tools/Tools/Todo b/Tools/Tools/Todo
new file mode 100644
index 000000000..d056dfc03
--- /dev/null
+++ b/Tools/Tools/Todo
@@ -0,0 +1,37 @@
+--------------------------------------------------------------------------
+| Done
+--------------------------------------------------------------------------
+
+4/6/98 -   fix 30 arcsec dem file processing
+
+4/6/98 -   incorporate autoconf/automake build system
+
+1/10/98 -  Split areas into smaller tiles
+
+1/14/98 -  Don't create shared corners or edges if one already exists.
+
+1/14/98 -  Reassemble triangles using only body, shared corners, and 
+           shared edges.
+
+1/19/98 -  Retro-fit tri2obj to use shared normals rather than regenerating
+           normals for shared vertices.
+
+
+--------------------------------------------------------------------------
+| Todo 
+--------------------------------------------------------------------------
+
+1/12/98 -  Try reversing cw-wound strips rather than calling glFrontFace() 
+           in the display list.
+
+           gnuplot> set label "1" at 1,1
+           gnuplot> set label "2" at 2,2
+
+           gnuplot> plot x
+
+1/21/98 -  Generate an elevation quad tree.
+
+1/12/98 -  Generate a face adjacency matrix
+
+1/21/98 -  Remove internal shared edges and corners that are not needed
+           after an area is generated.
diff --git a/Tools/Tools/process-dem.pl b/Tools/Tools/process-dem.pl
new file mode 100755
index 000000000..5a92c5bb5
--- /dev/null
+++ b/Tools/Tools/process-dem.pl
@@ -0,0 +1,655 @@
+#!/usr/bin/perl
+
+#---------------------------------------------------------------------------
+# Toplevel script to automate DEM file processing and conversion
+#
+# Written by Curtis Olson, started January 1998.
+#
+# Copyright (C) 1997  Curtis L. Olson  - curt@infoplane.com
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+# format version number
+$scenery_format_version = "0.1";
+
+$max_area = 10000;            # maximum triangle area
+$remove_tmps = 1;
+
+$| = 1;                         # flush buffers after every write
+
+$do_dem2node =   1;
+$do_triangle_1 = 1;
+$do_fixnode =    1;
+$do_splittris =  1;
+$do_assemtris =  1;
+$do_triangle_2 = 1;
+
+$do_tri2obj =    1;
+$do_strips =     1;
+$do_fixobj =     1;
+ 
+$do_install =    1;
+
+
+if ( $#ARGV < 3 ) {
+    die "Usage: $0 <fg-root-dir> <work-dir> <error^2> dem-file(s)\n";
+}
+
+# Start with file.dem
+
+$fg_root = shift(@ARGV);
+$work_dir = shift(@ARGV);
+$error = shift(@ARGV);
+$error += 0.0;
+$system_name = `uname -s`; chop($system_name);
+
+while ( $dem_file = shift(@ARGV) ) {
+    print "Source file = $dem_file  Error tolerance = $error\n";
+
+    if ( $error < 0.5 ) {
+	die "I doubt you'll be happy with an error tolerance as " . 
+	    "low as $error.\n";
+    }
+
+
+    if ( $do_dem2node ) {
+	dem2node() ;
+    } else {
+	$subdir = "./work/Scenery/w120n030/w111n033";
+	print "WARNING:  Hardcoding subdir = $subdir\n";
+    }
+
+    triangle_1() if ( $do_triangle_1 );
+    fixnode() if ( $do_fixnode );
+    splittris() if ( $do_splittris );
+    assemtris() if ( $do_assemtris );
+    triangle_2() if ( $do_triangle_2);
+    tri2obj() if ( $do_tri2obj );
+    strips() if ( $do_strips );
+    fixobj() if ( $do_fixobj );
+    install() if ( $do_install );
+}
+
+
+# exit normally
+exit(0);
+
+
+# replace all unix forward slashes with windoze backwards slashes if
+# running on a cygwin32 system
+sub fix_slashes { my($in) = @_;
+    if ( $system_name =~ m/CYGWIN32/ ) { 
+        $in =~ s/\/+/\//g;
+        $in =~ s/\//\\/g;
+    }
+
+    return($in);
+}
+
+
+# return the file name root (ending at last ".")
+sub file_root {
+    my($file) = @_;
+    my($pos);
+
+    $pos = rindex($file, ".");
+    return substr($file, 0, $pos);
+}
+
+
+# 1.  dem2node work_dir dem_file tolerance^2 (meters)
+# 
+#     - dem2node .. dem_file 160000
+#
+#     splits dem file into 64 file.node's which contain the
+#     irregularly fitted vertices
+
+sub dem2node {
+    $command = "Dem2node/dem2node $work_dir $dem_file $error";
+    $command = fix_slashes($command);
+    print "Running '$command'\n";
+
+    open(OUT, "$command |");
+    while ( <OUT> ) {
+	print $_;
+	if ( m/^Dir = / ) {
+	    $subdir = $_;
+	    $subdir =~ s/^Dir = //;
+	    chop($subdir);
+	}
+	if ( m/Quad name field/ ) {
+	    $quad_name = $_;
+	    # strip header
+	    $quad_name =~ s/.*Quad name field: //;
+	    # crunch consequetive spaces
+	    $quad_name =~ s/  +/ /g;
+	    chop($quad_name);
+	    print "QUAD NAME = $quad_name\n";
+	}
+    }
+    close(OUT);
+} 
+
+
+# 2.  triangle -q file (Takes file.node and produces file.1.node and
+#                      file.1.ele)
+
+print "Subdirectory for this dem file is $subdir\n";
+
+sub triangle_1 {
+    @FILES = `ls $subdir`;
+    foreach $file ( @FILES ) {
+	# print $file;
+	chop($file);
+	if ( ($file =~ m/\.node$/) && ($file !~ m/\.\d\.node$/) ) {
+	    # special handling is needed if .poly file exists
+	    $fileroot = $file;
+	    $fileroot =~ s/\.node$//;
+	    print "$subdir/$fileroot\n";
+	    $command = "Triangle/triangle";
+	    $command = fix_slashes($command);
+	    if ( -r "$subdir/$fileroot.poly" ) {
+		$command .= " -pc";
+	    }
+	    $command .= " -a$max_area -q10 $subdir/$file";
+	    print "Running '$command'\n";
+	    open(OUT, "$command |");
+	    while ( <OUT> ) {
+		print $_;
+	    }
+	    close(OUT);
+
+	    # remove input file.node
+	    if ( $remove_tmps ) {
+		$file1 = "$subdir/$file";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+	    }
+	}
+    }
+}
+
+
+# 3.  fixnode file.dem subdir
+#
+#     Take the original .dem file (for interpolating Z values) and the
+#     subdirecotry containing all the file.1.node's and replace with
+#     fixed file.1.node
+
+sub fixnode {
+    $command = "FixNode/fixnode";
+    $command = fix_slashes($command);
+    $command .= " $dem_file $subdir";
+    print "Running '$command'\n";
+    open(OUT, "$command |") || die "cannot run command\n";
+    while ( <OUT> ) {
+	print $_;
+    }
+    close(OUT);
+}
+
+
+# 4.1 splittris file (.1.node) (.1.ele)
+
+#     Extract the corner, edge, and body vertices (in original
+#     geodetic coordinates) and normals (in cartesian coordinates) and
+#     save them in something very close to the .obj format as file.se,
+#     file.sw, file.nw, file.ne, file.north, file.south, file.east,
+#     file.west, and file.body.  This way we can reconstruct the
+#     region using consistant edges and corners.  
+
+#     Arbitration rules: If an opposite edge file already exists,
+#     don't create our matching edge.  If a corner already exists,
+#     don't create ours.  Basically, the early bird gets the worm and
+#     gets to define the edge verticies and normals.  All the other
+#     adjacent tiles must use these.
+
+sub splittris {
+    @FILES = `ls $subdir`;
+    foreach $file ( @FILES ) {
+	chop($file);
+	if ( $file =~ m/\.1\.node$/ ) {
+	    $file =~ s/\.node$//;  # strip off the ".node"
+	
+	    $command = "SplitTris/splittris";
+	    $command = fix_slashes($command);
+	    $command .= " $subdir/$file";
+	    print "Running '$command'\n";
+	    open(OUT, "$command |");
+	    while ( <OUT> ) {
+		print $_;
+	    }
+	    close(OUT);
+
+	    if ( $remove_tmps ) {
+		$file1 = "$subdir/$file.node";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+		$file1 = "$subdir/$file.node.orig";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+		$file1 = "$subdir/$file.ele";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+	    }
+	}
+    }
+}
+
+
+# 4.2 read in the split of version of the tiles, reconstruct the tile
+#     using the proper shared corners and edges.  Save as a node file
+#     so we can retriangulate.
+
+sub assemtris {
+    @FILES = `ls $subdir`;
+    foreach $file ( @FILES ) {
+	chop($file);
+	if ( $file =~ m/\.1\.body$/ ) {
+	    $file =~ s/\.1\.body$//;  # strip off the ".body"
+	
+	    $command = "AssemTris/assemtris";
+	    $command = fix_slashes($command);
+	    $command .= " $subdir/$file";
+	    print "Running '$command'\n";
+	    open(OUT, "$command |");
+	    while ( <OUT> ) {
+		print $_;
+	    }
+	    close(OUT);
+	}
+	if ( $remove_tmps ) {
+	    $file1 = "$subdir/$file.body";
+	    $file1 = fix_slashes($file1);
+	    unlink($file1);
+	}
+    }
+}
+
+
+# 4.3 Retriangulate reassembled files (without -q option) so no new
+#     nodes are generated.
+
+sub triangle_2 {
+    @FILES = `ls $subdir`;
+    foreach $file ( @FILES ) {
+	# print $file;
+	chop($file);
+	if ( ($file =~ m/\.node$/) && ($file !~ m/\.\d\.node$/) ) {
+	    $base = $file;
+	    $base =~ s/\.node$//;
+	    print("Test for $subdir/$base.q\n");
+
+	    $command = "Triangle/triangle";
+	    $command = fix_slashes($command);
+
+	    if ( -r "$subdir/$base.q" ) {
+		# if triangle hangs, we can create a filebase.q for
+		# the file it hung on.  Then, we test for that file
+		# here which causes the incremental algorithm to run
+		# (which shouldn't ever hang.)
+		$command .= " -i";
+	    }
+
+	    if ( -r "$subdir/$base.poly" ) {
+		$command .= " -pc $subdir/$base";
+	    } else {
+		$command .= " $subdir/$file";
+	    }
+
+	    print "Running '$command'\n";
+	    open(OUT, "$command |");
+	    while ( <OUT> ) {
+		print $_;
+	    }
+	    close(OUT);
+
+	    # remove input file.node
+	    if ( $remove_tmps ) {
+		$file1 = "$subdir/$file";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+	    }
+	}
+    }
+}
+
+
+# 5.  tri2obj file (.1.node) (.1.ele)
+#
+#     Take the file.1.node and file.1.ele and produce file.1.obj
+#
+#     Extracts normals out of the shared edge/vertex files, and uses
+#     the precalcuated normals for these nodes instead of calculating
+#     new ones.  By sharing normals as well as vertices, not only are
+#     the gaps between tiles eliminated, but the colors and lighting
+#     transition smoothly across tile boundaries.
+
+sub tri2obj {
+    @FILES = `ls $subdir`;
+    foreach $file ( @FILES ) {
+	chop($file);
+	if ( $file =~ m/\.1\.node$/ ) {
+	    $file =~ s/\.node$//;  # strip off the ".node"
+	    
+	    $command = "Tri2obj/tri2obj";
+	    $command = fix_slashes($command);
+	    $command .= " $subdir/$file";
+	    print "Running '$command'\n";
+	    open(OUT, "$command |");
+	    while ( <OUT> ) {
+		print $_;
+	    }
+	    close(OUT);
+	    
+	    if ( $remove_tmps ) {
+		$file1 = "$subdir/$file.node";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+		$file1 = "$subdir/$file.node.orig";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+		$file1 = "$subdir/$file.ele";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+	    }
+	}
+    }
+}
+
+
+# 6.  strip file.1.obj
+# 
+#     Strip the file.1.obj's.  Note, strips doesn't handle the minimal
+#     case of striping a square correctly.
+#
+# 7.  cp stripe.objf file.2.obj
+#
+#     strips produces a file called "stripe.objf" ... copy this to file.2.obj
+
+sub strips {
+    @FILES = `ls $subdir`;
+    foreach $file ( @FILES ) {
+	chop($file);
+	if ( $file =~ m/\.1\.obj$/ ) {
+	    $newfile = $file;
+	    $newfile =~ s/\.1\.obj$//;
+	    $command = "Stripe_w/strips";
+	    $command = fix_slashes($command);
+	    $command .= " $subdir/$file $subdir/$newfile.2.obj";
+	    print "Running '$command'\n";
+    	    # $input = <STDIN>;
+	    open(OUT, "$command |");
+	    while ( <OUT> ) {
+		print $_;
+	    }
+	    close(OUT);
+	    
+	    # copy to destination file
+	    # $newfile = $file;
+	    # $newfile =~ s/\.1\.obj$//;
+	    # print "Copying to $subdir/$newfile.2.obj\n";
+	    # open(IN, "<bands.d");
+	    # open(IN, "<stripe.objf");
+	    # open(OUT, ">$subdir/$newfile.2.obj");
+	    # while ( <IN> ) {
+		# print OUT $_;
+	    # }
+	    # close(IN);
+	    # close(OUT);
+	    
+	    if ( $remove_tmps ) {
+		$file1 = "$subdir/$file";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+	    }
+	}
+    }
+}
+
+
+# 8.  fixobj file-new
+#
+#     Sort file.2.obj by strip winding
+
+sub fixobj {
+    @FILES = `ls $subdir`;
+    foreach $file ( @FILES ) {
+	chop($file);
+	if ( $file =~ m/\.2\.obj$/ ) {
+	    $newfile = $file;
+	    $newfile =~ s/\.2\.obj$/.obj/;
+	    
+	    $command = "FixObj/fixobj";
+	    $command = fix_slashes($command);
+	    $command .= " $subdir/$file $subdir/$newfile";
+	    print "Running '$command'\n";
+	    open(OUT, "$command |");
+	    while ( <OUT> ) {
+		print $_;
+	    }
+	    close(OUT);
+
+	    if ( $remove_tmps ) {
+		$file1 = "$subdir/$file";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+	    }
+	}
+    }
+}
+
+
+# 9.  install
+#
+#     rename, compress, and install scenery files
+
+sub install {
+    $tmp = $subdir;
+    $tmp =~ s/$work_dir//;
+    # print "Temp dir = $tmp\n";
+    $install_dir = "$fg_root/$tmp";
+
+    # try to get rid of double //
+    $install_dir =~ s/\/+/\//g;
+    print "Install dir = $install_dir\n";
+
+    if ( $system_name !~ m/CYGWIN32/ ) {
+	$command = "mkdir -p $install_dir";
+    } else {
+        $command = "Makedir/makedir $install_dir";
+	$command = fix_slashes($command);
+    }
+
+    # print "Running '$command'\n";
+    open(OUT, "$command |");
+    while ( <OUT> ) {
+	print $_;
+    }
+    close(OUT);
+
+    # write out version and info record
+    $version_file = "$install_dir/VERSION";
+    open(VERSION, ">$version_file") || 
+	die "Cannot open $version_file for writing\n";
+    print VERSION "FGFS Scenery Version $scenery_format_version\n";
+    if ( $system_name !~ m/CYGWIN32/ ) {
+	$date = `date`; chop($date);
+    } else {
+	# ???
+	$date = "not available";
+    }
+    $hostname = `hostname`; chop($hostname);
+    print VERSION "Creator = $ENV{LOGNAME}\n";
+    print VERSION "Date = $date\n";
+    print VERSION "Machine = $hostname\n";
+    print VERSION "\n";
+    print VERSION "DEM File Name = $dem_file\n";
+    print VERSION "DEM Label = $quad_name\n";
+    print VERSION "Error Tolerance = $error (this value is squared)\n";
+    close(VERSION);
+
+    @FILES = `ls $subdir`;
+    foreach $file ( @FILES ) {
+	chop($file);
+	if ( $file =~ m/\d\d.obj$/ ) {
+	    $new_file = file_root($file);
+	    
+	    $command = 
+		"gzip -c --best -v < $subdir/$file > $install_dir/$new_file.gz";
+	    $command = fix_slashes($command);
+
+	    print "Running '$command'\n";
+	    open(OUT, "$command |");
+	    while ( <OUT> ) {
+		print $_;
+	    }
+	    close(OUT);
+
+	    if ( $remove_tmps ) {
+		$file1 = "$subdir/$file";
+		$file1 = fix_slashes($file1);
+		unlink($file1);
+	    }
+	} elsif ( $file =~ m/\d\d.apt$/ ) {
+	    $command = "cp $subdir/$file $install_dir/$file";
+	    $command = fix_slashes($command);
+	    print "Running '$command'\n";
+	    open(OUT, "$command |");
+	    while ( <OUT> ) {
+		print $_;
+	    }
+	    close(OUT);
+	}
+    }
+}
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.32  1998/11/20 01:02:55  curt
+# Speedups for win32.
+#
+# Revision 1.31  1998/10/28 19:39:06  curt
+# Changes to better support win32 scenery development.
+#
+# Revision 1.30  1998/10/22 22:00:10  curt
+# Modified the info that is put in the VERSION file.
+#
+# Revision 1.29  1998/10/02 21:41:56  curt
+# Added Makedir + fixes for win32.
+#
+# Revision 1.28  1998/09/17 18:40:15  curt
+# Changes to allow multiple copies of the scenery processing tools
+# to be run concurrently.
+#
+# Revision 1.27  1998/09/09 20:58:35  curt
+# Fixes and tweaks to handle area cutouts for airports.
+#
+# Revision 1.26  1998/08/26 22:31:29  curt
+# Write out version and "meta" info into each dem's subdirectory containing
+# all the tiles.
+#
+# Revision 1.25  1998/07/22 21:46:09  curt
+# minor tweaks.
+#
+# Revision 1.24  1998/07/21 04:33:47  curt
+# More tweaks for sub-area cutouts.
+#
+# Revision 1.23  1998/07/20 12:55:35  curt
+# Several tweaks to start incorporating area cutouts into the pipeline.
+#
+# Revision 1.22  1998/07/08 14:49:13  curt
+# tweaks.
+#
+# Revision 1.21  1998/06/08 17:18:37  curt
+# Mods to test new Stripe fixes from Wilbur Streett.
+#
+# Revision 1.20  1998/06/05 18:20:24  curt
+# Added DemInfo to dump out "A" record DEM info.
+# Modified process-dem.pl to work in a temp directory and compress/copy the
+# result to the final destination.
+#
+# Revision 1.19  1998/05/27 02:25:26  curt
+# Added a flag to the first run of "triangle" to impose a maximum triangle
+# size.  This forces really flat areas to be subdivided a certain amount
+# anyways.  This makes for slightly more interesting scenery.
+#
+# Revision 1.18  1998/05/20 20:55:40  curt
+# Makefile tweaks
+#
+# Revision 1.17  1998/04/28 01:23:25  curt
+# Added a work around so that we can get past the "triangle" program
+# hanging, by aborting and rerunning with that tile marked to use the "-i"
+# option.
+#
+# Revision 1.16  1998/04/18 03:57:53  curt
+# Added zlib library support.
+#
+# Revision 1.15  1998/04/08 23:24:07  curt
+# Adopted Gnu automake/autoconf system.
+#
+# Revision 1.14  1998/04/06 21:09:38  curt
+# Additional win32 support.
+# Fixed a bad bug in dem file parsing that was causing the output to be
+# flipped about x = y.
+#
+# Revision 1.13  1998/03/19 02:52:52  curt
+# Updated to reflect some minor tool reorganization and the creation of class
+# to handle DEM processing needs.
+#
+# Revision 1.12  1998/03/19 01:48:35  curt
+# Added gpc-2.01 (generic polygon clipping library)
+#
+# Revision 1.11  1998/03/03 03:36:57  curt
+# Cumulative tweaks.
+#
+# Revision 1.10  1998/02/01 03:42:26  curt
+# Modifications to handle compressed dem files.
+#
+# Revision 1.9  1998/01/27 18:36:54  curt
+# Lots of updates to get back in sync with changes made over in .../Src/
+#
+# Revision 1.8  1998/01/21 17:59:05  curt
+# Uncomment lines to remove several intermediate files.
+#
+# Revision 1.7  1998/01/19 19:51:06  curt
+# A couple final pre-release tweaks.
+#
+# Revision 1.6  1998/01/15 21:33:33  curt
+# Assembling triangles and building a new .node file with the proper shared
+# vertices now works.  Now we just have to use the shared normals and we'll
+# be all set.
+#
+# Revision 1.5  1998/01/15 02:50:08  curt
+# Tweaked to add next stage.
+#
+# Revision 1.4  1998/01/14 15:55:34  curt
+# Finished splittris, started assemtris.
+#
+# Revision 1.3  1998/01/14 02:15:52  curt
+# Updated front end script to keep plugging away on tile fitting.
+#
+# Revision 1.2  1998/01/12 20:42:08  curt
+# Working on fitting tiles together in a seamless manner.
+#
+# Revision 1.1  1998/01/09 23:06:46  curt
+# Initial revision.
+#
diff --git a/Tools/Tools/scenery_version.hxx b/Tools/Tools/scenery_version.hxx
new file mode 100644
index 000000000..c5616a646
--- /dev/null
+++ b/Tools/Tools/scenery_version.hxx
@@ -0,0 +1,31 @@
+// scenery_version.hxx -- Scenery file format version
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#define FG_SCENERY_FILE_FORMAT "0.2"
+
+
+// $Log$
+// Revision 1.1  1999/03/25 19:13:35  curt
+// Initial revision.
+//
diff --git a/Tools/Tri2obj/Makefile.am b/Tools/Tri2obj/Makefile.am
new file mode 100644
index 000000000..c27fc320f
--- /dev/null
+++ b/Tools/Tri2obj/Makefile.am
@@ -0,0 +1,71 @@
+#---------------------------------------------------------------------------
+# Makefile
+#
+# Written by Curtis Olson, started January 1998.
+#
+# Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+#
+# $Id$
+# (Log is kept at end of this file)
+#---------------------------------------------------------------------------
+
+
+bin_PROGRAMS = tri2obj
+
+tri2obj_SOURCES = tri2obj.cxx tri2obj.hxx
+
+tri2obj_LDADD = \
+	$(top_builddir)/Lib/Bucket/libBucket.a \
+	$(top_builddir)/Lib/Math/libMath.a \
+        $(top_builddir)/Lib/Debug/libDebug.a \
+        $(top_builddir)/Lib/zlib/libz.a \
+	$(base_LIBS)
+
+INCLUDES += -I$(top_builddir) -I$(top_builddir)/Lib
+
+
+#---------------------------------------------------------------------------
+# $Log$
+# Revision 1.7  1998/11/04 23:02:02  curt
+# Changes to the automake/autoconf system to reduce the number of libraries
+# that are unnecessarily linked into the various executables.
+#
+# Revision 1.6  1998/07/30 23:49:26  curt
+# Removed libtool support.
+#
+# Revision 1.5  1998/07/08 14:49:14  curt
+# tweaks.
+#
+# Revision 1.4  1998/04/24 00:44:07  curt
+# Added zlib support.
+#
+# Revision 1.3  1998/04/18 04:01:29  curt
+# Now use libMath rather than having local copies of math routines.
+#
+# Revision 1.2  1998/04/14 02:26:09  curt
+# Code reorganizations.  Added a Lib/ directory for more general libraries.
+#
+# Revision 1.1  1998/04/08 23:22:13  curt
+# Adopted Gnu automake/autoconf system.
+#
+# Revision 1.2  1998/01/21 02:55:46  curt
+# Incorporated new make system from Bob Kuehne <rpk@sgi.com>.
+#
+# Revision 1.1  1998/01/15 02:45:25  curt
+# Initial revision.
+#
+
diff --git a/Tools/Tri2obj/tri2obj.cxx b/Tools/Tri2obj/tri2obj.cxx
new file mode 100644
index 000000000..a3401052c
--- /dev/null
+++ b/Tools/Tri2obj/tri2obj.cxx
@@ -0,0 +1,695 @@
+// tri2obj.cxx -- read in a .ele/.node file pair generated by the triangle 
+//                program and output a simple Wavefront .obj file.
+//
+// Written by Curtis Olson, started October 1997.
+//
+// Copyright (C) 1997  Curtis L. Olson  - curt@infoplane.com
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <stdio.h>
+#include <stdlib.h>   // for atoi()
+#include <string.h>
+#include <sys/stat.h> // for stat()
+#include <unistd.h>   // for stat()
+
+#include "tri2obj.hxx"
+
+#include <Include/fg_constants.h>
+#include <Bucket/bucketutils.h>
+
+#include <Math/fg_geodesy.hxx>
+#include <Math/mat3.h>
+#include <Math/polar3d.hxx>
+
+
+int nodecount, tricount;
+int normalcount = 0;
+static Point3D nodes[MAX_NODES];
+static int tris[MAX_TRIS][3];
+
+static double normals[MAX_NODES][3];
+
+fgBUCKET my_index;
+fgBUCKET ne_index, nw_index, sw_index, se_index;
+fgBUCKET north_index, south_index, east_index, west_index;
+
+
+// given three points defining a triangle, calculate the normal
+void calc_normal(const Point3D& p1, const Point3D& p2, 
+		 const Point3D& p3, double normal[3])
+{
+    double v1[3], v2[3];
+    double temp;
+
+    v1[0] = p2.x() - p1.x(); v1[1] = p2.y() - p1.y(); v1[2] = p2.z() - p1.z();
+    v2[0] = p3.x() - p1.x(); v2[1] = p3.y() - p1.y(); v2[2] = p3.z() - p1.z();
+
+    MAT3cross_product(normal, v1, v2);
+    MAT3_NORMALIZE_VEC(normal, temp);
+
+//  printf("  Normal = %.2f %.2f %.2f\n", normal[0], normal[1], normal[2]);
+}
+
+
+// return the index of all triangles containing the specified node
+void find_tris(int n, int *t1, int *t2, int *t3, int *t4, int *t5) {
+    int i;
+
+    *t1 = *t2 = *t3 = *t4 = *t5 = 0;
+
+    i = 1;
+    while ( i <= tricount ) {
+        if ( (n == tris[i][0]) || (n == tris[i][1]) || (n == tris[i][2]) ) {
+            if ( *t1 == 0 ) {
+		*t1 = i;
+            } else if ( *t2 == 0 ) {
+		*t2 = i;
+            } else if ( *t3 == 0 ) {
+		*t3 = i;
+            } else if ( *t4 == 0 ) {
+		*t4 = i;
+	    } else {
+		*t5 = i;
+	    }
+        }
+        i++;
+    }
+}
+
+
+// return the file base name ( foo/bar/file.ext = file.ext )
+void extract_file(char *in, char *base) {
+    int len, i;
+
+    len = strlen(in);
+
+    i = len - 1;
+    while ( (i >= 0) && (in[i] != '/') ) {
+	i--;
+    }
+
+    in += (i + 1);
+    strcpy(base, in);
+}
+
+
+// return the file path name ( foo/bar/file.ext = foo/bar )
+void extract_path(char *in, char *base) {
+    int len, i;
+
+    len = strlen(in);
+    strcpy(base, in);
+
+    i = len - 1;
+    while ( (i >= 0) && (in[i] != '/') ) {
+	i--;
+    }
+
+    base[i] = '\0';
+}
+
+
+// check if a file exists
+int file_exists(char *file) {
+    struct stat stat_buf;
+    int result;
+
+    printf("checking %s ... ", file);
+
+    result = stat(file, &stat_buf);
+
+    if ( result != 0 ) {
+	// stat failed, no file
+	printf("not found.\n");
+	return(0);
+    } else {
+	// stat succeeded, file exists
+	printf("exists.\n");
+	return(1);
+    }
+}
+
+
+// check to see if a shared object exists
+int shared_object_exists(char *basepath, char *ext, char *file) {
+    char scene_path[256];
+    long int index;
+
+    if ( strcmp(ext, ".sw") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&west_index, scene_path);
+	index = fgBucketGenIndex(&west_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&sw_index, scene_path);
+	index = fgBucketGenIndex(&sw_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&south_index, scene_path);
+	index = fgBucketGenIndex(&south_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".se") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&east_index, scene_path);
+	index = fgBucketGenIndex(&east_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&se_index, scene_path);
+	index = fgBucketGenIndex(&se_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&south_index, scene_path);
+	index = fgBucketGenIndex(&south_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".ne") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&east_index, scene_path);
+	index = fgBucketGenIndex(&east_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&ne_index, scene_path);
+	index = fgBucketGenIndex(&ne_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&north_index, scene_path);
+	index = fgBucketGenIndex(&north_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".nw") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.nw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&west_index, scene_path);
+	index = fgBucketGenIndex(&west_index);
+	sprintf(file, "%s/%s/%ld.1.ne", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&nw_index, scene_path);
+	index = fgBucketGenIndex(&nw_index);
+	sprintf(file, "%s/%s/%ld.1.se", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&north_index, scene_path);
+	index = fgBucketGenIndex(&north_index);
+	sprintf(file, "%s/%s/%ld.1.sw", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".south") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.south", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&south_index, scene_path);
+	index = fgBucketGenIndex(&south_index);
+	sprintf(file, "%s/%s/%ld.1.north", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".north") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.north", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&north_index, scene_path);
+	index = fgBucketGenIndex(&north_index);
+	sprintf(file, "%s/%s/%ld.1.south", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".west") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.west", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&west_index, scene_path);
+	index = fgBucketGenIndex(&west_index);
+	sprintf(file, "%s/%s/%ld.1.east", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".east") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.east", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+	fgBucketGenBasePath(&east_index, scene_path);
+	index = fgBucketGenIndex(&east_index);
+	sprintf(file, "%s/%s/%ld.1.west", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    if ( strcmp(ext, ".body") == 0 ) {
+	fgBucketGenBasePath(&my_index, scene_path);
+	index = fgBucketGenIndex(&my_index);
+	sprintf(file, "%s/%s/%ld.1.body", basepath, scene_path, index);
+	if ( file_exists(file) ) {
+	    return(1);
+	}
+    }
+
+    return(0);
+}
+
+
+// given a file pointer, read all the vn (normals from it)
+void read_normals(FILE *fp) {
+    char line[256];
+
+    while ( fgets(line, 250, fp) != NULL ) {
+	if ( strncmp(line, "vn ", 3) == 0 ) {
+	    sscanf( line, "vn %lf %lf %lf\n", 
+		    &normals[normalcount][0], 
+		    &normals[normalcount][1], 
+		    &normals[normalcount][2] );
+	    /*
+	    printf("read_normals(%d) %.2f %.2f %.2f %s", normalcount, 
+		   normals[normalcount][0], normals[normalcount][1], 
+		   normals[normalcount][2], line);
+		   */
+	    normalcount++;
+	}
+    }
+}
+
+
+// my custom file opening routine ... don't open if a shared edge or
+// vertex alread exists
+FILE *my_open(char *basename, char *basepath, char *ext) {
+    FILE *fp;
+    char filename[256];
+
+    // check if a shared object already exists
+    if ( shared_object_exists(basepath, ext, filename) ) {
+	// not an actual file open error, but we've already got the
+        // shared edge, so we don't want to create another one
+	fp = fopen(filename, "r");
+	printf("Opening %s\n", filename);
+	return(fp);
+    } else {
+	// open the file
+	printf("not opening\n");
+	return(NULL);
+    }
+}
+
+
+// Initialize a new mesh structure
+void triload(char *basename, char *basepath) {
+    char nodename[256], elename[256];
+    double n[3];
+    Point3D p;
+    FILE *ne, *nw, *se, *sw, *north, *south, *east, *west;
+    FILE *node, *ele;
+    int dim, junk1, junk2;
+    int i;
+
+    ne = my_open(basename, basepath, ".ne");
+    read_normals(ne);
+    fclose(ne);
+
+    nw = my_open(basename, basepath, ".nw");
+    read_normals(nw);
+    fclose(nw);
+
+    se = my_open(basename, basepath, ".se");
+    read_normals(se);
+    fclose(se);
+
+    sw = my_open(basename, basepath, ".sw");
+    read_normals(sw);
+    fclose(sw);
+
+    north = my_open(basename, basepath, ".north");
+    read_normals(north);
+    fclose(north);
+
+    south = my_open(basename, basepath, ".south");
+    read_normals(south);
+    fclose(south);
+
+    east = my_open(basename, basepath, ".east");
+    read_normals(east);
+    fclose(east);
+
+    west = my_open(basename, basepath, ".west");
+    read_normals(west);
+    fclose(west);
+
+    strcpy(nodename, basename);
+    strcat(nodename, ".node");
+    strcpy(elename, basename);
+    strcat(elename, ".ele");
+
+    printf("Loading node file:  %s ...\n", nodename);
+    if ( (node = fopen(nodename, "r")) == NULL ) {
+	printf("Cannot open file '%s'\n", nodename);
+	exit(-1);
+    }
+
+    fscanf(node, "%d %d %d %d", &nodecount, &dim, &junk1, &junk2);
+
+    if ( nodecount > MAX_NODES - 1 ) {
+	printf("Error, too many nodes, need to increase array size\n");
+	exit(-1);
+    } else {
+	printf("    Expecting %d nodes\n", nodecount);
+    }
+
+    for ( i = 1; i <= nodecount; i++ ) {
+	fscanf(node, "%d %lf %lf %lf %d\n", &junk1, 
+	       &n[0], &n[1], &n[2], &junk2);
+	// printf("%d %.2f %.2f %.2f\n", junk1, n[0], n[1], n[2]);
+	p = Point3D( n[0] * ARCSEC_TO_RAD,
+		     n[1] * ARCSEC_TO_RAD,
+		     n[2] );
+	nodes[i] = fgGeodToCart(p);
+	// printf("%d %.2f %.2f %.2f\n", 
+	//        junk1, nodes[i].x, nodes[i].y, nodes[i].z);
+    }
+
+    fclose(node);
+
+    printf("Loading element file:  %s ...\n", elename);
+    if ( (ele = fopen(elename, "r")) == NULL ) {
+	printf("Cannot open file '%s'\n", elename);
+	exit(-1);
+    }
+
+    fscanf(ele, "%d %d %d", &tricount, &junk1, &junk2);
+
+    if ( tricount > MAX_TRIS - 1 ) {
+	printf("Error, too many elements, need to increase array size\n");
+	exit(-1);
+    } else {
+	printf("    Expecting %d elements\n", tricount);
+    }
+
+    for ( i = 1; i <= tricount; i++ ) {
+	fscanf(ele, "%d %d %d %d\n", &junk1, 
+	       &tris[i][0], &tris[i][1], &tris[i][2]);
+	// printf("%d %d %d %d\n", junk1, tris[i][0], tris[i][1], tris[i][2]);*/
+    }
+
+    fclose(ele);
+}
+
+
+// dump in WaveFront .obj format
+void dump_obj(char *basename) {
+    char objname[256];
+    double n1[3], n2[3], n3[3], n4[3], n5[3], norm[3], temp;
+    FILE *obj;
+    int i, t1, t2, t3, t4, t5, count;
+    double x, y, z;
+
+    strcpy(objname, basename);
+    strcat(objname, ".obj");
+
+    printf("Dumping to file:  %s ...\n", objname);
+
+    obj = fopen(objname, "w");
+
+    // dump vertices
+    printf("  writing vertices\n");
+    for ( i = 1; i <= nodecount; i++ ) {
+	x = nodes[i].x();
+	y = nodes[i].y();
+	z = nodes[i].z();
+	fprintf(obj, "v %.6f %.6f %.6f\n", x, y, z);
+    }
+
+    printf("  calculating and writing normals\n");
+    printf("  First %d normals taken from shared files.\n", normalcount);
+						     
+    // calculate and generate normals
+    for ( i = 1; i <= nodecount; i++ ) {
+
+	if ( i <= normalcount ) {
+	    // use precalculated (shared) normal
+	    norm[0] = normals[i-1][0];
+	    norm[1] = normals[i-1][1];
+	    norm[2] = normals[i-1][2];
+	} else {
+	    // printf("Finding normal\n");
+
+	    find_tris(i, &t1, &t2, &t3, &t4, &t5);
+
+	    n1[0] = n1[1] = n1[2] = 0.0;
+	    n2[0] = n2[1] = n2[2] = 0.0;
+	    n3[0] = n3[1] = n3[2] = 0.0;
+	    n4[0] = n4[1] = n4[2] = 0.0;
+	    n5[0] = n5[1] = n5[2] = 0.0;
+
+	    count = 1;
+	    calc_normal(nodes[tris[t1][0]], nodes[tris[t1][1]], 
+			nodes[tris[t1][2]], n1);
+
+	    if ( t2 > 0 ) {
+		calc_normal(nodes[tris[t2][0]], nodes[tris[t2][1]], 
+			    nodes[tris[t2][2]], n2);
+		count = 2;
+	    }
+
+	    if ( t3 > 0 ) {
+		calc_normal(nodes[tris[t3][0]], nodes[tris[t3][1]],
+			    nodes[tris[t3][2]], n3);
+		count = 3;
+	    }
+
+	    if ( t4 > 0 ) {
+		calc_normal(nodes[tris[t4][0]], nodes[tris[t4][1]],
+			    nodes[tris[t4][2]], n4);
+		count = 4;
+	    }
+
+	    if ( t5 > 0 ) {
+		calc_normal(nodes[tris[t5][0]], nodes[tris[t5][1]],
+			    nodes[tris[t5][2]], n5);
+		count = 5;
+	    }
+
+	    // printf("  norm[2] = %.2f %.2f %.2f\n", n1[2], n2[2], n3[2]);
+
+	    norm[0] = ( n1[0] + n2[0] + n3[0] + n4[0] + n5[0] ) / (double)count;
+	    norm[1] = ( n1[1] + n2[1] + n3[1] + n4[1] + n5[1] ) / (double)count;
+	    norm[2] = ( n1[2] + n2[2] + n3[2] + n4[2] + n5[2] ) / (double)count;
+	
+	    // 	printf("  count = %d\n", count);
+	    // 	printf("  Ave. normal = %.4f %.4f %.4f\n", 
+	    //         norm[0], norm[1], norm[2]);*/
+	    MAT3_NORMALIZE_VEC(norm, temp);
+	    // 	printf("  Normalized ave. normal = %.4f %.4f %.4f\n", 
+	    // 	       norm[0], norm[1], norm[2]);
+	}
+	// printf("%d vn %.4f %.4f %.4f\n", i, norm[0], norm[1], norm[2]);
+	fprintf(obj, "vn %.4f %.4f %.4f\n", norm[0], norm[1], norm[2]);
+    }
+
+    // dump faces
+    printf("  writing faces\n");
+    for ( i = 1; i <= tricount; i++ ) {
+	fprintf(obj, "f %d %d %d\n", tris[i][0], tris[i][1], tris[i][2]);
+    }
+
+    fclose(obj);
+}
+
+int main(int argc, char **argv) {
+    char basename[256], basepath[256], temp[256];
+    long int tmp_index;
+    int len;
+
+    strcpy(basename, argv[1]);
+
+    // find the base path of the file
+    extract_path(basename, basepath);
+    extract_path(basepath, basepath);
+    extract_path(basepath, basepath);
+    printf("%s\n", basepath);
+
+    // find the index of the current file
+    extract_file(basename, temp);
+    len = strlen(temp);
+    if ( len >= 2 ) {
+	temp[len-2] = '\0';
+    }
+    tmp_index = atoi(temp);
+    printf("%ld\n", tmp_index);
+    fgBucketParseIndex(tmp_index, &my_index);
+
+    printf("bucket = %d %d %d %d\n", 
+	   my_index.lon, my_index.lat, my_index.x, my_index.y);
+    // generate the indexes of the neighbors
+    fgBucketOffset(&my_index, &ne_index,  1,  1);
+    fgBucketOffset(&my_index, &nw_index, -1,  1);
+    fgBucketOffset(&my_index, &se_index,  1, -1);
+    fgBucketOffset(&my_index, &sw_index, -1, -1);
+
+    fgBucketOffset(&my_index, &north_index,  0,  1);
+    fgBucketOffset(&my_index, &south_index,  0, -1);
+    fgBucketOffset(&my_index, &east_index,  1,  0);
+    fgBucketOffset(&my_index, &west_index, -1,  0);
+
+    // load the input data files
+    triload(basename, basepath);
+
+    // dump in WaveFront .obj format
+    dump_obj(basename);
+
+    return(0);
+}
+
+
+// $Log$
+// Revision 1.5  1998/10/21 14:56:50  curt
+// Minor parameter passing tweak.
+//
+// Revision 1.4  1998/10/20 15:52:46  curt
+// Fixed a units conversion bug introduced when converting to Point3D class.
+//
+// Revision 1.3  1998/10/19 19:33:31  curt
+// C++-ification.
+//
+// Revision 1.2  1998/10/18 01:17:29  curt
+// Point3D tweaks.
+//
+// Revision 1.1  1998/07/08 14:54:53  curt
+// renamed *.[ch] to *.[ch]xx
+//
+// Revision 1.17  1998/07/04 00:56:40  curt
+// typedef'd struct fgBUCKET.
+//
+// Revision 1.16  1998/05/23 15:20:41  curt
+// Output more digits after the decimal place.
+//
+// Revision 1.15  1998/05/02 01:54:39  curt
+// Converting to polar3d.h routines.
+//
+// Revision 1.14  1998/04/18 04:01:32  curt
+// Now use libMath rather than having local copies of math routines.
+//
+// Revision 1.13  1998/04/14 02:26:11  curt
+// Code reorganizations.  Added a Lib/ directory for more general libraries.
+//
+// Revision 1.12  1998/04/08 23:22:18  curt
+// Adopted Gnu automake/autoconf system.
+//
+// Revision 1.11  1998/03/03 16:01:00  curt
+// More c++ compile tweaks.
+//
+// Revision 1.10  1998/01/31 00:41:27  curt
+// Made a few changes converting floats to doubles.
+//
+// Revision 1.9  1998/01/27 18:37:04  curt
+// Lots of updates to get back in sync with changes made over in .../Src/
+//
+// Revision 1.8  1998/01/17 01:25:39  curt
+// Added support for shared normals.
+//
+// Revision 1.7  1998/01/12 02:42:00  curt
+// Average up to five triangles per vertex instead of three.
+//
+// Revision 1.6  1998/01/09 23:03:15  curt
+// Restructured to split 1deg x 1deg dem's into 64 subsections.
+//
+// Revision 1.5  1997/12/08 19:17:50  curt
+// Fixed a type in the normal generation code.
+//
+// Revision 1.4  1997/12/02 13:13:32  curt
+// Fixed problem with averaged vertex normals.
+//
+// Revision 1.3  1997/11/15 18:05:05  curt
+// minor tweaks ...
+//
+// Revision 1.2  1997/11/14 00:29:13  curt
+// Transform scenery coordinates at this point in pipeline when scenery is
+// being translated to .obj format, not when it is being loaded into the end
+// renderer.  Precalculate normals for each node as average of the normals
+// of each containing polygon so Garoude shading is now supportable.
+//
+// Revision 1.1  1997/10/29 23:05:15  curt
+// Initial revision.
+//
+
diff --git a/Tools/Tri2obj/tri2obj.hxx b/Tools/Tri2obj/tri2obj.hxx
new file mode 100644
index 000000000..c7a54d159
--- /dev/null
+++ b/Tools/Tri2obj/tri2obj.hxx
@@ -0,0 +1,68 @@
+/* tri2obj.h -- read in a .ele/.node file pair generated by the triangle 
+ *              program and output a Wavefront .obj file.
+ *
+ * Written by Curtis Olson, started October 1997.
+ *
+ * Copyright (C) 1997  Curtis L. Olson  - curt@infoplane.com
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * $Id$
+ * (Log is kept at end of this file)
+ */
+
+
+#ifndef TRI2OBJ_H
+#define TRI2OBJ_H
+
+
+#include <stdio.h>
+#include <string.h>
+
+
+#define MAX_NODES 200000
+#define MAX_TRIS  400000
+
+
+/* Initialize a new mesh structure */
+void triload(char *basename, char *basepath);
+
+
+#endif /* TRI2OBJ_H */
+
+
+/* $Log$
+/* Revision 1.1  1998/07/08 14:54:54  curt
+/* renamed *.[ch] to *.[ch]xx
+/*
+ * Revision 1.5  1998/03/03 16:01:00  curt
+ * More c++ compile tweaks.
+ *
+ * Revision 1.4  1998/01/17 01:25:40  curt
+ * Added support for shared normals.
+ *
+ * Revision 1.3  1997/11/15 18:05:06  curt
+ * minor tweaks ...
+ *
+ * Revision 1.2  1997/11/14 00:29:13  curt
+ * Transform scenery coordinates at this point in pipeline when scenery is
+ * being translated to .obj format, not when it is being loaded into the end
+ * renderer.  Precalculate normals for each node as average of the normals
+ * of each containing polygon so Garoude shading is now supportable.
+ *
+ * Revision 1.1  1997/10/29 23:05:15  curt
+ * Initial revision.
+ *
+ */
diff --git a/Tools/Triangle/A.poly b/Tools/Triangle/A.poly
new file mode 100644
index 000000000..166a71773
--- /dev/null
+++ b/Tools/Triangle/A.poly
@@ -0,0 +1,62 @@
+29 2 1 0
+1 0.200000 -0.776400 -0.57
+2 0.220000 -0.773200 -0.55
+3 0.245600 -0.756400 -0.51
+4 0.277600 -0.702000 -0.53
+5 0.488800 -0.207600 0.28
+6 0.504800 -0.207600 0.30
+7 0.740800 -0.739600 0
+8 0.756000 -0.761200 -0.01
+9 0.774400 -0.772400 0
+10 0.800000 -0.776400 0.02
+11 0.800000 -0.792400 0.01
+12 0.579200 -0.792400 -0.21
+13 0.579200 -0.776400 -0.2
+14 0.621600 -0.771600 -0.15
+15 0.633600 -0.762800 -0.13
+16 0.639200 -0.744400 -0.1
+17 0.620800 -0.684400 -0.06
+18 0.587200 -0.604400 -0.01
+19 0.360800 -0.604400 -0.24
+20 0.319200 -0.706800 -0.39
+21 0.312000 -0.739600 -0.43
+22 0.318400 -0.761200 -0.44
+23 0.334400 -0.771600 -0.44
+24 0.371200 -0.776400 -0.41
+25 0.371200 -0.792400 -0.42
+26 0.374400 -0.570000 -0.2
+27 0.574400 -0.570000 0
+28 0.473600 -0.330800 0.14
+29 0.200000 -0.792400 -0.59
+29 0
+1 29 1
+2 1 2
+3 2 3
+4 3 4
+5 4 5
+6 5 6
+7 6 7
+8 7 8
+9 8 9
+10 9 10
+11 10 11
+12 11 12
+13 12 13
+14 13 14
+15 14 15
+16 15 16
+17 16 17
+18 17 18
+19 18 19
+20 19 20
+21 20 21
+22 21 22
+23 22 23
+24 23 24
+25 24 25
+26 25 29
+27 26 27
+28 27 28
+29 28 26
+1
+1 0.47 -0.5
diff --git a/Tools/Triangle/Makefile.am b/Tools/Triangle/Makefile.am
new file mode 100644
index 000000000..caa86591b
--- /dev/null
+++ b/Tools/Triangle/Makefile.am
@@ -0,0 +1,24 @@
+# DEFS is a list of definitions used to compile an object code version
+#   of Triangle (triangle.o) to be called by another program.  The file
+#   "triangle.h" contains detailed information on how to call triangle.o.
+#
+# The -DTRILIBRARY should always be used when compiling Triangle into an
+#   object file.
+#
+# An example DEFS line is:
+#
+#   DEFS = -DTRILIBRARY -DREDUCED -DCDT_ONLY
+
+DEFS += -DTRILIBRARY
+
+noinst_LIBRARIES = libTriangle.a
+
+libTriangle_a_SOURCES = triangle.c triangle.h
+
+if HAVE_XWINDOWS
+
+bin_PROGRAMS = showme
+showme_SOURCES = showme.c
+showme_LDADD = -lX11
+
+endif
\ No newline at end of file
diff --git a/Tools/Triangle/README b/Tools/Triangle/README
new file mode 100644
index 000000000..571d5689f
--- /dev/null
+++ b/Tools/Triangle/README
@@ -0,0 +1,181 @@
+Triangle
+A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.
+Version 1.3
+
+Show Me
+A Display Program for Meshes and More.
+Version 1.3
+
+Copyright 1996 Jonathan Richard Shewchuk
+School of Computer Science
+Carnegie Mellon University
+5000 Forbes Avenue
+Pittsburgh, Pennsylvania  15213-3891
+Please send bugs and comments to jrs@cs.cmu.edu
+
+Created as part of the Archimedes project (tools for parallel FEM).
+Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.
+There is no warranty whatsoever.  Use at your own risk.
+
+
+Triangle generates exact Delaunay triangulations, constrained Delaunay
+triangulations, and quality conforming Delaunay triangulations.  The
+latter can be generated with no small angles, and are thus suitable for
+finite element analysis.  Show Me graphically displays the contents of
+the geometric files used by Triangle.  Show Me can also write images in
+PostScript form.
+
+Information on the algorithms used by Triangle, including complete
+references, can be found in the comments at the beginning of the triangle.c
+source file.  Another listing of these references, with PostScript copies
+of some of the papers, is available from the Web page
+
+    http://www.cs.cmu.edu/~quake/triangle.research.html
+
+------------------------------------------------------------------------------
+
+These programs may be freely redistributed under the condition that the
+copyright notices (including the copy of this notice in the code comments
+and the copyright notice printed when the `-h' switch is selected) are
+not removed, and no compensation is received.  Private, research, and
+institutional use is free.  You may distribute modified versions of this
+code UNDER THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT
+IN THE SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH
+SOURCE AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND
+CLEAR NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as
+part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT
+WITH THE AUTHOR.  (If you are not directly supplying this code to a
+customer, and you are instead telling them how they can obtain it for
+free, then you are not required to make any arrangement with me.)
+
+------------------------------------------------------------------------------
+
+The files included in this distribution are:
+
+  README           The file you're reading now.
+  triangle.c       Complete C source code for Triangle.
+  showme.c         Complete C source code for Show Me.
+  triangle.h       Include file for calling Triangle from another program.
+  tricall.c        Sample program that calls Triangle.
+  makefile         Makefile for compiling Triangle and Show Me.
+  A.poly           A sample data file.
+
+Triangle and Show Me are each a single portable C file.  The easiest way to
+compile them is to edit and use the included makefile.  Before compiling,
+read the makefile, which describes your options, and edit it accordingly.
+You should specify:
+
+  The source and binary directories.
+
+  The C compiler and level of optimization.
+
+  Do you want single precision or double?  Do you want to leave out some of
+  Triangle's features to reduce the size of the executable file?
+
+  The "correct" directories for include files (especially X include files),
+  if necessary.
+
+Once you've done this, type "make" to compile the programs.  Alternatively,
+the files are usually easy to compile without a makefile:
+
+  cc -O -o triangle triangle.c -lm
+  cc -O -o showme showme.c -lX11
+
+On some systems, the C compiler won't be able to find the X include files
+or libraries, and you'll need to specify an include path or library path:
+
+  cc -O -I/usr/local/include -o showme showme.c -L/usr/local/lib -lX11
+
+However, on other systems (like my workstation), the latter incantation
+will cause the wrong files to be read, and the Show Me mouse buttons won't
+work properly in the main window.  Hence, try the "-I" and "-L" switches
+ONLY if the compiler fails without it.  (If you're using the makefile, you
+may edit it to add this switch.)
+
+Some processors, possibly including Intel x86 family and Motorola 68xxx
+family chips, are IEEE conformant but have extended length internal
+floating-point registers that may defeat Triangle's exact arithmetic
+routines by failing to cause enough roundoff error!  Typically, there is
+a way to set these internal registers so that they are rounded off to
+IEEE single or double precision format.  If you have such a processor,
+you should check your C compiler or system manuals to find out how to
+configure these internal registers to the precision you are using.
+Otherwise, the exact arithmetic routines won't be exact at all.
+Unfortunately, I don't have access to any such systems, and can't give
+advice on how to configure them.  These problems don't occur on any
+workstations I am aware of.  However, Triangle's exact arithmetic hasn't
+a hope of working on machines like the Cray C90 or Y-MP, which are not
+IEEE conformant and have inaccurate rounding.
+
+Triangle and Show Me both produce their own documentation.  Complete
+instructions are printed by invoking each program with the `-h' switch:
+
+  triangle -h
+  showme -h
+
+The instructions are long; you'll probably want to pipe the output to
+`more' or `lpr' or redirect it to a file.  Both programs give a short list
+of command line options if they are invoked without arguments (that is,
+just type `triangle' or `showme').  Alternatively, you may want to read
+the instructions on the World Wide Web.  The appropriate URLs are:
+
+  http://www.cs.cmu.edu/~quake/triangle.html
+  http://www.cs.cmu.edu/~quake/showme.html
+
+Try out Triangle on the enclosed sample file, A.poly:
+
+  triangle -p A
+  showme A.poly &
+
+Triangle will read the Planar Straight Line Graph defined by A.poly, and
+write its constrained Delaunay triangulation to A.1.node and A.1.ele.
+Show Me will display the figure defined by A.poly.  There are two buttons
+marked "ele" in the Show Me window; click on the top one.  This will cause
+Show Me to load and display the triangulation.
+
+For contrast, try running
+
+  triangle -pq A
+
+Now, click on the same "ele" button.  A new triangulation will be loaded;
+this one having no angles smaller than 20 degrees.
+
+To see a Voronoi diagram, try this:
+
+  cp A.poly A.node
+  triangle -v A
+
+Click the "ele" button again.  You will see the Delaunay triangulation of
+the points in A.poly, without the segments.  Now click the top "voro" button.
+You will see the Voronoi diagram corresponding to that Delaunay triangulation.
+Click the "Reset" button to see the full extent of the diagram.
+
+------------------------------------------------------------------------------
+
+If you wish to call Triangle from another program, instructions for doing
+so are contained in the file `triangle.h' (but read Triangle's regular
+instructions first!).  Also look at `tricall.c', which provides an example.
+
+Type "make trilibrary" to create triangle.o, a callable object file.
+Alternatively, the object file is usually easy to compile without a
+makefile:
+
+  cc -DTRILIBRARY -O -c triangle.c
+
+------------------------------------------------------------------------------
+
+If you use Triangle, and especially if you use it to accomplish real
+work, I would like very much to hear from you.  A short letter or email
+(to jrs@cs.cmu.edu) describing how you use Triangle will mean a lot to
+me.  The more people I know are using this program, the more easily I can
+justify spending time on improvements and on the three-dimensional
+successor to Triangle, which in turn will benefit you.  Also, I can put
+you on a list to receive email whenever a new version of Triangle is
+available.
+
+If you use a mesh generated by Triangle or plotted by Show Me in a
+publication, please include an acknowledgment as well.
+
+
+Jonathan Richard Shewchuk
+July 20, 1996
diff --git a/Tools/Triangle/showme.c b/Tools/Triangle/showme.c
new file mode 100644
index 000000000..722cba8ac
--- /dev/null
+++ b/Tools/Triangle/showme.c
@@ -0,0 +1,3384 @@
+/*****************************************************************************/
+/*                                                                           */
+/*    ,d88^^o 888                                   o    o                   */
+/*    8888    888o^88,  o88^^o Y88b    o    /      d8b  d8b      o88^^8o     */
+/*    "Y88b   888  888 d888   b Y88b  d8b  /      d888bdY88b    d888  88b    */
+/*     "Y88b, 888  888 8888   8  Y888/Y88b/      / Y88Y Y888b   8888oo888    */
+/*    o  8888 888  888 q888   p   Y8/  Y8/      /   YY   Y888b  q888         */
+/*    "oo88P" 888  888  "88oo"     Y    Y      /          Y888b  "88oooo"    */
+/*                                                                           */
+/*  A Display Program for Meshes and More.                                   */
+/*  (showme.c)                                                               */
+/*                                                                           */
+/*  Version 1.3                                                              */
+/*  July 20, 1996                                                            */
+/*                                                                           */
+/*  Copyright 1996                                                           */
+/*  Jonathan Richard Shewchuk                                                */
+/*  School of Computer Science                                               */
+/*  Carnegie Mellon University                                               */
+/*  5000 Forbes Avenue                                                       */
+/*  Pittsburgh, Pennsylvania  15213-3891                                     */
+/*  jrs@cs.cmu.edu                                                           */
+/*                                                                           */
+/*  This program may be freely redistributed under the condition that the    */
+/*    copyright notices (including this entire header and the copyright      */
+/*    notice printed when the `-h' switch is selected) are not removed, and  */
+/*    no compensation is received.  Private, research, and institutional     */
+/*    use is free.  You may distribute modified versions of this code UNDER  */
+/*    THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE   */
+/*    SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE   */
+/*    AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR    */
+/*    NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as    */
+/*    part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT  */
+/*    WITH THE AUTHOR.  (If you are not directly supplying this code to a    */
+/*    customer, and you are instead telling them how they can obtain it for  */
+/*    free, then you are not required to make any arrangement with me.)      */
+/*                                                                           */
+/*  Hypertext instructions for Triangle are available on the Web at          */
+/*                                                                           */
+/*      http://www.cs.cmu.edu/~quake/showme.html                             */
+/*                                                                           */
+/*  Show Me was created as part of the Archimedes project in the School of   */
+/*    Computer Science at Carnegie Mellon University.  Archimedes is a       */
+/*    system for compiling parallel finite element solvers.  For further     */
+/*    information, see Anja Feldmann, Omar Ghattas, John R. Gilbert, Gary L. */
+/*    Miller, David R. O'Hallaron, Eric J. Schwabe, Jonathan R. Shewchuk,    */
+/*    and Shang-Hua Teng.  "Automated Parallel Solution of Unstructured PDE  */
+/*    Problems."  To appear in Communications of the ACM, we hope.           */
+/*                                                                           */
+/*  If you make any improvements to this code, please please please let me   */
+/*    know, so that I may obtain the improvements.  Even if you don't change */
+/*    the code, I'd still love to hear what it's being used for.             */
+/*                                                                           */
+/*  Disclaimer:  Neither I nor Carnegie Mellon warrant this code in any way  */
+/*    whatsoever.  Use at your own risk.                                     */
+/*                                                                           */
+/*****************************************************************************/
+
+/* For single precision (which will save some memory and reduce paging),     */
+/*   write "#define SINGLE" below.                                           */
+/*                                                                           */
+/* For double precision (which will allow you to display triangulations of   */
+/*   a finer resolution), leave SINGLE undefined.                            */
+
+/* #define SINGLE */
+
+#ifdef SINGLE
+#define REAL float
+#else
+#define REAL double
+#endif
+
+/* Maximum number of characters in a file name (including the null).         */
+
+#define FILENAMESIZE 1024
+
+/* Maximum number of characters in a line read from a file (including the    */
+/*   null).                                                                  */
+
+#define INPUTLINESIZE 512
+
+#define STARTWIDTH 414
+#define STARTHEIGHT 414
+#define MINWIDTH 50
+#define MINHEIGHT 50
+#define BUTTONHEIGHT 21
+#define BUTTONROWS 3
+#define PANELHEIGHT (BUTTONHEIGHT * BUTTONROWS)
+#define MAXCOLORS 64
+
+#define IMAGE_TYPES 7
+#define NOTHING -1
+#define NODE 0
+#define POLY 1
+#define ELE 2
+#define EDGE 3
+#define PART 4
+#define ADJ 5
+#define VORO 6
+
+#define STARTEXPLOSION 0.5
+
+#include <stdio.h>
+#include <string.h>
+#include <X11/Xlib.h>
+#include <X11/Xutil.h>
+#include <X11/Xatom.h>
+
+/* The following obscenity seems to be necessary to ensure that this program */
+/* will port to Dec Alphas running OSF/1, because their stdio.h file commits */
+/* the unpardonable sin of including stdlib.h.  Hence, malloc(), free(), and */
+/* exit() may or may not already be defined at this point.  I declare these  */
+/* functions explicitly because some non-ANSI C compilers lack stdlib.h.     */
+
+#ifndef _STDLIB_H_
+extern char *malloc();
+extern void free();
+extern void exit();
+extern double strtod();
+extern long strtol();
+#endif
+
+/* A necessary forward declaration.                                          */
+
+int load_image();
+
+Display *display;
+int screen;
+Window rootwindow;
+Window mainwindow;
+Window quitwin;
+Window leftwin;
+Window rightwin;
+Window upwin;
+Window downwin;
+Window resetwin;
+Window pswin;
+Window epswin;
+Window expwin;
+Window exppluswin;
+Window expminuswin;
+Window widthpluswin;
+Window widthminuswin;
+Window versionpluswin;
+Window versionminuswin;
+Window fillwin;
+Window nodewin[2];
+Window polywin[2];
+Window elewin[2];
+Window edgewin[2];
+Window partwin[2];
+Window adjwin[2];
+Window voronoiwin[2];
+
+int windowdepth;
+XEvent event;
+Colormap rootmap;
+XFontStruct *font;
+int width, height;
+int black, white;
+int showme_foreground;
+GC fontgc;
+GC blackfontgc;
+GC linegc;
+GC trianglegc;
+int colors[MAXCOLORS];
+XColor rgb[MAXCOLORS];
+int color;
+
+int start_image, current_image;
+int start_inc, current_inc;
+int loweriteration;
+int line_width;
+int loaded[2][IMAGE_TYPES];
+REAL xlo[2][IMAGE_TYPES], ylo[2][IMAGE_TYPES];
+REAL xhi[2][IMAGE_TYPES], yhi[2][IMAGE_TYPES];
+REAL xscale, yscale;
+REAL xoffset, yoffset;
+int zoom;
+
+int nodes[2], node_dim[2];
+REAL *nodeptr[2];
+int polynodes[2], poly_dim[2], polyedges[2], polyholes[2];
+REAL *polynodeptr[2], *polyholeptr[2];
+int *polyedgeptr[2];
+int elems[2], ele_corners[2];
+int *eleptr[2];
+int edges[2];
+int *edgeptr[2];
+REAL *normptr[2];
+int subdomains[2];
+int *partpart[2];
+REAL *partcenter[2], *partshift[2];
+int adjsubdomains[2];
+int *adjptr[2];
+int vnodes[2], vnode_dim[2];
+REAL *vnodeptr[2];
+int vedges[2];
+int *vedgeptr[2];
+REAL *vnormptr[2];
+int firstnumber[2];
+
+int quiet, fillelem, bw_ps, explode;
+REAL explosion;
+
+char filename[FILENAMESIZE];
+char nodefilename[2][FILENAMESIZE];
+char polyfilename[2][FILENAMESIZE];
+char elefilename[2][FILENAMESIZE];
+char edgefilename[2][FILENAMESIZE];
+char partfilename[2][FILENAMESIZE];
+char adjfilename[2][FILENAMESIZE];
+char vnodefilename[2][FILENAMESIZE];
+char vedgefilename[2][FILENAMESIZE];
+
+char *colorname[] = {"aquamarine", "red", "green yellow", "magenta",
+                     "yellow", "green", "orange", "blue",
+                     "white", "sandy brown", "cyan", "moccasin",
+                     "cadet blue", "coral", "cornflower blue", "sky blue",
+                     "firebrick", "forest green", "gold", "goldenrod",
+                     "gray", "hot pink", "chartreuse", "pale violet red",
+                     "indian red", "khaki", "lavender", "light blue",
+                     "light gray", "light steel blue", "lime green", "azure",
+                     "maroon", "medium aquamarine", "dodger blue", "honeydew",
+                     "medium orchid", "medium sea green", "moccasin",
+                     "medium slate blue", "medium spring green",
+                     "medium turquoise", "medium violet red",
+                     "orange red", "chocolate", "light goldenrod",
+                     "orchid", "pale green", "pink", "plum",
+                     "purple", "salmon", "sea green",
+                     "sienna", "slate blue", "spring green",
+                     "steel blue", "tan", "thistle", "turquoise",
+                     "violet", "violet red", "wheat",
+                     "yellow green"};
+
+void syntax()
+{
+  printf("showme [-bfw_Qh] input_file\n");
+  printf("    -b  Black and white PostScript (default is color).\n");
+  printf("    -f  Fill triangles of partitioned mesh with color.\n");
+  printf("    -w  Set line width to some specified number.\n");
+  printf("    -Q  Quiet:  No terminal output except errors.\n");
+  printf("    -h  Help:  Detailed instructions for Show Me.\n");
+  exit(0);
+}
+
+void info()
+{
+  printf("Show Me\n");
+  printf("A Display Program for Meshes and More.\n");
+  printf("Version 1.3\n\n");
+  printf(
+"Copyright 1996 Jonathan Richard Shewchuk  (bugs/comments to jrs@cs.cmu.edu)\n"
+);
+  printf("School of Computer Science / Carnegie Mellon University\n");
+  printf("5000 Forbes Avenue / Pittsburgh, Pennsylvania  15213-3891\n");
+  printf(
+"Created as part of the Archimedes project (tools for parallel FEM).\n");
+  printf(
+"Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n");
+  printf("There is no warranty whatsoever.  Use at your own risk.\n");
+#ifdef SINGLE
+  printf("This executable is compiled for single precision arithmetic.\n\n\n");
+#else
+  printf("This executable is compiled for double precision arithmetic.\n\n\n");
+#endif
+  printf(
+"Show Me graphically displays the contents of geometric files, especially\n");
+  printf(
+"those generated by Triangle, my two-dimensional quality mesh generator and\n"
+);
+  printf(
+"Delaunay triangulator.  Show Me can also write images in PostScript form.\n");
+  printf(
+"Show Me is also useful for checking the consistency of the files you create\n"
+);
+  printf(
+"as input to Triangle; Show Me does these checks more thoroughly than\n");
+  printf("Triangle does.  The command syntax is:\n\n");
+  printf("showme [-bfw_Qh] input_file\n\n");
+  printf(
+"The underscore indicates that a number should follow the -w switch.\n");
+  printf(
+"input_file may be one of several types of file.  It must have extension\n");
+  printf(
+".node, .poly, .ele, .edge, .part, or .adj.  If no extension is provided,\n");
+  printf(
+"Show Me will assume the extension .ele.  A .node file represents a set of\n");
+  printf(
+"points; a .poly file represents a Planar Straight Line Graph; an .ele file\n"
+);
+  printf(
+"(coupled with a .node file) represents the elements of a mesh or the\n");
+  printf(
+"triangles of a triangulation; an .edge file (coupled with a .node file)\n");
+  printf(
+"represents a set of edges; a .part file specifies a partition of a mesh;\n");
+  printf(
+"and a .adj file represents the adjacency graph defined by a partition.\n");
+  printf("\n");
+  printf("Command Line Switches:\n");
+  printf("\n");
+  printf(
+"    -b  Makes all PostScript output black and white.  If this switch is not\n"
+);
+  printf(
+"        selected, color PostScript is used for partitioned meshes and\n");
+  printf("        adjacency graphs (.part and .adj files).\n");
+  printf(
+"    -f  On color displays and in color PostScript, displays partitioned\n");
+  printf(
+"        meshes by filling triangles with color, rather than by coloring the\n"
+);
+  printf(
+"        edges.  This switch will result in a clearer picture if all\n");
+  printf(
+"        triangles are reasonably large, and a less clear picture if small\n");
+  printf(
+"        triangles are present.  (There is also a button to toggle this\n");
+  printf("        behavior.)\n");
+  printf(
+"    -w  Followed by an integer, specifies the line width used in all\n");
+  printf(
+"        images.  (There are also buttons to change the line width.)\n");
+  printf(
+"    -Q  Quiet:  Suppresses all explanation of what Show Me is doing, unless\n"
+);
+  printf("        an error occurs.\n");
+  printf("    -h  Help:  Displays these instructions.\n");
+  printf("\n");
+  printf("Controls:\n");
+  printf("\n");
+  printf(
+"  To zoom in on an image, point at the location where you want a closer\n");
+  printf(
+"  look, and click the left mouse button.  To zoom out, click the right\n");
+  printf(
+"  mouse button.  In either case, the point you click on will be centered in\n"
+);
+  printf(
+"  the window.  If you want to know the coordinates of a point, click the\n");
+  printf(
+"  middle mouse button; the coordinates will be printed on the terminal you\n"
+);
+  printf("  invoked Show Me from.\n\n");
+  printf(
+"  If you resize the window, the image will grow or shrink to match.\n");
+  printf("\n");
+  printf(
+"  There is a panel of control buttons at the bottom of the Show Me window:\n"
+);
+  printf("\n");
+  printf("  Quit:  Shuts down Show Me.\n");
+  printf("  <, >, ^, v:  Moves the image in the indicated direction.\n");
+  printf(
+"  Reset: Unzooms and centers the image in the window.  When you switch from\n"
+);
+  printf(
+"    one image to another, the viewing region does not change, so you may\n");
+  printf(
+"    need to reset the new image to make it fully visible.  This often is\n");
+  printf(
+"    the case when switching between Delaunay triangulations and their\n");
+  printf(
+"    corresponding Voronoi diagrams, as Voronoi vertices can be far from the\n"
+);
+  printf("    initial point set.\n");
+  printf(
+"  Width+, -:  Increases or decreases the width of all lines and points.\n");
+  printf(
+"  Exp, +, -:  These buttons appear only when you are viewing a partitioned\n"
+);
+  printf(
+"    mesh (.part file).  `Exp' toggles between an exploded and non-exploded\n"
+);
+  printf(
+"    image of the mesh.  The non-exploded image will not show the partition\n"
+);
+  printf(
+"    on a black and white monitor.  `+' and `-' allow you to adjust the\n");
+  printf(
+"    spacing between pieces of the mesh to better distinguish them.\n");
+  printf(
+"  Fill:  This button appears only when you are viewing a partitioned mesh\n");
+  printf(
+"    (.part file).  It toggles between color-filled triangles and colored\n");
+  printf(
+"    edges (as the -f switch does).  Filled triangles look better when all\n");
+  printf(
+"    triangles are reasonably large; colored edges look better when there\n");
+  printf("    are very small triangles present.\n");
+  printf(
+"  PS:  Creates a PostScript file containing the image you are viewing.  If\n"
+);
+  printf(
+"    the -b switch is selected, all PostScript output will be black and\n");
+  printf(
+"    white; otherwise, .part.ps and .adj.ps files will be color, independent\n"
+);
+  printf(
+"    of whether you are using a color monitor.  Normally the output will\n");
+  printf(
+"    preserve the properties of the image you see on the screen, including\n");
+  printf(
+"    zoom and line width; however, if black and white output is selected (-b\n"
+);
+  printf(
+"    switch), partitioned meshes will always be drawn exploded.  The output\n"
+);
+  printf(
+"    file name depends on the image being viewed.  If you want several\n");
+  printf(
+"    different snapshots (zooming in on different parts) of the same object,\n"
+);
+  printf(
+"    you'll have to rename each file after Show Me creates it so that it\n");
+  printf("    isn't overwritten by the next snapshot.\n");
+  printf(
+"  EPS:  Creates an encapsulated PostScript file, suitable for inclusion in\n"
+);
+  printf(
+"    documents.  Otherwise, this button is just like the PS button.  (The\n");
+  printf(
+"    main difference is that .eps files lack a `showpage' command at the\n");
+  printf("    end.)\n\n");
+  printf(
+"  There are two nearly-identical rows of buttons that load different images\n"
+);
+  printf("  from disk.  Each row contains the following buttons:\n\n");
+  printf("  node:  Loads a .node file.\n");
+  printf(
+"  poly:  Loads a .poly file (and possibly an associated .node file).\n");
+  printf("  ele:  Loads an .ele file (and associated .node file).\n");
+  printf("  edge:  Loads an .edge file (and associated .node file).\n");
+  printf(
+"  part:  Loads a .part file (and associated .node and .ele files).\n");
+  printf(
+"  adj:  Loads an .adj file (and associated .node, .ele, and .part files).\n");
+  printf("  voro:  Loads a .v.node and .v.edge file for a Voronoi diagram.\n");
+  printf("\n");
+  printf(
+"  Each row represents a different iteration number of the geometry files.\n");
+  printf(
+"  For a full explanation of iteration numbers, read the instructions for\n");
+  printf(
+"  Triangle.  Briefly, iteration numbers are used to allow a user to easily\n"
+);
+  printf(
+"  represent a sequence of related triangulations.  Iteration numbers are\n");
+  printf(
+"  used in the names of geometry files; for instance, mymesh.3.ele is a\n");
+  printf(
+"  triangle file with iteration number three, and mymesh.ele has an implicit\n"
+);
+  printf("  iteration number of zero.\n\n");
+  printf(
+"  The control buttons at the right end of each row display the two\n");
+  printf(
+"  iterations currently under view.  These buttons can be clicked to\n");
+  printf(
+"  increase or decrease the iteration numbers, and thus conveniently view\n");
+  printf("  a sequence of meshes.\n\n");
+  printf(
+"  Show Me keeps each file in memory after loading it, but you can force\n");
+  printf(
+"  Show Me to reread a set of files (for one iteration number) by reclicking\n"
+);
+  printf(
+"  the button that corresponds to the current image.  This is convenient if\n"
+);
+  printf("  you have changed a geometry file.\n\n");
+  printf("File Formats:\n\n");
+  printf(
+"  All files may contain comments prefixed by the character '#'.  Points,\n");
+  printf(
+"  segments, holes, triangles, edges, and subdomains must be numbered\n");
+  printf(
+"  consecutively, starting from either 1 or 0.  Whichever you choose, all\n");
+  printf(
+"  input files must be consistent (for any single iteration number); if the\n"
+);
+  printf(
+"  nodes are numbered from 1, so must be all other objects.  Show Me\n");
+  printf(
+"  automatically detects your choice while reading a .node (or .poly) file.\n"
+);
+  printf("  Examples of these file formats are given below.\n\n");
+  printf("  .node files:\n");
+  printf(
+"    First line:  <# of points> <dimension (must be 2)> <# of attributes>\n");
+  printf(
+"                                           <# of boundary markers (0 or 1)>\n"
+);
+  printf(
+"    Remaining lines:  <point #> <x> <y> [attributes] [boundary marker]\n");
+  printf("\n");
+  printf(
+"    The attributes, which are typically floating-point values of physical\n");
+  printf(
+"    quantities (such as mass or conductivity) associated with the nodes of\n"
+);
+  printf(
+"    a finite element mesh, are ignored by Show Me.  Show Me also ignores\n");
+  printf(
+"    boundary markers.  See the instructions for Triangle to find out what\n");
+  printf("    attributes and boundary markers are.\n\n");
+  printf("  .poly files:\n");
+  printf(
+"    First line:  <# of points> <dimension (must be 2)> <# of attributes>\n");
+  printf(
+"                                           <# of boundary markers (0 or 1)>\n"
+);
+  printf(
+"    Following lines:  <point #> <x> <y> [attributes] [boundary marker]\n");
+  printf("    One line:  <# of segments> <# of boundary markers (0 or 1)>\n");
+  printf(
+"    Following lines:  <segment #> <endpoint> <endpoint> [boundary marker]\n");
+  printf("    One line:  <# of holes>\n");
+  printf("    Following lines:  <hole #> <x> <y>\n");
+  printf("    [Optional additional lines that are ignored]\n\n");
+  printf(
+"    A .poly file represents a Planar Straight Line Graph (PSLG), an idea\n");
+  printf(
+"    familiar to computational geometers.  By definition, a PSLG is just a\n");
+  printf(
+"    list of points and edges.  A .poly file also contains some additional\n");
+  printf("    information.\n\n");
+  printf(
+"    The first section lists all the points, and is identical to the format\n"
+);
+  printf(
+"    of .node files.  <# of points> may be set to zero to indicate that the\n"
+);
+  printf(
+"    points are listed in a separate .node file; .poly files produced by\n");
+  printf(
+"    Triangle always have this format.  When Show Me reads such a file, it\n");
+  printf("    also reads the corresponding .node file.\n\n");
+  printf(
+"    The second section lists the segments.  Segments are edges whose\n");
+  printf(
+"    presence in a triangulation produced from the PSLG is enforced.  Each\n");
+  printf(
+"    segment is specified by listing the indices of its two endpoints.  This\n"
+);
+  printf(
+"    means that its endpoints must be included in the point list.  Each\n");
+  printf(
+"    segment, like each point, may have a boundary marker, which is ignored\n"
+);
+  printf("    by Show Me.\n\n");
+  printf(
+"    The third section lists holes and concavities that are desired in any\n");
+  printf(
+"    triangulation generated from the PSLG.  Holes are specified by\n");
+  printf("    identifying a point inside each hole.\n\n");
+  printf("  .ele files:\n");
+  printf(
+"    First line:  <# of triangles> <points per triangle> <# of attributes>\n");
+  printf(
+"    Remaining lines:  <triangle #> <point> <point> <point> ... [attributes]\n"
+);
+  printf("\n");
+  printf(
+"    Points are indices into the corresponding .node file.  Show Me ignores\n"
+);
+  printf(
+"    all but the first three points of each triangle; these should be the\n");
+  printf(
+"    corners listed in counterclockwise order around the triangle.  The\n");
+  printf("    attributes are ignored by Show Me.\n\n");
+  printf("  .edge files:\n");
+  printf("    First line:  <# of edges> <# of boundary markers (0 or 1)>\n");
+  printf(
+"    Following lines:  <edge #> <endpoint> <endpoint> [boundary marker]\n");
+  printf("\n");
+  printf(
+"    Endpoints are indices into the corresponding .node file.  The boundary\n"
+);
+  printf("    markers are ignored by Show Me.\n\n");
+  printf(
+"    In Voronoi diagrams, one also finds a special kind of edge that is an\n");
+  printf(
+"    infinite ray with only one endpoint.  For these edges, a different\n");
+  printf("    format is used:\n\n");
+  printf("        <edge #> <endpoint> -1 <direction x> <direction y>\n\n");
+  printf(
+"    The `direction' is a floating-point vector that indicates the direction\n"
+);
+  printf("    of the infinite ray.\n\n");
+  printf("  .part files:\n");
+  printf("    First line:  <# of triangles> <# of subdomains>\n");
+  printf("    Remaining lines:  <triangle #> <subdomain #>\n\n");
+  printf(
+"    The set of triangles is partitioned by a .part file; each triangle is\n");
+  printf("    mapped to a subdomain.\n\n");
+  printf("  .adj files:\n");
+  printf("    First line:  <# of subdomains>\n");
+  printf("    Remaining lines:  <adjacency matrix entry>\n\n");
+  printf(
+"    An .adj file represents adjacencies between subdomains (presumably\n");
+  printf("    computed by a partitioner).  The first line is followed by\n");
+  printf(
+"    (subdomains X subdomains) lines, each containing one entry of the\n");
+  printf(
+"    adjacency matrix.  A nonzero entry indicates that two subdomains are\n");
+  printf("    adjacent (share a point).\n\n");
+  printf("Example:\n\n");
+  printf(
+"  Here is a sample file `box.poly' describing a square with a square hole:\n"
+);
+  printf("\n");
+  printf(
+"    # A box with eight points in 2D, no attributes, no boundary marker.\n");
+  printf("    8 2 0 0\n");
+  printf("    # Outer box has these vertices:\n");
+  printf("     1   0 0\n");
+  printf("     2   0 3\n");
+  printf("     3   3 0\n");
+  printf("     4   3 3\n");
+  printf("    # Inner square has these vertices:\n");
+  printf("     5   1 1\n");
+  printf("     6   1 2\n");
+  printf("     7   2 1\n");
+  printf("     8   2 2\n");
+  printf("    # Five segments without boundary markers.\n");
+  printf("    5 0\n");
+  printf("     1   1 2          # Left side of outer box.\n");
+  printf("     2   5 7          # Segments 2 through 5 enclose the hole.\n");
+  printf("     3   7 8\n");
+  printf("     4   8 6\n");
+  printf("     5   6 5\n");
+  printf("    # One hole in the middle of the inner square.\n");
+  printf("    1\n");
+  printf("     1   1.5 1.5\n\n");
+  printf(
+"  After this PSLG is triangulated by Triangle, the resulting triangulation\n"
+);
+  printf(
+"  consists of a .node and .ele file.  Here is the former, `box.1.node',\n");
+  printf("  which duplicates the points of the PSLG:\n\n");
+  printf("    8  2  0  0\n");
+  printf("       1    0  0\n");
+  printf("       2    0  3\n");
+  printf("       3    3  0\n");
+  printf("       4    3  3\n");
+  printf("       5    1  1\n");
+  printf("       6    1  2\n");
+  printf("       7    2  1\n");
+  printf("       8    2  2\n");
+  printf("    # Generated by triangle -pcBev box\n");
+  printf("\n");
+  printf("  Here is the triangulation file, `box.1.ele'.\n");
+  printf("\n");
+  printf("    8  3  0\n");
+  printf("       1       1     5     6\n");
+  printf("       2       5     1     3\n");
+  printf("       3       2     6     8\n");
+  printf("       4       6     2     1\n");
+  printf("       5       7     3     4\n");
+  printf("       6       3     7     5\n");
+  printf("       7       8     4     2\n");
+  printf("       8       4     8     7\n");
+  printf("    # Generated by triangle -pcBev box\n\n");
+  printf("  Here is the edge file for the triangulation, `box.1.edge'.\n\n");
+  printf("    16  0\n");
+  printf("       1   1  5\n");
+  printf("       2   5  6\n");
+  printf("       3   6  1\n");
+  printf("       4   1  3\n");
+  printf("       5   3  5\n");
+  printf("       6   2  6\n");
+  printf("       7   6  8\n");
+  printf("       8   8  2\n");
+  printf("       9   2  1\n");
+  printf("      10   7  3\n");
+  printf("      11   3  4\n");
+  printf("      12   4  7\n");
+  printf("      13   7  5\n");
+  printf("      14   8  4\n");
+  printf("      15   4  2\n");
+  printf("      16   8  7\n");
+  printf("    # Generated by triangle -pcBev box\n");
+  printf("\n");
+  printf(
+"  Here's a file `box.1.part' that partitions the mesh into four subdomains.\n"
+);
+  printf("\n");
+  printf("    8  4\n");
+  printf("       1    3\n");
+  printf("       2    3\n");
+  printf("       3    4\n");
+  printf("       4    4\n");
+  printf("       5    1\n");
+  printf("       6    1\n");
+  printf("       7    2\n");
+  printf("       8    2\n");
+  printf("    # Generated by slice -s4 box.1\n\n");
+  printf(
+"  Here's a file `box.1.adj' that represents the resulting adjacencies.\n");
+  printf("\n");
+  printf("    4\n");
+  printf("      9\n");
+  printf("      2\n");
+  printf("      2\n");
+  printf("      0\n");
+  printf("      2\n");
+  printf("      9\n");
+  printf("      0\n");
+  printf("      2\n");
+  printf("      2\n");
+  printf("      0\n");
+  printf("      9\n");
+  printf("      2\n");
+  printf("      0\n");
+  printf("      2\n");
+  printf("      2\n");
+  printf("      9\n");
+  printf("\n");
+  printf("Display Speed:\n");
+  printf("\n");
+  printf(
+"  It is worthwhile to note that .edge files typically plot and print twice\n"
+);
+  printf(
+"  as quickly as .ele files, because .ele files cause each internal edge to\n"
+);
+  printf(
+"  be drawn twice.  For the same reason, PostScript files created from edge\n"
+);
+  printf("  sets are smaller than those created from triangulations.\n\n");
+  printf("Show Me on the Web:\n\n");
+  printf(
+"  To see an illustrated, updated version of these instructions, check out\n");
+  printf("\n");
+  printf("    http://www.cs.cmu.edu/~quake/showme.html\n");
+  printf("\n");
+  printf("A Brief Plea:\n");
+  printf("\n");
+  printf(
+"  If you use Show Me (or Triangle), and especially if you use it to\n");
+  printf(
+"  accomplish real work, I would like very much to hear from you.  A short\n");
+  printf(
+"  letter or email (to jrs@cs.cmu.edu) describing how you use Show Me (and\n");
+  printf(
+"  its sister programs) will mean a lot to me.  The more people I know\n");
+  printf(
+"  are using my programs, the more easily I can justify spending time on\n");
+  printf(
+"  improvements, which in turn will benefit you.  Also, I can put you\n");
+  printf(
+"  on a list to receive email whenever new versions are available.\n");
+  printf("\n");
+  printf(
+"  If you use a PostScript file generated by Show Me in a publication,\n");
+  printf("  please include an acknowledgment as well.\n\n");
+  exit(0);
+}
+
+void set_filenames(filename, lowermeshnumber)
+char *filename;
+int lowermeshnumber;
+{
+  char numberstring[100];
+  int i;
+
+  for (i = 0; i < 2; i++) {
+    strcpy(nodefilename[i], filename);
+    strcpy(polyfilename[i], filename);
+    strcpy(elefilename[i], filename);
+    strcpy(edgefilename[i], filename);
+    strcpy(partfilename[i], filename);
+    strcpy(adjfilename[i], filename);
+    strcpy(vnodefilename[i], filename);
+    strcpy(vedgefilename[i], filename);
+
+    if (lowermeshnumber + i > 0) {
+      sprintf(numberstring, ".%d", lowermeshnumber + i);
+      strcat(nodefilename[i], numberstring);
+      strcat(polyfilename[i], numberstring);
+      strcat(elefilename[i], numberstring);
+      strcat(edgefilename[i], numberstring);
+      strcat(partfilename[i], numberstring);
+      strcat(adjfilename[i], numberstring);
+      strcat(vnodefilename[i], numberstring);
+      strcat(vedgefilename[i], numberstring);
+    }
+
+    strcat(nodefilename[i], ".node");
+    strcat(polyfilename[i], ".poly");
+    strcat(elefilename[i], ".ele");
+    strcat(edgefilename[i], ".edge");
+    strcat(partfilename[i], ".part");
+    strcat(adjfilename[i], ".adj");
+    strcat(vnodefilename[i], ".v.node");
+    strcat(vedgefilename[i], ".v.edge");
+  }
+}
+
+void parsecommandline(argc, argv)
+int argc;
+char **argv;
+{
+  int increment;
+  int meshnumber;
+  int i, j;
+
+  quiet = 0;
+  fillelem = 0;
+  line_width = 1;
+  bw_ps = 0;
+  start_image = ELE;
+  filename[0] = '\0';
+  for (i = 1; i < argc; i++) {
+    if (argv[i][0] == '-') {
+      for (j = 1; argv[i][j] != '\0'; j++) {
+        if (argv[i][j] == 'f') {
+          fillelem = 1;
+	}
+        if (argv[i][j] == 'w') {
+          if ((argv[i][j + 1] >= '1') && (argv[i][j + 1] <= '9')) {
+            line_width = 0;
+            while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) {
+              j++;
+              line_width = line_width * 10 + (int) (argv[i][j] - '0');
+            }
+            if (line_width > 100) {
+              printf("Error:  Line width cannot exceed 100.\n");
+              line_width = 1;
+	    }
+	  }
+	}
+        if (argv[i][j] == 'b') {
+          bw_ps = 1;
+	}
+        if (argv[i][j] == 'Q') {
+          quiet = 1;
+	}
+        if ((argv[i][j] == 'h') || (argv[i][j] == 'H') ||
+            (argv[i][j] == '?')) {
+          info();
+	}
+      }
+    } else {
+      strcpy(filename, argv[i]);
+    }
+  }
+  if (filename[0] == '\0') {
+    syntax();
+  }
+  if (!strcmp(&filename[strlen(filename) - 5], ".node")) {
+    filename[strlen(filename) - 5] = '\0';
+    start_image = NODE;
+  }
+  if (!strcmp(&filename[strlen(filename) - 5], ".poly")) {
+    filename[strlen(filename) - 5] = '\0';
+    start_image = POLY;
+  }
+  if (!strcmp(&filename[strlen(filename) - 4], ".ele")) {
+    filename[strlen(filename) - 4] = '\0';
+    start_image = ELE;
+  }
+  if (!strcmp(&filename[strlen(filename) - 5], ".edge")) {
+    filename[strlen(filename) - 5] = '\0';
+    start_image = EDGE;
+  }
+  if (!strcmp(&filename[strlen(filename) - 5], ".part")) {
+    filename[strlen(filename) - 5] = '\0';
+    start_image = PART;
+  }
+  if (!strcmp(&filename[strlen(filename) - 4], ".adj")) {
+    filename[strlen(filename) - 4] = '\0';
+    start_image = ADJ;
+  }
+
+  increment = 0;
+  j = 1;
+  while (filename[j] != '\0') {
+    if ((filename[j] == '.') && (filename[j + 1] != '\0')) {
+      increment = j + 1;
+    }
+    j++;
+  }
+  meshnumber = 0;
+  if (increment > 0) {
+    j = increment;
+    do {
+      if ((filename[j] >= '0') && (filename[j] <= '9')) {
+        meshnumber = meshnumber * 10 + (int) (filename[j] - '0');
+      } else {
+        increment = 0;
+      }
+      j++;
+    } while (filename[j] != '\0');
+  }
+  if (increment > 0) {
+    filename[increment - 1] = '\0';
+  }
+
+  if (meshnumber == 0) {
+    start_inc = 0;
+    loweriteration = 0;
+  } else {
+    start_inc = 1;
+    loweriteration = meshnumber - 1;
+  }
+  set_filenames(filename, loweriteration);
+}
+
+void free_inc(inc)
+int inc;
+{
+  if (loaded[inc][NODE]) {
+    free(nodeptr[inc]);
+  }
+  if (loaded[inc][POLY]) {
+    if (polynodes[inc] > 0) {
+      free(polynodeptr[inc]);
+    }
+    free(polyedgeptr[inc]);
+    free(polyholeptr[inc]);
+  }
+  if (loaded[inc][ELE]) {
+    free(eleptr[inc]);
+  }
+  if (loaded[inc][PART]) {
+    free(partpart[inc]);
+    free(partcenter[inc]);
+    free(partshift[inc]);
+  }
+  if (loaded[inc][EDGE]) {
+    free(edgeptr[inc]);
+    free(normptr[inc]);
+  }
+  if (loaded[inc][ADJ]) {
+    free(adjptr[inc]);
+  }
+  if (loaded[inc][VORO]) {
+    free(vnodeptr[inc]);
+    free(vedgeptr[inc]);
+    free(vnormptr[inc]);
+  }
+}
+
+void move_inc(inc)
+int inc;
+{
+  int i;
+
+  free_inc(1 - inc);
+  for (i = 0; i < IMAGE_TYPES; i++) {
+    loaded[1 - inc][i] = loaded[inc][i];
+    loaded[inc][i] = 0;
+    xlo[1 - inc][i] = xlo[inc][i];
+    ylo[1 - inc][i] = ylo[inc][i];
+    xhi[1 - inc][i] = xhi[inc][i];
+    yhi[1 - inc][i] = yhi[inc][i];
+  }
+  nodes[1 - inc] = nodes[inc];
+  node_dim[1 - inc] = node_dim[inc];
+  nodeptr[1 - inc] = nodeptr[inc];
+  polynodes[1 - inc] = polynodes[inc];
+  poly_dim[1 - inc] = poly_dim[inc];
+  polyedges[1 - inc] = polyedges[inc];
+  polyholes[1 - inc] = polyholes[inc];
+  polynodeptr[1 - inc] = polynodeptr[inc];
+  polyedgeptr[1 - inc] = polyedgeptr[inc];
+  polyholeptr[1 - inc] = polyholeptr[inc];
+  elems[1 - inc] = elems[inc];
+  ele_corners[1 - inc] = ele_corners[inc];
+  eleptr[1 - inc] = eleptr[inc];
+  edges[1 - inc] = edges[inc];
+  edgeptr[1 - inc] = edgeptr[inc];
+  normptr[1 - inc] = normptr[inc];
+  subdomains[1 - inc] = subdomains[inc];
+  partpart[1 - inc] = partpart[inc];
+  partcenter[1 - inc] = partcenter[inc];
+  partshift[1 - inc] = partshift[inc];
+  adjsubdomains[1 - inc] = adjsubdomains[inc];
+  adjptr[1 - inc] = adjptr[inc];
+  vnodes[1 - inc] = vnodes[inc];
+  vnode_dim[1 - inc] = vnode_dim[inc];
+  vnodeptr[1 - inc] = vnodeptr[inc];
+  vedges[1 - inc] = vedges[inc];
+  vedgeptr[1 - inc] = vedgeptr[inc];
+  vnormptr[1 - inc] = vnormptr[inc];
+  firstnumber[1 - inc] = firstnumber[inc];
+  firstnumber[inc] = -1;
+}
+
+void unload_inc(inc)
+int inc;
+{
+  int i;
+
+  current_image = NOTHING;
+  for (i = 0; i < IMAGE_TYPES; i++) {
+    loaded[inc][i] = 0;
+    firstnumber[inc] = -1;
+  }
+}
+
+void showme_init()
+{
+  current_image = NOTHING;
+  current_inc = 0;
+  explosion = STARTEXPLOSION;
+  unload_inc(0);
+  unload_inc(1);
+}
+
+char *readline(string, infile, infilename)
+char *string;
+FILE *infile;
+char *infilename;
+{
+  char *result;
+
+  do {
+    result = fgets(string, INPUTLINESIZE, infile);
+    if (result == (char *) NULL) {
+      printf("  Error:  Unexpected end of file in %s.\n",
+             infilename);
+      exit(1);
+    }
+    while ((*result != '\0') && (*result != '#')
+           && (*result != '.') && (*result != '+') && (*result != '-')
+           && ((*result < '0') || (*result > '9'))) {
+      result++;
+    }
+  } while ((*result == '#') || (*result == '\0'));
+  return result;
+}
+
+char *findfield(string)
+char *string;
+{
+  char *result;
+
+  result = string;
+  while ((*result != '\0') && (*result != '#')
+         && (*result != ' ') && (*result != '\t')) {
+    result++;
+  }
+  while ((*result != '\0') && (*result != '#')
+         && (*result != '.') && (*result != '+') && (*result != '-')
+         && ((*result < '0') || (*result > '9'))) {
+    result++;
+  }
+  if (*result == '#') {
+    *result = '\0';
+  }
+  return result;
+}
+
+int load_node(fname, firstnumber, nodes, dim, ptr, xmin, ymin, xmax, ymax)
+char *fname;
+int *firstnumber;
+int *nodes;
+int *dim;
+REAL **ptr;
+REAL *xmin;
+REAL *ymin;
+REAL *xmax;
+REAL *ymax;
+{
+  FILE *infile;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  int extras;
+  int nodemarks;
+  int index;
+  int nodenumber;
+  int i, j;
+  int smallerr;
+  REAL x, y;
+
+  *xmin = *ymin = 0.0;
+  *xmax = *ymax = 1.0;
+  if (!quiet) {
+    printf("Opening %s.\n", fname);
+  }
+  infile = fopen(fname, "r");
+  if (infile == (FILE *) NULL) {
+    printf("  Error:  Cannot access file %s.\n", fname);
+    return 1;
+  }
+  stringptr = readline(inputline, infile, fname);
+  *nodes = (int) strtol (stringptr, &stringptr, 0);
+  if (*nodes < 3) {
+    printf("  Error:  %s contains %d points.\n", fname, *nodes);
+    return 1;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    *dim = 2;
+  } else {
+    *dim = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (*dim < 1) {
+    printf("  Error:  %s has dimensionality %d.\n", fname, *dim);
+    return 1;
+  }
+  if (*dim != 2) {
+    printf("  I only understand two-dimensional meshes.\n");
+    return 1;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    extras = 0;
+  } else {
+    extras = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (extras < 0) {
+    printf("  Error:  %s has negative value for number of attributes.\n",
+           fname);
+    return 1;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    nodemarks = 0;
+  } else {
+    nodemarks = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (nodemarks < 0) {
+    printf("  Warning:  %s has negative value for number of point markers.\n",
+           fname);
+  }
+  if (nodemarks > 1) {
+    printf(
+   "  Warning:  %s has value greater than one for number of point markers.\n",
+           fname);
+  }
+  *ptr = (REAL *) malloc((*nodes + 1) * *dim * sizeof(REAL));
+  if (*ptr == (REAL *) NULL) {
+    printf("  Out of memory.\n");
+    return 1;
+  }
+  index = *dim;
+  smallerr = 1;
+  for (i = 0; i < *nodes; i++) {
+    stringptr = readline(inputline, infile, fname);
+    nodenumber = (int) strtol (stringptr, &stringptr, 0);
+    if ((i == 0) && (*firstnumber == -1)) {
+      if (nodenumber == 0) {
+        *firstnumber = 0;
+      } else {
+        *firstnumber = 1;
+      }
+    }
+    if ((nodenumber != *firstnumber + i) && (smallerr)) {
+      printf("  Warning:  Points in %s are not numbered correctly\n", fname);
+      printf("            (starting with point %d).\n", *firstnumber + i);
+      smallerr = 0;
+    }
+    for (j = 0; j < *dim; j++) {
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Point %d is missing a coordinate in %s.\n",
+               *firstnumber + i, fname);
+        free(*ptr);
+        return 1;
+      }
+      (*ptr)[index++] = (REAL) strtod(stringptr, &stringptr);
+    }
+  }
+  fclose(infile);
+  index = *dim;
+  *xmin = *xmax = (*ptr)[index];
+  *ymin = *ymax = (*ptr)[index + 1];
+  for (i = 2; i <= *nodes; i++) {
+    index += *dim;
+    x = (*ptr)[index];
+    y = (*ptr)[index + 1];
+    if (x < *xmin) {
+      *xmin = x;
+    }
+    if (y < *ymin) {
+      *ymin = y;
+    }
+    if (x > *xmax) {
+      *xmax = x;
+    }
+    if (y > *ymax) {
+      *ymax = y;
+    }
+  }
+  if (*xmin == *xmax) {
+    *xmin -= 0.5;
+    *xmax += 0.5;
+  }
+  if (*ymin == *ymax) {
+    *ymin -= 0.5;
+    *ymax += 0.5;
+  }
+  return 0;
+}
+
+int load_poly(inc, fname, firstnumber, pnodes, dim, edges, holes, nodeptr,
+              edgeptr, holeptr, xmin, ymin, xmax, ymax)
+int inc;
+char *fname;
+int *firstnumber;
+int *pnodes;
+int *dim;
+int *edges;
+int *holes;
+REAL **nodeptr;
+int **edgeptr;
+REAL **holeptr;
+REAL *xmin;
+REAL *ymin;
+REAL *xmax;
+REAL *ymax;
+{
+  FILE *infile;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  int extras;
+  int nodemarks;
+  int segmentmarks;
+  int index;
+  int nodenumber, edgenumber, holenumber;
+  int maxnode;
+  int i, j;
+  int smallerr;
+  REAL x, y;
+
+  if (!quiet) {
+    printf("Opening %s.\n", fname);
+  }
+  infile = fopen(fname, "r");
+  if (infile == (FILE *) NULL) {
+    printf("  Error:  Cannot access file %s.\n", fname);
+    return 1;
+  }
+  stringptr = readline(inputline, infile, fname);
+  *pnodes = (int) strtol (stringptr, &stringptr, 0);
+  if (*pnodes == 0) {
+    if (!loaded[inc][NODE]) {
+      if (load_image(inc, NODE)) {
+        return 1;
+      }
+    }
+    maxnode = nodes[inc];
+    *xmin = xlo[inc][NODE];
+    *ymin = ylo[inc][NODE];
+    *xmax = xhi[inc][NODE];
+    *ymax = yhi[inc][NODE];
+  } else {
+    if (*pnodes < 1) {
+      printf("  Error:  %s contains %d points.\n", fname, *pnodes);
+      return 1;
+    }
+    maxnode = *pnodes;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    *dim = 2;
+  } else {
+    *dim = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (*dim < 1) {
+    printf("  Error:  %s has dimensionality %d.\n", fname, *dim);
+    return 1;
+  }
+  if (*dim != 2) {
+    printf("  I only understand two-dimensional meshes.\n");
+    return 1;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    extras = 0;
+  } else {
+    extras = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (extras < 0) {
+    printf("  Error:  %s has negative value for number of attributes.\n",
+           fname);
+    return 1;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    nodemarks = 0;
+  } else {
+    nodemarks = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (nodemarks < 0) {
+    printf("  Warning:  %s has negative value for number of point markers.\n",
+           fname);
+  }
+  if (nodemarks > 1) {
+    printf(
+   "  Warning:  %s has value greater than one for number of point markers.\n",
+           fname);
+  }
+  if (*pnodes > 0) {
+    *nodeptr = (REAL *) malloc((*pnodes + 1) * *dim * sizeof(REAL));
+    if (*nodeptr == (REAL *) NULL) {
+      printf("  Out of memory.\n");
+      return 1;
+    }
+    index = *dim;
+    smallerr = 1;
+    for (i = 0; i < *pnodes; i++) {
+      stringptr = readline(inputline, infile, fname);
+      nodenumber = (int) strtol (stringptr, &stringptr, 0);
+      if ((i == 0) && (*firstnumber == -1)) {
+        if (nodenumber == 0) {
+          *firstnumber = 0;
+        } else {
+          *firstnumber = 1;
+        }
+      }
+      if ((nodenumber != *firstnumber + i) && (smallerr)) {
+        printf("  Warning:  Points in %s are not numbered correctly.\n",
+               fname);
+        printf("            (starting with point %d).\n", *firstnumber + i);
+        smallerr = 0;
+      }
+      for (j = 0; j < *dim; j++) {
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          printf("Error:  Point %d is missing a coordinate in %s.\n",
+                 *firstnumber + i, fname);
+          free(*nodeptr);
+          return 1;
+        }
+        (*nodeptr)[index++] = (REAL) strtod(stringptr, &stringptr);
+      }
+    }
+  }
+  stringptr = readline(inputline, infile, fname);
+  *edges = (int) strtol (stringptr, &stringptr, 0);
+  if (*edges < 0) {
+    printf("  Error:  %s contains %d segments.\n", fname, *edges);
+    free(*nodeptr);
+    return 1;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    segmentmarks = 0;
+  } else {
+    segmentmarks = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (segmentmarks < 0) {
+    printf("  Error:  %s has negative value for number of segment markers.\n",
+           fname);
+    free(*nodeptr);
+    return 1;
+  }
+  if (segmentmarks > 1) {
+    printf(
+   "  Error:  %s has value greater than one for number of segment markers.\n",
+           fname);
+    free(*nodeptr);
+    return 1;
+  }
+  *edgeptr = (int *) malloc(((*edges + 1) << 1) * sizeof(int));
+  if (*edgeptr == (int *) NULL) {
+    printf("  Out of memory.\n");
+    free(*nodeptr);
+    return 1;
+  }
+  index = 2;
+  smallerr = 1;
+  for (i = *firstnumber; i < *firstnumber + *edges; i++) {
+    stringptr = readline(inputline, infile, fname);
+    edgenumber = (int) strtol (stringptr, &stringptr, 0);
+    if ((edgenumber != i) && (smallerr)) {
+      printf("  Warning:  Segments in %s are not numbered correctly.\n",
+             fname);
+      printf("            (starting with segment %d).\n", i);
+      smallerr = 0;
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      printf("Error:  Segment %d is missing its endpoints in %s.\n", i, fname);
+      free(*nodeptr);
+      free(*edgeptr);
+      return 1;
+    }
+    (*edgeptr)[index] = (int) strtol (stringptr, &stringptr, 0) + 1 -
+                        *firstnumber;
+    if (((*edgeptr)[index] < 1) || ((*edgeptr)[index] > maxnode)) {
+      printf("Error:  Segment %d has invalid endpoint in %s.\n", i, fname);
+      return 1;
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      printf("Error:  Segment %d is missing an endpoint in %s.\n", i, fname);
+      free(*nodeptr);
+      free(*edgeptr);
+      return 1;
+    }
+    (*edgeptr)[index + 1] = (int) strtol (stringptr, &stringptr, 0) + 1 -
+                            *firstnumber;
+    if (((*edgeptr)[index + 1] < 1) || ((*edgeptr)[index + 1] > maxnode)) {
+      printf("Error:  Segment %d has invalid endpoint in %s.\n", i, fname);
+      return 1;
+    }
+    index += 2;
+  }
+  stringptr = readline(inputline, infile, fname);
+  *holes = (int) strtol (stringptr, &stringptr, 0);
+  if (*holes < 0) {
+    printf("  Error:  %s contains %d holes.\n", fname, *holes);
+    free(*nodeptr);
+    free(*edgeptr);
+    return 1;
+  }
+  *holeptr = (REAL *) malloc((*holes + 1) * *dim * sizeof(REAL));
+  if (*holeptr == (REAL *) NULL) {
+    printf("  Out of memory.\n");
+    free(*nodeptr);
+    free(*edgeptr);
+    return 1;
+  }
+  index = *dim;
+  smallerr = 1;
+  for (i = *firstnumber; i < *firstnumber + *holes; i++) {
+    stringptr = readline(inputline, infile, fname);
+    holenumber = (int) strtol (stringptr, &stringptr, 0);
+    if ((holenumber != i) && (smallerr)) {
+      printf("  Warning:  Holes in %s are not numbered correctly.\n", fname);
+      printf("            (starting with hole %d).\n", i);
+      smallerr = 0;
+    }
+    for (j = 0; j < *dim; j++) {
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Hole %d is missing a coordinate in %s.\n", i,
+               fname);
+        free(*nodeptr);
+        free(*edgeptr);
+        free(*holeptr);
+        return 1;
+      }
+      (*holeptr)[index++] = (REAL) strtod(stringptr, &stringptr);
+    }
+  }
+  fclose(infile);
+  if (*pnodes > 0) {
+    index = *dim;
+    *xmin = *xmax = (*nodeptr)[index];
+    *ymin = *ymax = (*nodeptr)[index + 1];
+    for (i = 2; i <= *pnodes; i++) {
+      index += *dim;
+      x = (*nodeptr)[index];
+      y = (*nodeptr)[index + 1];
+      if (x < *xmin) {
+        *xmin = x;
+      }
+      if (y < *ymin) {
+        *ymin = y;
+      }
+      if (x > *xmax) {
+        *xmax = x;
+      }
+      if (y > *ymax) {
+        *ymax = y;
+      }
+    }
+  }
+  index = *dim;
+  for (i = 1; i <= *holes; i++) {
+    x = (*holeptr)[index];
+    y = (*holeptr)[index + 1];
+    if (x < *xmin) {
+      *xmin = x;
+    }
+    if (y < *ymin) {
+      *ymin = y;
+    }
+    if (x > *xmax) {
+      *xmax = x;
+    }
+    if (y > *ymax) {
+      *ymax = y;
+    }
+    index += *dim;
+  }
+  return 0;
+}
+
+int load_ele(fname, firstnumber, nodes, elems, corners, ptr)
+char *fname;
+int firstnumber;
+int nodes;
+int *elems;
+int *corners;
+int **ptr;
+{
+  FILE *infile;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  int extras;
+  int index;
+  int elemnumber;
+  int i, j;
+  int smallerr;
+
+  if (!quiet) {
+    printf("Opening %s.\n", fname);
+  }
+  infile = fopen(fname, "r");
+  if (infile == (FILE *) NULL) {
+    printf("  Error:  Cannot access file %s.\n", fname);
+    return 1;
+  }
+  stringptr = readline(inputline, infile, fname);
+  *elems = (int) strtol (stringptr, &stringptr, 0);
+  if (*elems < 1) {
+    printf("  Error:  %s contains %d triangles.\n", fname, *elems);
+    return 1;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    *corners = 3;
+  } else {
+    *corners = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (*corners < 3) {
+    printf("  Error:  Triangles in %s have only %d corners.\n", fname,
+           *corners);
+    return 1;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    extras = 0;
+  } else {
+    extras = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (extras < 0) {
+    printf("  Error:  %s has negative value for extra fields.\n", fname);
+    return 1;
+  }
+  *ptr = (int *) malloc((*elems + 1) * 3 * sizeof(int));
+  if (*ptr == (int *) NULL) {
+    printf("  Out of memory.\n");
+    return 1;
+  }
+  index = 3;
+  smallerr = 1;
+  for (i = firstnumber; i < firstnumber + *elems; i++) {
+    stringptr = readline(inputline, infile, fname);
+    elemnumber = (int) strtol (stringptr, &stringptr, 0);
+    if ((elemnumber != i) && (smallerr)) {
+      printf("  Warning:  Triangles in %s are not numbered correctly.\n",
+             fname);
+      printf("            (starting with triangle %d).\n", i);
+      smallerr = 0;
+    }
+    for (j = 0; j < 3; j++) {
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Triangle %d is missing a corner in %s.\n", i, fname);
+        free(*ptr);
+        return 1;
+      }
+      (*ptr)[index] = (int) strtol (stringptr, &stringptr, 0) + 1 -
+                      firstnumber;
+      if (((*ptr)[index] < 1) || ((*ptr)[index] > nodes)) {
+        printf("Error:  Triangle %d has invalid corner in %s.\n", i, fname);
+        return 1;
+      }
+      index++;
+    }
+  }
+  fclose(infile);
+  return 0;
+}
+
+int load_edge(fname, firstnumber, nodes, edges, edgeptr, normptr)
+char *fname;
+int firstnumber;
+int nodes;
+int *edges;
+int **edgeptr;
+REAL **normptr;
+{
+  FILE *infile;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  int index;
+  int edgenumber;
+  int edgemarks;
+  int i;
+  int smallerr;
+
+  if (!quiet) {
+    printf("Opening %s.\n", fname);
+  }
+  infile = fopen(fname, "r");
+    if (infile == (FILE *) NULL) {
+      printf("  Error:  Cannot access file %s.\n", fname);
+      return 1;
+    }
+  stringptr = readline(inputline, infile, fname);
+  *edges = (int) strtol (stringptr, &stringptr, 0);
+  if (*edges < 1) {
+    printf("  Error:  %s contains %d edges.\n", fname, *edges);
+    return 1;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    edgemarks = 0;
+  } else {
+    edgemarks = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (edgemarks < 0) {
+    printf("  Error:  %s has negative value for number of edge markers.\n",
+           fname);
+    return 1;
+  }
+  if (edgemarks > 1) {
+    printf(
+   "  Error:  %s has value greater than one for number of edge markers.\n",
+           fname);
+    return 1;
+  }
+  *edgeptr = (int *) malloc(((*edges + 1) << 1) * sizeof(int));
+  if (*edgeptr == (int *) NULL) {
+    printf("  Out of memory.\n");
+    return 1;
+  }
+  *normptr = (REAL *) malloc(((*edges + 1) << 1) * sizeof(REAL));
+  if (*normptr == (REAL *) NULL) {
+    printf("  Out of memory.\n");
+    free(*edgeptr);
+    return 1;
+  }
+  index = 2;
+  smallerr = 1;
+  for (i = firstnumber; i < firstnumber + *edges; i++) {
+    stringptr = readline(inputline, infile, fname);
+    edgenumber = (int) strtol (stringptr, &stringptr, 0);
+    if ((edgenumber != i) && (smallerr)) {
+      printf("  Warning:  Edges in %s are not numbered correctly.\n", fname);
+      printf("            (starting with edge %d).\n", i);
+      smallerr = 0;
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      printf("Error:  Edge %d is missing its endpoints in %s.\n", i, fname);
+      free(*edgeptr);
+      free(*normptr);
+      return 1;
+    }
+    (*edgeptr)[index] = (int) strtol (stringptr, &stringptr, 0) + 1 -
+                        firstnumber;
+    if (((*edgeptr)[index] < 1) || ((*edgeptr)[index] > nodes)) {
+      printf("Error:  Edge %d has invalid endpoint in %s.\n", i, fname);
+      return 1;
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      printf("Error:  Edge %d is missing an endpoint in %s.\n", i, fname);
+      free(*edgeptr);
+      free(*normptr);
+      return 1;
+    }
+    (*edgeptr)[index + 1] = (int) strtol (stringptr, &stringptr, 0);
+    if ((*edgeptr)[index + 1] == -1) {
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Edge %d is missing its direction in %s.\n", i, fname);
+        free(*edgeptr);
+        free(*normptr);
+        return 1;
+      }
+      (*normptr)[index] = (REAL) strtod(stringptr, &stringptr);
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Edge %d is missing a direction coordinate in %s.\n",
+               i, fname);
+        free(*edgeptr);
+        free(*normptr);
+        return 1;
+      }
+      (*normptr)[index + 1] = (REAL) strtod(stringptr, &stringptr);
+    } else {
+      (*edgeptr)[index + 1] += 1 - firstnumber;
+      if (((*edgeptr)[index + 1] < 1) || ((*edgeptr)[index + 1] > nodes)) {
+        printf("Error:  Edge %d has invalid endpoint in %s.\n", i, fname);
+        return 1;
+      }
+    }
+    index += 2;
+  }
+  fclose(infile);
+  return 0;
+}
+
+int load_part(fname, dim, firstnumber, elems, nodeptr, eleptr, parts,
+              partition, partcenter, partshift)
+char *fname;
+int dim;
+int firstnumber;
+int elems;
+REAL *nodeptr;
+int *eleptr;
+int *parts;
+int **partition;
+REAL **partcenter;
+REAL **partshift;
+{
+  FILE *infile;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  int partelems;
+  int index;
+  int elemnumber;
+  int i, j;
+  int smallerr;
+  int *partsize;
+
+  if (!quiet) {
+    printf("Opening %s.\n", fname);
+  }
+  infile = fopen(fname, "r");
+  if (infile == (FILE *) NULL) {
+    printf("  Error:  Cannot access file %s.\n", fname);
+    return 1;
+  }
+  stringptr = readline(inputline, infile, fname);
+  partelems = (int) strtol (stringptr, &stringptr, 0);
+  if (partelems != elems) {
+    printf(
+      "  Error:  .ele and .part files do not agree on number of triangles.\n");
+    return 1;
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    *parts = 1;
+  } else {
+    *parts = (int) strtol (stringptr, &stringptr, 0);
+  }
+  if (*parts < 1) {
+    printf("  Error:  %s specifies %d subdomains.\n", fname, *parts);
+    return 1;
+  }
+  *partition = (int *) malloc((elems + 1) * sizeof(int));
+  if (*partition == (int *) NULL) {
+    printf("  Out of memory.\n");
+    return 1;
+  }
+  smallerr = 1;
+  for (i = firstnumber; i < firstnumber + partelems; i++) {
+    stringptr = readline(inputline, infile, fname);
+    elemnumber = (int) strtol (stringptr, &stringptr, 0);
+    if ((elemnumber != i) && (smallerr)) {
+      printf("  Warning:  Triangles in %s are not numbered correctly.\n",
+             fname);
+      printf("            (starting with triangle %d).\n", i);
+      smallerr = 0;
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      printf("Error:  Triangle %d has no subdomain in %s.\n", i, fname);
+      free(*partition);
+      return 1;
+    }
+    (*partition)[i] = (int) strtol (stringptr, &stringptr, 0) - firstnumber;
+    if (((*partition)[i] >= *parts) || ((*partition)[i] < 0)) {
+      printf("  Error:  Triangle %d of %s has an invalid subdomain.\n",
+             i, fname);
+      free(*partition);
+      return 1;
+    }
+  }
+  fclose(infile);
+  *partcenter = (REAL *) malloc(((*parts + 1) << 1) * sizeof(REAL));
+  if (*partcenter == (REAL *) NULL) {
+    printf("Error:  Out of memory.\n");
+    free(*partition);
+    return 1;
+  }
+  *partshift = (REAL *) malloc((*parts << 1) * sizeof(REAL));
+  if (*partshift == (REAL *) NULL) {
+    printf("Error:  Out of memory.\n");
+    free(*partition);
+    free(*partcenter);
+    return 1;
+  }
+  partsize = (int *) malloc((*parts + 1) * sizeof(int));
+  if (partsize == (int *) NULL) {
+    printf("Error:  Out of memory.\n");
+    free(*partition);
+    free(*partcenter);
+    free(*partshift);
+    return 1;
+  }
+  index = 3;
+  for (i = 0; i <= *parts; i++) {
+    partsize[i] = 0;
+    (*partcenter)[i << 1] = 0.0;
+    (*partcenter)[(i << 1) + 1] = 0.0;
+  }
+  for (i = 1; i <= elems; i++) {
+    partsize[(*partition)[i]] += 3;
+    for (j = 0; j < 3; j++) {
+      (*partcenter)[(*partition)[i] << 1] +=
+                nodeptr[eleptr[index] * dim];
+      (*partcenter)[((*partition)[i] << 1) + 1] +=
+                nodeptr[eleptr[index++] * dim + 1];
+    }
+  }
+  for (i = 0; i < *parts; i++) {
+    (*partcenter)[i << 1] /= (REAL) partsize[i];
+    (*partcenter)[(i << 1) + 1] /= (REAL) partsize[i];
+    (*partcenter)[*parts << 1] += (*partcenter)[i << 1];
+    (*partcenter)[(*parts << 1) + 1] += (*partcenter)[(i << 1) + 1];
+  }
+  (*partcenter)[*parts << 1] /= (REAL) *parts;
+  (*partcenter)[(*parts << 1) + 1] /= (REAL) *parts;
+  free(partsize);
+  return 0;
+}
+
+int load_adj(fname, subdomains, ptr)
+char *fname;
+int *subdomains;
+int **ptr;
+{
+  FILE *infile;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  int i, j;
+
+  if (!quiet) {
+    printf("Opening %s.\n", fname);
+  }
+  infile = fopen(fname, "r");
+  if (infile == (FILE *) NULL) {
+    printf("  Error:  Cannot access file %s.\n", fname);
+    return 1;
+  }
+  stringptr = readline(inputline, infile, fname);
+  *subdomains = (int) strtol (stringptr, &stringptr, 0);
+  if (*subdomains < 1) {
+    printf("  Error:  %s contains %d subdomains.\n", fname, *subdomains);
+    return 1;
+  }
+  *ptr = (int *) malloc(*subdomains * *subdomains * sizeof(int));
+  if (*ptr == (int *) NULL) {
+    printf("  Out of memory.\n");
+    return 1;
+  }
+  for (i = 0; i < *subdomains; i++) {
+    for (j = 0; j < *subdomains; j++) {
+      stringptr = readline(inputline, infile, fname);
+      (*ptr)[i * *subdomains + j] = (int) strtol (stringptr, &stringptr, 0);
+    }
+  }
+  return 0;
+}
+
+void findpartshift(parts, explosion, partcenter, partshift)
+int parts;
+REAL explosion;
+REAL *partcenter;
+REAL *partshift;
+{
+  int i;
+
+  for (i = 0; i < parts; i++) {
+    partshift[i << 1] = explosion *
+          (partcenter[i << 1] - partcenter[parts << 1]);
+    partshift[(i << 1) + 1] = explosion *
+          (partcenter[(i << 1) + 1] - partcenter[(parts << 1) + 1]);
+  }
+}
+
+int load_image(inc, image)
+int inc;
+int image;
+{
+  int error;
+
+  switch (image) {
+    case NODE:
+      error = load_node(nodefilename[inc], &firstnumber[inc], &nodes[inc],
+                        &node_dim[inc], &nodeptr[inc], &xlo[inc][NODE],
+                        &ylo[inc][NODE], &xhi[inc][NODE], &yhi[inc][NODE]);
+      break;
+    case POLY:
+      error = load_poly(inc, polyfilename[inc], &firstnumber[inc],
+                        &polynodes[inc], &poly_dim[inc], &polyedges[inc],
+                        &polyholes[inc], &polynodeptr[inc], &polyedgeptr[inc],
+                        &polyholeptr[inc],
+                        &xlo[inc][POLY], &ylo[inc][POLY],
+                        &xhi[inc][POLY], &yhi[inc][POLY]);
+      break;
+    case ELE:
+      error = load_ele(elefilename[inc], firstnumber[inc], nodes[inc],
+                       &elems[inc], &ele_corners[inc], &eleptr[inc]);
+      xlo[inc][ELE] = xlo[inc][NODE];
+      ylo[inc][ELE] = ylo[inc][NODE];
+      xhi[inc][ELE] = xhi[inc][NODE];
+      yhi[inc][ELE] = yhi[inc][NODE];
+      break;
+    case EDGE:
+      error = load_edge(edgefilename[inc], firstnumber[inc], nodes[inc],
+                        &edges[inc], &edgeptr[inc], &normptr[inc]);
+      xlo[inc][EDGE] = xlo[inc][NODE];
+      ylo[inc][EDGE] = ylo[inc][NODE];
+      xhi[inc][EDGE] = xhi[inc][NODE];
+      yhi[inc][EDGE] = yhi[inc][NODE];
+      break;
+    case PART:
+      error = load_part(partfilename[inc], node_dim[inc], firstnumber[inc],
+                        elems[inc], nodeptr[inc], eleptr[inc],
+                        &subdomains[inc], &partpart[inc], &partcenter[inc],
+                        &partshift[inc]);
+      if (!error) {
+        findpartshift(subdomains[inc], explosion, partcenter[inc],
+                      partshift[inc]);
+      }
+      xlo[inc][PART] = xlo[inc][NODE];
+      ylo[inc][PART] = ylo[inc][NODE];
+      xhi[inc][PART] = xhi[inc][NODE];
+      yhi[inc][PART] = yhi[inc][NODE];
+      break;
+    case ADJ:
+      error = load_adj(adjfilename[inc], &adjsubdomains[inc], &adjptr[inc]);
+      xlo[inc][ADJ] = xlo[inc][NODE];
+      ylo[inc][ADJ] = ylo[inc][NODE];
+      xhi[inc][ADJ] = xhi[inc][NODE];
+      yhi[inc][ADJ] = yhi[inc][NODE];
+      break;
+    case VORO:
+      error = load_node(vnodefilename[inc], &firstnumber[inc], &vnodes[inc],
+                        &vnode_dim[inc], &vnodeptr[inc], &xlo[inc][VORO],
+                        &ylo[inc][VORO], &xhi[inc][VORO], &yhi[inc][VORO]);
+      if (!error) {
+        error = load_edge(vedgefilename[inc], firstnumber[inc], vnodes[inc],
+                          &vedges[inc], &vedgeptr[inc], &vnormptr[inc]);
+      }
+      break;
+    default:
+      error = 1;
+  }
+  if (!error) {
+    loaded[inc][image] = 1;
+  }
+  return error;
+}
+
+void choose_image(inc, image)
+int inc;
+int image;
+{
+  if (!loaded[inc][image]) {
+    if ((image == ELE) || (image == EDGE) || (image == PART)
+        || (image == ADJ)) {
+      if (!loaded[inc][NODE]) {
+        if (load_image(inc, NODE)) {
+          return;
+        }
+      }
+    }
+    if ((image == PART) || (image == ADJ)) {
+      if (!loaded[inc][ELE]) {
+        if (load_image(inc, ELE)) {
+          return;
+        }
+      }
+    }
+    if (image == ADJ) {
+      if (!loaded[inc][PART]) {
+        if (load_image(inc, PART)) {
+          return;
+        }
+      }
+    }
+    if (load_image(inc, image)) {
+      return;
+    }
+  }
+  current_inc = inc;
+  current_image = image;
+}
+
+Window make_button(name, x, y, width)
+char *name;
+int x;
+int y;
+int width;
+{
+  XSetWindowAttributes attr;
+  XSizeHints hints;
+  Window button;
+
+  attr.background_pixel = black;
+  attr.border_pixel = white;
+  attr.backing_store = NotUseful;
+  attr.event_mask = ExposureMask | ButtonReleaseMask | ButtonPressMask;
+  attr.bit_gravity = SouthWestGravity;
+  attr.win_gravity = SouthWestGravity;
+  attr.save_under = False;
+  button = XCreateWindow(display, mainwindow, x, y, width, BUTTONHEIGHT - 4,
+                         2, 0, InputOutput, CopyFromParent,
+                         CWBackPixel | CWBorderPixel | CWEventMask |
+                         CWBitGravity | CWWinGravity | CWBackingStore |
+                         CWSaveUnder, &attr);
+  hints.width = width;
+  hints.height = BUTTONHEIGHT - 4;
+  hints.min_width = 0;
+  hints.min_height = BUTTONHEIGHT - 4;
+  hints.max_width = width;
+  hints.max_height = BUTTONHEIGHT - 4;
+  hints.width_inc = 1;
+  hints.height_inc = 1;
+  hints.flags = PMinSize | PMaxSize | PSize | PResizeInc;
+  XSetStandardProperties(display, button, name, "showme", None, (char **) NULL,
+                         0, &hints);
+  return button;
+}
+
+void make_buttons(y)
+int y;
+{
+  int i;
+
+  for (i = 1; i >= 0; i--) {
+    nodewin[i] = make_button("node", 0, y + (1 - i) * BUTTONHEIGHT, 42);
+    XMapWindow(display, nodewin[i]);
+    polywin[i] = make_button("poly", 44, y + (1 - i) * BUTTONHEIGHT, 42);
+    XMapWindow(display, polywin[i]);
+    elewin[i] = make_button("ele", 88, y + (1 - i) * BUTTONHEIGHT, 33);
+    XMapWindow(display, elewin[i]);
+    edgewin[i] = make_button("edge", 123, y + (1 - i) * BUTTONHEIGHT, 42);
+    XMapWindow(display, edgewin[i]);
+    partwin[i] = make_button("part", 167, y + (1 - i) * BUTTONHEIGHT, 42);
+    XMapWindow(display, partwin[i]);
+    adjwin[i] = make_button("adj", 211, y + (1 - i) * BUTTONHEIGHT, 33);
+    XMapWindow(display, adjwin[i]);
+    voronoiwin[i] = make_button("voro", 246, y + (1 - i) * BUTTONHEIGHT, 42);
+    XMapWindow(display, voronoiwin[i]);
+  }
+  versionpluswin = make_button("    +", 290, y, 52);
+  XMapWindow(display, versionpluswin);
+  versionminuswin = make_button("    -", 290, y + BUTTONHEIGHT, 52);
+  XMapWindow(display, versionminuswin);
+
+  quitwin = make_button("Quit", 0, y + 2 * BUTTONHEIGHT, 42);
+  XMapWindow(display, quitwin);
+  leftwin = make_button("<", 44, y + 2 * BUTTONHEIGHT, 14);
+  XMapWindow(display, leftwin);
+  rightwin = make_button(">", 60, y + 2 * BUTTONHEIGHT, 14);
+  XMapWindow(display, rightwin);
+  upwin = make_button("^", 76, y + 2 * BUTTONHEIGHT, 14);
+  XMapWindow(display, upwin);
+  downwin = make_button("v", 92, y + 2 * BUTTONHEIGHT, 14);
+  XMapWindow(display, downwin);
+  resetwin = make_button("Reset", 108, y + 2 * BUTTONHEIGHT, 52);
+  XMapWindow(display, resetwin);
+  widthpluswin = make_button("Width+", 162, y + 2 * BUTTONHEIGHT, 61);
+  XMapWindow(display, widthpluswin);
+  widthminuswin = make_button("-", 225, y + 2 * BUTTONHEIGHT, 14);
+  XMapWindow(display, widthminuswin);
+  expwin = make_button("Exp", 241, y + 2 * BUTTONHEIGHT, 33);
+  XMapWindow(display, expwin);
+  exppluswin = make_button("+", 276, y + 2 * BUTTONHEIGHT, 14);
+  XMapWindow(display, exppluswin);
+  expminuswin = make_button("-", 292, y + 2 * BUTTONHEIGHT, 14);
+  XMapWindow(display, expminuswin);
+  fillwin = make_button("Fill", 308, y + 2 * BUTTONHEIGHT, 41);
+  XMapWindow(display, fillwin);
+  pswin = make_button("PS", 351, y + 2 * BUTTONHEIGHT, 24);
+  XMapWindow(display, pswin);
+  epswin = make_button("EPS", 377, y + 2 * BUTTONHEIGHT, 33);
+  XMapWindow(display, epswin);
+}
+
+void fill_button(button)
+Window button;
+{
+  int x, y;
+  unsigned int w, h, d, b;
+  Window rootw;
+
+  XGetGeometry(display, button, &rootw, &x, &y, &w, &h, &d, &b);
+  XFillRectangle(display, button, fontgc, 0, 0, w, h);
+}
+
+void draw_buttons()
+{
+  char numberstring[32];
+  char buttonstring[6];
+  int i;
+
+  for (i = 1; i >= 0; i--) {
+    if ((current_image == NODE) && (current_inc == i)) {
+      fill_button(nodewin[i]);
+      XDrawString(display, nodewin[i], blackfontgc, 2, 13, "node", 4);
+    } else {
+      XClearWindow(display, nodewin[i]);
+      XDrawString(display, nodewin[i], fontgc, 2, 13, "node", 4);
+    }
+    if ((current_image == POLY) && (current_inc == i)) {
+      fill_button(polywin[i]);
+      XDrawString(display, polywin[i], blackfontgc, 2, 13, "poly", 4);
+    } else {
+      XClearWindow(display, polywin[i]);
+      XDrawString(display, polywin[i], fontgc, 2, 13, "poly", 4);
+    }
+    if ((current_image == ELE) && (current_inc == i)) {
+      fill_button(elewin[i]);
+      XDrawString(display, elewin[i], blackfontgc, 2, 13, "ele", 3);
+    } else {
+      XClearWindow(display, elewin[i]);
+      XDrawString(display, elewin[i], fontgc, 2, 13, "ele", 3);
+    }
+    if ((current_image == EDGE) && (current_inc == i)) {
+      fill_button(edgewin[i]);
+      XDrawString(display, edgewin[i], blackfontgc, 2, 13, "edge", 4);
+    } else {
+      XClearWindow(display, edgewin[i]);
+      XDrawString(display, edgewin[i], fontgc, 2, 13, "edge", 4);
+    }
+    if ((current_image == PART) && (current_inc == i)) {
+      fill_button(partwin[i]);
+      XDrawString(display, partwin[i], blackfontgc, 2, 13, "part", 4);
+    } else {
+      XClearWindow(display, partwin[i]);
+      XDrawString(display, partwin[i], fontgc, 2, 13, "part", 4);
+    }
+    if ((current_image == ADJ) && (current_inc == i)) {
+      fill_button(adjwin[i]);
+      XDrawString(display, adjwin[i], blackfontgc, 2, 13, "adj", 3);
+    } else {
+      XClearWindow(display, adjwin[i]);
+      XDrawString(display, adjwin[i], fontgc, 2, 13, "adj", 3);
+    }
+    if ((current_image == VORO) && (current_inc == i)) {
+      fill_button(voronoiwin[i]);
+      XDrawString(display, voronoiwin[i], blackfontgc, 2, 13, "voro", 4);
+    } else {
+      XClearWindow(display, voronoiwin[i]);
+      XDrawString(display, voronoiwin[i], fontgc, 2, 13, "voro", 4);
+    }
+  }
+
+  XClearWindow(display, versionpluswin);
+  sprintf(numberstring, "%d", loweriteration + 1);
+  sprintf(buttonstring, "%-4.4s+", numberstring);
+  XDrawString(display, versionpluswin, fontgc, 2, 13, buttonstring, 5);
+  XClearWindow(display, versionminuswin);
+  sprintf(numberstring, "%d", loweriteration);
+  if (loweriteration == 0) {
+    sprintf(buttonstring, "%-4.4s", numberstring);
+  } else {
+    sprintf(buttonstring, "%-4.4s-", numberstring);
+  }
+  XDrawString(display, versionminuswin, fontgc, 2, 13, buttonstring, 5);
+
+  XClearWindow(display, quitwin);
+  XDrawString(display, quitwin, fontgc, 2, 13, "Quit", 4);
+  XClearWindow(display, leftwin);
+  XDrawString(display, leftwin, fontgc, 2, 13, "<", 1);
+  XClearWindow(display, rightwin);
+  XDrawString(display, rightwin, fontgc, 2, 13, ">", 1);
+  XClearWindow(display, upwin);
+  XDrawString(display, upwin, fontgc, 2, 13, "^", 1);
+  XClearWindow(display, downwin);
+  XDrawString(display, downwin, fontgc, 2, 13, "v", 1);
+  XClearWindow(display, resetwin);
+  XDrawString(display, resetwin, fontgc, 2, 13, "Reset", 6);
+  XClearWindow(display, widthpluswin);
+  if (line_width < 100) {
+    XDrawString(display, widthpluswin, fontgc, 2, 13, "Width+", 6);
+  } else {
+    XDrawString(display, widthpluswin, fontgc, 2, 13, "Width ", 6);
+  }
+  XClearWindow(display, widthminuswin);
+  if (line_width > 1) {
+    XDrawString(display, widthminuswin, fontgc, 2, 13, "-", 1);
+  }
+  XClearWindow(display, expwin);
+  XClearWindow(display, exppluswin);
+  XClearWindow(display, expminuswin);
+  XClearWindow(display, fillwin);
+  if (current_image == PART) {
+    if (explode) {
+      fill_button(expwin);
+      XDrawString(display, expwin, blackfontgc, 2, 13, "Exp", 3);
+    } else {
+      XDrawString(display, expwin, fontgc, 2, 13, "Exp", 3);
+    }
+    XDrawString(display, exppluswin, fontgc, 2, 13, "+", 1);
+    XDrawString(display, expminuswin, fontgc, 2, 13, "-", 1);
+    if (fillelem) {
+      fill_button(fillwin);
+      XDrawString(display, fillwin, blackfontgc, 2, 13, "Fill", 4);
+    } else {
+      XDrawString(display, fillwin, fontgc, 2, 13, "Fill", 4);
+    }
+  }
+  XClearWindow(display, pswin);
+  XDrawString(display, pswin, fontgc, 2, 13, "PS", 2);
+  XClearWindow(display, epswin);
+  XDrawString(display, epswin, fontgc, 2, 13, "EPS", 3);
+}
+
+void showme_window(argc, argv)
+int argc;
+char **argv;
+{
+  XSetWindowAttributes attr;
+  XSizeHints hints;
+  XGCValues fontvalues, linevalues;
+  XColor alloc_color, exact_color;
+  int i;
+
+  display = XOpenDisplay((char *) NULL);
+  if (!display) {
+    printf("Error:  Cannot open display.\n");
+    exit(1);
+  }
+  screen = DefaultScreen(display);
+  rootwindow = DefaultRootWindow(display);
+  black = BlackPixel(display, screen);
+  white = WhitePixel(display, screen);
+  windowdepth = DefaultDepth(display, screen);
+  rootmap = DefaultColormap(display, screen);
+  width = STARTWIDTH;
+  height = STARTHEIGHT;
+  attr.background_pixel = black;
+  attr.border_pixel = white;
+  attr.backing_store = NotUseful;
+  attr.event_mask = ExposureMask | ButtonReleaseMask | ButtonPressMask |
+                    StructureNotifyMask;
+  attr.bit_gravity = NorthWestGravity;
+  attr.win_gravity = NorthWestGravity;
+  attr.save_under = False;
+  mainwindow = XCreateWindow(display, rootwindow, 0, 0, width,
+                             height + PANELHEIGHT, 3, 0,
+                             InputOutput, CopyFromParent,
+                             CWBackPixel | CWBorderPixel | CWEventMask |
+                             CWBitGravity | CWWinGravity | CWBackingStore |
+                             CWSaveUnder, &attr);
+  hints.width = width;
+  hints.height = height + PANELHEIGHT;
+  hints.min_width = MINWIDTH;
+  hints.min_height = MINHEIGHT + PANELHEIGHT;
+  hints.width_inc = 1;
+  hints.height_inc = 1;
+  hints.flags = PMinSize | PSize | PResizeInc;
+  XSetStandardProperties(display, mainwindow, "Show Me", "showme", None,
+                         argv, argc, &hints);
+  XChangeProperty(display, mainwindow, XA_WM_CLASS, XA_STRING, 8,
+                  PropModeReplace, "showme\0Archimedes", 18);
+  XClearWindow(display, mainwindow);
+  XMapWindow(display, mainwindow);
+  if ((windowdepth > 1) &&
+      XAllocNamedColor(display, rootmap, "yellow", &alloc_color,
+                       &exact_color)) {
+    color = 1;
+    explode = bw_ps;
+    fontvalues.foreground = alloc_color.pixel;
+    linevalues.foreground = alloc_color.pixel;
+    showme_foreground = alloc_color.pixel;
+    for (i = 0; i < 64; i++) {
+      if (XAllocNamedColor(display, rootmap, colorname[i], &alloc_color,
+                           &rgb[i])) {
+        colors[i] = alloc_color.pixel;
+      } else {
+        colors[i] = white;
+        rgb[i].red = alloc_color.red;
+        rgb[i].green = alloc_color.green;
+        rgb[i].blue = alloc_color.blue;
+        if (!quiet) {
+          printf("Warning:  I could not allocate %s.\n", colorname[i]);
+        }
+      }
+    }
+  } else {
+    color = 0;
+    fillelem = 0;
+    explode = 1;
+    fontvalues.foreground = white;
+    linevalues.foreground = white;
+    showme_foreground = white;
+  }
+  font = XLoadQueryFont(display, "9x15");
+  fontvalues.background = black;
+  fontvalues.font = font->fid;
+  fontvalues.fill_style = FillSolid;
+  fontvalues.line_width = 2;
+  fontgc = XCreateGC(display, rootwindow, GCForeground | GCBackground |
+                      GCFont | GCLineWidth | GCFillStyle, &fontvalues);
+  fontvalues.foreground = black;
+  blackfontgc = XCreateGC(display, rootwindow, GCForeground | GCBackground |
+                         GCFont | GCLineWidth | GCFillStyle, &fontvalues);
+  linevalues.background = black;
+  linevalues.line_width = line_width;
+  linevalues.cap_style = CapRound;
+  linevalues.join_style = JoinRound;
+  linevalues.fill_style = FillSolid;
+  linegc = XCreateGC(display, rootwindow, GCForeground | GCBackground |
+                     GCLineWidth | GCCapStyle | GCJoinStyle | GCFillStyle,
+                     &linevalues);
+  trianglegc = XCreateGC(display, rootwindow, GCForeground | GCBackground |
+                         GCLineWidth | GCCapStyle | GCJoinStyle | GCFillStyle,
+                         &linevalues);
+  make_buttons(height);
+  XFlush(display);
+}
+
+void draw_node(nodes, dim, ptr, xscale, yscale, xoffset, yoffset)
+int nodes;
+int dim;
+REAL *ptr;
+REAL xscale;
+REAL yscale;
+REAL xoffset;
+REAL yoffset;
+{
+  int i;
+  int index;
+
+  index = dim;
+  for (i = 1; i <= nodes; i++) {
+    XFillRectangle(display, mainwindow, linegc,
+                   (int) (ptr[index] * xscale + xoffset) - (line_width >> 1),
+                   (int) (ptr[index + 1] * yscale + yoffset) -
+                         (line_width >> 1), line_width, line_width);
+    index += dim;
+  }
+}
+
+void draw_poly(nodes, dim, edges, holes, nodeptr, edgeptr, holeptr,
+               xscale, yscale, xoffset, yoffset)
+int nodes;
+int dim;
+int edges;
+int holes;
+REAL *nodeptr;
+int *edgeptr;
+REAL *holeptr;
+REAL xscale;
+REAL yscale;
+REAL xoffset;
+REAL yoffset;
+{
+  int i;
+  int index;
+  REAL *point1, *point2;
+  int x1, y1, x2, y2;
+
+  index = dim;
+  for (i = 1; i <= nodes; i++) {
+    XFillRectangle(display, mainwindow, linegc,
+                   (int) (nodeptr[index] * xscale + xoffset) -
+                         (line_width >> 1),
+                   (int) (nodeptr[index + 1] * yscale + yoffset) -
+                         (line_width >> 1), line_width, line_width);
+    index += dim;
+  }
+  index = 2;
+  for (i = 1; i <= edges; i++) {
+    point1 = &nodeptr[edgeptr[index++] * dim];
+    point2 = &nodeptr[edgeptr[index++] * dim];
+    XDrawLine(display, mainwindow, linegc,
+              (int) (point1[0] * xscale + xoffset),
+              (int) (point1[1] * yscale + yoffset),
+              (int) (point2[0] * xscale + xoffset),
+              (int) (point2[1] * yscale + yoffset));
+  }
+  index = dim;
+  if (color) {
+    XSetForeground(display, linegc, colors[0]);
+  }
+  for (i = 1; i <= holes; i++) {
+    x1 = (int) (holeptr[index] * xscale + xoffset) - 3;
+    y1 = (int) (holeptr[index + 1] * yscale + yoffset) - 3;
+    x2 = x1 + 6;
+    y2 = y1 + 6;
+    XDrawLine(display, mainwindow, linegc, x1, y1, x2, y2);
+    XDrawLine(display, mainwindow, linegc, x1, y2, x2, y1);
+    index += dim;
+  }
+  XSetForeground(display, linegc, showme_foreground);
+}
+
+void draw_ele(inc, elems, corners, ptr, partition, shift,
+              xscale, yscale, xoffset, yoffset)
+int inc;
+int elems;
+int corners;
+int *ptr;
+int *partition;
+REAL *shift;
+REAL xscale;
+REAL yscale;
+REAL xoffset;
+REAL yoffset;
+{
+  int i, j;
+  int index;
+  REAL shiftx, shifty;
+  REAL *prevpoint, *nowpoint;
+  XPoint *vertices;
+
+  if (color && fillelem && (partition != (int *) NULL)) {
+    vertices = (XPoint *) malloc(3 * sizeof(XPoint));
+    if (vertices == (XPoint *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  index = 3;
+  for (i = 1; i <= elems; i++) {
+    if ((partition != (int *) NULL) && explode) {
+      shiftx = shift[partition[i] << 1];
+      shifty = shift[(partition[i] << 1) + 1];
+    }
+    if (color && (partition != (int *) NULL)) {
+      if (fillelem) {
+        XSetForeground(display, trianglegc, colors[partition[i] & 63]);
+      } else {
+        XSetForeground(display, linegc, colors[partition[i] & 63]);
+      }
+    }
+    if (color && fillelem && (partition != (int *) NULL)) {
+      if ((partition != (int *) NULL) && explode) {
+        for (j = 0; j < 3; j++) {
+          nowpoint = &nodeptr[inc][ptr[index + j] * node_dim[inc]];
+          vertices[j].x = (nowpoint[0] + shiftx) * xscale + xoffset;
+          vertices[j].y = (nowpoint[1] + shifty) * yscale + yoffset;
+        }
+      } else {
+        for (j = 0; j < 3; j++) {
+          nowpoint = &nodeptr[inc][ptr[index + j] * node_dim[inc]];
+          vertices[j].x = nowpoint[0] * xscale + xoffset;
+          vertices[j].y = nowpoint[1] * yscale + yoffset;
+        }
+      }
+      XFillPolygon(display, mainwindow, trianglegc, vertices, 3,
+                   Convex, CoordModeOrigin);
+    }
+    prevpoint = &nodeptr[inc][ptr[index + 2] * node_dim[inc]];
+    if ((partition != (int *) NULL) && explode) {
+      for (j = 0; j < 3; j++) {
+        nowpoint = &nodeptr[inc][ptr[index++] * node_dim[inc]];
+        XDrawLine(display, mainwindow, linegc,
+                  (int) ((prevpoint[0] + shiftx) * xscale + xoffset),
+                  (int) ((prevpoint[1] + shifty) * yscale + yoffset),
+                  (int) ((nowpoint[0] + shiftx) * xscale + xoffset),
+                  (int) ((nowpoint[1] + shifty) * yscale + yoffset));
+        prevpoint = nowpoint;
+      }
+    } else {
+      for (j = 0; j < 3; j++) {
+        nowpoint = &nodeptr[inc][ptr[index++] * node_dim[inc]];
+        XDrawLine(display, mainwindow, linegc,
+                  (int) (prevpoint[0] * xscale + xoffset),
+                  (int) (prevpoint[1] * yscale + yoffset),
+                  (int) (nowpoint[0] * xscale + xoffset),
+                  (int) (nowpoint[1] * yscale + yoffset));
+        prevpoint = nowpoint;
+      }
+    }
+  }
+  if (color && fillelem && (partition != (int *) NULL)) {
+    free(vertices);
+  }
+  XSetForeground(display, linegc, showme_foreground);
+}
+
+void draw_edge(nodes, dim, edges, nodeptr, edgeptr, normptr,
+               xscale, yscale, xoffset, yoffset)
+int nodes;
+int dim;
+int edges;
+REAL *nodeptr;
+int *edgeptr;
+REAL *normptr;
+REAL xscale;
+REAL yscale;
+REAL xoffset;
+REAL yoffset;
+{
+  int i;
+  int index;
+  REAL *point1, *point2;
+  REAL normx, normy;
+  REAL normmult, normmultx, normmulty;
+  REAL windowxmin, windowymin, windowxmax, windowymax;
+
+  index = 2;
+  for (i = 1; i <= edges; i++) {
+    point1 = &nodeptr[edgeptr[index++] * dim];
+    if (edgeptr[index] == -1) {
+      normx = normptr[index - 1];
+      normy = normptr[index++];
+      normmultx = 0.0;
+      if (normx > 0) {
+        windowxmax = (width - 1 - xoffset) / xscale;
+        normmultx = (windowxmax - point1[0]) / normx;
+      } else if (normx < 0) {
+        windowxmin = -xoffset / xscale;
+        normmultx = (windowxmin - point1[0]) / normx;
+      }
+      normmulty = 0.0;
+      if (normy > 0) {
+        windowymax = -yoffset / yscale;
+        normmulty = (windowymax - point1[1]) / normy;
+      } else if (normy < 0) {
+        windowymin = (height - 1 - yoffset) / yscale;
+        normmulty = (windowymin - point1[1]) / normy;
+      }
+      if (normmultx == 0.0) {
+        normmult = normmulty;
+      } else if (normmulty == 0.0) {
+        normmult = normmultx;
+      } else if (normmultx < normmulty) {
+        normmult = normmultx;
+      } else {
+        normmult = normmulty;
+      }
+      if (normmult > 0.0) {
+        XDrawLine(display, mainwindow, linegc,
+                  (int) (point1[0] * xscale + xoffset),
+                  (int) (point1[1] * yscale + yoffset),
+                  (int) ((point1[0] + normmult * normx) * xscale + xoffset),
+                  (int) ((point1[1] + normmult * normy) * yscale + yoffset));
+      }
+    } else {
+      point2 = &nodeptr[edgeptr[index++] * dim];
+      XDrawLine(display, mainwindow, linegc,
+                (int) (point1[0] * xscale + xoffset),
+                (int) (point1[1] * yscale + yoffset),
+                (int) (point2[0] * xscale + xoffset),
+                (int) (point2[1] * yscale + yoffset));
+    }
+  }
+}
+
+void draw_adj(dim, subdomains, ptr, center, xscale, yscale,
+              xoffset, yoffset)
+int dim;
+int subdomains;
+int *ptr;
+REAL *center;
+REAL xscale;
+REAL yscale;
+REAL xoffset;
+REAL yoffset;
+{
+  int i, j;
+  REAL *point1, *point2;
+
+  for (i = 0; i < subdomains; i++) {
+    for (j = i + 1; j < subdomains; j++) {
+      if (ptr[i * subdomains + j]) {
+        point1 = &center[i * dim];
+        point2 = &center[j * dim];
+        XDrawLine(display, mainwindow, linegc,
+                  (int) (point1[0] * xscale + xoffset),
+                  (int) (point1[1] * yscale + yoffset),
+                  (int) (point2[0] * xscale + xoffset),
+                  (int) (point2[1] * yscale + yoffset));
+      }
+    }
+  }
+  for (i = 0; i < subdomains; i++) {
+    point1 = &center[i * dim];
+    if (color) {
+      XSetForeground(display, linegc, colors[i & 63]);
+    }
+    XFillArc(display, mainwindow, linegc,
+             (int) (point1[0] * xscale + xoffset) - 5 - (line_width >> 1),
+             (int) (point1[1] * yscale + yoffset) - 5 - (line_width >> 1),
+             line_width + 10, line_width + 10, 0, 23040);
+  }
+  XSetForeground(display, linegc, showme_foreground);
+}
+
+void draw(inc, image, xmin, ymin, xmax, ymax)
+int inc;
+int image;
+REAL xmin;
+REAL ymin;
+REAL xmax;
+REAL ymax;
+{
+  draw_buttons();
+  XClearWindow(display, mainwindow);
+  if (image == NOTHING) {
+    return;
+  }
+  if (!loaded[inc][image]) {
+    return;
+  }
+  if ((image == PART) && explode) {
+    xmin += (xmin - partcenter[inc][subdomains[inc] << 1]) * explosion;
+    xmax += (xmax - partcenter[inc][subdomains[inc] << 1]) * explosion;
+    ymin += (ymin - partcenter[inc][(subdomains[inc] << 1) + 1]) * explosion;
+    ymax += (ymax - partcenter[inc][(subdomains[inc] << 1) + 1]) * explosion;
+  }
+  xscale = (REAL) (width - line_width - 4) / (xmax - xmin);
+  yscale = (REAL) (height - line_width - 4) / (ymax - ymin);
+  if (xscale > yscale) {
+    xscale = yscale;
+  } else {
+    yscale = xscale;
+  }
+  xoffset = 0.5 * ((REAL) width - xscale * (xmax - xmin)) -
+            xscale * xmin;
+  yoffset = (REAL) height - 0.5 * ((REAL) height - yscale * (ymax - ymin)) +
+            yscale * ymin;
+  yscale = - yscale;
+  switch(image) {
+    case NODE:
+      draw_node(nodes[inc], node_dim[inc], nodeptr[inc],
+                xscale, yscale, xoffset, yoffset);
+      break;
+    case POLY:
+      if (polynodes[inc] > 0) {
+        draw_poly(polynodes[inc], poly_dim[inc], polyedges[inc],
+                  polyholes[inc], polynodeptr[inc], polyedgeptr[inc],
+                  polyholeptr[inc],
+                  xscale, yscale, xoffset, yoffset);
+      } else {
+        draw_poly(nodes[inc], node_dim[inc], polyedges[inc],
+                  polyholes[inc], nodeptr[inc], polyedgeptr[inc],
+                  polyholeptr[inc],
+                  xscale, yscale, xoffset, yoffset);
+      }
+      break;
+    case ELE:
+      draw_ele(inc, elems[inc], ele_corners[inc], eleptr[inc],
+               (int *) NULL, (REAL *) NULL,
+               xscale, yscale, xoffset, yoffset);
+      break;
+    case EDGE:
+      draw_edge(nodes[inc], node_dim[inc], edges[inc],
+                nodeptr[inc], edgeptr[inc], normptr[inc],
+                xscale, yscale, xoffset, yoffset);
+      break;
+    case PART:
+      draw_ele(inc, elems[inc], ele_corners[inc], eleptr[inc],
+               partpart[inc], partshift[inc],
+               xscale, yscale, xoffset, yoffset);
+      break;
+    case ADJ:
+      draw_adj(node_dim[inc], adjsubdomains[inc], adjptr[inc], partcenter[inc],
+               xscale, yscale, xoffset, yoffset);
+      break;
+    case VORO:
+      if (loaded[inc][NODE]) {
+        draw_node(nodes[inc], node_dim[inc], nodeptr[inc],
+                  xscale, yscale, xoffset, yoffset);
+      }
+      draw_edge(vnodes[inc], vnode_dim[inc], vedges[inc],
+                vnodeptr[inc], vedgeptr[inc], vnormptr[inc],
+                xscale, yscale, xoffset, yoffset);
+      break;
+    default:
+      break;
+  }
+}
+
+void addps(instring, outstring, eps)
+char *instring;
+char *outstring;
+int eps;
+{
+  strcpy(outstring, instring);
+  if (eps) {
+    strcat(outstring, ".eps");
+  } else {
+    strcat(outstring, ".ps");
+  }
+}
+
+int print_head(fname, file, llcornerx, llcornery, eps)
+char *fname;
+FILE **file;
+int llcornerx;
+int llcornery;
+int eps;
+{
+  if (!quiet) {
+    printf("Writing %s\n", fname);
+  }
+  *file = fopen(fname, "w");
+  if (*file == (FILE *) NULL) {
+    printf("  Error:  Could not open %s\n", fname);
+    return 1;
+  }
+  if (eps) {
+    fprintf(*file, "%%!PS-Adobe-2.0 EPSF-2.0\n");
+  } else {
+    fprintf(*file, "%%!PS-Adobe-2.0\n");
+  }
+  fprintf(*file, "%%%%BoundingBox: %d %d %d %d\n", llcornerx, llcornery,
+          612 - llcornerx, 792 - llcornery);
+  fprintf(*file, "%%%%Creator: Show Me\n");
+  fprintf(*file, "%%%%EndComments\n\n");
+  fprintf(*file, "1 setlinecap\n");
+  fprintf(*file, "1 setlinejoin\n");
+  fprintf(*file, "%d setlinewidth\n", line_width);
+  fprintf(*file, "%d %d moveto\n", llcornerx, llcornery);
+  fprintf(*file, "%d %d lineto\n", 612 - llcornerx, llcornery);
+  fprintf(*file, "%d %d lineto\n", 612 - llcornerx, 792 - llcornery);
+  fprintf(*file, "%d %d lineto\n", llcornerx, 792 - llcornery);
+  fprintf(*file, "closepath\nclip\nnewpath\n");
+  return 0;
+}
+
+void print_node(nodefile, nodes, dim, ptr, xscale, yscale,
+                xoffset, yoffset)
+FILE *nodefile;
+int nodes;
+int dim;
+REAL *ptr;
+REAL xscale;
+REAL yscale;
+REAL xoffset;
+REAL yoffset;
+{
+  int i;
+  int index;
+
+  index = dim;
+  for (i = 1; i <= nodes; i++) {
+    fprintf(nodefile, "%d %d %d 0 360 arc\nfill\n",
+            (int) (ptr[index] * xscale + xoffset),
+            (int) (ptr[index + 1] * yscale + yoffset),
+            1 + (line_width >> 1));
+    index += dim;
+  }
+}
+
+void print_poly(polyfile, nodes, dim, edges, holes, nodeptr, edgeptr, holeptr,
+                xscale, yscale, xoffset, yoffset)
+FILE *polyfile;
+int nodes;
+int dim;
+int edges;
+int holes;
+REAL *nodeptr;
+int *edgeptr;
+REAL *holeptr;
+REAL xscale;
+REAL yscale;
+REAL xoffset;
+REAL yoffset;
+{
+  int i;
+  int index;
+  REAL *point1, *point2;
+
+  index = dim;
+  for (i = 1; i <= nodes; i++) {
+    fprintf(polyfile, "%d %d %d 0 360 arc\nfill\n",
+            (int) (nodeptr[index] * xscale + xoffset),
+            (int) (nodeptr[index + 1] * yscale + yoffset),
+            1 + (line_width >> 1));
+    index += dim;
+  }
+  index = 2;
+  for (i = 1; i <= edges; i++) {
+    point1 = &nodeptr[edgeptr[index++] * dim];
+    point2 = &nodeptr[edgeptr[index++] * dim];
+    fprintf(polyfile, "%d %d moveto\n",
+            (int) (point1[0] * xscale + xoffset),
+            (int) (point1[1] * yscale + yoffset));
+    fprintf(polyfile, "%d %d lineto\nstroke\n",
+            (int) (point2[0] * xscale + xoffset),
+            (int) (point2[1] * yscale + yoffset));
+  }
+}
+
+void print_ele(elefile, nodes, dim, elems, corners, nodeptr, eleptr,
+               partition, shift,
+               xscale, yscale, xoffset, yoffset, llcornerx, llcornery)
+FILE *elefile;
+int nodes;
+int dim;
+int elems;
+int corners;
+REAL *nodeptr;
+int *eleptr;
+int *partition;
+REAL *shift;
+REAL xscale;
+REAL yscale;
+REAL xoffset;
+REAL yoffset;
+int llcornerx;
+int llcornery;
+{
+  int i, j;
+  int index, colorindex;
+  REAL shiftx, shifty;
+  REAL *nowpoint;
+
+  index = 3;
+  if ((partition != (int *) NULL) && !bw_ps) {
+    fprintf(elefile, "0 0 0 setrgbcolor\n");
+    fprintf(elefile, "%d %d moveto\n", llcornerx, llcornery);
+    fprintf(elefile, "%d %d lineto\n", 612 - llcornerx, llcornery);
+    fprintf(elefile, "%d %d lineto\n", 612 - llcornerx, 792 - llcornery);
+    fprintf(elefile, "%d %d lineto\n", llcornerx, 792 - llcornery);
+    fprintf(elefile, "fill\n");
+  }
+  for (i = 1; i <= elems; i++) {
+    if ((partition != (int *) NULL) && !bw_ps) {
+      colorindex = partition[i] & 63;
+      fprintf(elefile, "%6.3f %6.3f %6.3f setrgbcolor\n",
+              (REAL) rgb[colorindex].red / 65535.0,
+              (REAL) rgb[colorindex].green / 65535.0,
+              (REAL) rgb[colorindex].blue / 65535.0);
+    }
+    nowpoint = &nodeptr[eleptr[index + 2] * dim];
+    if ((partition != (int *) NULL) && (explode || bw_ps)) {
+      shiftx = shift[partition[i] << 1];
+      shifty = shift[(partition[i] << 1) + 1];
+      fprintf(elefile, "%d %d moveto\n",
+              (int) ((nowpoint[0] + shiftx) * xscale + xoffset),
+              (int) ((nowpoint[1] + shifty) * yscale + yoffset));
+      for (j = 0; j < 3; j++) {
+        nowpoint = &nodeptr[eleptr[index++] * dim];
+        fprintf(elefile, "%d %d lineto\n",
+                (int) ((nowpoint[0] + shiftx) * xscale + xoffset),
+                (int) ((nowpoint[1] + shifty) * yscale + yoffset));
+      }
+    } else {
+      fprintf(elefile, "%d %d moveto\n",
+              (int) (nowpoint[0] * xscale + xoffset),
+              (int) (nowpoint[1] * yscale + yoffset));
+      for (j = 0; j < 3; j++) {
+        nowpoint = &nodeptr[eleptr[index++] * dim];
+        fprintf(elefile, "%d %d lineto\n",
+                (int) (nowpoint[0] * xscale + xoffset),
+                (int) (nowpoint[1] * yscale + yoffset));
+      }
+    }
+    if (fillelem && !bw_ps) {
+      fprintf(elefile, "gsave\nfill\ngrestore\n1 1 0 setrgbcolor\n");
+    }
+    fprintf(elefile, "stroke\n");
+  }
+}
+
+void print_edge(edgefile, nodes, dim, edges, nodeptr, edgeptr, normptr,
+                xscale, yscale, xoffset, yoffset, llcornerx, llcornery)
+FILE *edgefile;
+int nodes;
+int dim;
+int edges;
+REAL *nodeptr;
+int *edgeptr;
+REAL *normptr;
+REAL xscale;
+REAL yscale;
+REAL xoffset;
+REAL yoffset;
+int llcornerx;
+int llcornery;
+{
+  int i;
+  int index;
+  REAL *point1, *point2;
+  REAL normx, normy;
+  REAL normmult, normmultx, normmulty;
+  REAL windowxmin, windowymin, windowxmax, windowymax;
+
+  index = 2;
+  for (i = 1; i <= edges; i++) {
+    point1 = &nodeptr[edgeptr[index++] * dim];
+    if (edgeptr[index] == -1) {
+      normx = normptr[index - 1];
+      normy = normptr[index++];
+      normmultx = 0.0;
+      if (normx > 0) {
+        windowxmax = ((REAL) (612 - llcornerx) - xoffset) / xscale;
+        normmultx = (windowxmax - point1[0]) / normx;
+      } else if (normx < 0) {
+        windowxmin = ((REAL) llcornerx - xoffset) / xscale;
+        normmultx = (windowxmin - point1[0]) / normx;
+      }
+      normmulty = 0.0;
+      if (normy > 0) {
+        windowymax = ((REAL) (792 - llcornery) - yoffset) / yscale;
+        normmulty = (windowymax - point1[1]) / normy;
+      } else if (normy < 0) {
+        windowymin = ((REAL) llcornery - yoffset) / yscale;
+        normmulty = (windowymin - point1[1]) / normy;
+      }
+      if (normmultx == 0.0) {
+        normmult = normmulty;
+      } else if (normmulty == 0.0) {
+        normmult = normmultx;
+      } else if (normmultx < normmulty) {
+        normmult = normmultx;
+      } else {
+        normmult = normmulty;
+      }
+      if (normmult > 0.0) {
+        fprintf(edgefile, "%d %d moveto\n",
+                (int) (point1[0] * xscale + xoffset),
+                (int) (point1[1] * yscale + yoffset));
+        fprintf(edgefile, "%d %d lineto\nstroke\n",
+                (int) ((point1[0] + normmult * normx) * xscale + xoffset),
+                (int) ((point1[1] + normmult * normy) * yscale + yoffset));
+      }
+    } else {
+      point2 = &nodeptr[edgeptr[index++] * dim];
+      fprintf(edgefile, "%d %d moveto\n",
+              (int) (point1[0] * xscale + xoffset),
+              (int) (point1[1] * yscale + yoffset));
+      fprintf(edgefile, "%d %d lineto\nstroke\n",
+              (int) (point2[0] * xscale + xoffset),
+              (int) (point2[1] * yscale + yoffset));
+    }
+  }
+}
+
+void print_adj(adjfile, dim, subdomains, ptr, center, xscale, yscale,
+               xoffset, yoffset, llcornerx, llcornery)
+FILE *adjfile;
+int dim;
+int subdomains;
+int *ptr;
+REAL *center;
+REAL xscale;
+REAL yscale;
+REAL xoffset;
+REAL yoffset;
+int llcornerx;
+int llcornery;
+{
+  int i, j;
+  REAL *point1, *point2;
+  int colorindex;
+
+  if (!bw_ps) {
+    fprintf(adjfile, "0 0 0 setrgbcolor\n");
+    fprintf(adjfile, "%d %d moveto\n", llcornerx, llcornery);
+    fprintf(adjfile, "%d %d lineto\n", 612 - llcornerx, llcornery);
+    fprintf(adjfile, "%d %d lineto\n", 612 - llcornerx, 792 - llcornery);
+    fprintf(adjfile, "%d %d lineto\n", llcornerx, 792 - llcornery);
+    fprintf(adjfile, "fill\n");
+    fprintf(adjfile, "1 1 0 setrgbcolor\n");
+  }
+  for (i = 0; i < subdomains; i++) {
+    for (j = i + 1; j < subdomains; j++) {
+      if (ptr[i * subdomains + j]) {
+        point1 = &center[i * dim];
+        point2 = &center[j * dim];
+        fprintf(adjfile, "%d %d moveto\n",
+                (int) (point1[0] * xscale + xoffset),
+                (int) (point1[1] * yscale + yoffset));
+        fprintf(adjfile, "%d %d lineto\nstroke\n",
+                (int) (point2[0] * xscale + xoffset),
+                (int) (point2[1] * yscale + yoffset));
+      }
+    }
+  }
+  for (i = 0; i < subdomains; i++) {
+    point1 = &center[i * dim];
+    if (!bw_ps) {
+      colorindex = i & 63;
+      fprintf(adjfile, "%6.3f %6.3f %6.3f setrgbcolor\n",
+              (REAL) rgb[colorindex].red / 65535.0,
+              (REAL) rgb[colorindex].green / 65535.0,
+              (REAL) rgb[colorindex].blue / 65535.0);
+      fprintf(adjfile, "%d %d %d 0 360 arc\nfill\n",
+              (int) (point1[0] * xscale + xoffset),
+              (int) (point1[1] * yscale + yoffset),
+              5 + (line_width >> 1));
+    } else {
+      fprintf(adjfile, "%d %d %d 0 360 arc\nfill\n",
+              (int) (point1[0] * xscale + xoffset),
+              (int) (point1[1] * yscale + yoffset),
+              3 + (line_width >> 1));
+    }
+  }
+}
+
+void print(inc, image, xmin, ymin, xmax, ymax, eps)
+int inc;
+int image;
+REAL xmin;
+REAL ymin;
+REAL xmax;
+REAL ymax;
+int eps;
+{
+  REAL xxscale, yyscale, xxoffset, yyoffset;
+  char psfilename[FILENAMESIZE];
+  int llcornerx, llcornery;
+  FILE *psfile;
+
+  if (image == NOTHING) {
+    return;
+  }
+  if (!loaded[inc][image]) {
+    return;
+  }
+  if ((image == PART) && (explode || bw_ps)) {
+    xmin += (xmin - partcenter[inc][subdomains[inc] << 1]) * explosion;
+    xmax += (xmax - partcenter[inc][subdomains[inc] << 1]) * explosion;
+    ymin += (ymin - partcenter[inc][(subdomains[inc] << 1) + 1]) * explosion;
+    ymax += (ymax - partcenter[inc][(subdomains[inc] << 1) + 1]) * explosion;
+  }
+  xxscale = (460.0 - (REAL) line_width) / (xmax - xmin);
+  yyscale = (640.0 - (REAL) line_width) / (ymax - ymin);
+  if (xxscale > yyscale) {
+    xxscale = yyscale;
+    llcornerx = (604 - (int) (yyscale * (xmax - xmin)) - line_width) >> 1;
+    llcornery = 72;
+  } else {
+    yyscale = xxscale;
+    llcornerx = 72;
+    llcornery = (784 - (int) (xxscale * (ymax - ymin)) - line_width) >> 1;
+  }
+  xxoffset = 0.5 * (612.0 - xxscale * (xmax - xmin)) - xxscale * xmin +
+             (line_width >> 1);
+  yyoffset = 0.5 * (792.0 - yyscale * (ymax - ymin)) - yyscale * ymin +
+             (line_width >> 1);
+  switch(image) {
+    case NODE:
+      addps(nodefilename[inc], psfilename, eps);
+      break;
+    case POLY:
+      addps(polyfilename[inc], psfilename, eps);
+      break;
+    case ELE:
+      addps(elefilename[inc], psfilename, eps);
+      break;
+    case EDGE:
+      addps(edgefilename[inc], psfilename, eps);
+      break;
+    case PART:
+      addps(partfilename[inc], psfilename, eps);
+      break;
+    case ADJ:
+      addps(adjfilename[inc], psfilename, eps);
+      break;
+    case VORO:
+      addps(vedgefilename[inc], psfilename, eps);
+      break;
+    default:
+      break;
+  }
+  if (print_head(psfilename, &psfile, llcornerx, llcornery, eps)) {
+    return;
+  }
+  switch(image) {
+    case NODE:
+      print_node(psfile, nodes[inc], node_dim[inc], nodeptr[inc],
+                 xxscale, yyscale, xxoffset, yyoffset);
+      break;
+    case POLY:
+      if (polynodes[inc] > 0) {
+        print_poly(psfile, polynodes[inc], poly_dim[inc], polyedges[inc],
+                   polyholes[inc], polynodeptr[inc], polyedgeptr[inc],
+                   polyholeptr[inc], xxscale, yyscale, xxoffset, yyoffset);
+      } else {
+        print_poly(psfile, nodes[inc], node_dim[inc], polyedges[inc],
+                   polyholes[inc], nodeptr[inc], polyedgeptr[inc],
+                   polyholeptr[inc], xxscale, yyscale, xxoffset, yyoffset);
+      }
+      break;
+    case ELE:
+      print_ele(psfile, nodes[inc], node_dim[inc], elems[inc],
+                ele_corners[inc], nodeptr[inc], eleptr[inc],
+                (int *) NULL, (REAL *) NULL,
+                xxscale, yyscale, xxoffset, yyoffset, llcornerx, llcornery);
+      break;
+    case EDGE:
+      print_edge(psfile, nodes[inc], node_dim[inc], edges[inc],
+                 nodeptr[inc], edgeptr[inc], normptr[inc],
+                 xxscale, yyscale, xxoffset, yyoffset, llcornerx, llcornery);
+      break;
+    case PART:
+      print_ele(psfile, nodes[inc], node_dim[inc], elems[inc],
+                ele_corners[inc], nodeptr[inc], eleptr[inc],
+                partpart[inc], partshift[inc],
+                xxscale, yyscale, xxoffset, yyoffset, llcornerx, llcornery);
+      break;
+    case ADJ:
+      print_adj(psfile, node_dim[inc], adjsubdomains[inc], adjptr[inc],
+                partcenter[inc],
+                xxscale, yyscale, xxoffset, yyoffset, llcornerx, llcornery);
+      break;
+    case VORO:
+      print_edge(psfile, vnodes[inc], vnode_dim[inc], vedges[inc],
+                 vnodeptr[inc], vedgeptr[inc], vnormptr[inc],
+                 xxscale, yyscale, xxoffset, yyoffset, llcornerx, llcornery);
+      break;
+    default:
+      break;
+  }
+  if (!eps) {
+    fprintf(psfile, "showpage\n");
+  }
+  fclose(psfile);
+}
+
+int main(argc, argv)
+int argc;
+char **argv;
+{
+  REAL xmin, ymin, xmax, ymax;
+  REAL xptr, yptr, xspan, yspan;
+  int past_image;
+  int new_image;
+  int new_inc;
+
+  parsecommandline(argc, argv);
+  showme_init();
+  choose_image(start_inc, start_image);
+  showme_window(argc, argv);
+
+  if (current_image != NOTHING) {
+    xmin = xlo[current_inc][current_image];
+    ymin = ylo[current_inc][current_image];
+    xmax = xhi[current_inc][current_image];
+    ymax = yhi[current_inc][current_image];
+    zoom = 0;
+  }
+
+  XMaskEvent(display, ExposureMask, &event);
+  while (1) {
+    switch (event.type) {
+      case ButtonRelease:
+        if (event.xany.window == quitwin) {
+          XDestroyWindow(display, mainwindow);
+          XCloseDisplay(display);
+          return 0;
+        } else if (event.xany.window == leftwin) {
+          xspan = 0.25 * (xmax - xmin);
+          xmin += xspan;
+          xmax += xspan;
+          draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+        } else if (event.xany.window == rightwin) {
+          xspan = 0.25 * (xmax - xmin);
+          xmin -= xspan;
+          xmax -= xspan;
+          draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+        } else if (event.xany.window == upwin) {
+          yspan = 0.25 * (ymax - ymin);
+          ymin -= yspan;
+          ymax -= yspan;
+          draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+        } else if (event.xany.window == downwin) {
+          yspan = 0.25 * (ymax - ymin);
+          ymin += yspan;
+          ymax += yspan;
+          draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+        } else if (event.xany.window == resetwin) {
+          xmin = xlo[current_inc][current_image];
+          ymin = ylo[current_inc][current_image];
+          xmax = xhi[current_inc][current_image];
+          ymax = yhi[current_inc][current_image];
+          zoom = 0;
+          draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+        } else if (event.xany.window == widthpluswin) {
+          if (line_width < 100) {
+            line_width++;
+            XSetLineAttributes(display, linegc, line_width, LineSolid,
+                               CapRound, JoinRound);
+            XSetLineAttributes(display, trianglegc, line_width, LineSolid,
+                               CapRound, JoinRound);
+            draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+          }
+        } else if (event.xany.window == widthminuswin) {
+          if (line_width > 1) {
+            line_width--;
+            XSetLineAttributes(display, linegc, line_width, LineSolid,
+                               CapRound, JoinRound);
+            XSetLineAttributes(display, trianglegc, line_width, LineSolid,
+                               CapRound, JoinRound);
+            draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+          }
+        } else if (event.xany.window == expwin) {
+          if ((current_image == PART) && loaded[current_inc][PART]) {
+            explode = !explode;
+            draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+          }
+        } else if (event.xany.window == exppluswin) {
+          if ((current_image == PART) && loaded[PART] && explode) {
+            explosion += 0.125;
+            findpartshift(subdomains[current_inc], explosion,
+                          partcenter[current_inc], partshift[current_inc]);
+            draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+          }
+        } else if (event.xany.window == expminuswin) {
+          if ((current_image == PART) && loaded[PART] && explode &&
+              (explosion >= 0.125)) {
+            explosion -= 0.125;
+            findpartshift(subdomains[current_inc], explosion,
+                          partcenter[current_inc], partshift[current_inc]);
+            draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+          }
+        } else if (event.xany.window == fillwin) {
+          if ((current_image == PART) && loaded[PART]) {
+            fillelem = !fillelem;
+            draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+          }
+        } else if (event.xany.window == pswin) {
+          fill_button(pswin);
+          XFlush(display);
+          print(current_inc, current_image, xmin, ymin, xmax, ymax, 0);
+          XClearWindow(display, pswin);
+          XDrawString(display, pswin, fontgc, 2, 13, "PS", 2);
+        } else if (event.xany.window == epswin) {
+          fill_button(epswin);
+          XFlush(display);
+          print(current_inc, current_image, xmin, ymin, xmax, ymax, 1);
+          XClearWindow(display, epswin);
+          XDrawString(display, epswin, fontgc, 2, 13, "EPS", 3);
+        } else if (event.xany.window == versionpluswin) {
+          move_inc(1);
+          loweriteration++;
+          set_filenames(filename, loweriteration);
+          if (current_inc == 1) {
+            current_inc = 0;
+          } else {
+            current_image = NOTHING;
+            XClearWindow(display, mainwindow);
+          }
+          draw_buttons();
+        } else if (event.xany.window == versionminuswin) {
+          if (loweriteration > 0) {
+            move_inc(0);
+            loweriteration--;
+            set_filenames(filename, loweriteration);
+            if (current_inc == 0) {
+              current_inc = 1;
+            } else {
+              current_image = NOTHING;
+              XClearWindow(display, mainwindow);
+            }
+            draw_buttons();
+          }
+        } else if ((event.xany.window == nodewin[0]) ||
+                   (event.xany.window == polywin[0]) ||
+                   (event.xany.window == elewin[0]) ||
+                   (event.xany.window == edgewin[0]) ||
+                   (event.xany.window == partwin[0]) ||
+                   (event.xany.window == adjwin[0]) ||
+                   (event.xany.window == voronoiwin[0]) ||
+                   (event.xany.window == nodewin[1]) ||
+                   (event.xany.window == polywin[1]) ||
+                   (event.xany.window == elewin[1]) ||
+                   (event.xany.window == edgewin[1]) ||
+                   (event.xany.window == partwin[1]) ||
+                   (event.xany.window == adjwin[1]) ||
+                   (event.xany.window == voronoiwin[1])) {
+          if (event.xany.window == nodewin[0]) {
+            new_inc = 0;
+            new_image = NODE;
+          }
+          if (event.xany.window == polywin[0]) {
+            new_inc = 0;
+            new_image = POLY;
+          }
+          if (event.xany.window == elewin[0]) {
+            new_inc = 0;
+            new_image = ELE;
+          }
+          if (event.xany.window == edgewin[0]) {
+            new_inc = 0;
+            new_image = EDGE;
+          }
+          if (event.xany.window == partwin[0]) {
+            new_inc = 0;
+            new_image = PART;
+          }
+          if (event.xany.window == adjwin[0]) {
+            new_inc = 0;
+            new_image = ADJ;
+          }
+          if (event.xany.window == voronoiwin[0]) {
+            new_inc = 0;
+            new_image = VORO;
+          }
+          if (event.xany.window == nodewin[1]) {
+            new_inc = 1;
+            new_image = NODE;
+          }
+          if (event.xany.window == polywin[1]) {
+            new_inc = 1;
+            new_image = POLY;
+          }
+          if (event.xany.window == elewin[1]) {
+            new_inc = 1;
+            new_image = ELE;
+          }
+          if (event.xany.window == edgewin[1]) {
+            new_inc = 1;
+            new_image = EDGE;
+          }
+          if (event.xany.window == partwin[1]) {
+            new_inc = 1;
+            new_image = PART;
+          }
+          if (event.xany.window == adjwin[1]) {
+            new_inc = 1;
+            new_image = ADJ;
+          }
+          if (event.xany.window == voronoiwin[1]) {
+            new_inc = 1;
+            new_image = VORO;
+          }
+          past_image = current_image;
+          if ((current_inc == new_inc) && (current_image == new_image)) {
+            free_inc(new_inc);
+            unload_inc(new_inc);
+          }
+          choose_image(new_inc, new_image);
+          if ((past_image == NOTHING) && (current_image != NOTHING)) {
+            xmin = xlo[current_inc][current_image];
+            ymin = ylo[current_inc][current_image];
+            xmax = xhi[current_inc][current_image];
+            ymax = yhi[current_inc][current_image];
+            zoom = 0;
+          }
+          draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+        } else {
+          xptr = ((REAL) event.xbutton.x - xoffset) / xscale;
+          yptr = ((REAL) event.xbutton.y - yoffset) / yscale;
+          if ((current_image == PART) && loaded[PART] && explode) {
+            xptr = (xptr + partcenter[current_inc]
+                                     [subdomains[current_inc] << 1]
+                    * explosion) / (1.0 + explosion);
+            yptr = (yptr + partcenter[current_inc]
+                                     [(subdomains[current_inc] << 1) + 1]
+                    * explosion) / (1.0 + explosion);
+          }
+          if ((event.xbutton.button == Button1)
+              || (event.xbutton.button == Button3)) {
+            if (event.xbutton.button == Button1) {
+              xspan = 0.25 * (xmax - xmin);
+              yspan = 0.25 * (ymax - ymin);
+              zoom++;
+            } else {
+              xspan = xmax - xmin;
+              yspan = ymax - ymin;
+              zoom--;
+            }
+            xmin = xptr - xspan;
+            ymin = yptr - yspan;
+            xmax = xptr + xspan;
+            ymax = yptr + yspan;
+            draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+          } else if (event.xbutton.button == Button2) {
+            printf("x = %.9f, y = %.9f\n", xptr, yptr);
+          }
+        }
+        break;
+      case DestroyNotify:
+        XDestroyWindow(display, mainwindow);
+        XCloseDisplay(display);
+        return 0;
+      case ConfigureNotify:
+        if ((width != event.xconfigure.width) ||
+            (height != event.xconfigure.height - PANELHEIGHT)) {
+          width = event.xconfigure.width;
+          height = event.xconfigure.height - PANELHEIGHT;
+          draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+          while (XCheckMaskEvent(display, ExposureMask, &event));
+        }
+        break;
+      case Expose:
+        draw(current_inc, current_image, xmin, ymin, xmax, ymax);
+        while (XCheckMaskEvent(display, ExposureMask, &event));
+        break;
+      default:
+        break;
+    }
+    XNextEvent(display, &event);
+  }
+}
diff --git a/Tools/Triangle/triangle.c b/Tools/Triangle/triangle.c
new file mode 100644
index 000000000..9af47a493
--- /dev/null
+++ b/Tools/Triangle/triangle.c
@@ -0,0 +1,13241 @@
+/*****************************************************************************/
+/*                                                                           */
+/*      888888888        ,o,                          / 888                  */
+/*         888    88o88o  "    o8888o  88o8888o o88888o 888  o88888o         */
+/*         888    888    888       88b 888  888 888 888 888 d888  88b        */
+/*         888    888    888  o88^o888 888  888 "88888" 888 8888oo888        */
+/*         888    888    888 C888  888 888  888  /      888 q888             */
+/*         888    888    888  "88o^888 888  888 Cb      888  "88oooo"        */
+/*                                              "8oo8D                       */
+/*                                                                           */
+/*  A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.      */
+/*  (triangle.c)                                                             */
+/*                                                                           */
+/*  Version 1.3                                                              */
+/*  July 19, 1996                                                            */
+/*                                                                           */
+/*  Copyright 1996                                                           */
+/*  Jonathan Richard Shewchuk                                                */
+/*  School of Computer Science                                               */
+/*  Carnegie Mellon University                                               */
+/*  5000 Forbes Avenue                                                       */
+/*  Pittsburgh, Pennsylvania  15213-3891                                     */
+/*  jrs@cs.cmu.edu                                                           */
+/*                                                                           */
+/*  This program may be freely redistributed under the condition that the    */
+/*    copyright notices (including this entire header and the copyright      */
+/*    notice printed when the `-h' switch is selected) are not removed, and  */
+/*    no compensation is received.  Private, research, and institutional     */
+/*    use is free.  You may distribute modified versions of this code UNDER  */
+/*    THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE   */
+/*    SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE   */
+/*    AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR    */
+/*    NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as    */
+/*    part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT  */
+/*    WITH THE AUTHOR.  (If you are not directly supplying this code to a    */
+/*    customer, and you are instead telling them how they can obtain it for  */
+/*    free, then you are not required to make any arrangement with me.)      */
+/*                                                                           */
+/*  Hypertext instructions for Triangle are available on the Web at          */
+/*                                                                           */
+/*      http://www.cs.cmu.edu/~quake/triangle.html                           */
+/*                                                                           */
+/*  Some of the references listed below are marked [*].  These are available */
+/*    for downloading from the Web page                                      */
+/*                                                                           */
+/*      http://www.cs.cmu.edu/~quake/triangle.research.html                  */
+/*                                                                           */
+/*  A paper discussing some aspects of Triangle is available.  See Jonathan  */
+/*    Richard Shewchuk, "Triangle:  Engineering a 2D Quality Mesh Generator  */
+/*    and Delaunay Triangulator," First Workshop on Applied Computational    */
+/*    Geometry, ACM, May 1996.  [*]                                          */
+/*                                                                           */
+/*  Triangle was created as part of the Archimedes project in the School of  */
+/*    Computer Science at Carnegie Mellon University.  Archimedes is a       */
+/*    system for compiling parallel finite element solvers.  For further     */
+/*    information, see Anja Feldmann, Omar Ghattas, John R. Gilbert, Gary L. */
+/*    Miller, David R. O'Hallaron, Eric J. Schwabe, Jonathan R. Shewchuk,    */
+/*    and Shang-Hua Teng, "Automated Parallel Solution of Unstructured PDE   */
+/*    Problems."  To appear in Communications of the ACM, we hope.           */
+/*                                                                           */
+/*  The quality mesh generation algorithm is due to Jim Ruppert, "A          */
+/*    Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh           */
+/*    Generation," Journal of Algorithms 18(3):548-585, May 1995.  [*]       */
+/*                                                                           */
+/*  My implementation of the divide-and-conquer and incremental Delaunay     */
+/*    triangulation algorithms follows closely the presentation of Guibas    */
+/*    and Stolfi, even though I use a triangle-based data structure instead  */
+/*    of their quad-edge data structure.  (In fact, I originally implemented */
+/*    Triangle using the quad-edge data structure, but switching to a        */
+/*    triangle-based data structure sped Triangle by a factor of two.)  The  */
+/*    mesh manipulation primitives and the two aforementioned Delaunay       */
+/*    triangulation algorithms are described by Leonidas J. Guibas and Jorge */
+/*    Stolfi, "Primitives for the Manipulation of General Subdivisions and   */
+/*    the Computation of Voronoi Diagrams," ACM Transactions on Graphics     */
+/*    4(2):74-123, April 1985.                                               */
+/*                                                                           */
+/*  Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai   */
+/*    Lee and Bruce J. Schachter, "Two Algorithms for Constructing the       */
+/*    Delaunay Triangulation," International Journal of Computer and         */
+/*    Information Science 9(3):219-242, 1980.  The idea to improve the       */
+/*    divide-and-conquer algorithm by alternating between vertical and       */
+/*    horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and-  */
+/*    Conquer Algorithm for Constructing Delaunay Triangulations,"           */
+/*    Algorithmica 2(2):137-151, 1987.                                       */
+/*                                                                           */
+/*  The incremental insertion algorithm was first proposed by C. L. Lawson,  */
+/*    "Software for C1 Surface Interpolation," in Mathematical Software III, */
+/*    John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977.     */
+/*    For point location, I use the algorithm of Ernst P. Mucke, Isaac       */
+/*    Saias, and Binhai Zhu, "Fast Randomized Point Location Without         */
+/*    Preprocessing in Two- and Three-dimensional Delaunay Triangulations,"  */
+/*    Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
+/*    ACM, May 1996.  [*]  If I were to randomize the order of point         */
+/*    insertion (I currently don't bother), their result combined with the   */
+/*    result of Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir,       */
+/*    "Randomized Incremental Construction of Delaunay and Voronoi           */
+/*    Diagrams," Algorithmica 7(4):381-413, 1992, would yield an expected    */
+/*    O(n^{4/3}) bound on running time.                                      */
+/*                                                                           */
+/*  The O(n log n) sweepline Delaunay triangulation algorithm is taken from  */
+/*    Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams",          */
+/*    Algorithmica 2(2):153-174, 1987.  A random sample of edges on the      */
+/*    boundary of the triangulation are maintained in a splay tree for the   */
+/*    purpose of point location.  Splay trees are described by Daniel        */
+/*    Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
+/*    Trees," Journal of the ACM 32(3):652-686, July 1985.                   */
+/*                                                                           */
+/*  The algorithms for exact computation of the signs of determinants are    */
+/*    described in Jonathan Richard Shewchuk, "Adaptive Precision Floating-  */
+/*    Point Arithmetic and Fast Robust Geometric Predicates," Technical      */
+/*    Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon      */
+/*    University, Pittsburgh, Pennsylvania, May 1996.  [*]  (Submitted to    */
+/*    Discrete & Computational Geometry.)  An abbreviated version appears as */
+/*    Jonathan Richard Shewchuk, "Robust Adaptive Floating-Point Geometric   */
+/*    Predicates," Proceedings of the Twelfth Annual Symposium on Computa-   */
+/*    tional Geometry, ACM, May 1996.  [*]  Many of the ideas for my exact   */
+/*    arithmetic routines originate with Douglas M. Priest, "Algorithms for  */
+/*    Arbitrary Precision Floating Point Arithmetic," Tenth Symposium on     */
+/*    Computer Arithmetic, 132-143, IEEE Computer Society Press, 1991.  [*]  */
+/*    Many of the ideas for the correct evaluation of the signs of           */
+/*    determinants are taken from Steven Fortune and Christopher J. Van Wyk, */
+/*    "Efficient Exact Arithmetic for Computational Geometry," Proceedings   */
+/*    of the Ninth Annual Symposium on Computational Geometry, ACM,          */
+/*    pp. 163-172, May 1993, and from Steven Fortune, "Numerical Stability   */
+/*    of Algorithms for 2D Delaunay Triangulations," International Journal   */
+/*    of Computational Geometry & Applications 5(1-2):193-213, March-June    */
+/*    1995.                                                                  */
+/*                                                                           */
+/*  For definitions of and results involving Delaunay triangulations,        */
+/*    constrained and conforming versions thereof, and other aspects of      */
+/*    triangular mesh generation, see the excellent survey by Marshall Bern  */
+/*    and David Eppstein, "Mesh Generation and Optimal Triangulation," in    */
+/*    Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang,         */
+/*    editors, World Scientific, Singapore, pp. 23-90, 1992.                 */
+/*                                                                           */
+/*  The time for incrementally adding PSLG (planar straight line graph)      */
+/*    segments to create a constrained Delaunay triangulation is probably    */
+/*    O(n^2) per segment in the worst case and O(n) per edge in the common   */
+/*    case, where n is the number of triangles that intersect the segment    */
+/*    before it is inserted.  This doesn't count point location, which can   */
+/*    be much more expensive.  (This note does not apply to conforming       */
+/*    Delaunay triangulations, for which a different method is used to       */
+/*    insert segments.)                                                      */
+/*                                                                           */
+/*  The time for adding segments to a conforming Delaunay triangulation is   */
+/*    not clear, but does not depend upon n alone.  In some cases, very      */
+/*    small features (like a point lying next to a segment) can cause a      */
+/*    single segment to be split an arbitrary number of times.  Of course,   */
+/*    floating-point precision is a practical barrier to how much this can   */
+/*    happen.                                                                */
+/*                                                                           */
+/*  The time for deleting a point from a Delaunay triangulation is O(n^2) in */
+/*    the worst case and O(n) in the common case, where n is the degree of   */
+/*    the point being deleted.  I could improve this to expected O(n) time   */
+/*    by "inserting" the neighboring vertices in random order, but n is      */
+/*    usually quite small, so it's not worth the bother.  (The O(n) time     */
+/*    for random insertion follows from L. Paul Chew, "Building Voronoi      */
+/*    Diagrams for Convex Polygons in Linear Expected Time," Technical       */
+/*    Report PCS-TR90-147, Department of Mathematics and Computer Science,   */
+/*    Dartmouth College, 1990.                                               */
+/*                                                                           */
+/*  Ruppert's Delaunay refinement algorithm typically generates triangles    */
+/*    at a linear rate (constant time per triangle) after the initial        */
+/*    triangulation is formed.  There may be pathological cases where more   */
+/*    time is required, but these never arise in practice.                   */
+/*                                                                           */
+/*  The segment intersection formulae are straightforward.  If you want to   */
+/*    see them derived, see Franklin Antonio.  "Faster Line Segment          */
+/*    Intersection."  In Graphics Gems III (David Kirk, editor), pp. 199-    */
+/*    202.  Academic Press, Boston, 1992.                                    */
+/*                                                                           */
+/*  If you make any improvements to this code, please please please let me   */
+/*    know, so that I may obtain the improvements.  Even if you don't change */
+/*    the code, I'd still love to hear what it's being used for.             */
+/*                                                                           */
+/*  Disclaimer:  Neither I nor Carnegie Mellon warrant this code in any way  */
+/*    whatsoever.  This code is provided "as-is".  Use at your own risk.     */
+/*                                                                           */
+/*****************************************************************************/
+
+/* For single precision (which will save some memory and reduce paging),     */
+/*   define the symbol SINGLE by using the -DSINGLE compiler switch or by    */
+/*   writing "#define SINGLE" below.                                         */
+/*                                                                           */
+/* For double precision (which will allow you to refine meshes to a smaller  */
+/*   edge length), leave SINGLE undefined.                                   */
+/*                                                                           */
+/* Double precision uses more memory, but improves the resolution of the     */
+/*   meshes you can generate with Triangle.  It also reduces the likelihood  */
+/*   of a floating exception due to overflow.  Finally, it is much faster    */
+/*   than single precision on 64-bit architectures like the DEC Alpha.  I    */
+/*   recommend double precision unless you want to generate a mesh for which */
+/*   you do not have enough memory.                                          */
+
+/* #define SINGLE */
+
+#ifdef SINGLE
+#define REAL float
+#else /* not SINGLE */
+#define REAL double
+#endif /* not SINGLE */
+
+/* If yours is not a Unix system, define the NO_TIMER compiler switch to     */
+/*   remove the Unix-specific timing code.                                   */
+
+/* #define NO_TIMER */
+
+/* To insert lots of self-checks for internal errors, define the SELF_CHECK  */
+/*   symbol.  This will slow down the program significantly.  It is best to  */
+/*   define the symbol using the -DSELF_CHECK compiler switch, but you could */
+/*   write "#define SELF_CHECK" below.  If you are modifying this code, I    */
+/*   recommend you turn self-checks on.                                      */
+
+/* #define SELF_CHECK */
+
+/* To compile Triangle as a callable object library (triangle.o), define the */
+/*   TRILIBRARY symbol.  Read the file triangle.h for details on how to call */
+/*   the procedure triangulate() that results.                               */
+
+/* #define TRILIBRARY */
+
+/* It is possible to generate a smaller version of Triangle using one or     */
+/*   both of the following symbols.  Define the REDUCED symbol to eliminate  */
+/*   all features that are primarily of research interest; specifically, the */
+/*   -i, -F, -s, and -C switches.  Define the CDT_ONLY symbol to eliminate   */
+/*   all meshing algorithms above and beyond constrained Delaunay            */
+/*   triangulation; specifically, the -r, -q, -a, -S, and -s switches.       */
+/*   These reductions are most likely to be useful when generating an object */
+/*   library (triangle.o) by defining the TRILIBRARY symbol.                 */
+
+/* #define REDUCED */
+/* #define CDT_ONLY */
+
+/* On some machines, the exact arithmetic routines might be defeated by the  */
+/*   use of internal extended precision floating-point registers.  Sometimes */
+/*   this problem can be fixed by defining certain values to be volatile,    */
+/*   thus forcing them to be stored to memory and rounded off.  This isn't   */
+/*   a great solution, though, as it slows Triangle down.                    */
+/*                                                                           */
+/* To try this out, write "#define INEXACT volatile" below.  Normally,       */
+/*   however, INEXACT should be defined to be nothing.  ("#define INEXACT".) */
+
+#define INEXACT /* Nothing */
+/* #define INEXACT volatile */
+
+/* Maximum number of characters in a file name (including the null).         */
+
+#define FILENAMESIZE 512
+
+/* Maximum number of characters in a line read from a file (including the    */
+/*   null).                                                                  */
+
+#define INPUTLINESIZE 512
+
+/* For efficiency, a variety of data structures are allocated in bulk.  The  */
+/*   following constants determine how many of each structure is allocated   */
+/*   at once.                                                                */
+
+#define TRIPERBLOCK 4092           /* Number of triangles allocated at once. */
+#define SHELLEPERBLOCK 508       /* Number of shell edges allocated at once. */
+#define POINTPERBLOCK 4092            /* Number of points allocated at once. */
+#define VIRUSPERBLOCK 1020   /* Number of virus triangles allocated at once. */
+/* Number of encroached segments allocated at once. */
+#define BADSEGMENTPERBLOCK 252
+/* Number of skinny triangles allocated at once. */
+#define BADTRIPERBLOCK 4092
+/* Number of splay tree nodes allocated at once. */
+#define SPLAYNODEPERBLOCK 508
+
+/* The point marker DEADPOINT is an arbitrary number chosen large enough to  */
+/*   (hopefully) not conflict with user boundary markers.  Make sure that it */
+/*   is small enough to fit into your machine's integer size.                */
+
+#define DEADPOINT -1073741824
+
+/* The next line is used to outsmart some very stupid compilers.  If your    */
+/*   compiler is smarter, feel free to replace the "int" with "void".        */
+/*   Not that it matters.                                                    */
+
+#define VOID int
+
+/* Two constants for algorithms based on random sampling.  Both constants    */
+/*   have been chosen empirically to optimize their respective algorithms.   */
+
+/* Used for the point location scheme of Mucke, Saias, and Zhu, to decide    */
+/*   how large a random sample of triangles to inspect.                      */
+#define SAMPLEFACTOR 11
+/* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
+/*   of boundary edges should be maintained in the splay tree for point      */
+/*   location on the front.                                                  */
+#define SAMPLERATE 10
+
+/* A number that speaks for itself, every kissable digit.                    */
+
+#define PI 3.141592653589793238462643383279502884197169399375105820974944592308
+
+/* Another fave.                                                             */
+
+#define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732
+
+/* And here's one for those of you who are intimidated by math.              */
+
+#define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333
+
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+#ifndef NO_TIMER
+#include <sys/time.h>
+#endif /* NO_TIMER */
+#ifdef TRILIBRARY
+#include "triangle.h"
+#endif /* TRILIBRARY */
+
+/* The following obscenity seems to be necessary to ensure that this program */
+/* will port to Dec Alphas running OSF/1, because their stdio.h file commits */
+/* the unpardonable sin of including stdlib.h.  Hence, malloc(), free(), and */
+/* exit() may or may not already be defined at this point.  I declare these  */
+/* functions explicitly because some non-ANSI C compilers lack stdlib.h.     */
+
+#ifndef _STDLIB_H_
+extern void *malloc();
+extern void free();
+extern void exit();
+extern double strtod();
+extern long strtol();
+#endif /* _STDLIB_H_ */
+
+/* A few forward declarations.                                               */
+
+void poolrestart();
+#ifndef TRILIBRARY
+char *readline();
+char *findfield();
+#endif /* not TRILIBRARY */
+
+/* Labels that signify whether a record consists primarily of pointers or of */
+/*   floating-point words.  Used to make decisions about data alignment.     */
+
+enum wordtype {POINTER, FLOATINGPOINT};
+
+/* Labels that signify the result of point location.  The result of a        */
+/*   search indicates that the point falls in the interior of a triangle, on */
+/*   an edge, on a vertex, or outside the mesh.                              */
+
+enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};
+
+/* Labels that signify the result of site insertion.  The result indicates   */
+/*   that the point was inserted with complete success, was inserted but     */
+/*   encroaches on a segment, was not inserted because it lies on a segment, */
+/*   or was not inserted because another point occupies the same location.   */
+
+enum insertsiteresult {SUCCESSFULPOINT, ENCROACHINGPOINT, VIOLATINGPOINT,
+                       DUPLICATEPOINT};
+
+/* Labels that signify the result of direction finding.  The result          */
+/*   indicates that a segment connecting the two query points falls within   */
+/*   the direction triangle, along the left edge of the direction triangle,  */
+/*   or along the right edge of the direction triangle.                      */
+
+enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};
+
+/* Labels that signify the result of the circumcenter computation routine.   */
+/*   The return value indicates which edge of the triangle is shortest.      */
+
+enum circumcenterresult {OPPOSITEORG, OPPOSITEDEST, OPPOSITEAPEX};
+
+/*****************************************************************************/
+/*                                                                           */
+/*  The basic mesh data structures                                           */
+/*                                                                           */
+/*  There are three:  points, triangles, and shell edges (abbreviated        */
+/*  `shelle').  These three data structures, linked by pointers, comprise    */
+/*  the mesh.  A point simply represents a point in space and its properties.*/
+/*  A triangle is a triangle.  A shell edge is a special data structure used */
+/*  to represent impenetrable segments in the mesh (including the outer      */
+/*  boundary, boundaries of holes, and internal boundaries separating two    */
+/*  triangulated regions).  Shell edges represent boundaries defined by the  */
+/*  user that triangles may not lie across.                                  */
+/*                                                                           */
+/*  A triangle consists of a list of three vertices, a list of three         */
+/*  adjoining triangles, a list of three adjoining shell edges (when shell   */
+/*  edges are used), an arbitrary number of optional user-defined floating-  */
+/*  point attributes, and an optional area constraint.  The latter is an     */
+/*  upper bound on the permissible area of each triangle in a region, used   */
+/*  for mesh refinement.                                                     */
+/*                                                                           */
+/*  For a triangle on a boundary of the mesh, some or all of the neighboring */
+/*  triangles may not be present.  For a triangle in the interior of the     */
+/*  mesh, often no neighboring shell edges are present.  Such absent         */
+/*  triangles and shell edges are never represented by NULL pointers; they   */
+/*  are represented by two special records:  `dummytri', the triangle that   */
+/*  fills "outer space", and `dummysh', the omnipresent shell edge.          */
+/*  `dummytri' and `dummysh' are used for several reasons; for instance,     */
+/*  they can be dereferenced and their contents examined without causing the */
+/*  memory protection exception that would occur if NULL were dereferenced.  */
+/*                                                                           */
+/*  However, it is important to understand that a triangle includes other    */
+/*  information as well.  The pointers to adjoining vertices, triangles, and */
+/*  shell edges are ordered in a way that indicates their geometric relation */
+/*  to each other.  Furthermore, each of these pointers contains orientation */
+/*  information.  Each pointer to an adjoining triangle indicates which face */
+/*  of that triangle is contacted.  Similarly, each pointer to an adjoining  */
+/*  shell edge indicates which side of that shell edge is contacted, and how */
+/*  the shell edge is oriented relative to the triangle.                     */
+/*                                                                           */
+/*  Shell edges are found abutting edges of triangles; either sandwiched     */
+/*  between two triangles, or resting against one triangle on an exterior    */
+/*  boundary or hole boundary.                                               */
+/*                                                                           */
+/*  A shell edge consists of a list of two vertices, a list of two           */
+/*  adjoining shell edges, and a list of two adjoining triangles.  One of    */
+/*  the two adjoining triangles may not be present (though there should      */
+/*  always be one), and neighboring shell edges might not be present.        */
+/*  Shell edges also store a user-defined integer "boundary marker".         */
+/*  Typically, this integer is used to indicate what sort of boundary        */
+/*  conditions are to be applied at that location in a finite element        */
+/*  simulation.                                                              */
+/*                                                                           */
+/*  Like triangles, shell edges maintain information about the relative      */
+/*  orientation of neighboring objects.                                      */
+/*                                                                           */
+/*  Points are relatively simple.  A point is a list of floating point       */
+/*  numbers, starting with the x, and y coordinates, followed by an          */
+/*  arbitrary number of optional user-defined floating-point attributes,     */
+/*  followed by an integer boundary marker.  During the segment insertion    */
+/*  phase, there is also a pointer from each point to a triangle that may    */
+/*  contain it.  Each pointer is not always correct, but when one is, it     */
+/*  speeds up segment insertion.  These pointers are assigned values once    */
+/*  at the beginning of the segment insertion phase, and are not used or     */
+/*  updated at any other time.  Edge swapping during segment insertion will  */
+/*  render some of them incorrect.  Hence, don't rely upon them for          */
+/*  anything.  For the most part, points do not have any information about   */
+/*  what triangles or shell edges they are linked to.                        */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  Handles                                                                  */
+/*                                                                           */
+/*  The oriented triangle (`triedge') and oriented shell edge (`edge') data  */
+/*  structures defined below do not themselves store any part of the mesh.   */
+/*  The mesh itself is made of `triangle's, `shelle's, and `point's.         */
+/*                                                                           */
+/*  Oriented triangles and oriented shell edges will usually be referred to  */
+/*  as "handles".  A handle is essentially a pointer into the mesh; it       */
+/*  allows you to "hold" one particular part of the mesh.  Handles are used  */
+/*  to specify the regions in which one is traversing and modifying the mesh.*/
+/*  A single `triangle' may be held by many handles, or none at all.  (The   */
+/*  latter case is not a memory leak, because the triangle is still          */
+/*  connected to other triangles in the mesh.)                               */
+/*                                                                           */
+/*  A `triedge' is a handle that holds a triangle.  It holds a specific side */
+/*  of the triangle.  An `edge' is a handle that holds a shell edge.  It     */
+/*  holds either the left or right side of the edge.                         */
+/*                                                                           */
+/*  Navigation about the mesh is accomplished through a set of mesh          */
+/*  manipulation primitives, further below.  Many of these primitives take   */
+/*  a handle and produce a new handle that holds the mesh near the first     */
+/*  handle.  Other primitives take two handles and glue the corresponding    */
+/*  parts of the mesh together.  The exact position of the handles is        */
+/*  important.  For instance, when two triangles are glued together by the   */
+/*  bond() primitive, they are glued by the sides on which the handles lie.  */
+/*                                                                           */
+/*  Because points have no information about which triangles they are        */
+/*  attached to, I commonly represent a point by use of a handle whose       */
+/*  origin is the point.  A single handle can simultaneously represent a     */
+/*  triangle, an edge, and a point.                                          */
+/*                                                                           */
+/*****************************************************************************/
+
+/* The triangle data structure.  Each triangle contains three pointers to    */
+/*   adjoining triangles, plus three pointers to vertex points, plus three   */
+/*   pointers to shell edges (defined below; these pointers are usually      */
+/*   `dummysh').  It may or may not also contain user-defined attributes     */
+/*   and/or a floating-point "area constraint".  It may also contain extra   */
+/*   pointers for nodes, when the user asks for high-order elements.         */
+/*   Because the size and structure of a `triangle' is not decided until     */
+/*   runtime, I haven't simply defined the type `triangle' to be a struct.   */
+
+typedef REAL **triangle;            /* Really:  typedef triangle *triangle   */
+
+/* An oriented triangle:  includes a pointer to a triangle and orientation.  */
+/*   The orientation denotes an edge of the triangle.  Hence, there are      */
+/*   three possible orientations.  By convention, each edge is always        */
+/*   directed to point counterclockwise about the corresponding triangle.    */
+
+struct triedge {
+  triangle *tri;
+  int orient;                                         /* Ranges from 0 to 2. */
+};
+
+/* The shell data structure.  Each shell edge contains two pointers to       */
+/*   adjoining shell edges, plus two pointers to vertex points, plus two     */
+/*   pointers to adjoining triangles, plus one shell marker.                 */
+
+typedef REAL **shelle;                  /* Really:  typedef shelle *shelle   */
+
+/* An oriented shell edge:  includes a pointer to a shell edge and an        */
+/*   orientation.  The orientation denotes a side of the edge.  Hence, there */
+/*   are two possible orientations.  By convention, the edge is always       */
+/*   directed so that the "side" denoted is the right side of the edge.      */
+
+struct edge {
+  shelle *sh;
+  int shorient;                                       /* Ranges from 0 to 1. */
+};
+
+/* The point data structure.  Each point is actually an array of REALs.      */
+/*   The number of REALs is unknown until runtime.  An integer boundary      */
+/*   marker, and sometimes a pointer to a triangle, is appended after the    */
+/*   REALs.                                                                  */
+
+typedef REAL *point;
+
+/* A queue used to store encroached segments.  Each segment's vertices are   */
+/*   stored so that one can check whether a segment is still the same.       */
+
+struct badsegment {
+  struct edge encsegment;                          /* An encroached segment. */
+  point segorg, segdest;                                /* The two vertices. */
+  struct badsegment *nextsegment;     /* Pointer to next encroached segment. */
+};
+
+/* A queue used to store bad triangles.  The key is the square of the cosine */
+/*   of the smallest angle of the triangle.  Each triangle's vertices are    */
+/*   stored so that one can check whether a triangle is still the same.      */
+
+struct badface {
+  struct triedge badfacetri;                              /* A bad triangle. */
+  REAL key;                             /* cos^2 of smallest (apical) angle. */
+  point faceorg, facedest, faceapex;                  /* The three vertices. */
+  struct badface *nextface;                 /* Pointer to next bad triangle. */
+};
+
+/* A node in a heap used to store events for the sweepline Delaunay          */
+/*   algorithm.  Nodes do not point directly to their parents or children in */
+/*   the heap.  Instead, each node knows its position in the heap, and can   */
+/*   look up its parent and children in a separate array.  The `eventptr'    */
+/*   points either to a `point' or to a triangle (in encoded format, so that */
+/*   an orientation is included).  In the latter case, the origin of the     */
+/*   oriented triangle is the apex of a "circle event" of the sweepline      */
+/*   algorithm.  To distinguish site events from circle events, all circle   */
+/*   events are given an invalid (smaller than `xmin') x-coordinate `xkey'.  */
+
+struct event {
+  REAL xkey, ykey;                              /* Coordinates of the event. */
+  VOID *eventptr;       /* Can be a point or the location of a circle event. */
+  int heapposition;              /* Marks this event's position in the heap. */
+};
+
+/* A node in the splay tree.  Each node holds an oriented ghost triangle     */
+/*   that represents a boundary edge of the growing triangulation.  When a   */
+/*   circle event covers two boundary edges with a triangle, so that they    */
+/*   are no longer boundary edges, those edges are not immediately deleted   */
+/*   from the tree; rather, they are lazily deleted when they are next       */
+/*   encountered.  (Since only a random sample of boundary edges are kept    */
+/*   in the tree, lazy deletion is faster.)  `keydest' is used to verify     */
+/*   that a triangle is still the same as when it entered the splay tree; if */
+/*   it has been rotated (due to a circle event), it no longer represents a  */
+/*   boundary edge and should be deleted.                                    */
+
+struct splaynode {
+  struct triedge keyedge;                  /* Lprev of an edge on the front. */
+  point keydest;            /* Used to verify that splay node is still live. */
+  struct splaynode *lchild, *rchild;              /* Children in splay tree. */
+};
+
+/* A type used to allocate memory.  firstblock is the first block of items.  */
+/*   nowblock is the block from which items are currently being allocated.   */
+/*   nextitem points to the next slab of free memory for an item.            */
+/*   deaditemstack is the head of a linked list (stack) of deallocated items */
+/*   that can be recycled.  unallocateditems is the number of items that     */
+/*   remain to be allocated from nowblock.                                   */
+/*                                                                           */
+/* Traversal is the process of walking through the entire list of items, and */
+/*   is separate from allocation.  Note that a traversal will visit items on */
+/*   the "deaditemstack" stack as well as live items.  pathblock points to   */
+/*   the block currently being traversed.  pathitem points to the next item  */
+/*   to be traversed.  pathitemsleft is the number of items that remain to   */
+/*   be traversed in pathblock.                                              */
+/*                                                                           */
+/* itemwordtype is set to POINTER or FLOATINGPOINT, and is used to suggest   */
+/*   what sort of word the record is primarily made up of.  alignbytes       */
+/*   determines how new records should be aligned in memory.  itembytes and  */
+/*   itemwords are the length of a record in bytes (after rounding up) and   */
+/*   words.  itemsperblock is the number of items allocated at once in a     */
+/*   single block.  items is the number of currently allocated items.        */
+/*   maxitems is the maximum number of items that have been allocated at     */
+/*   once; it is the current number of items plus the number of records kept */
+/*   on deaditemstack.                                                       */
+
+struct memorypool {
+  VOID **firstblock, **nowblock;
+  VOID *nextitem;
+  VOID *deaditemstack;
+  VOID **pathblock;
+  VOID *pathitem;
+  enum wordtype itemwordtype;
+  int alignbytes;
+  int itembytes, itemwords;
+  int itemsperblock;
+  long items, maxitems;
+  int unallocateditems;
+  int pathitemsleft;
+};
+
+/* Variables used to allocate memory for triangles, shell edges, points,     */
+/*   viri (triangles being eaten), bad (encroached) segments, bad (skinny    */
+/*   or too large) triangles, and splay tree nodes.                          */
+
+struct memorypool triangles;
+struct memorypool shelles;
+struct memorypool points;
+struct memorypool viri;
+struct memorypool badsegments;
+struct memorypool badtriangles;
+struct memorypool splaynodes;
+
+/* Variables that maintain the bad triangle queues.  The tails are pointers  */
+/*   to the pointers that have to be filled in to enqueue an item.           */
+
+struct badface *queuefront[64];
+struct badface **queuetail[64];
+
+REAL xmin, xmax, ymin, ymax;                              /* x and y bounds. */
+REAL xminextreme;        /* Nonexistent x value used as a flag in sweepline. */
+int inpoints;                                     /* Number of input points. */
+int inelements;                                /* Number of input triangles. */
+int insegments;                                 /* Number of input segments. */
+int holes;                                         /* Number of input holes. */
+int regions;                                     /* Number of input regions. */
+long edges;                                       /* Number of output edges. */
+int mesh_dim;                                  /* Dimension (ought to be 2). */
+int nextras;                              /* Number of attributes per point. */
+int eextras;                           /* Number of attributes per triangle. */
+long hullsize;                            /* Number of edges of convex hull. */
+int triwords;                                   /* Total words per triangle. */
+int shwords;                                  /* Total words per shell edge. */
+int pointmarkindex;             /* Index to find boundary marker of a point. */
+int point2triindex;         /* Index to find a triangle adjacent to a point. */
+int highorderindex;    /* Index to find extra nodes for high-order elements. */
+int elemattribindex;              /* Index to find attributes of a triangle. */
+int areaboundindex;               /* Index to find area bound of a triangle. */
+int checksegments;           /* Are there segments in the triangulation yet? */
+int readnodefile;                             /* Has a .node file been read? */
+long samples;                /* Number of random samples for point location. */
+unsigned long randomseed;                     /* Current random number seed. */
+
+REAL splitter;       /* Used to split REAL factors for exact multiplication. */
+REAL epsilon;                             /* Floating-point machine epsilon. */
+REAL resulterrbound;
+REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
+REAL iccerrboundA, iccerrboundB, iccerrboundC;
+
+long incirclecount;                   /* Number of incircle tests performed. */
+long counterclockcount;       /* Number of counterclockwise tests performed. */
+long hyperbolacount;        /* Number of right-of-hyperbola tests performed. */
+long circumcentercount;    /* Number of circumcenter calculations performed. */
+long circletopcount;         /* Number of circle top calculations performed. */
+
+/* Switches for the triangulator.                                            */
+/*   poly: -p switch.  refine: -r switch.                                    */
+/*   quality: -q switch.                                                     */
+/*     minangle: minimum angle bound, specified after -q switch.             */
+/*     goodangle: cosine squared of minangle.                                */
+/*   vararea: -a switch without number.                                      */
+/*   fixedarea: -a switch with number.                                       */
+/*     maxarea: maximum area bound, specified after -a switch.               */
+/*   regionattrib: -A switch.  convex: -c switch.                            */
+/*   firstnumber: inverse of -z switch.  All items are numbered starting     */
+/*     from firstnumber.                                                     */
+/*   edgesout: -e switch.  voronoi: -v switch.                               */
+/*   neighbors: -n switch.  geomview: -g switch.                             */
+/*   nobound: -B switch.  nopolywritten: -P switch.                          */
+/*   nonodewritten: -N switch.  noelewritten: -E switch.                     */
+/*   noiterationnum: -I switch.  noholes: -O switch.                         */
+/*   noexact: -X switch.                                                     */
+/*   order: element order, specified after -o switch.                        */
+/*   nobisect: count of how often -Y switch is selected.                     */
+/*   steiner: maximum number of Steiner points, specified after -S switch.   */
+/*     steinerleft: number of Steiner points not yet used.                   */
+/*   incremental: -i switch.  sweepline: -F switch.                          */
+/*   dwyer: inverse of -l switch.                                            */
+/*   splitseg: -s switch.                                                    */
+/*   docheck: -C switch.                                                     */
+/*   quiet: -Q switch.  verbose: count of how often -V switch is selected.   */
+/*   useshelles: -p, -r, -q, or -c switch; determines whether shell edges    */
+/*     are used at all.                                                      */
+/*                                                                           */
+/* Read the instructions to find out the meaning of these switches.          */
+
+int poly, refine, quality, vararea, fixedarea, regionattrib, convex;
+int firstnumber;
+int edgesout, voronoi, neighbors, geomview;
+int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
+int noholes, noexact;
+int incremental, sweepline, dwyer;
+int splitseg;
+int docheck;
+int quiet, verbose;
+int useshelles;
+int order;
+int nobisect;
+int steiner, steinerleft;
+REAL minangle, goodangle;
+REAL maxarea;
+
+/* Variables for file names.                                                 */
+
+#ifndef TRILIBRARY
+char innodefilename[FILENAMESIZE];
+char inelefilename[FILENAMESIZE];
+char inpolyfilename[FILENAMESIZE];
+char areafilename[FILENAMESIZE];
+char outnodefilename[FILENAMESIZE];
+char outelefilename[FILENAMESIZE];
+char outpolyfilename[FILENAMESIZE];
+char edgefilename[FILENAMESIZE];
+char vnodefilename[FILENAMESIZE];
+char vedgefilename[FILENAMESIZE];
+char neighborfilename[FILENAMESIZE];
+char offfilename[FILENAMESIZE];
+#endif /* not TRILIBRARY */
+
+/* Triangular bounding box points.                                           */
+
+point infpoint1, infpoint2, infpoint3;
+
+/* Pointer to the `triangle' that occupies all of "outer space".             */
+
+triangle *dummytri;
+triangle *dummytribase;      /* Keep base address so we can free() it later. */
+
+/* Pointer to the omnipresent shell edge.  Referenced by any triangle or     */
+/*   shell edge that isn't really connected to a shell edge at that          */
+/*   location.                                                               */
+
+shelle *dummysh;
+shelle *dummyshbase;         /* Keep base address so we can free() it later. */
+
+/* Pointer to a recently visited triangle.  Improves point location if       */
+/*   proximate points are inserted sequentially.                             */
+
+struct triedge recenttri;
+
+/*****************************************************************************/
+/*                                                                           */
+/*  Mesh manipulation primitives.  Each triangle contains three pointers to  */
+/*  other triangles, with orientations.  Each pointer points not to the      */
+/*  first byte of a triangle, but to one of the first three bytes of a       */
+/*  triangle.  It is necessary to extract both the triangle itself and the   */
+/*  orientation.  To save memory, I keep both pieces of information in one   */
+/*  pointer.  To make this possible, I assume that all triangles are aligned */
+/*  to four-byte boundaries.  The `decode' routine below decodes a pointer,  */
+/*  extracting an orientation (in the range 0 to 2) and a pointer to the     */
+/*  beginning of a triangle.  The `encode' routine compresses a pointer to a */
+/*  triangle and an orientation into a single pointer.  My assumptions that  */
+/*  triangles are four-byte-aligned and that the `unsigned long' type is     */
+/*  long enough to hold a pointer are two of the few kludges in this program.*/
+/*                                                                           */
+/*  Shell edges are manipulated similarly.  A pointer to a shell edge        */
+/*  carries both an address and an orientation in the range 0 to 1.          */
+/*                                                                           */
+/*  The other primitives take an oriented triangle or oriented shell edge,   */
+/*  and return an oriented triangle or oriented shell edge or point; or they */
+/*  change the connections in the data structure.                            */
+/*                                                                           */
+/*****************************************************************************/
+
+/********* Mesh manipulation primitives begin here                   *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/* Fast lookup arrays to speed some of the mesh manipulation primitives.     */
+
+int plus1mod3[3] = {1, 2, 0};
+int minus1mod3[3] = {2, 0, 1};
+
+/********* Primitives for triangles                                  *********/
+/*                                                                           */
+/*                                                                           */
+
+/* decode() converts a pointer to an oriented triangle.  The orientation is  */
+/*   extracted from the two least significant bits of the pointer.           */
+
+#define decode(ptr, triedge)                                                  \
+  (triedge).orient = (int) ((unsigned long) (ptr) & (unsigned long) 3l);      \
+  (triedge).tri = (triangle *)                                                \
+                  ((unsigned long) (ptr) ^ (unsigned long) (triedge).orient)
+
+/* encode() compresses an oriented triangle into a single pointer.  It       */
+/*   relies on the assumption that all triangles are aligned to four-byte    */
+/*   boundaries, so the two least significant bits of (triedge).tri are zero.*/
+
+#define encode(triedge)                                                       \
+  (triangle) ((unsigned long) (triedge).tri | (unsigned long) (triedge).orient)
+
+/* The following edge manipulation primitives are all described by Guibas    */
+/*   and Stolfi.  However, they use an edge-based data structure, whereas I  */
+/*   am using a triangle-based data structure.                               */
+
+/* sym() finds the abutting triangle, on the same edge.  Note that the       */
+/*   edge direction is necessarily reversed, because triangle/edge handles   */
+/*   are always directed counterclockwise around the triangle.               */
+
+#define sym(triedge1, triedge2)                                               \
+  ptr = (triedge1).tri[(triedge1).orient];                                    \
+  decode(ptr, triedge2);
+
+#define symself(triedge)                                                      \
+  ptr = (triedge).tri[(triedge).orient];                                      \
+  decode(ptr, triedge);
+
+/* lnext() finds the next edge (counterclockwise) of a triangle.             */
+
+#define lnext(triedge1, triedge2)                                             \
+  (triedge2).tri = (triedge1).tri;                                            \
+  (triedge2).orient = plus1mod3[(triedge1).orient]
+
+#define lnextself(triedge)                                                    \
+  (triedge).orient = plus1mod3[(triedge).orient]
+
+/* lprev() finds the previous edge (clockwise) of a triangle.                */
+
+#define lprev(triedge1, triedge2)                                             \
+  (triedge2).tri = (triedge1).tri;                                            \
+  (triedge2).orient = minus1mod3[(triedge1).orient]
+
+#define lprevself(triedge)                                                    \
+  (triedge).orient = minus1mod3[(triedge).orient]
+
+/* onext() spins counterclockwise around a point; that is, it finds the next */
+/*   edge with the same origin in the counterclockwise direction.  This edge */
+/*   will be part of a different triangle.                                   */
+
+#define onext(triedge1, triedge2)                                             \
+  lprev(triedge1, triedge2);                                                  \
+  symself(triedge2);
+
+#define onextself(triedge)                                                    \
+  lprevself(triedge);                                                         \
+  symself(triedge);
+
+/* oprev() spins clockwise around a point; that is, it finds the next edge   */
+/*   with the same origin in the clockwise direction.  This edge will be     */
+/*   part of a different triangle.                                           */
+
+#define oprev(triedge1, triedge2)                                             \
+  sym(triedge1, triedge2);                                                    \
+  lnextself(triedge2);
+
+#define oprevself(triedge)                                                    \
+  symself(triedge);                                                           \
+  lnextself(triedge);
+
+/* dnext() spins counterclockwise around a point; that is, it finds the next */
+/*   edge with the same destination in the counterclockwise direction.  This */
+/*   edge will be part of a different triangle.                              */
+
+#define dnext(triedge1, triedge2)                                             \
+  sym(triedge1, triedge2);                                                    \
+  lprevself(triedge2);
+
+#define dnextself(triedge)                                                    \
+  symself(triedge);                                                           \
+  lprevself(triedge);
+
+/* dprev() spins clockwise around a point; that is, it finds the next edge   */
+/*   with the same destination in the clockwise direction.  This edge will   */
+/*   be part of a different triangle.                                        */
+
+#define dprev(triedge1, triedge2)                                             \
+  lnext(triedge1, triedge2);                                                  \
+  symself(triedge2);
+
+#define dprevself(triedge)                                                    \
+  lnextself(triedge);                                                         \
+  symself(triedge);
+
+/* rnext() moves one edge counterclockwise about the adjacent triangle.      */
+/*   (It's best understood by reading Guibas and Stolfi.  It involves        */
+/*   changing triangles twice.)                                              */
+
+#define rnext(triedge1, triedge2)                                             \
+  sym(triedge1, triedge2);                                                    \
+  lnextself(triedge2);                                                        \
+  symself(triedge2);
+
+#define rnextself(triedge)                                                    \
+  symself(triedge);                                                           \
+  lnextself(triedge);                                                         \
+  symself(triedge);
+
+/* rnext() moves one edge clockwise about the adjacent triangle.             */
+/*   (It's best understood by reading Guibas and Stolfi.  It involves        */
+/*   changing triangles twice.)                                              */
+
+#define rprev(triedge1, triedge2)                                             \
+  sym(triedge1, triedge2);                                                    \
+  lprevself(triedge2);                                                        \
+  symself(triedge2);
+
+#define rprevself(triedge)                                                    \
+  symself(triedge);                                                           \
+  lprevself(triedge);                                                         \
+  symself(triedge);
+
+/* These primitives determine or set the origin, destination, or apex of a   */
+/* triangle.                                                                 */
+
+#define org(triedge, pointptr)                                                \
+  pointptr = (point) (triedge).tri[plus1mod3[(triedge).orient] + 3]
+
+#define dest(triedge, pointptr)                                               \
+  pointptr = (point) (triedge).tri[minus1mod3[(triedge).orient] + 3]
+
+#define apex(triedge, pointptr)                                               \
+  pointptr = (point) (triedge).tri[(triedge).orient + 3]
+
+#define setorg(triedge, pointptr)                                             \
+  (triedge).tri[plus1mod3[(triedge).orient] + 3] = (triangle) pointptr
+
+#define setdest(triedge, pointptr)                                            \
+  (triedge).tri[minus1mod3[(triedge).orient] + 3] = (triangle) pointptr
+
+#define setapex(triedge, pointptr)                                            \
+  (triedge).tri[(triedge).orient + 3] = (triangle) pointptr
+
+#define setvertices2null(triedge)                                             \
+  (triedge).tri[3] = (triangle) NULL;                                         \
+  (triedge).tri[4] = (triangle) NULL;                                         \
+  (triedge).tri[5] = (triangle) NULL;
+
+/* Bond two triangles together.                                              */
+
+#define bond(triedge1, triedge2)                                              \
+  (triedge1).tri[(triedge1).orient] = encode(triedge2);                       \
+  (triedge2).tri[(triedge2).orient] = encode(triedge1)
+
+/* Dissolve a bond (from one side).  Note that the other triangle will still */
+/*   think it's connected to this triangle.  Usually, however, the other     */
+/*   triangle is being deleted entirely, or bonded to another triangle, so   */
+/*   it doesn't matter.                                                      */
+
+#define dissolve(triedge)                                                     \
+  (triedge).tri[(triedge).orient] = (triangle) dummytri
+
+/* Copy a triangle/edge handle.                                              */
+
+#define triedgecopy(triedge1, triedge2)                                       \
+  (triedge2).tri = (triedge1).tri;                                            \
+  (triedge2).orient = (triedge1).orient
+
+/* Test for equality of triangle/edge handles.                               */
+
+#define triedgeequal(triedge1, triedge2)                                      \
+  (((triedge1).tri == (triedge2).tri) &&                                      \
+   ((triedge1).orient == (triedge2).orient))
+
+/* Primitives to infect or cure a triangle with the virus.  These rely on    */
+/*   the assumption that all shell edges are aligned to four-byte boundaries.*/
+
+#define infect(triedge)                                                       \
+  (triedge).tri[6] = (triangle)                                               \
+                     ((unsigned long) (triedge).tri[6] | (unsigned long) 2l)
+
+#define uninfect(triedge)                                                     \
+  (triedge).tri[6] = (triangle)                                               \
+                     ((unsigned long) (triedge).tri[6] & ~ (unsigned long) 2l)
+
+/* Test a triangle for viral infection.                                      */
+
+#define infected(triedge)                                                     \
+  (((unsigned long) (triedge).tri[6] & (unsigned long) 2l) != 0)
+
+/* Check or set a triangle's attributes.                                     */
+
+#define elemattribute(triedge, attnum)                                        \
+  ((REAL *) (triedge).tri)[elemattribindex + (attnum)]
+
+#define setelemattribute(triedge, attnum, value)                              \
+  ((REAL *) (triedge).tri)[elemattribindex + (attnum)] = value
+
+/* Check or set a triangle's maximum area bound.                             */
+
+#define areabound(triedge)  ((REAL *) (triedge).tri)[areaboundindex]
+
+#define setareabound(triedge, value)                                          \
+  ((REAL *) (triedge).tri)[areaboundindex] = value
+
+/********* Primitives for shell edges                                *********/
+/*                                                                           */
+/*                                                                           */
+
+/* sdecode() converts a pointer to an oriented shell edge.  The orientation  */
+/*   is extracted from the least significant bit of the pointer.  The two    */
+/*   least significant bits (one for orientation, one for viral infection)   */
+/*   are masked out to produce the real pointer.                             */
+
+#define sdecode(sptr, edge)                                                   \
+  (edge).shorient = (int) ((unsigned long) (sptr) & (unsigned long) 1l);      \
+  (edge).sh = (shelle *)                                                      \
+              ((unsigned long) (sptr) & ~ (unsigned long) 3l)
+
+/* sencode() compresses an oriented shell edge into a single pointer.  It    */
+/*   relies on the assumption that all shell edges are aligned to two-byte   */
+/*   boundaries, so the least significant bit of (edge).sh is zero.          */
+
+#define sencode(edge)                                                         \
+  (shelle) ((unsigned long) (edge).sh | (unsigned long) (edge).shorient)
+
+/* ssym() toggles the orientation of a shell edge.                           */
+
+#define ssym(edge1, edge2)                                                    \
+  (edge2).sh = (edge1).sh;                                                    \
+  (edge2).shorient = 1 - (edge1).shorient
+
+#define ssymself(edge)                                                        \
+  (edge).shorient = 1 - (edge).shorient
+
+/* spivot() finds the other shell edge (from the same segment) that shares   */
+/*   the same origin.                                                        */
+
+#define spivot(edge1, edge2)                                                  \
+  sptr = (edge1).sh[(edge1).shorient];                                        \
+  sdecode(sptr, edge2)
+
+#define spivotself(edge)                                                      \
+  sptr = (edge).sh[(edge).shorient];                                          \
+  sdecode(sptr, edge)
+
+/* snext() finds the next shell edge (from the same segment) in sequence;    */
+/*   one whose origin is the input shell edge's destination.                 */
+
+#define snext(edge1, edge2)                                                   \
+  sptr = (edge1).sh[1 - (edge1).shorient];                                    \
+  sdecode(sptr, edge2)
+
+#define snextself(edge)                                                       \
+  sptr = (edge).sh[1 - (edge).shorient];                                      \
+  sdecode(sptr, edge)
+
+/* These primitives determine or set the origin or destination of a shell    */
+/*   edge.                                                                   */
+
+#define sorg(edge, pointptr)                                                  \
+  pointptr = (point) (edge).sh[2 + (edge).shorient]
+
+#define sdest(edge, pointptr)                                                 \
+  pointptr = (point) (edge).sh[3 - (edge).shorient]
+
+#define setsorg(edge, pointptr)                                               \
+  (edge).sh[2 + (edge).shorient] = (shelle) pointptr
+
+#define setsdest(edge, pointptr)                                              \
+  (edge).sh[3 - (edge).shorient] = (shelle) pointptr
+
+/* These primitives read or set a shell marker.  Shell markers are used to   */
+/*   hold user boundary information.                                         */
+
+#define mark(edge)  (* (int *) ((edge).sh + 6))
+
+#define setmark(edge, value)                                                  \
+  * (int *) ((edge).sh + 6) = value
+
+/* Bond two shell edges together.                                            */
+
+#define sbond(edge1, edge2)                                                   \
+  (edge1).sh[(edge1).shorient] = sencode(edge2);                              \
+  (edge2).sh[(edge2).shorient] = sencode(edge1)
+
+/* Dissolve a shell edge bond (from one side).  Note that the other shell    */
+/*   edge will still think it's connected to this shell edge.                */
+
+#define sdissolve(edge)                                                       \
+  (edge).sh[(edge).shorient] = (shelle) dummysh
+
+/* Copy a shell edge.                                                        */
+
+#define shellecopy(edge1, edge2)                                              \
+  (edge2).sh = (edge1).sh;                                                    \
+  (edge2).shorient = (edge1).shorient
+
+/* Test for equality of shell edges.                                         */
+
+#define shelleequal(edge1, edge2)                                             \
+  (((edge1).sh == (edge2).sh) &&                                              \
+   ((edge1).shorient == (edge2).shorient))
+
+/********* Primitives for interacting triangles and shell edges      *********/
+/*                                                                           */
+/*                                                                           */
+
+/* tspivot() finds a shell edge abutting a triangle.                         */
+
+#define tspivot(triedge, edge)                                                \
+  sptr = (shelle) (triedge).tri[6 + (triedge).orient];                        \
+  sdecode(sptr, edge)
+
+/* stpivot() finds a triangle abutting a shell edge.  It requires that the   */
+/*   variable `ptr' of type `triangle' be defined.                           */
+
+#define stpivot(edge, triedge)                                                \
+  ptr = (triangle) (edge).sh[4 + (edge).shorient];                            \
+  decode(ptr, triedge)
+
+/* Bond a triangle to a shell edge.                                          */
+
+#define tsbond(triedge, edge)                                                 \
+  (triedge).tri[6 + (triedge).orient] = (triangle) sencode(edge);             \
+  (edge).sh[4 + (edge).shorient] = (shelle) encode(triedge)
+
+/* Dissolve a bond (from the triangle side).                                 */
+
+#define tsdissolve(triedge)                                                   \
+  (triedge).tri[6 + (triedge).orient] = (triangle) dummysh
+
+/* Dissolve a bond (from the shell edge side).                               */
+
+#define stdissolve(edge)                                                      \
+  (edge).sh[4 + (edge).shorient] = (shelle) dummytri
+
+/********* Primitives for points                                     *********/
+/*                                                                           */
+/*                                                                           */
+
+#define pointmark(pt)  ((int *) (pt))[pointmarkindex]
+
+#define setpointmark(pt, value)                                               \
+  ((int *) (pt))[pointmarkindex] = value
+
+#define point2tri(pt)  ((triangle *) (pt))[point2triindex]
+
+#define setpoint2tri(pt, value)                                               \
+  ((triangle *) (pt))[point2triindex] = value
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Mesh manipulation primitives end here                     *********/
+
+/********* User interaction routines begin here                      *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  syntax()   Print list of command line switches.                          */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+void syntax()
+{
+#ifdef CDT_ONLY
+#ifdef REDUCED
+  printf("triangle [-pAcevngBPNEIOXzo_lQVh] input_file\n");
+#else /* not REDUCED */
+  printf("triangle [-pAcevngBPNEIOXzo_iFlCQVh] input_file\n");
+#endif /* not REDUCED */
+#else /* not CDT_ONLY */
+#ifdef REDUCED
+  printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__lQVh] input_file\n");
+#else /* not REDUCED */
+  printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__iFlsCQVh] input_file\n");
+#endif /* not REDUCED */
+#endif /* not CDT_ONLY */
+
+  printf("    -p  Triangulates a Planar Straight Line Graph (.poly file).\n");
+#ifndef CDT_ONLY
+  printf("    -r  Refines a previously generated mesh.\n");
+  printf(
+    "    -q  Quality mesh generation.  A minimum angle may be specified.\n");
+  printf("    -a  Applies a maximum triangle area constraint.\n");
+#endif /* not CDT_ONLY */
+  printf(
+    "    -A  Applies attributes to identify elements in certain regions.\n");
+  printf("    -c  Encloses the convex hull with segments.\n");
+  printf("    -e  Generates an edge list.\n");
+  printf("    -v  Generates a Voronoi diagram.\n");
+  printf("    -n  Generates a list of triangle neighbors.\n");
+  printf("    -g  Generates an .off file for Geomview.\n");
+  printf("    -B  Suppresses output of boundary information.\n");
+  printf("    -P  Suppresses output of .poly file.\n");
+  printf("    -N  Suppresses output of .node file.\n");
+  printf("    -E  Suppresses output of .ele file.\n");
+  printf("    -I  Suppresses mesh iteration numbers.\n");
+  printf("    -O  Ignores holes in .poly file.\n");
+  printf("    -X  Suppresses use of exact arithmetic.\n");
+  printf("    -z  Numbers all items starting from zero (rather than one).\n");
+  printf("    -o2 Generates second-order subparametric elements.\n");
+#ifndef CDT_ONLY
+  printf("    -Y  Suppresses boundary segment splitting.\n");
+  printf("    -S  Specifies maximum number of added Steiner points.\n");
+#endif /* not CDT_ONLY */
+#ifndef REDUCED
+  printf("    -i  Uses incremental method, rather than divide-and-conquer.\n");
+  printf("    -F  Uses Fortune's sweepline algorithm, rather than d-and-c.\n");
+#endif /* not REDUCED */
+  printf("    -l  Uses vertical cuts only, rather than alternating cuts.\n");
+#ifndef REDUCED
+#ifndef CDT_ONLY
+  printf(
+    "    -s  Force segments into mesh by splitting (instead of using CDT).\n");
+#endif /* not CDT_ONLY */
+  printf("    -C  Check consistency of final mesh.\n");
+#endif /* not REDUCED */
+  printf("    -Q  Quiet:  No terminal output except errors.\n");
+  printf("    -V  Verbose:  Detailed information on what I'm doing.\n");
+  printf("    -h  Help:  Detailed instructions for Triangle.\n");
+  exit(0);
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  info()   Print out complete instructions.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+void info()
+{
+  printf("Triangle\n");
+  printf(
+"A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.\n");
+  printf("Version 1.3\n\n");
+  printf(
+"Copyright 1996 Jonathan Richard Shewchuk  (bugs/comments to jrs@cs.cmu.edu)\n"
+);
+  printf("School of Computer Science / Carnegie Mellon University\n");
+  printf("5000 Forbes Avenue / Pittsburgh, Pennsylvania  15213-3891\n");
+  printf(
+"Created as part of the Archimedes project (tools for parallel FEM).\n");
+  printf(
+"Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n");
+  printf("There is no warranty whatsoever.  Use at your own risk.\n");
+#ifdef SINGLE
+  printf("This executable is compiled for single precision arithmetic.\n\n\n");
+#else /* not SINGLE */
+  printf("This executable is compiled for double precision arithmetic.\n\n\n");
+#endif /* not SINGLE */
+  printf(
+"Triangle generates exact Delaunay triangulations, constrained Delaunay\n");
+  printf(
+"triangulations, and quality conforming Delaunay triangulations.  The latter\n"
+);
+  printf(
+"can be generated with no small angles, and are thus suitable for finite\n");
+  printf(
+"element analysis.  If no command line switches are specified, your .node\n");
+  printf(
+"input file will be read, and the Delaunay triangulation will be returned in\n"
+);
+  printf(".node and .ele output files.  The command syntax is:\n\n");
+#ifdef CDT_ONLY
+#ifdef REDUCED
+  printf("triangle [-pAcevngBPNEIOXzo_lQVh] input_file\n\n");
+#else /* not REDUCED */
+  printf("triangle [-pAcevngBPNEIOXzo_iFlCQVh] input_file\n\n");
+#endif /* not REDUCED */
+#else /* not CDT_ONLY */
+#ifdef REDUCED
+  printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__lQVh] input_file\n\n");
+#else /* not REDUCED */
+  printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__iFlsCQVh] input_file\n\n");
+#endif /* not REDUCED */
+#endif /* not CDT_ONLY */
+  printf(
+"Underscores indicate that numbers may optionally follow certain switches;\n");
+  printf(
+"do not leave any space between a switch and its numeric parameter.\n");
+  printf(
+"input_file must be a file with extension .node, or extension .poly if the\n");
+  printf(
+"-p switch is used.  If -r is used, you must supply .node and .ele files,\n");
+  printf(
+"and possibly a .poly file and .area file as well.  The formats of these\n");
+  printf("files are described below.\n\n");
+  printf("Command Line Switches:\n\n");
+  printf(
+"    -p  Reads a Planar Straight Line Graph (.poly file), which can specify\n"
+);
+  printf(
+"        points, segments, holes, and regional attributes and area\n");
+  printf(
+"        constraints.  Will generate a constrained Delaunay triangulation\n");
+  printf(
+"        fitting the input; or, if -s, -q, or -a is used, a conforming\n");
+  printf(
+"        Delaunay triangulation.  If -p is not used, Triangle reads a .node\n"
+);
+  printf("        file by default.\n");
+  printf(
+"    -r  Refines a previously generated mesh.  The mesh is read from a .node\n"
+);
+  printf(
+"        file and an .ele file.  If -p is also used, a .poly file is read\n");
+  printf(
+"        and used to constrain edges in the mesh.  Further details on\n");
+  printf("        refinement are given below.\n");
+  printf(
+"    -q  Quality mesh generation by Jim Ruppert's Delaunay refinement\n");
+  printf(
+"        algorithm.  Adds points to the mesh to ensure that no angles\n");
+  printf(
+"        smaller than 20 degrees occur.  An alternative minimum angle may be\n"
+);
+  printf(
+"        specified after the `q'.  If the minimum angle is 20.7 degrees or\n");
+  printf(
+"        smaller, the triangulation algorithm is theoretically guaranteed to\n"
+);
+  printf(
+"        terminate (assuming infinite precision arithmetic - Triangle may\n");
+  printf(
+"        fail to terminate if you run out of precision).  In practice, the\n");
+  printf(
+"        algorithm often succeeds for minimum angles up to 33.8 degrees.\n");
+  printf(
+"        For highly refined meshes, however, it may be necessary to reduce\n");
+  printf(
+"        the minimum angle to well below 20 to avoid problems associated\n");
+  printf(
+"        with insufficient floating-point precision.  The specified angle\n");
+  printf("        may include a decimal point.\n");
+  printf(
+"    -a  Imposes a maximum triangle area.  If a number follows the `a', no\n");
+  printf(
+"        triangle will be generated whose area is larger than that number.\n");
+  printf(
+"        If no number is specified, an .area file (if -r is used) or .poly\n");
+  printf(
+"        file (if -r is not used) specifies a number of maximum area\n");
+  printf(
+"        constraints.  An .area file contains a separate area constraint for\n"
+);
+  printf(
+"        each triangle, and is useful for refining a finite element mesh\n");
+  printf(
+"        based on a posteriori error estimates.  A .poly file can optionally\n"
+);
+  printf(
+"        contain an area constraint for each segment-bounded region, thereby\n"
+);
+  printf(
+"        enforcing triangle densities in a first triangulation.  You can\n");
+  printf(
+"        impose both a fixed area constraint and a varying area constraint\n");
+  printf(
+"        by invoking the -a switch twice, once with and once without a\n");
+  printf(
+"        number following.  Each area specified may include a decimal point.\n"
+);
+  printf(
+"    -A  Assigns an additional attribute to each triangle that identifies\n");
+  printf(
+"        what segment-bounded region each triangle belongs to.  Attributes\n");
+  printf(
+"        are assigned to regions by the .poly file.  If a region is not\n");
+  printf(
+"        explicitly marked by the .poly file, triangles in that region are\n");
+  printf(
+"        assigned an attribute of zero.  The -A switch has an effect only\n");
+  printf("        when the -p switch is used and the -r switch is not.\n");
+  printf(
+"    -c  Creates segments on the convex hull of the triangulation.  If you\n");
+  printf(
+"        are triangulating a point set, this switch causes a .poly file to\n");
+  printf(
+"        be written, containing all edges in the convex hull.  (By default,\n"
+);
+  printf(
+"        a .poly file is written only if a .poly file is read.)  If you are\n"
+);
+  printf(
+"        triangulating a PSLG, this switch specifies that the interior of\n");
+  printf(
+"        the convex hull of the PSLG should be triangulated.  If you do not\n"
+);
+  printf(
+"        use this switch when triangulating a PSLG, it is assumed that you\n");
+  printf(
+"        have identified the region to be triangulated by surrounding it\n");
+  printf(
+"        with segments of the input PSLG.  Beware:  if you are not careful,\n"
+);
+  printf(
+"        this switch can cause the introduction of an extremely thin angle\n");
+  printf(
+"        between a PSLG segment and a convex hull segment, which can cause\n");
+  printf(
+"        overrefinement or failure if Triangle runs out of precision.  If\n");
+  printf(
+"        you are refining a mesh, the -c switch works differently; it\n");
+  printf(
+"        generates the set of boundary edges of the mesh, rather than the\n");
+  printf("        convex hull.\n");
+  printf(
+"    -e  Outputs (to an .edge file) a list of edges of the triangulation.\n");
+  printf(
+"    -v  Outputs the Voronoi diagram associated with the triangulation.\n");
+  printf("        Does not attempt to detect degeneracies.\n");
+  printf(
+"    -n  Outputs (to a .neigh file) a list of triangles neighboring each\n");
+  printf("        triangle.\n");
+  printf(
+"    -g  Outputs the mesh to an Object File Format (.off) file, suitable for\n"
+);
+  printf("        viewing with the Geometry Center's Geomview package.\n");
+  printf(
+"    -B  No boundary markers in the output .node, .poly, and .edge output\n");
+  printf(
+"        files.  See the detailed discussion of boundary markers below.\n");
+  printf(
+"    -P  No output .poly file.  Saves disk space, but you lose the ability\n");
+  printf(
+"        to impose segment constraints on later refinements of the mesh.\n");
+  printf("    -N  No output .node file.\n");
+  printf("    -E  No output .ele file.\n");
+  printf(
+"    -I  No iteration numbers.  Suppresses the output of .node and .poly\n");
+  printf(
+"        files, so your input files won't be overwritten.  (If your input is\n"
+);
+  printf(
+"        a .poly file only, a .node file will be written.)  Cannot be used\n");
+  printf(
+"        with the -r switch, because that would overwrite your input .ele\n");
+  printf(
+"        file.  Shouldn't be used with the -s, -q, or -a switch if you are\n");
+  printf(
+"        using a .node file for input, because no .node file will be\n");
+  printf("        written, so there will be no record of any added points.\n");
+  printf("    -O  No holes.  Ignores the holes in the .poly file.\n");
+  printf(
+"    -X  No exact arithmetic.  Normally, Triangle uses exact floating-point\n"
+);
+  printf(
+"        arithmetic for certain tests if it thinks the inexact tests are not\n"
+);
+  printf(
+"        accurate enough.  Exact arithmetic ensures the robustness of the\n");
+  printf(
+"        triangulation algorithms, despite floating-point roundoff error.\n");
+  printf(
+"        Disabling exact arithmetic with the -X switch will cause a small\n");
+  printf(
+"        improvement in speed and create the possibility (albeit small) that\n"
+);
+  printf(
+"        Triangle will fail to produce a valid mesh.  Not recommended.\n");
+  printf(
+"    -z  Numbers all items starting from zero (rather than one).  Note that\n"
+);
+  printf(
+"        this switch is normally overrided by the value used to number the\n");
+  printf(
+"        first point of the input .node or .poly file.  However, this switch\n"
+);
+  printf("        is useful when calling Triangle from another program.\n");
+  printf(
+"    -o2 Generates second-order subparametric elements with six nodes each.\n"
+);
+  printf(
+"    -Y  No new points on the boundary.  This switch is useful when the mesh\n"
+);
+  printf(
+"        boundary must be preserved so that it conforms to some adjacent\n");
+  printf(
+"        mesh.  Be forewarned that you will probably sacrifice some of the\n");
+  printf(
+"        quality of the mesh; Triangle will try, but the resulting mesh may\n"
+);
+  printf(
+"        contain triangles of poor aspect ratio.  Works well if all the\n");
+  printf(
+"        boundary points are closely spaced.  Specify this switch twice\n");
+  printf(
+"        (`-YY') to prevent all segment splitting, including internal\n");
+  printf("        boundaries.\n");
+  printf(
+"    -S  Specifies the maximum number of Steiner points (points that are not\n"
+);
+  printf(
+"        in the input, but are added to meet the constraints of minimum\n");
+  printf(
+"        angle and maximum area).  The default is to allow an unlimited\n");
+  printf(
+"        number.  If you specify this switch with no number after it,\n");
+  printf(
+"        the limit is set to zero.  Triangle always adds points at segment\n");
+  printf(
+"        intersections, even if it needs to use more points than the limit\n");
+  printf(
+"        you set.  When Triangle inserts segments by splitting (-s), it\n");
+  printf(
+"        always adds enough points to ensure that all the segments appear in\n"
+);
+  printf(
+"        the triangulation, again ignoring the limit.  Be forewarned that\n");
+  printf(
+"        the -S switch may result in a conforming triangulation that is not\n"
+);
+  printf(
+"        truly Delaunay, because Triangle may be forced to stop adding\n");
+  printf(
+"        points when the mesh is in a state where a segment is non-Delaunay\n"
+);
+  printf(
+"        and needs to be split.  If so, Triangle will print a warning.\n");
+  printf(
+"    -i  Uses an incremental rather than divide-and-conquer algorithm to\n");
+  printf(
+"        form a Delaunay triangulation.  Try it if the divide-and-conquer\n");
+  printf("        algorithm fails.\n");
+  printf(
+"    -F  Uses Steven Fortune's sweepline algorithm to form a Delaunay\n");
+  printf(
+"        triangulation.  Warning:  does not use exact arithmetic for all\n");
+  printf("        calculations.  An exact result is not guaranteed.\n");
+  printf(
+"    -l  Uses only vertical cuts in the divide-and-conquer algorithm.  By\n");
+  printf(
+"        default, Triangle uses alternating vertical and horizontal cuts,\n");
+  printf(
+"        which usually improve the speed except with point sets that are\n");
+  printf(
+"        small or short and wide.  This switch is primarily of theoretical\n");
+  printf("        interest.\n");
+  printf(
+"    -s  Specifies that segments should be forced into the triangulation by\n"
+);
+  printf(
+"        recursively splitting them at their midpoints, rather than by\n");
+  printf(
+"        generating a constrained Delaunay triangulation.  Segment splitting\n"
+);
+  printf(
+"        is true to Ruppert's original algorithm, but can create needlessly\n"
+);
+  printf("        small triangles near external small features.\n");
+  printf(
+"    -C  Check the consistency of the final mesh.  Uses exact arithmetic for\n"
+);
+  printf(
+"        checking, even if the -X switch is used.  Useful if you suspect\n");
+  printf("        Triangle is buggy.\n");
+  printf(
+"    -Q  Quiet: Suppresses all explanation of what Triangle is doing, unless\n"
+);
+  printf("        an error occurs.\n");
+  printf(
+"    -V  Verbose: Gives detailed information about what Triangle is doing.\n");
+  printf(
+"        Add more `V's for increasing amount of detail.  `-V' gives\n");
+  printf(
+"        information on algorithmic progress and more detailed statistics.\n");
+  printf(
+"        `-VV' gives point-by-point details, and will print so much that\n");
+  printf(
+"        Triangle will run much more slowly.  `-VVV' gives information only\n"
+);
+  printf("        a debugger could love.\n");
+  printf("    -h  Help:  Displays these instructions.\n");
+  printf("\n");
+  printf("Definitions:\n");
+  printf("\n");
+  printf(
+"  A Delaunay triangulation of a point set is a triangulation whose vertices\n"
+);
+  printf(
+"  are the point set, having the property that no point in the point set\n");
+  printf(
+"  falls in the interior of the circumcircle (circle that passes through all\n"
+);
+  printf("  three vertices) of any triangle in the triangulation.\n\n");
+  printf(
+"  A Voronoi diagram of a point set is a subdivision of the plane into\n");
+  printf(
+"  polygonal regions (some of which may be infinite), where each region is\n");
+  printf(
+"  the set of points in the plane that are closer to some input point than\n");
+  printf(
+"  to any other input point.  (The Voronoi diagram is the geometric dual of\n"
+);
+  printf("  the Delaunay triangulation.)\n\n");
+  printf(
+"  A Planar Straight Line Graph (PSLG) is a collection of points and\n");
+  printf(
+"  segments.  Segments are simply edges, whose endpoints are points in the\n");
+  printf(
+"  PSLG.  The file format for PSLGs (.poly files) is described below.\n");
+  printf("\n");
+  printf(
+"  A constrained Delaunay triangulation of a PSLG is similar to a Delaunay\n");
+  printf(
+"  triangulation, but each PSLG segment is present as a single edge in the\n");
+  printf(
+"  triangulation.  (A constrained Delaunay triangulation is not truly a\n");
+  printf("  Delaunay triangulation.)\n\n");
+  printf(
+"  A conforming Delaunay triangulation of a PSLG is a true Delaunay\n");
+  printf(
+"  triangulation in which each PSLG segment may have been subdivided into\n");
+  printf(
+"  several edges by the insertion of additional points.  These inserted\n");
+  printf(
+"  points are necessary to allow the segments to exist in the mesh while\n");
+  printf("  maintaining the Delaunay property.\n\n");
+  printf("File Formats:\n\n");
+  printf(
+"  All files may contain comments prefixed by the character '#'.  Points,\n");
+  printf(
+"  triangles, edges, holes, and maximum area constraints must be numbered\n");
+  printf(
+"  consecutively, starting from either 1 or 0.  Whichever you choose, all\n");
+  printf(
+"  input files must be consistent; if the nodes are numbered from 1, so must\n"
+);
+  printf(
+"  be all other objects.  Triangle automatically detects your choice while\n");
+  printf(
+"  reading the .node (or .poly) file.  (When calling Triangle from another\n");
+  printf(
+"  program, use the -z switch if you wish to number objects from zero.)\n");
+  printf("  Examples of these file formats are given below.\n\n");
+  printf("  .node files:\n");
+  printf(
+"    First line:  <# of points> <dimension (must be 2)> <# of attributes>\n");
+  printf(
+"                                           <# of boundary markers (0 or 1)>\n"
+);
+  printf(
+"    Remaining lines:  <point #> <x> <y> [attributes] [boundary marker]\n");
+  printf("\n");
+  printf(
+"    The attributes, which are typically floating-point values of physical\n");
+  printf(
+"    quantities (such as mass or conductivity) associated with the nodes of\n"
+);
+  printf(
+"    a finite element mesh, are copied unchanged to the output mesh.  If -s,\n"
+);
+  printf(
+"    -q, or -a is selected, each new Steiner point added to the mesh will\n");
+  printf("    have attributes assigned to it by linear interpolation.\n\n");
+  printf(
+"    If the fourth entry of the first line is `1', the last column of the\n");
+  printf(
+"    remainder of the file is assumed to contain boundary markers.  Boundary\n"
+);
+  printf(
+"    markers are used to identify boundary points and points resting on PSLG\n"
+);
+  printf(
+"    segments; a complete description appears in a section below.  The .node\n"
+);
+  printf(
+"    file produced by Triangle will contain boundary markers in the last\n");
+  printf("    column unless they are suppressed by the -B switch.\n\n");
+  printf("  .ele files:\n");
+  printf(
+"    First line:  <# of triangles> <points per triangle> <# of attributes>\n");
+  printf(
+"    Remaining lines:  <triangle #> <point> <point> <point> ... [attributes]\n"
+);
+  printf("\n");
+  printf(
+"    Points are indices into the corresponding .node file.  The first three\n"
+);
+  printf(
+"    points are the corners, and are listed in counterclockwise order around\n"
+);
+  printf(
+"    each triangle.  (The remaining points, if any, depend on the type of\n");
+  printf(
+"    finite element used.)  The attributes are just like those of .node\n");
+  printf(
+"    files.  Because there is no simple mapping from input to output\n");
+  printf(
+"    triangles, an attempt is made to interpolate attributes, which may\n");
+  printf(
+"    result in a good deal of diffusion of attributes among nearby triangles\n"
+);
+  printf(
+"    as the triangulation is refined.  Diffusion does not occur across\n");
+  printf(
+"    segments, so attributes used to identify segment-bounded regions remain\n"
+);
+  printf(
+"    intact.  In output .ele files, all triangles have three points each\n");
+  printf(
+"    unless the -o2 switch is used, in which case they have six, and the\n");
+  printf(
+"    fourth, fifth, and sixth points lie on the midpoints of the edges\n");
+  printf("    opposite the first, second, and third corners.\n\n");
+  printf("  .poly files:\n");
+  printf(
+"    First line:  <# of points> <dimension (must be 2)> <# of attributes>\n");
+  printf(
+"                                           <# of boundary markers (0 or 1)>\n"
+);
+  printf(
+"    Following lines:  <point #> <x> <y> [attributes] [boundary marker]\n");
+  printf("    One line:  <# of segments> <# of boundary markers (0 or 1)>\n");
+  printf(
+"    Following lines:  <segment #> <endpoint> <endpoint> [boundary marker]\n");
+  printf("    One line:  <# of holes>\n");
+  printf("    Following lines:  <hole #> <x> <y>\n");
+  printf(
+"    Optional line:  <# of regional attributes and/or area constraints>\n");
+  printf(
+"    Optional following lines:  <constraint #> <x> <y> <attrib> <max area>\n");
+  printf("\n");
+  printf(
+"    A .poly file represents a PSLG, as well as some additional information.\n"
+);
+  printf(
+"    The first section lists all the points, and is identical to the format\n"
+);
+  printf(
+"    of .node files.  <# of points> may be set to zero to indicate that the\n"
+);
+  printf(
+"    points are listed in a separate .node file; .poly files produced by\n");
+  printf(
+"    Triangle always have this format.  This has the advantage that a point\n"
+);
+  printf(
+"    set may easily be triangulated with or without segments.  (The same\n");
+  printf(
+"    effect can be achieved, albeit using more disk space, by making a copy\n"
+);
+  printf(
+"    of the .poly file with the extension .node; all sections of the file\n");
+  printf("    but the first are ignored.)\n\n");
+  printf(
+"    The second section lists the segments.  Segments are edges whose\n");
+  printf(
+"    presence in the triangulation is enforced.  Each segment is specified\n");
+  printf(
+"    by listing the indices of its two endpoints.  This means that you must\n"
+);
+  printf(
+"    include its endpoints in the point list.  If -s, -q, and -a are not\n");
+  printf(
+"    selected, Triangle will produce a constrained Delaunay triangulation,\n");
+  printf(
+"    in which each segment appears as a single edge in the triangulation.\n");
+  printf(
+"    If -q or -a is selected, Triangle will produce a conforming Delaunay\n");
+  printf(
+"    triangulation, in which segments may be subdivided into smaller edges.\n"
+);
+  printf("    Each segment, like each point, may have a boundary marker.\n\n");
+  printf(
+"    The third section lists holes (and concavities, if -c is selected) in\n");
+  printf(
+"    the triangulation.  Holes are specified by identifying a point inside\n");
+  printf(
+"    each hole.  After the triangulation is formed, Triangle creates holes\n");
+  printf(
+"    by eating triangles, spreading out from each hole point until its\n");
+  printf(
+"    progress is blocked by PSLG segments; you must be careful to enclose\n");
+  printf(
+"    each hole in segments, or your whole triangulation may be eaten away.\n");
+  printf(
+"    If the two triangles abutting a segment are eaten, the segment itself\n");
+  printf(
+"    is also eaten.  Do not place a hole directly on a segment; if you do,\n");
+  printf("    Triangle will choose one side of the segment arbitrarily.\n\n");
+  printf(
+"    The optional fourth section lists regional attributes (to be assigned\n");
+  printf(
+"    to all triangles in a region) and regional constraints on the maximum\n");
+  printf(
+"    triangle area.  Triangle will read this section only if the -A switch\n");
+  printf(
+"    is used or the -a switch is used without a number following it, and the\n"
+);
+  printf(
+"    -r switch is not used.  Regional attributes and area constraints are\n");
+  printf(
+"    propagated in the same manner as holes; you specify a point for each\n");
+  printf(
+"    attribute and/or constraint, and the attribute and/or constraint will\n");
+  printf(
+"    affect the whole region (bounded by segments) containing the point.  If\n"
+);
+  printf(
+"    two values are written on a line after the x and y coordinate, the\n");
+  printf(
+"    former is assumed to be a regional attribute (but will only be applied\n"
+);
+  printf(
+"    if the -A switch is selected), and the latter is assumed to be a\n");
+  printf(
+"    regional area constraint (but will only be applied if the -a switch is\n"
+);
+  printf(
+"    selected).  You may also specify just one value after the coordinates,\n"
+);
+  printf(
+"    which can serve as both an attribute and an area constraint, depending\n"
+);
+  printf(
+"    on the choice of switches.  If you are using the -A and -a switches\n");
+  printf(
+"    simultaneously and wish to assign an attribute to some region without\n");
+  printf("    imposing an area constraint, use a negative maximum area.\n\n");
+  printf(
+"    When a triangulation is created from a .poly file, you must either\n");
+  printf(
+"    enclose the entire region to be triangulated in PSLG segments, or\n");
+  printf(
+"    use the -c switch, which encloses the convex hull of the input point\n");
+  printf(
+"    set.  If you do not use the -c switch, Triangle will eat all triangles\n"
+);
+  printf(
+"    on the outer boundary that are not protected by segments; if you are\n");
+  printf(
+"    not careful, your whole triangulation may be eaten away.  If you do\n");
+  printf(
+"    use the -c switch, you can still produce concavities by appropriate\n");
+  printf("    placement of holes just inside the convex hull.\n\n");
+  printf(
+"    An ideal PSLG has no intersecting segments, nor any points that lie\n");
+  printf(
+"    upon segments (except, of course, the endpoints of each segment.)  You\n"
+);
+  printf(
+"    aren't required to make your .poly files ideal, but you should be aware\n"
+);
+  printf(
+"    of what can go wrong.  Segment intersections are relatively safe -\n");
+  printf(
+"    Triangle will calculate the intersection points for you and add them to\n"
+);
+  printf(
+"    the triangulation - as long as your machine's floating-point precision\n"
+);
+  printf(
+"    doesn't become a problem.  You are tempting the fates if you have three\n"
+);
+  printf(
+"    segments that cross at the same location, and expect Triangle to figure\n"
+);
+  printf(
+"    out where the intersection point is.  Thanks to floating-point roundoff\n"
+);
+  printf(
+"    error, Triangle will probably decide that the three segments intersect\n"
+);
+  printf(
+"    at three different points, and you will find a minuscule triangle in\n");
+  printf(
+"    your output - unless Triangle tries to refine the tiny triangle, uses\n");
+  printf(
+"    up the last bit of machine precision, and fails to terminate at all.\n");
+  printf(
+"    You're better off putting the intersection point in the input files,\n");
+  printf(
+"    and manually breaking up each segment into two.  Similarly, if you\n");
+  printf(
+"    place a point at the middle of a segment, and hope that Triangle will\n");
+  printf(
+"    break up the segment at that point, you might get lucky.  On the other\n"
+);
+  printf(
+"    hand, Triangle might decide that the point doesn't lie precisely on the\n"
+);
+  printf(
+"    line, and you'll have a needle-sharp triangle in your output - or a lot\n"
+);
+  printf("    of tiny triangles if you're generating a quality mesh.\n\n");
+  printf(
+"    When Triangle reads a .poly file, it also writes a .poly file, which\n");
+  printf(
+"    includes all edges that are part of input segments.  If the -c switch\n");
+  printf(
+"    is used, the output .poly file will also include all of the edges on\n");
+  printf(
+"    the convex hull.  Hence, the output .poly file is useful for finding\n");
+  printf(
+"    edges associated with input segments and setting boundary conditions in\n"
+);
+  printf(
+"    finite element simulations.  More importantly, you will need it if you\n"
+);
+  printf(
+"    plan to refine the output mesh, and don't want segments to be missing\n");
+  printf("    in later triangulations.\n\n");
+  printf("  .area files:\n");
+  printf("    First line:  <# of triangles>\n");
+  printf("    Following lines:  <triangle #> <maximum area>\n\n");
+  printf(
+"    An .area file associates with each triangle a maximum area that is used\n"
+);
+  printf(
+"    for mesh refinement.  As with other file formats, every triangle must\n");
+  printf(
+"    be represented, and they must be numbered consecutively.  A triangle\n");
+  printf(
+"    may be left unconstrained by assigning it a negative maximum area.\n");
+  printf("\n");
+  printf("  .edge files:\n");
+  printf("    First line:  <# of edges> <# of boundary markers (0 or 1)>\n");
+  printf(
+"    Following lines:  <edge #> <endpoint> <endpoint> [boundary marker]\n");
+  printf("\n");
+  printf(
+"    Endpoints are indices into the corresponding .node file.  Triangle can\n"
+);
+  printf(
+"    produce .edge files (use the -e switch), but cannot read them.  The\n");
+  printf(
+"    optional column of boundary markers is suppressed by the -B switch.\n");
+  printf("\n");
+  printf(
+"    In Voronoi diagrams, one also finds a special kind of edge that is an\n");
+  printf(
+"    infinite ray with only one endpoint.  For these edges, a different\n");
+  printf("    format is used:\n\n");
+  printf("        <edge #> <endpoint> -1 <direction x> <direction y>\n\n");
+  printf(
+"    The `direction' is a floating-point vector that indicates the direction\n"
+);
+  printf("    of the infinite ray.\n\n");
+  printf("  .neigh files:\n");
+  printf(
+"    First line:  <# of triangles> <# of neighbors per triangle (always 3)>\n"
+);
+  printf(
+"    Following lines:  <triangle #> <neighbor> <neighbor> <neighbor>\n");
+  printf("\n");
+  printf(
+"    Neighbors are indices into the corresponding .ele file.  An index of -1\n"
+);
+  printf(
+"    indicates a mesh boundary, and therefore no neighbor.  Triangle can\n");
+  printf(
+"    produce .neigh files (use the -n switch), but cannot read them.\n");
+  printf("\n");
+  printf(
+"    The first neighbor of triangle i is opposite the first corner of\n");
+  printf("    triangle i, and so on.\n\n");
+  printf("Boundary Markers:\n\n");
+  printf(
+"  Boundary markers are tags used mainly to identify which output points and\n"
+);
+  printf(
+"  edges are associated with which PSLG segment, and to identify which\n");
+  printf(
+"  points and edges occur on a boundary of the triangulation.  A common use\n"
+);
+  printf(
+"  is to determine where boundary conditions should be applied to a finite\n");
+  printf(
+"  element mesh.  You can prevent boundary markers from being written into\n");
+  printf("  files produced by Triangle by using the -B switch.\n\n");
+  printf(
+"  The boundary marker associated with each segment in an output .poly file\n"
+);
+  printf("  or edge in an output .edge file is chosen as follows:\n");
+  printf(
+"    - If an output edge is part or all of a PSLG segment with a nonzero\n");
+  printf(
+"      boundary marker, then the edge is assigned the same marker.\n");
+  printf(
+"    - Otherwise, if the edge occurs on a boundary of the triangulation\n");
+  printf(
+"      (including boundaries of holes), then the edge is assigned the marker\n"
+);
+  printf("      one (1).\n");
+  printf("    - Otherwise, the edge is assigned the marker zero (0).\n");
+  printf(
+"  The boundary marker associated with each point in an output .node file is\n"
+);
+  printf("  chosen as follows:\n");
+  printf(
+"    - If a point is assigned a nonzero boundary marker in the input file,\n");
+  printf(
+"      then it is assigned the same marker in the output .node file.\n");
+  printf(
+"    - Otherwise, if the point lies on a PSLG segment (including the\n");
+  printf(
+"      segment's endpoints) with a nonzero boundary marker, then the point\n");
+  printf(
+"      is assigned the same marker.  If the point lies on several such\n");
+  printf("      segments, one of the markers is chosen arbitrarily.\n");
+  printf(
+"    - Otherwise, if the point occurs on a boundary of the triangulation,\n");
+  printf("      then the point is assigned the marker one (1).\n");
+  printf("    - Otherwise, the point is assigned the marker zero (0).\n");
+  printf("\n");
+  printf(
+"  If you want Triangle to determine for you which points and edges are on\n");
+  printf(
+"  the boundary, assign them the boundary marker zero (or use no markers at\n"
+);
+  printf(
+"  all) in your input files.  Alternatively, you can mark some of them and\n");
+  printf("  leave others marked zero, allowing Triangle to label them.\n\n");
+  printf("Triangulation Iteration Numbers:\n\n");
+  printf(
+"  Because Triangle can read and refine its own triangulations, input\n");
+  printf(
+"  and output files have iteration numbers.  For instance, Triangle might\n");
+  printf(
+"  read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the\n");
+  printf(
+"  triangulation, and output the files mesh.4.node, mesh.4.ele, and\n");
+  printf("  mesh.4.poly.  Files with no iteration number are treated as if\n");
+  printf(
+"  their iteration number is zero; hence, Triangle might read the file\n");
+  printf(
+"  points.node, triangulate it, and produce the files points.1.node and\n");
+  printf("  points.1.ele.\n\n");
+  printf(
+"  Iteration numbers allow you to create a sequence of successively finer\n");
+  printf(
+"  meshes suitable for multigrid methods.  They also allow you to produce a\n"
+);
+  printf(
+"  sequence of meshes using error estimate-driven mesh refinement.\n");
+  printf("\n");
+  printf(
+"  If you're not using refinement or quality meshing, and you don't like\n");
+  printf(
+"  iteration numbers, use the -I switch to disable them.  This switch will\n");
+  printf(
+"  also disable output of .node and .poly files to prevent your input files\n"
+);
+  printf(
+"  from being overwritten.  (If the input is a .poly file that contains its\n"
+);
+  printf("  own points, a .node file will be written.)\n\n");
+  printf("Examples of How to Use Triangle:\n\n");
+  printf(
+"  `triangle dots' will read points from dots.node, and write their Delaunay\n"
+);
+  printf(
+"  triangulation to dots.1.node and dots.1.ele.  (dots.1.node will be\n");
+  printf(
+"  identical to dots.node.)  `triangle -I dots' writes the triangulation to\n"
+);
+  printf(
+"  dots.ele instead.  (No additional .node file is needed, so none is\n");
+  printf("  written.)\n\n");
+  printf(
+"  `triangle -pe object.1' will read a PSLG from object.1.poly (and possibly\n"
+);
+  printf(
+"  object.1.node, if the points are omitted from object.1.poly) and write\n");
+  printf("  their constrained Delaunay triangulation to object.2.node and\n");
+  printf(
+"  object.2.ele.  The segments will be copied to object.2.poly, and all\n");
+  printf("  edges will be written to object.2.edge.\n\n");
+  printf(
+"  `triangle -pq31.5a.1 object' will read a PSLG from object.poly (and\n");
+  printf(
+"  possibly object.node), generate a mesh whose angles are all greater than\n"
+);
+  printf(
+"  31.5 degrees and whose triangles all have area smaller than 0.1, and\n");
+  printf(
+"  write the mesh to object.1.node and object.1.ele.  Each segment may have\n"
+);
+  printf(
+"  been broken up into multiple edges; the resulting constrained edges are\n");
+  printf("  written to object.1.poly.\n\n");
+  printf(
+"  Here is a sample file `box.poly' describing a square with a square hole:\n"
+);
+  printf("\n");
+  printf(
+"    # A box with eight points in 2D, no attributes, one boundary marker.\n");
+  printf("    8 2 0 1\n");
+  printf("    # Outer box has these vertices:\n");
+  printf("     1   0 0   0\n");
+  printf("     2   0 3   0\n");
+  printf("     3   3 0   0\n");
+  printf("     4   3 3   33     # A special marker for this point.\n");
+  printf("    # Inner square has these vertices:\n");
+  printf("     5   1 1   0\n");
+  printf("     6   1 2   0\n");
+  printf("     7   2 1   0\n");
+  printf("     8   2 2   0\n");
+  printf("    # Five segments with boundary markers.\n");
+  printf("    5 1\n");
+  printf("     1   1 2   5      # Left side of outer box.\n");
+  printf("     2   5 7   0      # Segments 2 through 5 enclose the hole.\n");
+  printf("     3   7 8   0\n");
+  printf("     4   8 6   10\n");
+  printf("     5   6 5   0\n");
+  printf("    # One hole in the middle of the inner square.\n");
+  printf("    1\n");
+  printf("     1   1.5 1.5\n\n");
+  printf(
+"  Note that some segments are missing from the outer square, so one must\n");
+  printf(
+"  use the `-c' switch.  After `triangle -pqc box.poly', here is the output\n"
+);
+  printf(
+"  file `box.1.node', with twelve points.  The last four points were added\n");
+  printf(
+"  to meet the angle constraint.  Points 1, 2, and 9 have markers from\n");
+  printf(
+"  segment 1.  Points 6 and 8 have markers from segment 4.  All the other\n");
+  printf(
+"  points but 4 have been marked to indicate that they lie on a boundary.\n");
+  printf("\n");
+  printf("    12  2  0  1\n");
+  printf("       1    0   0      5\n");
+  printf("       2    0   3      5\n");
+  printf("       3    3   0      1\n");
+  printf("       4    3   3     33\n");
+  printf("       5    1   1      1\n");
+  printf("       6    1   2     10\n");
+  printf("       7    2   1      1\n");
+  printf("       8    2   2     10\n");
+  printf("       9    0   1.5    5\n");
+  printf("      10    1.5   0    1\n");
+  printf("      11    3   1.5    1\n");
+  printf("      12    1.5   3    1\n");
+  printf("    # Generated by triangle -pqc box.poly\n\n");
+  printf("  Here is the output file `box.1.ele', with twelve triangles.\n\n");
+  printf("    12  3  0\n");
+  printf("       1     5   6   9\n");
+  printf("       2    10   3   7\n");
+  printf("       3     6   8  12\n");
+  printf("       4     9   1   5\n");
+  printf("       5     6   2   9\n");
+  printf("       6     7   3  11\n");
+  printf("       7    11   4   8\n");
+  printf("       8     7   5  10\n");
+  printf("       9    12   2   6\n");
+  printf("      10     8   7  11\n");
+  printf("      11     5   1  10\n");
+  printf("      12     8   4  12\n");
+  printf("    # Generated by triangle -pqc box.poly\n\n");
+  printf(
+"  Here is the output file `box.1.poly'.  Note that segments have been added\n"
+);
+  printf(
+"  to represent the convex hull, and some segments have been split by newly\n"
+);
+  printf(
+"  added points.  Note also that <# of points> is set to zero to indicate\n");
+  printf("  that the points should be read from the .node file.\n\n");
+  printf("    0  2  0  1\n");
+  printf("    12  1\n");
+  printf("       1     1   9     5\n");
+  printf("       2     5   7     1\n");
+  printf("       3     8   7     1\n");
+  printf("       4     6   8    10\n");
+  printf("       5     5   6     1\n");
+  printf("       6     3  10     1\n");
+  printf("       7     4  11     1\n");
+  printf("       8     2  12     1\n");
+  printf("       9     9   2     5\n");
+  printf("      10    10   1     1\n");
+  printf("      11    11   3     1\n");
+  printf("      12    12   4     1\n");
+  printf("    1\n");
+  printf("       1   1.5 1.5\n");
+  printf("    # Generated by triangle -pqc box.poly\n\n");
+  printf("Refinement and Area Constraints:\n\n");
+  printf(
+"  The -r switch causes a mesh (.node and .ele files) to be read and\n");
+  printf(
+"  refined.  If the -p switch is also used, a .poly file is read and used to\n"
+);
+  printf(
+"  specify edges that are constrained and cannot be eliminated (although\n");
+  printf(
+"  they can be divided into smaller edges) by the refinement process.\n");
+  printf("\n");
+  printf(
+"  When you refine a mesh, you generally want to impose tighter quality\n");
+  printf(
+"  constraints.  One way to accomplish this is to use -q with a larger\n");
+  printf(
+"  angle, or -a followed by a smaller area than you used to generate the\n");
+  printf(
+"  mesh you are refining.  Another way to do this is to create an .area\n");
+  printf(
+"  file, which specifies a maximum area for each triangle, and use the -a\n");
+  printf(
+"  switch (without a number following).  Each triangle's area constraint is\n"
+);
+  printf(
+"  applied to that triangle.  Area constraints tend to diffuse as the mesh\n");
+  printf(
+"  is refined, so if there are large variations in area constraint between\n");
+  printf("  adjacent triangles, you may not get the results you want.\n\n");
+  printf(
+"  If you are refining a mesh composed of linear (three-node) elements, the\n"
+);
+  printf(
+"  output mesh will contain all the nodes present in the input mesh, in the\n"
+);
+  printf(
+"  same order, with new nodes added at the end of the .node file.  However,\n"
+);
+  printf(
+"  there is no guarantee that each output element is contained in a single\n");
+  printf(
+"  input element.  Often, output elements will overlap two input elements,\n");
+  printf(
+"  and input edges are not present in the output mesh.  Hence, a sequence of\n"
+);
+  printf(
+"  refined meshes will form a hierarchy of nodes, but not a hierarchy of\n");
+  printf(
+"  elements.  If you a refining a mesh of higher-order elements, the\n");
+  printf(
+"  hierarchical property applies only to the nodes at the corners of an\n");
+  printf("  element; other nodes may not be present in the refined mesh.\n\n");
+  printf(
+"  It is important to understand that maximum area constraints in .poly\n");
+  printf(
+"  files are handled differently from those in .area files.  A maximum area\n"
+);
+  printf(
+"  in a .poly file applies to the whole (segment-bounded) region in which a\n"
+);
+  printf(
+"  point falls, whereas a maximum area in an .area file applies to only one\n"
+);
+  printf(
+"  triangle.  Area constraints in .poly files are used only when a mesh is\n");
+  printf(
+"  first generated, whereas area constraints in .area files are used only to\n"
+);
+  printf(
+"  refine an existing mesh, and are typically based on a posteriori error\n");
+  printf(
+"  estimates resulting from a finite element simulation on that mesh.\n");
+  printf("\n");
+  printf(
+"  `triangle -rq25 object.1' will read object.1.node and object.1.ele, then\n"
+);
+  printf(
+"  refine the triangulation to enforce a 25 degree minimum angle, and then\n");
+  printf(
+"  write the refined triangulation to object.2.node and object.2.ele.\n");
+  printf("\n");
+  printf(
+"  `triangle -rpaa6.2 z.3' will read z.3.node, z.3.ele, z.3.poly, and\n");
+  printf(
+"  z.3.area.  After reconstructing the mesh and its segments, Triangle will\n"
+);
+  printf(
+"  refine the mesh so that no triangle has area greater than 6.2, and\n");
+  printf(
+"  furthermore the triangles satisfy the maximum area constraints in\n");
+  printf(
+"  z.3.area.  The output is written to z.4.node, z.4.ele, and z.4.poly.\n");
+  printf("\n");
+  printf(
+"  The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1\n");
+  printf(
+"  x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,\n");
+  printf("  suitable for multigrid.\n\n");
+  printf("Convex Hulls and Mesh Boundaries:\n\n");
+  printf(
+"  If the input is a point set (rather than a PSLG), Triangle produces its\n");
+  printf(
+"  convex hull as a by-product in the output .poly file if you use the -c\n");
+  printf(
+"  switch.  There are faster algorithms for finding a two-dimensional convex\n"
+);
+  printf(
+"  hull than triangulation, of course, but this one comes for free.  If the\n"
+);
+  printf(
+"  input is an unconstrained mesh (you are using the -r switch but not the\n");
+  printf(
+"  -p switch), Triangle produces a list of its boundary edges (including\n");
+  printf("  hole boundaries) as a by-product if you use the -c switch.\n\n");
+  printf("Voronoi Diagrams:\n\n");
+  printf(
+"  The -v switch produces a Voronoi diagram, in files suffixed .v.node and\n");
+  printf(
+"  .v.edge.  For example, `triangle -v points' will read points.node,\n");
+  printf(
+"  produce its Delaunay triangulation in points.1.node and points.1.ele,\n");
+  printf(
+"  and produce its Voronoi diagram in points.1.v.node and points.1.v.edge.\n");
+  printf(
+"  The .v.node file contains a list of all Voronoi vertices, and the .v.edge\n"
+);
+  printf(
+"  file contains a list of all Voronoi edges, some of which may be infinite\n"
+);
+  printf(
+"  rays.  (The choice of filenames makes it easy to run the set of Voronoi\n");
+  printf("  vertices through Triangle, if so desired.)\n\n");
+  printf(
+"  This implementation does not use exact arithmetic to compute the Voronoi\n"
+);
+  printf(
+"  vertices, and does not check whether neighboring vertices are identical.\n"
+);
+  printf(
+"  Be forewarned that if the Delaunay triangulation is degenerate or\n");
+  printf(
+"  near-degenerate, the Voronoi diagram may have duplicate points, crossing\n"
+);
+  printf(
+"  edges, or infinite rays whose direction vector is zero.  Also, if you\n");
+  printf(
+"  generate a constrained (as opposed to conforming) Delaunay triangulation,\n"
+);
+  printf(
+"  or if the triangulation has holes, the corresponding Voronoi diagram is\n");
+  printf("  likely to have crossing edges and unlikely to make sense.\n\n");
+  printf("Mesh Topology:\n\n");
+  printf(
+"  You may wish to know which triangles are adjacent to a certain Delaunay\n");
+  printf(
+"  edge in an .edge file, which Voronoi regions are adjacent to a certain\n");
+  printf(
+"  Voronoi edge in a .v.edge file, or which Voronoi regions are adjacent to\n"
+);
+  printf(
+"  each other.  All of this information can be found by cross-referencing\n");
+  printf(
+"  output files with the recollection that the Delaunay triangulation and\n");
+  printf("  the Voronoi diagrams are planar duals.\n\n");
+  printf(
+"  Specifically, edge i of an .edge file is the dual of Voronoi edge i of\n");
+  printf(
+"  the corresponding .v.edge file, and is rotated 90 degrees counterclock-\n");
+  printf(
+"  wise from the Voronoi edge.  Triangle j of an .ele file is the dual of\n");
+  printf(
+"  vertex j of the corresponding .v.node file; and Voronoi region k is the\n");
+  printf("  dual of point k of the corresponding .node file.\n\n");
+  printf(
+"  Hence, to find the triangles adjacent to a Delaunay edge, look at the\n");
+  printf(
+"  vertices of the corresponding Voronoi edge; their dual triangles are on\n");
+  printf(
+"  the left and right of the Delaunay edge, respectively.  To find the\n");
+  printf(
+"  Voronoi regions adjacent to a Voronoi edge, look at the endpoints of the\n"
+);
+  printf(
+"  corresponding Delaunay edge; their dual regions are on the right and left\n"
+);
+  printf(
+"  of the Voronoi edge, respectively.  To find which Voronoi regions are\n");
+  printf("  adjacent to each other, just read the list of Delaunay edges.\n");
+  printf("\n");
+  printf("Statistics:\n");
+  printf("\n");
+  printf(
+"  After generating a mesh, Triangle prints a count of the number of points,\n"
+);
+  printf(
+"  triangles, edges, boundary edges, and segments in the output mesh.  If\n");
+  printf(
+"  you've forgotten the statistics for an existing mesh, the -rNEP switches\n"
+);
+  printf(
+"  (or -rpNEP if you've got a .poly file for the existing mesh) will\n");
+  printf("  regenerate these statistics without writing any output.\n\n");
+  printf(
+"  The -V switch produces extended statistics, including a rough estimate\n");
+  printf(
+"  of memory use and a histogram of triangle aspect ratios and angles in the\n"
+);
+  printf("  mesh.\n\n");
+  printf("Exact Arithmetic:\n\n");
+  printf(
+"  Triangle uses adaptive exact arithmetic to perform what computational\n");
+  printf(
+"  geometers call the `orientation' and `incircle' tests.  If the floating-\n"
+);
+  printf(
+"  point arithmetic of your machine conforms to the IEEE 754 standard (as\n");
+  printf(
+"  most workstations do), and does not use extended precision internal\n");
+  printf(
+"  registers, then your output is guaranteed to be an absolutely true\n");
+  printf("  Delaunay or conforming Delaunay triangulation, roundoff error\n");
+  printf(
+"  notwithstanding.  The word `adaptive' implies that these arithmetic\n");
+  printf(
+"  routines compute the result only to the precision necessary to guarantee\n"
+);
+  printf(
+"  correctness, so they are usually nearly as fast as their approximate\n");
+  printf(
+"  counterparts.  The exact tests can be disabled with the -X switch.  On\n");
+  printf(
+"  most inputs, this switch will reduce the computation time by about eight\n"
+);
+  printf(
+"  percent - it's not worth the risk.  There are rare difficult inputs\n");
+  printf(
+"  (having many collinear and cocircular points), however, for which the\n");
+  printf(
+"  difference could be a factor of two.  These are precisely the inputs most\n"
+);
+  printf("  likely to cause errors if you use the -X switch.\n\n");
+  printf(
+"  Unfortunately, these routines don't solve every numerical problem.  Exact\n"
+);
+  printf(
+"  arithmetic is not used to compute the positions of points, because the\n");
+  printf(
+"  bit complexity of point coordinates would grow without bound.  Hence,\n");
+  printf(
+"  segment intersections aren't computed exactly; in very unusual cases,\n");
+  printf(
+"  roundoff error in computing an intersection point might actually lead to\n"
+);
+  printf(
+"  an inverted triangle and an invalid triangulation.  (This is one reason\n");
+  printf(
+"  to compute your own intersection points in your .poly files.)  Similarly,\n"
+);
+  printf(
+"  exact arithmetic is not used to compute the vertices of the Voronoi\n");
+  printf("  diagram.\n\n");
+  printf(
+"  Underflow and overflow can also cause difficulties; the exact arithmetic\n"
+);
+  printf(
+"  routines do not ameliorate out-of-bounds exponents, which can arise\n");
+  printf(
+"  during the orientation and incircle tests.  As a rule of thumb, you\n");
+  printf(
+"  should ensure that your input values are within a range such that their\n");
+  printf(
+"  third powers can be taken without underflow or overflow.  Underflow can\n");
+  printf(
+"  silently prevent the tests from being performed exactly, while overflow\n");
+  printf("  will typically cause a floating exception.\n\n");
+  printf("Calling Triangle from Another Program:\n\n");
+  printf("  Read the file triangle.h for details.\n\n");
+  printf("Troubleshooting:\n\n");
+  printf("  Please read this section before mailing me bugs.\n\n");
+  printf("  `My output mesh has no triangles!'\n\n");
+  printf(
+"    If you're using a PSLG, you've probably failed to specify a proper set\n"
+);
+  printf(
+"    of bounding segments, or forgotten to use the -c switch.  Or you may\n");
+  printf(
+"    have placed a hole badly.  To test these possibilities, try again with\n"
+);
+  printf(
+"    the -c and -O switches.  Alternatively, all your input points may be\n");
+  printf(
+"    collinear, in which case you can hardly expect to triangulate them.\n");
+  printf("\n");
+  printf("  `Triangle doesn't terminate, or just crashes.'\n");
+  printf("\n");
+  printf(
+"    Bad things can happen when triangles get so small that the distance\n");
+  printf(
+"    between their vertices isn't much larger than the precision of your\n");
+  printf(
+"    machine's arithmetic.  If you've compiled Triangle for single-precision\n"
+);
+  printf(
+"    arithmetic, you might do better by recompiling it for double-precision.\n"
+);
+  printf(
+"    Then again, you might just have to settle for more lenient constraints\n"
+);
+  printf(
+"    on the minimum angle and the maximum area than you had planned.\n");
+  printf("\n");
+  printf(
+"    You can minimize precision problems by ensuring that the origin lies\n");
+  printf(
+"    inside your point set, or even inside the densest part of your\n");
+  printf(
+"    mesh.  On the other hand, if you're triangulating an object whose x\n");
+  printf(
+"    coordinates all fall between 6247133 and 6247134, you're not leaving\n");
+  printf("    much floating-point precision for Triangle to work with.\n\n");
+  printf(
+"    Precision problems can occur covertly if the input PSLG contains two\n");
+  printf(
+"    segments that meet (or intersect) at a very small angle, or if such an\n"
+);
+  printf(
+"    angle is introduced by the -c switch, which may occur if a point lies\n");
+  printf(
+"    ever-so-slightly inside the convex hull, and is connected by a PSLG\n");
+  printf(
+"    segment to a point on the convex hull.  If you don't realize that a\n");
+  printf(
+"    small angle is being formed, you might never discover why Triangle is\n");
+  printf(
+"    crashing.  To check for this possibility, use the -S switch (with an\n");
+  printf(
+"    appropriate limit on the number of Steiner points, found by trial-and-\n"
+);
+  printf(
+"    error) to stop Triangle early, and view the output .poly file with\n");
+  printf(
+"    Show Me (described below).  Look carefully for small angles between\n");
+  printf(
+"    segments; zoom in closely, as such segments might look like a single\n");
+  printf("    segment from a distance.\n\n");
+  printf(
+"    If some of the input values are too large, Triangle may suffer a\n");
+  printf(
+"    floating exception due to overflow when attempting to perform an\n");
+  printf(
+"    orientation or incircle test.  (Read the section on exact arithmetic\n");
+  printf(
+"    above.)  Again, I recommend compiling Triangle for double (rather\n");
+  printf("    than single) precision arithmetic.\n\n");
+  printf(
+"  `The numbering of the output points doesn't match the input points.'\n");
+  printf("\n");
+  printf(
+"    You may have eaten some of your input points with a hole, or by placing\n"
+);
+  printf("    them outside the area enclosed by segments.\n\n");
+  printf(
+"  `Triangle executes without incident, but when I look at the resulting\n");
+  printf(
+"  mesh, it has overlapping triangles or other geometric inconsistencies.'\n");
+  printf("\n");
+  printf(
+"    If you select the -X switch, Triangle's divide-and-conquer Delaunay\n");
+  printf(
+"    triangulation algorithm occasionally makes mistakes due to floating-\n");
+  printf(
+"    point roundoff error.  Although these errors are rare, don't use the -X\n"
+);
+  printf("    switch.  If you still have problems, please report the bug.\n");
+  printf("\n");
+  printf(
+"  Strange things can happen if you've taken liberties with your PSLG.  Do\n");
+  printf(
+"  you have a point lying in the middle of a segment?  Triangle sometimes\n");
+  printf(
+"  copes poorly with that sort of thing.  Do you want to lay out a collinear\n"
+);
+  printf(
+"  row of evenly spaced, segment-connected points?  Have you simply defined\n"
+);
+  printf(
+"  one long segment connecting the leftmost point to the rightmost point,\n");
+  printf(
+"  and a bunch of points lying along it?  This method occasionally works,\n");
+  printf(
+"  especially with horizontal and vertical lines, but often it doesn't, and\n"
+);
+  printf(
+"  you'll have to connect each adjacent pair of points with a separate\n");
+  printf("  segment.  If you don't like it, tough.\n\n");
+  printf(
+"  Furthermore, if you have segments that intersect other than at their\n");
+  printf(
+"  endpoints, try not to let the intersections fall extremely close to PSLG\n"
+);
+  printf("  points or each other.\n\n");
+  printf(
+"  If you have problems refining a triangulation not produced by Triangle:\n");
+  printf(
+"  Are you sure the triangulation is geometrically valid?  Is it formatted\n");
+  printf(
+"  correctly for Triangle?  Are the triangles all listed so the first three\n"
+);
+  printf("  points are their corners in counterclockwise order?\n\n");
+  printf("Show Me:\n\n");
+  printf(
+"  Triangle comes with a separate program named `Show Me', whose primary\n");
+  printf(
+"  purpose is to draw meshes on your screen or in PostScript.  Its secondary\n"
+);
+  printf(
+"  purpose is to check the validity of your input files, and do so more\n");
+  printf(
+"  thoroughly than Triangle does.  Show Me requires that you have the X\n");
+  printf(
+"  Windows system.  If you didn't receive Show Me with Triangle, complain to\n"
+);
+  printf("  whomever you obtained Triangle from, then send me mail.\n\n");
+  printf("Triangle on the Web:\n\n");
+  printf(
+"  To see an illustrated, updated version of these instructions, check out\n");
+  printf("\n");
+  printf("    http://www.cs.cmu.edu/~quake/triangle.html\n");
+  printf("\n");
+  printf("A Brief Plea:\n");
+  printf("\n");
+  printf(
+"  If you use Triangle, and especially if you use it to accomplish real\n");
+  printf(
+"  work, I would like very much to hear from you.  A short letter or email\n");
+  printf(
+"  (to jrs@cs.cmu.edu) describing how you use Triangle will mean a lot to\n");
+  printf(
+"  me.  The more people I know are using this program, the more easily I can\n"
+);
+  printf(
+"  justify spending time on improvements and on the three-dimensional\n");
+  printf(
+"  successor to Triangle, which in turn will benefit you.  Also, I can put\n");
+  printf(
+"  you on a list to receive email whenever a new version of Triangle is\n");
+  printf("  available.\n\n");
+  printf(
+"  If you use a mesh generated by Triangle in a publication, please include\n"
+);
+  printf("  an acknowledgment as well.\n\n");
+  printf("Research credit:\n\n");
+  printf(
+"  Of course, I can take credit for only a fraction of the ideas that made\n");
+  printf(
+"  this mesh generator possible.  Triangle owes its existence to the efforts\n"
+);
+  printf(
+"  of many fine computational geometers and other researchers, including\n");
+  printf(
+"  Marshall Bern, L. Paul Chew, Boris Delaunay, Rex A. Dwyer, David\n");
+  printf(
+"  Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E. Knuth, C. L.\n");
+  printf(
+"  Lawson, Der-Tsai Lee, Ernst P. Mucke, Douglas M. Priest, Jim Ruppert,\n");
+  printf(
+"  Isaac Saias, Bruce J. Schachter, Micha Sharir, Jorge Stolfi, Christopher\n"
+);
+  printf(
+"  J. Van Wyk, David F. Watson, and Binhai Zhu.  See the comments at the\n");
+  printf("  beginning of the source code for references.\n\n");
+  exit(0);
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  internalerror()   Ask the user to send me the defective product.  Exit.  */
+/*                                                                           */
+/*****************************************************************************/
+
+void internalerror()
+{
+  printf("  Please report this bug to jrs@cs.cmu.edu\n");
+  printf("  Include the message above, your input data set, and the exact\n");
+  printf("    command line you used to run Triangle.\n");
+  exit(1);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  parsecommandline()   Read the command line, identify switches, and set   */
+/*                       up options and file names.                          */
+/*                                                                           */
+/*  The effects of this routine are felt entirely through global variables.  */
+/*                                                                           */
+/*****************************************************************************/
+
+void parsecommandline(argc, argv)
+int argc;
+char **argv;
+{
+#ifdef TRILIBRARY
+#define STARTINDEX 0
+#else /* not TRILIBRARY */
+#define STARTINDEX 1
+  int increment;
+  int meshnumber;
+#endif /* not TRILIBRARY */
+  int i, j, k;
+  char workstring[FILENAMESIZE];
+
+  poly = refine = quality = vararea = fixedarea = regionattrib = convex = 0;
+  firstnumber = 1;
+  edgesout = voronoi = neighbors = geomview = 0;
+  nobound = nopolywritten = nonodewritten = noelewritten = noiterationnum = 0;
+  noholes = noexact = 0;
+  incremental = sweepline = 0;
+  dwyer = 1;
+  splitseg = 0;
+  docheck = 0;
+  nobisect = 0;
+  steiner = -1;
+  order = 1;
+  minangle = 0.0;
+  maxarea = -1.0;
+  quiet = verbose = 0;
+#ifndef TRILIBRARY
+  innodefilename[0] = '\0';
+#endif /* not TRILIBRARY */
+
+  for (i = STARTINDEX; i < argc; i++) {
+#ifndef TRILIBRARY
+    if (argv[i][0] == '-') {
+#endif /* not TRILIBRARY */
+      for (j = STARTINDEX; argv[i][j] != '\0'; j++) {
+        if (argv[i][j] == 'p') {
+          poly = 1;
+	}
+#ifndef CDT_ONLY
+        if (argv[i][j] == 'r') {
+          refine = 1;
+	}
+        if (argv[i][j] == 'q') {
+          quality = 1;
+          if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
+              (argv[i][j + 1] == '.')) {
+            k = 0;
+            while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
+                   (argv[i][j + 1] == '.')) {
+              j++;
+              workstring[k] = argv[i][j];
+              k++;
+            }
+            workstring[k] = '\0';
+            minangle = (REAL) strtod(workstring, (char **) NULL);
+	  } else {
+            minangle = 20.0;
+	  }
+	}
+        if (argv[i][j] == 'a') {
+          quality = 1;
+          if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
+              (argv[i][j + 1] == '.')) {
+            fixedarea = 1;
+            k = 0;
+            while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
+                   (argv[i][j + 1] == '.')) {
+              j++;
+              workstring[k] = argv[i][j];
+              k++;
+            }
+            workstring[k] = '\0';
+            maxarea = (REAL) strtod(workstring, (char **) NULL);
+            if (maxarea <= 0.0) {
+              printf("Error:  Maximum area must be greater than zero.\n");
+              exit(1);
+	    }
+	  } else {
+            vararea = 1;
+	  }
+	}
+#endif /* not CDT_ONLY */
+        if (argv[i][j] == 'A') {
+          regionattrib = 1;
+        }
+        if (argv[i][j] == 'c') {
+          convex = 1;
+        }
+        if (argv[i][j] == 'z') {
+          firstnumber = 0;
+        }
+        if (argv[i][j] == 'e') {
+          edgesout = 1;
+	}
+        if (argv[i][j] == 'v') {
+          voronoi = 1;
+	}
+        if (argv[i][j] == 'n') {
+          neighbors = 1;
+	}
+        if (argv[i][j] == 'g') {
+          geomview = 1;
+	}
+        if (argv[i][j] == 'B') {
+          nobound = 1;
+	}
+        if (argv[i][j] == 'P') {
+          nopolywritten = 1;
+	}
+        if (argv[i][j] == 'N') {
+          nonodewritten = 1;
+	}
+        if (argv[i][j] == 'E') {
+          noelewritten = 1;
+	}
+#ifndef TRILIBRARY
+        if (argv[i][j] == 'I') {
+          noiterationnum = 1;
+	}
+#endif /* not TRILIBRARY */
+        if (argv[i][j] == 'O') {
+          noholes = 1;
+	}
+        if (argv[i][j] == 'X') {
+          noexact = 1;
+	}
+        if (argv[i][j] == 'o') {
+          if (argv[i][j + 1] == '2') {
+            j++;
+            order = 2;
+          }
+	}
+#ifndef CDT_ONLY
+        if (argv[i][j] == 'Y') {
+          nobisect++;
+	}
+        if (argv[i][j] == 'S') {
+          steiner = 0;
+          while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) {
+            j++;
+            steiner = steiner * 10 + (int) (argv[i][j] - '0');
+          }
+        }
+#endif /* not CDT_ONLY */
+#ifndef REDUCED
+        if (argv[i][j] == 'i') {
+          incremental = 1;
+        }
+        if (argv[i][j] == 'F') {
+          sweepline = 1;
+        }
+#endif /* not REDUCED */
+        if (argv[i][j] == 'l') {
+          dwyer = 0;
+        }
+#ifndef REDUCED
+#ifndef CDT_ONLY
+        if (argv[i][j] == 's') {
+          splitseg = 1;
+        }
+#endif /* not CDT_ONLY */
+        if (argv[i][j] == 'C') {
+          docheck = 1;
+        }
+#endif /* not REDUCED */
+        if (argv[i][j] == 'Q') {
+          quiet = 1;
+        }
+        if (argv[i][j] == 'V') {
+          verbose++;
+        }
+#ifndef TRILIBRARY
+        if ((argv[i][j] == 'h') || (argv[i][j] == 'H') ||
+            (argv[i][j] == '?')) {
+          info();
+	}
+#endif /* not TRILIBRARY */
+      }
+#ifndef TRILIBRARY
+    } else {
+      strncpy(innodefilename, argv[i], FILENAMESIZE - 1);
+      innodefilename[FILENAMESIZE - 1] = '\0';
+    }
+#endif /* not TRILIBRARY */
+  }
+#ifndef TRILIBRARY
+  if (innodefilename[0] == '\0') {
+    syntax();
+  }
+  if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".node")) {
+    innodefilename[strlen(innodefilename) - 5] = '\0';
+  }
+  if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".poly")) {
+    innodefilename[strlen(innodefilename) - 5] = '\0';
+    poly = 1;
+  }
+#ifndef CDT_ONLY
+  if (!strcmp(&innodefilename[strlen(innodefilename) - 4], ".ele")) {
+    innodefilename[strlen(innodefilename) - 4] = '\0';
+    refine = 1;
+  }
+  if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".area")) {
+    innodefilename[strlen(innodefilename) - 5] = '\0';
+    refine = 1;
+    quality = 1;
+    vararea = 1;
+  }
+#endif /* not CDT_ONLY */
+#endif /* not TRILIBRARY */
+  steinerleft = steiner;
+  useshelles = poly || refine || quality || convex;
+  goodangle = cos(minangle * PI / 180.0);
+  goodangle *= goodangle;
+  if (refine && noiterationnum) {
+    printf(
+      "Error:  You cannot use the -I switch when refining a triangulation.\n");
+    exit(1);
+  }
+  /* Be careful not to allocate space for element area constraints that */
+  /*   will never be assigned any value (other than the default -1.0).  */
+  if (!refine && !poly) {
+    vararea = 0;
+  }
+  /* Be careful not to add an extra attribute to each element unless the */
+  /*   input supports it (PSLG in, but not refining a preexisting mesh). */
+  if (refine || !poly) {
+    regionattrib = 0;
+  }
+
+#ifndef TRILIBRARY
+  strcpy(inpolyfilename, innodefilename);
+  strcpy(inelefilename, innodefilename);
+  strcpy(areafilename, innodefilename);
+  increment = 0;
+  strcpy(workstring, innodefilename);
+  j = 1;
+  while (workstring[j] != '\0') {
+    if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) {
+      increment = j + 1;
+    }
+    j++;
+  }
+  meshnumber = 0;
+  if (increment > 0) {
+    j = increment;
+    do {
+      if ((workstring[j] >= '0') && (workstring[j] <= '9')) {
+        meshnumber = meshnumber * 10 + (int) (workstring[j] - '0');
+      } else {
+        increment = 0;
+      }
+      j++;
+    } while (workstring[j] != '\0');
+  }
+  if (noiterationnum) {
+    strcpy(outnodefilename, innodefilename);
+    strcpy(outelefilename, innodefilename);
+    strcpy(edgefilename, innodefilename);
+    strcpy(vnodefilename, innodefilename);
+    strcpy(vedgefilename, innodefilename);
+    strcpy(neighborfilename, innodefilename);
+    strcpy(offfilename, innodefilename);
+    strcat(outnodefilename, ".node");
+    strcat(outelefilename, ".ele");
+    strcat(edgefilename, ".edge");
+    strcat(vnodefilename, ".v.node");
+    strcat(vedgefilename, ".v.edge");
+    strcat(neighborfilename, ".neigh");
+    strcat(offfilename, ".off");
+  } else if (increment == 0) {
+    strcpy(outnodefilename, innodefilename);
+    strcpy(outpolyfilename, innodefilename);
+    strcpy(outelefilename, innodefilename);
+    strcpy(edgefilename, innodefilename);
+    strcpy(vnodefilename, innodefilename);
+    strcpy(vedgefilename, innodefilename);
+    strcpy(neighborfilename, innodefilename);
+    strcpy(offfilename, innodefilename);
+    strcat(outnodefilename, ".1.node");
+    strcat(outpolyfilename, ".1.poly");
+    strcat(outelefilename, ".1.ele");
+    strcat(edgefilename, ".1.edge");
+    strcat(vnodefilename, ".1.v.node");
+    strcat(vedgefilename, ".1.v.edge");
+    strcat(neighborfilename, ".1.neigh");
+    strcat(offfilename, ".1.off");
+  } else {
+    workstring[increment] = '%';
+    workstring[increment + 1] = 'd';
+    workstring[increment + 2] = '\0';
+    sprintf(outnodefilename, workstring, meshnumber + 1);
+    strcpy(outpolyfilename, outnodefilename);
+    strcpy(outelefilename, outnodefilename);
+    strcpy(edgefilename, outnodefilename);
+    strcpy(vnodefilename, outnodefilename);
+    strcpy(vedgefilename, outnodefilename);
+    strcpy(neighborfilename, outnodefilename);
+    strcpy(offfilename, outnodefilename);
+    strcat(outnodefilename, ".node");
+    strcat(outpolyfilename, ".poly");
+    strcat(outelefilename, ".ele");
+    strcat(edgefilename, ".edge");
+    strcat(vnodefilename, ".v.node");
+    strcat(vedgefilename, ".v.edge");
+    strcat(neighborfilename, ".neigh");
+    strcat(offfilename, ".off");
+  }
+  strcat(innodefilename, ".node");
+  strcat(inpolyfilename, ".poly");
+  strcat(inelefilename, ".ele");
+  strcat(areafilename, ".area");
+#endif /* not TRILIBRARY */
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* User interaction routines begin here                      *********/
+
+/********* Debugging routines begin here                             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  printtriangle()   Print out the details of a triangle/edge handle.       */
+/*                                                                           */
+/*  I originally wrote this procedure to simplify debugging; it can be       */
+/*  called directly from the debugger, and presents information about a      */
+/*  triangle/edge handle in digestible form.  It's also used when the        */
+/*  highest level of verbosity (`-VVV') is specified.                        */
+/*                                                                           */
+/*****************************************************************************/
+
+void printtriangle(t)
+struct triedge *t;
+{
+  struct triedge printtri;
+  struct edge printsh;
+  point printpoint;
+
+  printf("triangle x%lx with orientation %d:\n", (unsigned long) t->tri,
+         t->orient);
+  decode(t->tri[0], printtri);
+  if (printtri.tri == dummytri) {
+    printf("    [0] = Outer space\n");
+  } else {
+    printf("    [0] = x%lx  %d\n", (unsigned long) printtri.tri,
+           printtri.orient);
+  }
+  decode(t->tri[1], printtri);
+  if (printtri.tri == dummytri) {
+    printf("    [1] = Outer space\n");
+  } else {
+    printf("    [1] = x%lx  %d\n", (unsigned long) printtri.tri,
+           printtri.orient);
+  }
+  decode(t->tri[2], printtri);
+  if (printtri.tri == dummytri) {
+    printf("    [2] = Outer space\n");
+  } else {
+    printf("    [2] = x%lx  %d\n", (unsigned long) printtri.tri,
+           printtri.orient);
+  }
+  org(*t, printpoint);
+  if (printpoint == (point) NULL)
+    printf("    Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
+  else
+    printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
+           (t->orient + 1) % 3 + 3, (unsigned long) printpoint,
+           printpoint[0], printpoint[1]);
+  dest(*t, printpoint);
+  if (printpoint == (point) NULL)
+    printf("    Dest  [%d] = NULL\n", (t->orient + 2) % 3 + 3);
+  else
+    printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
+           (t->orient + 2) % 3 + 3, (unsigned long) printpoint,
+           printpoint[0], printpoint[1]);
+  apex(*t, printpoint);
+  if (printpoint == (point) NULL)
+    printf("    Apex  [%d] = NULL\n", t->orient + 3);
+  else
+    printf("    Apex  [%d] = x%lx  (%.12g, %.12g)\n",
+           t->orient + 3, (unsigned long) printpoint,
+           printpoint[0], printpoint[1]);
+  if (useshelles) {
+    sdecode(t->tri[6], printsh);
+    if (printsh.sh != dummysh) {
+      printf("    [6] = x%lx  %d\n", (unsigned long) printsh.sh,
+             printsh.shorient);
+    }
+    sdecode(t->tri[7], printsh);
+    if (printsh.sh != dummysh) {
+      printf("    [7] = x%lx  %d\n", (unsigned long) printsh.sh,
+             printsh.shorient);
+    }
+    sdecode(t->tri[8], printsh);
+    if (printsh.sh != dummysh) {
+      printf("    [8] = x%lx  %d\n", (unsigned long) printsh.sh,
+             printsh.shorient);
+    }
+  }
+  if (vararea) {
+    printf("    Area constraint:  %.4g\n", areabound(*t));
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  printshelle()   Print out the details of a shell edge handle.            */
+/*                                                                           */
+/*  I originally wrote this procedure to simplify debugging; it can be       */
+/*  called directly from the debugger, and presents information about a      */
+/*  shell edge handle in digestible form.  It's also used when the highest   */
+/*  level of verbosity (`-VVV') is specified.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+void printshelle(s)
+struct edge *s;
+{
+  struct edge printsh;
+  struct triedge printtri;
+  point printpoint;
+
+  printf("shell edge x%lx with orientation %d and mark %d:\n",
+         (unsigned long) s->sh, s->shorient, mark(*s));
+  sdecode(s->sh[0], printsh);
+  if (printsh.sh == dummysh) {
+    printf("    [0] = No shell\n");
+  } else {
+    printf("    [0] = x%lx  %d\n", (unsigned long) printsh.sh,
+           printsh.shorient);
+  }
+  sdecode(s->sh[1], printsh);
+  if (printsh.sh == dummysh) {
+    printf("    [1] = No shell\n");
+  } else {
+    printf("    [1] = x%lx  %d\n", (unsigned long) printsh.sh,
+           printsh.shorient);
+  }
+  sorg(*s, printpoint);
+  if (printpoint == (point) NULL)
+    printf("    Origin[%d] = NULL\n", 2 + s->shorient);
+  else
+    printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
+           2 + s->shorient, (unsigned long) printpoint,
+           printpoint[0], printpoint[1]);
+  sdest(*s, printpoint);
+  if (printpoint == (point) NULL)
+    printf("    Dest  [%d] = NULL\n", 3 - s->shorient);
+  else
+    printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
+           3 - s->shorient, (unsigned long) printpoint,
+           printpoint[0], printpoint[1]);
+  decode(s->sh[4], printtri);
+  if (printtri.tri == dummytri) {
+    printf("    [4] = Outer space\n");
+  } else {
+    printf("    [4] = x%lx  %d\n", (unsigned long) printtri.tri,
+           printtri.orient);
+  }
+  decode(s->sh[5], printtri);
+  if (printtri.tri == dummytri) {
+    printf("    [5] = Outer space\n");
+  } else {
+    printf("    [5] = x%lx  %d\n", (unsigned long) printtri.tri,
+           printtri.orient);
+  }
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Debugging routines end here                               *********/
+
+/********* Memory management routines begin here                     *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  poolinit()   Initialize a pool of memory for allocation of items.        */
+/*                                                                           */
+/*  This routine initializes the machinery for allocating items.  A `pool'   */
+/*  is created whose records have size at least `bytecount'.  Items will be  */
+/*  allocated in `itemcount'-item blocks.  Each item is assumed to be a      */
+/*  collection of words, and either pointers or floating-point values are    */
+/*  assumed to be the "primary" word type.  (The "primary" word type is used */
+/*  to determine alignment of items.)  If `alignment' isn't zero, all items  */
+/*  will be `alignment'-byte aligned in memory.  `alignment' must be either  */
+/*  a multiple or a factor of the primary word size; powers of two are safe. */
+/*  `alignment' is normally used to create a few unused bits at the bottom   */
+/*  of each item's pointer, in which information may be stored.              */
+/*                                                                           */
+/*  Don't change this routine unless you understand it.                      */
+/*                                                                           */
+/*****************************************************************************/
+
+void poolinit(pool, bytecount, itemcount, wtype, alignment)
+struct memorypool *pool;
+int bytecount;
+int itemcount;
+enum wordtype wtype;
+int alignment;
+{
+  int wordsize;
+
+  /* Initialize values in the pool. */
+  pool->itemwordtype = wtype;
+  wordsize = (pool->itemwordtype == POINTER) ? sizeof(VOID *) : sizeof(REAL);
+  /* Find the proper alignment, which must be at least as large as:   */
+  /*   - The parameter `alignment'.                                   */
+  /*   - The primary word type, to avoid unaligned accesses.          */
+  /*   - sizeof(VOID *), so the stack of dead items can be maintained */
+  /*       without unaligned accesses.                                */
+  if (alignment > wordsize) {
+    pool->alignbytes = alignment;
+  } else {
+    pool->alignbytes = wordsize;
+  }
+  if (sizeof(VOID *) > pool->alignbytes) {
+    pool->alignbytes = sizeof(VOID *);
+  }
+  pool->itemwords = ((bytecount + pool->alignbytes - 1) / pool->alignbytes)
+                  * (pool->alignbytes / wordsize);
+  pool->itembytes = pool->itemwords * wordsize;
+  pool->itemsperblock = itemcount;
+
+  /* Allocate a block of items.  Space for `itemsperblock' items and one    */
+  /*   pointer (to point to the next block) are allocated, as well as space */
+  /*   to ensure alignment of the items.                                    */
+  pool->firstblock = (VOID **) malloc(pool->itemsperblock * pool->itembytes
+                                      + sizeof(VOID *) + pool->alignbytes);
+  if (pool->firstblock == (VOID **) NULL) {
+    printf("Error:  Out of memory.\n");
+    exit(1);
+  }
+  /* Set the next block pointer to NULL. */
+  *(pool->firstblock) = (VOID *) NULL;
+  poolrestart(pool);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  poolrestart()   Deallocate all items in a pool.                          */
+/*                                                                           */
+/*  The pool is returned to its starting state, except that no memory is     */
+/*  freed to the operating system.  Rather, the previously allocated blocks  */
+/*  are ready to be reused.                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+void poolrestart(pool)
+struct memorypool *pool;
+{
+  unsigned long alignptr;
+
+  pool->items = 0;
+  pool->maxitems = 0;
+
+  /* Set the currently active block. */
+  pool->nowblock = pool->firstblock;
+  /* Find the first item in the pool.  Increment by the size of (VOID *). */
+  alignptr = (unsigned long) (pool->nowblock + 1);
+  /* Align the item on an `alignbytes'-byte boundary. */
+  pool->nextitem = (VOID *)
+    (alignptr + (unsigned long) pool->alignbytes
+     - (alignptr % (unsigned long) pool->alignbytes));
+  /* There are lots of unallocated items left in this block. */
+  pool->unallocateditems = pool->itemsperblock;
+  /* The stack of deallocated items is empty. */
+  pool->deaditemstack = (VOID *) NULL;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  pooldeinit()   Free to the operating system all memory taken by a pool.  */
+/*                                                                           */
+/*****************************************************************************/
+
+void pooldeinit(pool)
+struct memorypool *pool;
+{
+  while (pool->firstblock != (VOID **) NULL) {
+    pool->nowblock = (VOID **) *(pool->firstblock);
+    free(pool->firstblock);
+    pool->firstblock = pool->nowblock;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  poolalloc()   Allocate space for an item.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+VOID *poolalloc(pool)
+struct memorypool *pool;
+{
+  VOID *newitem;
+  VOID **newblock;
+  unsigned long alignptr;
+
+  /* First check the linked list of dead items.  If the list is not   */
+  /*   empty, allocate an item from the list rather than a fresh one. */
+  if (pool->deaditemstack != (VOID *) NULL) {
+    newitem = pool->deaditemstack;               /* Take first item in list. */
+    pool->deaditemstack = * (VOID **) pool->deaditemstack;
+  } else {
+    /* Check if there are any free items left in the current block. */
+    if (pool->unallocateditems == 0) {
+      /* Check if another block must be allocated. */
+      if (*(pool->nowblock) == (VOID *) NULL) {
+        /* Allocate a new block of items, pointed to by the previous block. */
+        newblock = (VOID **) malloc(pool->itemsperblock * pool->itembytes
+                                    + sizeof(VOID *) + pool->alignbytes);
+        if (newblock == (VOID **) NULL) {
+          printf("Error:  Out of memory.\n");
+          exit(1);
+        }
+        *(pool->nowblock) = (VOID *) newblock;
+        /* The next block pointer is NULL. */
+        *newblock = (VOID *) NULL;
+      }
+      /* Move to the new block. */
+      pool->nowblock = (VOID **) *(pool->nowblock);
+      /* Find the first item in the block.    */
+      /*   Increment by the size of (VOID *). */
+      alignptr = (unsigned long) (pool->nowblock + 1);
+      /* Align the item on an `alignbytes'-byte boundary. */
+      pool->nextitem = (VOID *)
+        (alignptr + (unsigned long) pool->alignbytes
+         - (alignptr % (unsigned long) pool->alignbytes));
+      /* There are lots of unallocated items left in this block. */
+      pool->unallocateditems = pool->itemsperblock;
+    }
+    /* Allocate a new item. */
+    newitem = pool->nextitem;
+    /* Advance `nextitem' pointer to next free item in block. */
+    if (pool->itemwordtype == POINTER) {
+      pool->nextitem = (VOID *) ((VOID **) pool->nextitem + pool->itemwords);
+    } else {
+      pool->nextitem = (VOID *) ((REAL *) pool->nextitem + pool->itemwords);
+    }
+    pool->unallocateditems--;
+    pool->maxitems++;
+  }
+  pool->items++;
+  return newitem;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  pooldealloc()   Deallocate space for an item.                            */
+/*                                                                           */
+/*  The deallocated space is stored in a queue for later reuse.              */
+/*                                                                           */
+/*****************************************************************************/
+
+void pooldealloc(pool, dyingitem)
+struct memorypool *pool;
+VOID *dyingitem;
+{
+  /* Push freshly killed item onto stack. */
+  *((VOID **) dyingitem) = pool->deaditemstack;
+  pool->deaditemstack = dyingitem;
+  pool->items--;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  traversalinit()   Prepare to traverse the entire list of items.          */
+/*                                                                           */
+/*  This routine is used in conjunction with traverse().                     */
+/*                                                                           */
+/*****************************************************************************/
+
+void traversalinit(pool)
+struct memorypool *pool;
+{
+  unsigned long alignptr;
+
+  /* Begin the traversal in the first block. */
+  pool->pathblock = pool->firstblock;
+  /* Find the first item in the block.  Increment by the size of (VOID *). */
+  alignptr = (unsigned long) (pool->pathblock + 1);
+  /* Align with item on an `alignbytes'-byte boundary. */
+  pool->pathitem = (VOID *)
+    (alignptr + (unsigned long) pool->alignbytes
+     - (alignptr % (unsigned long) pool->alignbytes));
+  /* Set the number of items left in the current block. */
+  pool->pathitemsleft = pool->itemsperblock;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  traverse()   Find the next item in the list.                             */
+/*                                                                           */
+/*  This routine is used in conjunction with traversalinit().  Be forewarned */
+/*  that this routine successively returns all items in the list, including  */
+/*  deallocated ones on the deaditemqueue.  It's up to you to figure out     */
+/*  which ones are actually dead.  Why?  I don't want to allocate extra      */
+/*  space just to demarcate dead items.  It can usually be done more         */
+/*  space-efficiently by a routine that knows something about the structure  */
+/*  of the item.                                                             */
+/*                                                                           */
+/*****************************************************************************/
+
+VOID *traverse(pool)
+struct memorypool *pool;
+{
+  VOID *newitem;
+  unsigned long alignptr;
+
+  /* Stop upon exhausting the list of items. */
+  if (pool->pathitem == pool->nextitem) {
+    return (VOID *) NULL;
+  }
+  /* Check whether any untraversed items remain in the current block. */
+  if (pool->pathitemsleft == 0) {
+    /* Find the next block. */
+    pool->pathblock = (VOID **) *(pool->pathblock);
+    /* Find the first item in the block.  Increment by the size of (VOID *). */
+    alignptr = (unsigned long) (pool->pathblock + 1);
+    /* Align with item on an `alignbytes'-byte boundary. */
+    pool->pathitem = (VOID *)
+      (alignptr + (unsigned long) pool->alignbytes
+       - (alignptr % (unsigned long) pool->alignbytes));
+    /* Set the number of items left in the current block. */
+    pool->pathitemsleft = pool->itemsperblock;
+  }
+  newitem = pool->pathitem;
+  /* Find the next item in the block. */
+  if (pool->itemwordtype == POINTER) {
+    pool->pathitem = (VOID *) ((VOID **) pool->pathitem + pool->itemwords);
+  } else {
+    pool->pathitem = (VOID *) ((REAL *) pool->pathitem + pool->itemwords);
+  }
+  pool->pathitemsleft--;
+  return newitem;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  dummyinit()   Initialize the triangle that fills "outer space" and the   */
+/*                omnipresent shell edge.                                    */
+/*                                                                           */
+/*  The triangle that fills "outer space", called `dummytri', is pointed to  */
+/*  by every triangle and shell edge on a boundary (be it outer or inner) of */
+/*  the triangulation.  Also, `dummytri' points to one of the triangles on   */
+/*  the convex hull (until the holes and concavities are carved), making it  */
+/*  possible to find a starting triangle for point location.                 */
+/*                                                                           */
+/*  The omnipresent shell edge, `dummysh', is pointed to by every triangle   */
+/*  or shell edge that doesn't have a full complement of real shell edges    */
+/*  to point to.                                                             */
+/*                                                                           */
+/*****************************************************************************/
+
+void dummyinit(trianglewords, shellewords)
+int trianglewords;
+int shellewords;
+{
+  unsigned long alignptr;
+
+  /* `triwords' and `shwords' are used by the mesh manipulation primitives */
+  /*   to extract orientations of triangles and shell edges from pointers. */
+  triwords = trianglewords;       /* Initialize `triwords' once and for all. */
+  shwords = shellewords;           /* Initialize `shwords' once and for all. */
+
+  /* Set up `dummytri', the `triangle' that occupies "outer space". */
+  dummytribase = (triangle *) malloc(triwords * sizeof(triangle)
+                                     + triangles.alignbytes);
+  if (dummytribase == (triangle *) NULL) {
+    printf("Error:  Out of memory.\n");
+    exit(1);
+  }
+  /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
+  alignptr = (unsigned long) dummytribase;
+  dummytri = (triangle *)
+    (alignptr + (unsigned long) triangles.alignbytes
+     - (alignptr % (unsigned long) triangles.alignbytes));
+  /* Initialize the three adjoining triangles to be "outer space".  These  */
+  /*   will eventually be changed by various bonding operations, but their */
+  /*   values don't really matter, as long as they can legally be          */
+  /*   dereferenced.                                                       */
+  dummytri[0] = (triangle) dummytri;
+  dummytri[1] = (triangle) dummytri;
+  dummytri[2] = (triangle) dummytri;
+  /* Three NULL vertex points. */
+  dummytri[3] = (triangle) NULL;
+  dummytri[4] = (triangle) NULL;
+  dummytri[5] = (triangle) NULL;
+
+  if (useshelles) {
+    /* Set up `dummysh', the omnipresent "shell edge" pointed to by any      */
+    /*   triangle side or shell edge end that isn't attached to a real shell */
+    /*   edge.                                                               */
+    dummyshbase = (shelle *) malloc(shwords * sizeof(shelle)
+                                    + shelles.alignbytes);
+    if (dummyshbase == (shelle *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+    /* Align `dummysh' on a `shelles.alignbytes'-byte boundary. */
+    alignptr = (unsigned long) dummyshbase;
+    dummysh = (shelle *)
+      (alignptr + (unsigned long) shelles.alignbytes
+       - (alignptr % (unsigned long) shelles.alignbytes));
+    /* Initialize the two adjoining shell edges to be the omnipresent shell */
+    /*   edge.  These will eventually be changed by various bonding         */
+    /*   operations, but their values don't really matter, as long as they  */
+    /*   can legally be dereferenced.                                       */
+    dummysh[0] = (shelle) dummysh;
+    dummysh[1] = (shelle) dummysh;
+    /* Two NULL vertex points. */
+    dummysh[2] = (shelle) NULL;
+    dummysh[3] = (shelle) NULL;
+    /* Initialize the two adjoining triangles to be "outer space". */
+    dummysh[4] = (shelle) dummytri;
+    dummysh[5] = (shelle) dummytri;
+    /* Set the boundary marker to zero. */
+    * (int *) (dummysh + 6) = 0;
+
+    /* Initialize the three adjoining shell edges of `dummytri' to be */
+    /*   the omnipresent shell edge.                                  */
+    dummytri[6] = (triangle) dummysh;
+    dummytri[7] = (triangle) dummysh;
+    dummytri[8] = (triangle) dummysh;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  initializepointpool()   Calculate the size of the point data structure   */
+/*                          and initialize its memory pool.                  */
+/*                                                                           */
+/*  This routine also computes the `pointmarkindex' and `point2triindex'     */
+/*  indices used to find values within each point.                           */
+/*                                                                           */
+/*****************************************************************************/
+
+void initializepointpool()
+{
+  int pointsize;
+
+  /* The index within each point at which the boundary marker is found.  */
+  /*   Ensure the point marker is aligned to a sizeof(int)-byte address. */
+  pointmarkindex = ((mesh_dim + nextras) * sizeof(REAL) + sizeof(int) - 1)
+                 / sizeof(int);
+  pointsize = (pointmarkindex + 1) * sizeof(int);
+  if (poly) {
+    /* The index within each point at which a triangle pointer is found.   */
+    /*   Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
+    point2triindex = (pointsize + sizeof(triangle) - 1) / sizeof(triangle);
+    pointsize = (point2triindex + 1) * sizeof(triangle);
+  }
+  /* Initialize the pool of points. */
+  poolinit(&points, pointsize, POINTPERBLOCK,
+           (sizeof(REAL) >= sizeof(triangle)) ? FLOATINGPOINT : POINTER, 0);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  initializetrisegpools()   Calculate the sizes of the triangle and shell  */
+/*                            edge data structures and initialize their      */
+/*                            memory pools.                                  */
+/*                                                                           */
+/*  This routine also computes the `highorderindex', `elemattribindex', and  */
+/*  `areaboundindex' indices used to find values within each triangle.       */
+/*                                                                           */
+/*****************************************************************************/
+
+void initializetrisegpools()
+{
+  int trisize;
+
+  /* The index within each triangle at which the extra nodes (above three)  */
+  /*   associated with high order elements are found.  There are three      */
+  /*   pointers to other triangles, three pointers to corners, and possibly */
+  /*   three pointers to shell edges before the extra nodes.                */
+  highorderindex = 6 + (useshelles * 3);
+  /* The number of bytes occupied by a triangle. */
+  trisize = ((order + 1) * (order + 2) / 2 + (highorderindex - 3)) *
+            sizeof(triangle);
+  /* The index within each triangle at which its attributes are found, */
+  /*   where the index is measured in REALs.                           */
+  elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);
+  /* The index within each triangle at which the maximum area constraint  */
+  /*   is found, where the index is measured in REALs.  Note that if the  */
+  /*   `regionattrib' flag is set, an additional attribute will be added. */
+  areaboundindex = elemattribindex + eextras + regionattrib;
+  /* If triangle attributes or an area bound are needed, increase the number */
+  /*   of bytes occupied by a triangle.                                      */
+  if (vararea) {
+    trisize = (areaboundindex + 1) * sizeof(REAL);
+  } else if (eextras + regionattrib > 0) {
+    trisize = areaboundindex * sizeof(REAL);
+  }
+  /* If a Voronoi diagram or triangle neighbor graph is requested, make    */
+  /*   sure there's room to store an integer index in each triangle.  This */
+  /*   integer index can occupy the same space as the shell edges or       */
+  /*   attributes or area constraint or extra nodes.                       */
+  if ((voronoi || neighbors) &&
+      (trisize < 6 * sizeof(triangle) + sizeof(int))) {
+    trisize = 6 * sizeof(triangle) + sizeof(int);
+  }
+  /* Having determined the memory size of a triangle, initialize the pool. */
+  poolinit(&triangles, trisize, TRIPERBLOCK, POINTER, 4);
+
+  if (useshelles) {
+    /* Initialize the pool of shell edges. */
+    poolinit(&shelles, 6 * sizeof(triangle) + sizeof(int), SHELLEPERBLOCK,
+             POINTER, 4);
+
+    /* Initialize the "outer space" triangle and omnipresent shell edge. */
+    dummyinit(triangles.itemwords, shelles.itemwords);
+  } else {
+    /* Initialize the "outer space" triangle. */
+    dummyinit(triangles.itemwords, 0);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangledealloc()   Deallocate space for a triangle, marking it dead.    */
+/*                                                                           */
+/*****************************************************************************/
+
+void triangledealloc(dyingtriangle)
+triangle *dyingtriangle;
+{
+  /* Set triangle's vertices to NULL.  This makes it possible to        */
+  /*   detect dead triangles when traversing the list of all triangles. */
+  dyingtriangle[3] = (triangle) NULL;
+  dyingtriangle[4] = (triangle) NULL;
+  dyingtriangle[5] = (triangle) NULL;
+  pooldealloc(&triangles, (VOID *) dyingtriangle);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangletraverse()   Traverse the triangles, skipping dead ones.         */
+/*                                                                           */
+/*****************************************************************************/
+
+triangle *triangletraverse()
+{
+  triangle *newtriangle;
+
+  do {
+    newtriangle = (triangle *) traverse(&triangles);
+    if (newtriangle == (triangle *) NULL) {
+      return (triangle *) NULL;
+    }
+  } while (newtriangle[3] == (triangle) NULL);            /* Skip dead ones. */
+  return newtriangle;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  shelledealloc()   Deallocate space for a shell edge, marking it dead.    */
+/*                                                                           */
+/*****************************************************************************/
+
+void shelledealloc(dyingshelle)
+shelle *dyingshelle;
+{
+  /* Set shell edge's vertices to NULL.  This makes it possible to */
+  /*   detect dead shells when traversing the list of all shells.  */
+  dyingshelle[2] = (shelle) NULL;
+  dyingshelle[3] = (shelle) NULL;
+  pooldealloc(&shelles, (VOID *) dyingshelle);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  shelletraverse()   Traverse the shell edges, skipping dead ones.         */
+/*                                                                           */
+/*****************************************************************************/
+
+shelle *shelletraverse()
+{
+  shelle *newshelle;
+
+  do {
+    newshelle = (shelle *) traverse(&shelles);
+    if (newshelle == (shelle *) NULL) {
+      return (shelle *) NULL;
+    }
+  } while (newshelle[2] == (shelle) NULL);                /* Skip dead ones. */
+  return newshelle;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  pointdealloc()   Deallocate space for a point, marking it dead.          */
+/*                                                                           */
+/*****************************************************************************/
+
+void pointdealloc(dyingpoint)
+point dyingpoint;
+{
+  /* Mark the point as dead.  This makes it possible to detect dead points */
+  /*   when traversing the list of all points.                             */
+  setpointmark(dyingpoint, DEADPOINT);
+  pooldealloc(&points, (VOID *) dyingpoint);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  pointtraverse()   Traverse the points, skipping dead ones.               */
+/*                                                                           */
+/*****************************************************************************/
+
+point pointtraverse()
+{
+  point newpoint;
+
+  do {
+    newpoint = (point) traverse(&points);
+    if (newpoint == (point) NULL) {
+      return (point) NULL;
+    }
+  } while (pointmark(newpoint) == DEADPOINT);             /* Skip dead ones. */
+  return newpoint;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  badsegmentdealloc()   Deallocate space for a bad segment, marking it     */
+/*                        dead.                                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void badsegmentdealloc(dyingseg)
+struct edge *dyingseg;
+{
+  /* Set segment's orientation to -1.  This makes it possible to      */
+  /*   detect dead segments when traversing the list of all segments. */
+  dyingseg->shorient = -1;
+  pooldealloc(&badsegments, (VOID *) dyingseg);
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  badsegmenttraverse()   Traverse the bad segments, skipping dead ones.    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+struct edge *badsegmenttraverse()
+{
+  struct edge *newseg;
+
+  do {
+    newseg = (struct edge *) traverse(&badsegments);
+    if (newseg == (struct edge *) NULL) {
+      return (struct edge *) NULL;
+    }
+  } while (newseg->shorient == -1);                       /* Skip dead ones. */
+  return newseg;
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  getpoint()   Get a specific point, by number, from the list.             */
+/*                                                                           */
+/*  The first point is number 'firstnumber'.                                 */
+/*                                                                           */
+/*  Note that this takes O(n) time (with a small constant, if POINTPERBLOCK  */
+/*  is large).  I don't care to take the trouble to make it work in constant */
+/*  time.                                                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+point getpoint(number)
+int number;
+{
+  VOID **getblock;
+  point foundpoint;
+  unsigned long alignptr;
+  int current;
+
+  getblock = points.firstblock;
+  current = firstnumber;
+  /* Find the right block. */
+  while (current + points.itemsperblock <= number) {
+    getblock = (VOID **) *getblock;
+    current += points.itemsperblock;
+  }
+  /* Now find the right point. */
+  alignptr = (unsigned long) (getblock + 1);
+  foundpoint = (point) (alignptr + (unsigned long) points.alignbytes
+                        - (alignptr % (unsigned long) points.alignbytes));
+  while (current < number) {
+    foundpoint += points.itemwords;
+    current++;
+  }
+  return foundpoint;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangledeinit()   Free all remaining allocated memory.                  */
+/*                                                                           */
+/*****************************************************************************/
+
+void triangledeinit()
+{
+  pooldeinit(&triangles);
+  free(dummytribase);
+  if (useshelles) {
+    pooldeinit(&shelles);
+    free(dummyshbase);
+  }
+  pooldeinit(&points);
+#ifndef CDT_ONLY
+  if (quality) {
+    pooldeinit(&badsegments);
+    if ((minangle > 0.0) || vararea || fixedarea) {
+      pooldeinit(&badtriangles);
+    }
+  }
+#endif /* not CDT_ONLY */
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Memory management routines end here                       *********/
+
+/********* Constructors begin here                                   *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  maketriangle()   Create a new triangle with orientation zero.            */
+/*                                                                           */
+/*****************************************************************************/
+
+void maketriangle(newtriedge)
+struct triedge *newtriedge;
+{
+  int i;
+
+  newtriedge->tri = (triangle *) poolalloc(&triangles);
+  /* Initialize the three adjoining triangles to be "outer space". */
+  newtriedge->tri[0] = (triangle) dummytri;
+  newtriedge->tri[1] = (triangle) dummytri;
+  newtriedge->tri[2] = (triangle) dummytri;
+  /* Three NULL vertex points. */
+  newtriedge->tri[3] = (triangle) NULL;
+  newtriedge->tri[4] = (triangle) NULL;
+  newtriedge->tri[5] = (triangle) NULL;
+  /* Initialize the three adjoining shell edges to be the omnipresent */
+  /*   shell edge.                                                    */
+  if (useshelles) {
+    newtriedge->tri[6] = (triangle) dummysh;
+    newtriedge->tri[7] = (triangle) dummysh;
+    newtriedge->tri[8] = (triangle) dummysh;
+  }
+  for (i = 0; i < eextras; i++) {
+    setelemattribute(*newtriedge, i, 0.0);
+  }
+  if (vararea) {
+    setareabound(*newtriedge, -1.0);
+  }
+
+  newtriedge->orient = 0;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  makeshelle()   Create a new shell edge with orientation zero.            */
+/*                                                                           */
+/*****************************************************************************/
+
+void makeshelle(newedge)
+struct edge *newedge;
+{
+  newedge->sh = (shelle *) poolalloc(&shelles);
+  /* Initialize the two adjoining shell edges to be the omnipresent */
+  /*   shell edge.                                                  */
+  newedge->sh[0] = (shelle) dummysh;
+  newedge->sh[1] = (shelle) dummysh;
+  /* Two NULL vertex points. */
+  newedge->sh[2] = (shelle) NULL;
+  newedge->sh[3] = (shelle) NULL;
+  /* Initialize the two adjoining triangles to be "outer space". */
+  newedge->sh[4] = (shelle) dummytri;
+  newedge->sh[5] = (shelle) dummytri;
+  /* Set the boundary marker to zero. */
+  setmark(*newedge, 0);
+
+  newedge->shorient = 0;
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Constructors end here                                     *********/
+
+/********* Determinant evaluation routines begin here                *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/* The adaptive exact arithmetic geometric predicates implemented herein are */
+/*   described in detail in my Technical Report CMU-CS-96-140.  The complete */
+/*   reference is given in the header.                                       */
+
+/* Which of the following two methods of finding the absolute values is      */
+/*   fastest is compiler-dependent.  A few compilers can inline and optimize */
+/*   the fabs() call; but most will incur the overhead of a function call,   */
+/*   which is disastrously slow.  A faster way on IEEE machines might be to  */
+/*   mask the appropriate bit, but that's difficult to do in C.              */
+
+#define Absolute(a)  ((a) >= 0.0 ? (a) : -(a))
+/* #define Absolute(a)  fabs(a) */
+
+/* Many of the operations are broken up into two pieces, a main part that    */
+/*   performs an approximate operation, and a "tail" that computes the       */
+/*   roundoff error of that operation.                                       */
+/*                                                                           */
+/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),    */
+/*   Split(), and Two_Product() are all implemented as described in the      */
+/*   reference.  Each of these macros requires certain variables to be       */
+/*   defined in the calling routine.  The variables `bvirt', `c', `abig',    */
+/*   `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because   */
+/*   they store the result of an operation that may incur roundoff error.    */
+/*   The input parameter `x' (or the highest numbered `x_' parameter) must   */
+/*   also be declared `INEXACT'.                                             */
+
+#define Fast_Two_Sum_Tail(a, b, x, y) \
+  bvirt = x - a; \
+  y = b - bvirt
+
+#define Fast_Two_Sum(a, b, x, y) \
+  x = (REAL) (a + b); \
+  Fast_Two_Sum_Tail(a, b, x, y)
+
+#define Two_Sum_Tail(a, b, x, y) \
+  bvirt = (REAL) (x - a); \
+  avirt = x - bvirt; \
+  bround = b - bvirt; \
+  around = a - avirt; \
+  y = around + bround
+
+#define Two_Sum(a, b, x, y) \
+  x = (REAL) (a + b); \
+  Two_Sum_Tail(a, b, x, y)
+
+#define Two_Diff_Tail(a, b, x, y) \
+  bvirt = (REAL) (a - x); \
+  avirt = x + bvirt; \
+  bround = bvirt - b; \
+  around = a - avirt; \
+  y = around + bround
+
+#define Two_Diff(a, b, x, y) \
+  x = (REAL) (a - b); \
+  Two_Diff_Tail(a, b, x, y)
+
+#define Split(a, ahi, alo) \
+  c = (REAL) (splitter * a); \
+  abig = (REAL) (c - a); \
+  ahi = c - abig; \
+  alo = a - ahi
+
+#define Two_Product_Tail(a, b, x, y) \
+  Split(a, ahi, alo); \
+  Split(b, bhi, blo); \
+  err1 = x - (ahi * bhi); \
+  err2 = err1 - (alo * bhi); \
+  err3 = err2 - (ahi * blo); \
+  y = (alo * blo) - err3
+
+#define Two_Product(a, b, x, y) \
+  x = (REAL) (a * b); \
+  Two_Product_Tail(a, b, x, y)
+
+/* Two_Product_Presplit() is Two_Product() where one of the inputs has       */
+/*   already been split.  Avoids redundant splitting.                        */
+
+#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
+  x = (REAL) (a * b); \
+  Split(a, ahi, alo); \
+  err1 = x - (ahi * bhi); \
+  err2 = err1 - (alo * bhi); \
+  err3 = err2 - (ahi * blo); \
+  y = (alo * blo) - err3
+
+/* Square() can be done more quickly than Two_Product().                     */
+
+#define Square_Tail(a, x, y) \
+  Split(a, ahi, alo); \
+  err1 = x - (ahi * ahi); \
+  err3 = err1 - ((ahi + ahi) * alo); \
+  y = (alo * alo) - err3
+
+#define Square(a, x, y) \
+  x = (REAL) (a * a); \
+  Square_Tail(a, x, y)
+
+/* Macros for summing expansions of various fixed lengths.  These are all    */
+/*   unrolled versions of Expansion_Sum().                                   */
+
+#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
+  Two_Sum(a0, b , _i, x0); \
+  Two_Sum(a1, _i, x2, x1)
+
+#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
+  Two_Diff(a0, b , _i, x0); \
+  Two_Sum( a1, _i, x2, x1)
+
+#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
+  Two_One_Sum(a1, a0, b0, _j, _0, x0); \
+  Two_One_Sum(_j, _0, b1, x3, x2, x1)
+
+#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
+  Two_One_Diff(a1, a0, b0, _j, _0, x0); \
+  Two_One_Diff(_j, _0, b1, x3, x2, x1)
+
+/*****************************************************************************/
+/*                                                                           */
+/*  exactinit()   Initialize the variables used for exact arithmetic.        */
+/*                                                                           */
+/*  `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in   */
+/*  floating-point arithmetic.  `epsilon' bounds the relative roundoff       */
+/*  error.  It is used for floating-point error analysis.                    */
+/*                                                                           */
+/*  `splitter' is used to split floating-point numbers into two half-        */
+/*  length significands for exact multiplication.                            */
+/*                                                                           */
+/*  I imagine that a highly optimizing compiler might be too smart for its   */
+/*  own good, and somehow cause this routine to fail, if it pretends that    */
+/*  floating-point arithmetic is too much like real arithmetic.              */
+/*                                                                           */
+/*  Don't change this routine unless you fully understand it.                */
+/*                                                                           */
+/*****************************************************************************/
+
+void exactinit()
+{
+  REAL half;
+  REAL check, lastcheck;
+  int every_other;
+
+  every_other = 1;
+  half = 0.5;
+  epsilon = 1.0;
+  splitter = 1.0;
+  check = 1.0;
+  /* Repeatedly divide `epsilon' by two until it is too small to add to      */
+  /*   one without causing roundoff.  (Also check if the sum is equal to     */
+  /*   the previous sum, for machines that round up instead of using exact   */
+  /*   rounding.  Not that these routines will work on such machines anyway. */
+  do {
+    lastcheck = check;
+    epsilon *= half;
+    if (every_other) {
+      splitter *= 2.0;
+    }
+    every_other = !every_other;
+    check = 1.0 + epsilon;
+  } while ((check != 1.0) && (check != lastcheck));
+  splitter += 1.0;
+  if (verbose > 1) {
+    printf("Floating point roundoff is of magnitude %.17g\n", epsilon);
+    printf("Floating point splitter is %.17g\n", splitter);
+  }
+  /* Error bounds for orientation and incircle tests. */
+  resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
+  ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
+  ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
+  ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
+  iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
+  iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
+  iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  fast_expansion_sum_zeroelim()   Sum two expansions, eliminating zero     */
+/*                                  components from the output expansion.    */
+/*                                                                           */
+/*  Sets h = e + f.  See my Robust Predicates paper for details.             */
+/*                                                                           */
+/*  If round-to-even is used (as with IEEE 754), maintains the strongly      */
+/*  nonoverlapping property.  (That is, if e is strongly nonoverlapping, h   */
+/*  will be also.)  Does NOT maintain the nonoverlapping or nonadjacent      */
+/*  properties.                                                              */
+/*                                                                           */
+/*****************************************************************************/
+
+int fast_expansion_sum_zeroelim(elen, e, flen, f, h)  /* h cannot be e or f. */
+int elen;
+REAL *e;
+int flen;
+REAL *f;
+REAL *h;
+{
+  REAL Q;
+  INEXACT REAL Qnew;
+  INEXACT REAL hh;
+  INEXACT REAL bvirt;
+  REAL avirt, bround, around;
+  int eindex, findex, hindex;
+  REAL enow, fnow;
+
+  enow = e[0];
+  fnow = f[0];
+  eindex = findex = 0;
+  if ((fnow > enow) == (fnow > -enow)) {
+    Q = enow;
+    enow = e[++eindex];
+  } else {
+    Q = fnow;
+    fnow = f[++findex];
+  }
+  hindex = 0;
+  if ((eindex < elen) && (findex < flen)) {
+    if ((fnow > enow) == (fnow > -enow)) {
+      Fast_Two_Sum(enow, Q, Qnew, hh);
+      enow = e[++eindex];
+    } else {
+      Fast_Two_Sum(fnow, Q, Qnew, hh);
+      fnow = f[++findex];
+    }
+    Q = Qnew;
+    if (hh != 0.0) {
+      h[hindex++] = hh;
+    }
+    while ((eindex < elen) && (findex < flen)) {
+      if ((fnow > enow) == (fnow > -enow)) {
+        Two_Sum(Q, enow, Qnew, hh);
+        enow = e[++eindex];
+      } else {
+        Two_Sum(Q, fnow, Qnew, hh);
+        fnow = f[++findex];
+      }
+      Q = Qnew;
+      if (hh != 0.0) {
+        h[hindex++] = hh;
+      }
+    }
+  }
+  while (eindex < elen) {
+    Two_Sum(Q, enow, Qnew, hh);
+    enow = e[++eindex];
+    Q = Qnew;
+    if (hh != 0.0) {
+      h[hindex++] = hh;
+    }
+  }
+  while (findex < flen) {
+    Two_Sum(Q, fnow, Qnew, hh);
+    fnow = f[++findex];
+    Q = Qnew;
+    if (hh != 0.0) {
+      h[hindex++] = hh;
+    }
+  }
+  if ((Q != 0.0) || (hindex == 0)) {
+    h[hindex++] = Q;
+  }
+  return hindex;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  scale_expansion_zeroelim()   Multiply an expansion by a scalar,          */
+/*                               eliminating zero components from the        */
+/*                               output expansion.                           */
+/*                                                                           */
+/*  Sets h = be.  See my Robust Predicates paper for details.                */
+/*                                                                           */
+/*  Maintains the nonoverlapping property.  If round-to-even is used (as     */
+/*  with IEEE 754), maintains the strongly nonoverlapping and nonadjacent    */
+/*  properties as well.  (That is, if e has one of these properties, so      */
+/*  will h.)                                                                 */
+/*                                                                           */
+/*****************************************************************************/
+
+int scale_expansion_zeroelim(elen, e, b, h)   /* e and h cannot be the same. */
+int elen;
+REAL *e;
+REAL b;
+REAL *h;
+{
+  INEXACT REAL Q, sum;
+  REAL hh;
+  INEXACT REAL product1;
+  REAL product0;
+  int eindex, hindex;
+  REAL enow;
+  INEXACT REAL bvirt;
+  REAL avirt, bround, around;
+  INEXACT REAL c;
+  INEXACT REAL abig;
+  REAL ahi, alo, bhi, blo;
+  REAL err1, err2, err3;
+
+  Split(b, bhi, blo);
+  Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
+  hindex = 0;
+  if (hh != 0) {
+    h[hindex++] = hh;
+  }
+  for (eindex = 1; eindex < elen; eindex++) {
+    enow = e[eindex];
+    Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
+    Two_Sum(Q, product0, sum, hh);
+    if (hh != 0) {
+      h[hindex++] = hh;
+    }
+    Fast_Two_Sum(product1, sum, Q, hh);
+    if (hh != 0) {
+      h[hindex++] = hh;
+    }
+  }
+  if ((Q != 0.0) || (hindex == 0)) {
+    h[hindex++] = Q;
+  }
+  return hindex;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  estimate()   Produce a one-word estimate of an expansion's value.        */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+REAL estimate(elen, e)
+int elen;
+REAL *e;
+{
+  REAL Q;
+  int eindex;
+
+  Q = e[0];
+  for (eindex = 1; eindex < elen; eindex++) {
+    Q += e[eindex];
+  }
+  return Q;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  counterclockwise()   Return a positive value if the points pa, pb, and   */
+/*                       pc occur in counterclockwise order; a negative      */
+/*                       value if they occur in clockwise order; and zero    */
+/*                       if they are collinear.  The result is also a rough  */
+/*                       approximation of twice the signed area of the       */
+/*                       triangle defined by the three points.               */
+/*                                                                           */
+/*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
+/*  result returned is the determinant of a matrix.  This determinant is     */
+/*  computed adaptively, in the sense that exact arithmetic is used only to  */
+/*  the degree it is needed to ensure that the returned value has the        */
+/*  correct sign.  Hence, this function is usually quite fast, but will run  */
+/*  more slowly when the input points are collinear or nearly so.            */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+REAL counterclockwiseadapt(pa, pb, pc, detsum)
+point pa;
+point pb;
+point pc;
+REAL detsum;
+{
+  INEXACT REAL acx, acy, bcx, bcy;
+  REAL acxtail, acytail, bcxtail, bcytail;
+  INEXACT REAL detleft, detright;
+  REAL detlefttail, detrighttail;
+  REAL det, errbound;
+  REAL B[4], C1[8], C2[12], D[16];
+  INEXACT REAL B3;
+  int C1length, C2length, Dlength;
+  REAL u[4];
+  INEXACT REAL u3;
+  INEXACT REAL s1, t1;
+  REAL s0, t0;
+
+  INEXACT REAL bvirt;
+  REAL avirt, bround, around;
+  INEXACT REAL c;
+  INEXACT REAL abig;
+  REAL ahi, alo, bhi, blo;
+  REAL err1, err2, err3;
+  INEXACT REAL _i, _j;
+  REAL _0;
+
+  acx = (REAL) (pa[0] - pc[0]);
+  bcx = (REAL) (pb[0] - pc[0]);
+  acy = (REAL) (pa[1] - pc[1]);
+  bcy = (REAL) (pb[1] - pc[1]);
+
+  Two_Product(acx, bcy, detleft, detlefttail);
+  Two_Product(acy, bcx, detright, detrighttail);
+
+  Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
+               B3, B[2], B[1], B[0]);
+  B[3] = B3;
+
+  det = estimate(4, B);
+  errbound = ccwerrboundB * detsum;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
+  Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
+  Two_Diff_Tail(pa[1], pc[1], acy, acytail);
+  Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
+
+  if ((acxtail == 0.0) && (acytail == 0.0)
+      && (bcxtail == 0.0) && (bcytail == 0.0)) {
+    return det;
+  }
+
+  errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
+  det += (acx * bcytail + bcy * acxtail)
+       - (acy * bcxtail + bcx * acytail);
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Product(acxtail, bcy, s1, s0);
+  Two_Product(acytail, bcx, t1, t0);
+  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
+  u[3] = u3;
+  C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
+
+  Two_Product(acx, bcytail, s1, s0);
+  Two_Product(acy, bcxtail, t1, t0);
+  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
+  u[3] = u3;
+  C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
+
+  Two_Product(acxtail, bcytail, s1, s0);
+  Two_Product(acytail, bcxtail, t1, t0);
+  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
+  u[3] = u3;
+  Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
+
+  return(D[Dlength - 1]);
+}
+
+REAL counterclockwise(pa, pb, pc)
+point pa;
+point pb;
+point pc;
+{
+  REAL detleft, detright, det;
+  REAL detsum, errbound;
+
+  counterclockcount++;
+
+  detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
+  detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
+  det = detleft - detright;
+
+  if (noexact) {
+    return det;
+  }
+
+  if (detleft > 0.0) {
+    if (detright <= 0.0) {
+      return det;
+    } else {
+      detsum = detleft + detright;
+    }
+  } else if (detleft < 0.0) {
+    if (detright >= 0.0) {
+      return det;
+    } else {
+      detsum = -detleft - detright;
+    }
+  } else {
+    return det;
+  }
+
+  errbound = ccwerrboundA * detsum;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  return counterclockwiseadapt(pa, pb, pc, detsum);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  incircle()   Return a positive value if the point pd lies inside the     */
+/*               circle passing through pa, pb, and pc; a negative value if  */
+/*               it lies outside; and zero if the four points are cocircular.*/
+/*               The points pa, pb, and pc must be in counterclockwise       */
+/*               order, or the sign of the result will be reversed.          */
+/*                                                                           */
+/*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
+/*  result returned is the determinant of a matrix.  This determinant is     */
+/*  computed adaptively, in the sense that exact arithmetic is used only to  */
+/*  the degree it is needed to ensure that the returned value has the        */
+/*  correct sign.  Hence, this function is usually quite fast, but will run  */
+/*  more slowly when the input points are cocircular or nearly so.           */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+REAL incircleadapt(pa, pb, pc, pd, permanent)
+point pa;
+point pb;
+point pc;
+point pd;
+REAL permanent;
+{
+  INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;
+  REAL det, errbound;
+
+  INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
+  REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
+  REAL bc[4], ca[4], ab[4];
+  INEXACT REAL bc3, ca3, ab3;
+  REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
+  int axbclen, axxbclen, aybclen, ayybclen, alen;
+  REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
+  int bxcalen, bxxcalen, bycalen, byycalen, blen;
+  REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
+  int cxablen, cxxablen, cyablen, cyyablen, clen;
+  REAL abdet[64];
+  int ablen;
+  REAL fin1[1152], fin2[1152];
+  REAL *finnow, *finother, *finswap;
+  int finlength;
+
+  REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
+  INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
+  REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
+  REAL aa[4], bb[4], cc[4];
+  INEXACT REAL aa3, bb3, cc3;
+  INEXACT REAL ti1, tj1;
+  REAL ti0, tj0;
+  REAL u[4], v[4];
+  INEXACT REAL u3, v3;
+  REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
+  REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
+  int temp8len, temp16alen, temp16blen, temp16clen;
+  int temp32alen, temp32blen, temp48len, temp64len;
+  REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
+  int axtbblen, axtcclen, aytbblen, aytcclen;
+  REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
+  int bxtaalen, bxtcclen, bytaalen, bytcclen;
+  REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
+  int cxtaalen, cxtbblen, cytaalen, cytbblen;
+  REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
+  int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
+  REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
+  int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
+  REAL axtbctt[8], aytbctt[8], bxtcatt[8];
+  REAL bytcatt[8], cxtabtt[8], cytabtt[8];
+  int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
+  REAL abt[8], bct[8], cat[8];
+  int abtlen, bctlen, catlen;
+  REAL abtt[4], bctt[4], catt[4];
+  int abttlen, bcttlen, cattlen;
+  INEXACT REAL abtt3, bctt3, catt3;
+  REAL negate;
+
+  INEXACT REAL bvirt;
+  REAL avirt, bround, around;
+  INEXACT REAL c;
+  INEXACT REAL abig;
+  REAL ahi, alo, bhi, blo;
+  REAL err1, err2, err3;
+  INEXACT REAL _i, _j;
+  REAL _0;
+
+  adx = (REAL) (pa[0] - pd[0]);
+  bdx = (REAL) (pb[0] - pd[0]);
+  cdx = (REAL) (pc[0] - pd[0]);
+  ady = (REAL) (pa[1] - pd[1]);
+  bdy = (REAL) (pb[1] - pd[1]);
+  cdy = (REAL) (pc[1] - pd[1]);
+
+  Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
+  Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
+  Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
+  bc[3] = bc3;
+  axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
+  axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
+  aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
+  ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
+  alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
+
+  Two_Product(cdx, ady, cdxady1, cdxady0);
+  Two_Product(adx, cdy, adxcdy1, adxcdy0);
+  Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
+  ca[3] = ca3;
+  bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
+  bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
+  bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
+  byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
+  blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
+
+  Two_Product(adx, bdy, adxbdy1, adxbdy0);
+  Two_Product(bdx, ady, bdxady1, bdxady0);
+  Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
+  ab[3] = ab3;
+  cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
+  cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
+  cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
+  cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
+  clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
+
+  ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
+  finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
+
+  det = estimate(finlength, fin1);
+  errbound = iccerrboundB * permanent;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
+  Two_Diff_Tail(pa[1], pd[1], ady, adytail);
+  Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
+  Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
+  Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
+  Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
+  if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
+      && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
+    return det;
+  }
+
+  errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
+  det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
+                                     - (bdy * cdxtail + cdx * bdytail))
+          + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
+       + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
+                                     - (cdy * adxtail + adx * cdytail))
+          + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
+       + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
+                                     - (ady * bdxtail + bdx * adytail))
+          + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  finnow = fin1;
+  finother = fin2;
+
+  if ((bdxtail != 0.0) || (bdytail != 0.0)
+      || (cdxtail != 0.0) || (cdytail != 0.0)) {
+    Square(adx, adxadx1, adxadx0);
+    Square(ady, adyady1, adyady0);
+    Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
+    aa[3] = aa3;
+  }
+  if ((cdxtail != 0.0) || (cdytail != 0.0)
+      || (adxtail != 0.0) || (adytail != 0.0)) {
+    Square(bdx, bdxbdx1, bdxbdx0);
+    Square(bdy, bdybdy1, bdybdy0);
+    Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
+    bb[3] = bb3;
+  }
+  if ((adxtail != 0.0) || (adytail != 0.0)
+      || (bdxtail != 0.0) || (bdytail != 0.0)) {
+    Square(cdx, cdxcdx1, cdxcdx0);
+    Square(cdy, cdycdy1, cdycdy0);
+    Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
+    cc[3] = cc3;
+  }
+
+  if (adxtail != 0.0) {
+    axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
+    temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,
+                                          temp16a);
+
+    axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
+    temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
+
+    axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
+    temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (adytail != 0.0) {
+    aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
+    temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,
+                                          temp16a);
+
+    aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
+    temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
+
+    aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
+    temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (bdxtail != 0.0) {
+    bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
+    temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,
+                                          temp16a);
+
+    bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
+    temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
+
+    bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
+    temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (bdytail != 0.0) {
+    bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
+    temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,
+                                          temp16a);
+
+    bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
+    temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
+
+    bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
+    temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (cdxtail != 0.0) {
+    cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
+    temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,
+                                          temp16a);
+
+    cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
+    temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
+
+    cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
+    temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (cdytail != 0.0) {
+    cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
+    temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,
+                                          temp16a);
+
+    cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
+    temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
+
+    cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
+    temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+
+  if ((adxtail != 0.0) || (adytail != 0.0)) {
+    if ((bdxtail != 0.0) || (bdytail != 0.0)
+        || (cdxtail != 0.0) || (cdytail != 0.0)) {
+      Two_Product(bdxtail, cdy, ti1, ti0);
+      Two_Product(bdx, cdytail, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      negate = -bdy;
+      Two_Product(cdxtail, negate, ti1, ti0);
+      negate = -bdytail;
+      Two_Product(cdx, negate, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
+      v[3] = v3;
+      bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
+
+      Two_Product(bdxtail, cdytail, ti1, ti0);
+      Two_Product(cdxtail, bdytail, tj1, tj0);
+      Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
+      bctt[3] = bctt3;
+      bcttlen = 4;
+    } else {
+      bct[0] = 0.0;
+      bctlen = 1;
+      bctt[0] = 0.0;
+      bcttlen = 1;
+    }
+
+    if (adxtail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
+      axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
+      temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (bdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+      if (cdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+
+      temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,
+                                            temp32a);
+      axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
+      temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+    if (adytail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
+      aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
+      temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+
+
+      temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,
+                                            temp32a);
+      aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
+      temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+  }
+  if ((bdxtail != 0.0) || (bdytail != 0.0)) {
+    if ((cdxtail != 0.0) || (cdytail != 0.0)
+        || (adxtail != 0.0) || (adytail != 0.0)) {
+      Two_Product(cdxtail, ady, ti1, ti0);
+      Two_Product(cdx, adytail, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      negate = -cdy;
+      Two_Product(adxtail, negate, ti1, ti0);
+      negate = -cdytail;
+      Two_Product(adx, negate, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
+      v[3] = v3;
+      catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
+
+      Two_Product(cdxtail, adytail, ti1, ti0);
+      Two_Product(adxtail, cdytail, tj1, tj0);
+      Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
+      catt[3] = catt3;
+      cattlen = 4;
+    } else {
+      cat[0] = 0.0;
+      catlen = 1;
+      catt[0] = 0.0;
+      cattlen = 1;
+    }
+
+    if (bdxtail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
+      bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
+      temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (cdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+      if (adytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+
+      temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,
+                                            temp32a);
+      bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
+      temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+    if (bdytail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
+      bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
+      temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+
+
+      temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,
+                                            temp32a);
+      bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
+      temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+  }
+  if ((cdxtail != 0.0) || (cdytail != 0.0)) {
+    if ((adxtail != 0.0) || (adytail != 0.0)
+        || (bdxtail != 0.0) || (bdytail != 0.0)) {
+      Two_Product(adxtail, bdy, ti1, ti0);
+      Two_Product(adx, bdytail, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      negate = -ady;
+      Two_Product(bdxtail, negate, ti1, ti0);
+      negate = -adytail;
+      Two_Product(bdx, negate, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
+      v[3] = v3;
+      abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
+
+      Two_Product(adxtail, bdytail, ti1, ti0);
+      Two_Product(bdxtail, adytail, tj1, tj0);
+      Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
+      abtt[3] = abtt3;
+      abttlen = 4;
+    } else {
+      abt[0] = 0.0;
+      abtlen = 1;
+      abtt[0] = 0.0;
+      abttlen = 1;
+    }
+
+    if (cdxtail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
+      cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
+      temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (adytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+      if (bdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+
+      temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,
+                                            temp32a);
+      cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
+      temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+    if (cdytail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
+      cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
+      temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+
+
+      temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,
+                                            temp32a);
+      cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
+      temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+  }
+
+  return finnow[finlength - 1];
+}
+
+REAL incircle(pa, pb, pc, pd)
+point pa;
+point pb;
+point pc;
+point pd;
+{
+  REAL adx, bdx, cdx, ady, bdy, cdy;
+  REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
+  REAL alift, blift, clift;
+  REAL det;
+  REAL permanent, errbound;
+
+  incirclecount++;
+
+  adx = pa[0] - pd[0];
+  bdx = pb[0] - pd[0];
+  cdx = pc[0] - pd[0];
+  ady = pa[1] - pd[1];
+  bdy = pb[1] - pd[1];
+  cdy = pc[1] - pd[1];
+
+  bdxcdy = bdx * cdy;
+  cdxbdy = cdx * bdy;
+  alift = adx * adx + ady * ady;
+
+  cdxady = cdx * ady;
+  adxcdy = adx * cdy;
+  blift = bdx * bdx + bdy * bdy;
+
+  adxbdy = adx * bdy;
+  bdxady = bdx * ady;
+  clift = cdx * cdx + cdy * cdy;
+
+  det = alift * (bdxcdy - cdxbdy)
+      + blift * (cdxady - adxcdy)
+      + clift * (adxbdy - bdxady);
+
+  if (noexact) {
+    return det;
+  }
+
+  permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
+            + (Absolute(cdxady) + Absolute(adxcdy)) * blift
+            + (Absolute(adxbdy) + Absolute(bdxady)) * clift;
+  errbound = iccerrboundA * permanent;
+  if ((det > errbound) || (-det > errbound)) {
+    return det;
+  }
+
+  return incircleadapt(pa, pb, pc, pd, permanent);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Determinant evaluation routines end here                  *********/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangleinit()   Initialize some variables.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+void triangleinit()
+{
+  points.maxitems = triangles.maxitems = shelles.maxitems = viri.maxitems =
+    badsegments.maxitems = badtriangles.maxitems = splaynodes.maxitems = 0l;
+  points.itembytes = triangles.itembytes = shelles.itembytes = viri.itembytes =
+    badsegments.itembytes = badtriangles.itembytes = splaynodes.itembytes = 0;
+  recenttri.tri = (triangle *) NULL;    /* No triangle has been visited yet. */
+  samples = 1;            /* Point location should take at least one sample. */
+  checksegments = 0;      /* There are no segments in the triangulation yet. */
+  incirclecount = counterclockcount = hyperbolacount = 0;
+  circumcentercount = circletopcount = 0;
+  randomseed = 1;
+
+  exactinit();                     /* Initialize exact arithmetic constants. */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  randomnation()   Generate a random number between 0 and `choices' - 1.   */
+/*                                                                           */
+/*  This is a simple linear congruential random number generator.  Hence, it */
+/*  is a bad random number generator, but good enough for most randomized    */
+/*  geometric algorithms.                                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+unsigned long randomnation(choices)
+unsigned int choices;
+{
+  randomseed = (randomseed * 1366l + 150889l) % 714025l;
+  return randomseed / (714025l / choices + 1);
+}
+
+/********* Mesh quality testing routines begin here                  *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  checkmesh()   Test the mesh for topological consistency.                 */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+
+void checkmesh()
+{
+  struct triedge triangleloop;
+  struct triedge oppotri, oppooppotri;
+  point triorg, tridest, triapex;
+  point oppoorg, oppodest;
+  int horrors;
+  int saveexact;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  /* Temporarily turn on exact arithmetic if it's off. */
+  saveexact = noexact;
+  noexact = 0;
+  if (!quiet) {
+    printf("  Checking consistency of mesh...\n");
+  }
+  horrors = 0;
+  /* Run through the list of triangles, checking each one. */
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  while (triangleloop.tri != (triangle *) NULL) {
+    /* Check all three edges of the triangle. */
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      org(triangleloop, triorg);
+      dest(triangleloop, tridest);
+      if (triangleloop.orient == 0) {       /* Only test for inversion once. */
+        /* Test if the triangle is flat or inverted. */
+        apex(triangleloop, triapex);
+        if (counterclockwise(triorg, tridest, triapex) <= 0.0) {
+          printf("  !! !! Inverted ");
+          printtriangle(&triangleloop);
+          horrors++;
+        }
+      }
+      /* Find the neighboring triangle on this edge. */
+      sym(triangleloop, oppotri);
+      if (oppotri.tri != dummytri) {
+        /* Check that the triangle's neighbor knows it's a neighbor. */
+        sym(oppotri, oppooppotri);
+        if ((triangleloop.tri != oppooppotri.tri)
+            || (triangleloop.orient != oppooppotri.orient)) {
+          printf("  !! !! Asymmetric triangle-triangle bond:\n");
+          if (triangleloop.tri == oppooppotri.tri) {
+            printf("   (Right triangle, wrong orientation)\n");
+          }
+          printf("    First ");
+          printtriangle(&triangleloop);
+          printf("    Second (nonreciprocating) ");
+          printtriangle(&oppotri);
+          horrors++;
+        }
+        /* Check that both triangles agree on the identities */
+        /*   of their shared vertices.                       */
+        org(oppotri, oppoorg);
+        dest(oppotri, oppodest);
+        if ((triorg != oppodest) || (tridest != oppoorg)) {
+          printf("  !! !! Mismatched edge coordinates between two triangles:\n"
+                 );
+          printf("    First mismatched ");
+          printtriangle(&triangleloop);
+          printf("    Second mismatched ");
+          printtriangle(&oppotri);
+          horrors++;
+        }
+      }
+    }
+    triangleloop.tri = triangletraverse();
+  }
+  if (horrors == 0) {
+    if (!quiet) {
+      printf("  In my studied opinion, the mesh appears to be consistent.\n");
+    }
+  } else if (horrors == 1) {
+    printf("  !! !! !! !! Precisely one festering wound discovered.\n");
+  } else {
+    printf("  !! !! !! !! %d abominations witnessed.\n", horrors);
+  }
+  /* Restore the status of exact arithmetic. */
+  noexact = saveexact;
+}
+
+#endif /* not REDUCED */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  checkdelaunay()   Ensure that the mesh is (constrained) Delaunay.        */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+
+void checkdelaunay()
+{
+  struct triedge triangleloop;
+  struct triedge oppotri;
+  struct edge opposhelle;
+  point triorg, tridest, triapex;
+  point oppoapex;
+  int shouldbedelaunay;
+  int horrors;
+  int saveexact;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  /* Temporarily turn on exact arithmetic if it's off. */
+  saveexact = noexact;
+  noexact = 0;
+  if (!quiet) {
+    printf("  Checking Delaunay property of mesh...\n");
+  }
+  horrors = 0;
+  /* Run through the list of triangles, checking each one. */
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  while (triangleloop.tri != (triangle *) NULL) {
+    /* Check all three edges of the triangle. */
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      org(triangleloop, triorg);
+      dest(triangleloop, tridest);
+      apex(triangleloop, triapex);
+      sym(triangleloop, oppotri);
+      apex(oppotri, oppoapex);
+      /* Only test that the edge is locally Delaunay if there is an   */
+      /*   adjoining triangle whose pointer is larger (to ensure that */
+      /*   each pair isn't tested twice).                             */
+      shouldbedelaunay = (oppotri.tri != dummytri)
+            && (triapex != (point) NULL) && (oppoapex != (point) NULL)
+            && (triangleloop.tri < oppotri.tri);
+      if (checksegments && shouldbedelaunay) {
+        /* If a shell edge separates the triangles, then the edge is */
+        /*   constrained, so no local Delaunay test should be done.  */
+        tspivot(triangleloop, opposhelle);
+        if (opposhelle.sh != dummysh){
+          shouldbedelaunay = 0;
+        }
+      }
+      if (shouldbedelaunay) {
+        if (incircle(triorg, tridest, triapex, oppoapex) > 0.0) {
+          printf("  !! !! Non-Delaunay pair of triangles:\n");
+          printf("    First non-Delaunay ");
+          printtriangle(&triangleloop);
+          printf("    Second non-Delaunay ");
+          printtriangle(&oppotri);
+          horrors++;
+        }
+      }
+    }
+    triangleloop.tri = triangletraverse();
+  }
+  if (horrors == 0) {
+    if (!quiet) {
+      printf(
+  "  By virtue of my perceptive intelligence, I declare the mesh Delaunay.\n");
+    }
+  } else if (horrors == 1) {
+    printf(
+         "  !! !! !! !! Precisely one terrifying transgression identified.\n");
+  } else {
+    printf("  !! !! !! !! %d obscenities viewed with horror.\n", horrors);
+  }
+  /* Restore the status of exact arithmetic. */
+  noexact = saveexact;
+}
+
+#endif /* not REDUCED */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  enqueuebadtri()   Add a bad triangle to the end of a queue.              */
+/*                                                                           */
+/*  The queue is actually a set of 64 queues.  I use multiple queues to give */
+/*  priority to smaller angles.  I originally implemented a heap, but the    */
+/*  queues are (to my surprise) much faster.                                 */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void enqueuebadtri(instri, angle, insapex, insorg, insdest)
+struct triedge *instri;
+REAL angle;
+point insapex;
+point insorg;
+point insdest;
+{
+  struct badface *newface;
+  int queuenumber;
+
+  if (verbose > 2) {
+    printf("  Queueing bad triangle:\n");
+    printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", insorg[0],
+           insorg[1], insdest[0], insdest[1], insapex[0], insapex[1]);
+  }
+  /* Allocate space for the bad triangle. */
+  newface = (struct badface *) poolalloc(&badtriangles);
+  triedgecopy(*instri, newface->badfacetri);
+  newface->key = angle;
+  newface->faceapex = insapex;
+  newface->faceorg = insorg;
+  newface->facedest = insdest;
+  newface->nextface = (struct badface *) NULL;
+  /* Determine the appropriate queue to put the bad triangle into. */
+  if (angle > 0.6) {
+    queuenumber = (int) (160.0 * (angle - 0.6));
+    if (queuenumber > 63) {
+      queuenumber = 63;
+    }
+  } else {
+    /* It's not a bad angle; put the triangle in the lowest-priority queue. */
+    queuenumber = 0;
+  }
+  /* Add the triangle to the end of a queue. */
+  *queuetail[queuenumber] = newface;
+  /* Maintain a pointer to the NULL pointer at the end of the queue. */
+  queuetail[queuenumber] = &newface->nextface;
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  dequeuebadtri()   Remove a triangle from the front of the queue.         */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+struct badface *dequeuebadtri()
+{
+  struct badface *result;
+  int queuenumber;
+
+  /* Look for a nonempty queue. */
+  for (queuenumber = 63; queuenumber >= 0; queuenumber--) {
+    result = queuefront[queuenumber];
+    if (result != (struct badface *) NULL) {
+      /* Remove the triangle from the queue. */
+      queuefront[queuenumber] = result->nextface;
+      /* Maintain a pointer to the NULL pointer at the end of the queue. */
+      if (queuefront[queuenumber] == (struct badface *) NULL) {
+        queuetail[queuenumber] = &queuefront[queuenumber];
+      }
+      return result;
+    }
+  }
+  return (struct badface *) NULL;
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  checkedge4encroach()   Check a segment to see if it is encroached; add   */
+/*                         it to the list if it is.                          */
+/*                                                                           */
+/*  An encroached segment is an unflippable edge that has a point in its     */
+/*  diametral circle (that is, it faces an angle greater than 90 degrees).   */
+/*  This definition is due to Ruppert.                                       */
+/*                                                                           */
+/*  Returns a nonzero value if the edge is encroached.                       */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+int checkedge4encroach(testedge)
+struct edge *testedge;
+{
+  struct triedge neighbortri;
+  struct edge testsym;
+  struct edge *badedge;
+  int addtolist;
+  int sides;
+  point eorg, edest, eapex;
+  triangle ptr;                     /* Temporary variable used by stpivot(). */
+
+  addtolist = 0;
+  sides = 0;
+
+  sorg(*testedge, eorg);
+  sdest(*testedge, edest);
+  /* Check one neighbor of the shell edge. */
+  stpivot(*testedge, neighbortri);
+  /* Does the neighbor exist, or is this a boundary edge? */
+  if (neighbortri.tri != dummytri) {
+    sides++;
+    /* Find a vertex opposite this edge. */
+    apex(neighbortri, eapex);
+    /* Check whether the vertex is inside the diametral circle of the  */
+    /*   shell edge.  Pythagoras' Theorem is used to check whether the */
+    /*   angle at the vertex is greater than 90 degrees.               */
+    if (eapex[0] * (eorg[0] + edest[0]) + eapex[1] * (eorg[1] + edest[1]) >
+        eapex[0] * eapex[0] + eorg[0] * edest[0] +
+        eapex[1] * eapex[1] + eorg[1] * edest[1]) {
+      addtolist = 1;
+    }
+  }
+  /* Check the other neighbor of the shell edge. */
+  ssym(*testedge, testsym);
+  stpivot(testsym, neighbortri);
+  /* Does the neighbor exist, or is this a boundary edge? */
+  if (neighbortri.tri != dummytri) {
+    sides++;
+    /* Find the other vertex opposite this edge. */
+    apex(neighbortri, eapex);
+    /* Check whether the vertex is inside the diametral circle of the  */
+    /*   shell edge.  Pythagoras' Theorem is used to check whether the */
+    /*   angle at the vertex is greater than 90 degrees.               */
+    if (eapex[0] * (eorg[0] + edest[0]) +
+        eapex[1] * (eorg[1] + edest[1]) >
+        eapex[0] * eapex[0] + eorg[0] * edest[0] +
+        eapex[1] * eapex[1] + eorg[1] * edest[1]) {
+      addtolist += 2;
+    }
+  }
+
+  if (addtolist && (!nobisect || ((nobisect == 1) && (sides == 2)))) {
+    if (verbose > 2) {
+      printf("  Queueing encroached segment (%.12g, %.12g) (%.12g, %.12g).\n",
+             eorg[0], eorg[1], edest[0], edest[1]);
+    }
+    /* Add the shell edge to the list of encroached segments. */
+    /*   Be sure to get the orientation right.                */
+    badedge = (struct edge *) poolalloc(&badsegments);
+    if (addtolist == 1) {
+      shellecopy(*testedge, *badedge);
+    } else {
+      shellecopy(testsym, *badedge);
+    }
+  }
+  return addtolist;
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  testtriangle()   Test a face for quality measures.                       */
+/*                                                                           */
+/*  Tests a triangle to see if it satisfies the minimum angle condition and  */
+/*  the maximum area condition.  Triangles that aren't up to spec are added  */
+/*  to the bad triangle queue.                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void testtriangle(testtri)
+struct triedge *testtri;
+{
+  struct triedge sametesttri;
+  struct edge edge1, edge2;
+  point torg, tdest, tapex;
+  point anglevertex;
+  REAL dxod, dyod, dxda, dyda, dxao, dyao;
+  REAL dxod2, dyod2, dxda2, dyda2, dxao2, dyao2;
+  REAL apexlen, orglen, destlen;
+  REAL angle;
+  REAL area;
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  org(*testtri, torg);
+  dest(*testtri, tdest);
+  apex(*testtri, tapex);
+  dxod = torg[0] - tdest[0];
+  dyod = torg[1] - tdest[1];
+  dxda = tdest[0] - tapex[0];
+  dyda = tdest[1] - tapex[1];
+  dxao = tapex[0] - torg[0];
+  dyao = tapex[1] - torg[1];
+  dxod2 = dxod * dxod;
+  dyod2 = dyod * dyod;
+  dxda2 = dxda * dxda;
+  dyda2 = dyda * dyda;
+  dxao2 = dxao * dxao;
+  dyao2 = dyao * dyao;
+  /* Find the lengths of the triangle's three edges. */
+  apexlen = dxod2 + dyod2;
+  orglen = dxda2 + dyda2;
+  destlen = dxao2 + dyao2;
+  if ((apexlen < orglen) && (apexlen < destlen)) {
+    /* The edge opposite the apex is shortest. */
+    /* Find the square of the cosine of the angle at the apex. */
+    angle = dxda * dxao + dyda * dyao;
+    angle = angle * angle / (orglen * destlen);
+    anglevertex = tapex;
+    lnext(*testtri, sametesttri);
+    tspivot(sametesttri, edge1);
+    lnextself(sametesttri);
+    tspivot(sametesttri, edge2);
+  } else if (orglen < destlen) {
+    /* The edge opposite the origin is shortest. */
+    /* Find the square of the cosine of the angle at the origin. */
+    angle = dxod * dxao + dyod * dyao;
+    angle = angle * angle / (apexlen * destlen);
+    anglevertex = torg;
+    tspivot(*testtri, edge1);
+    lprev(*testtri, sametesttri);
+    tspivot(sametesttri, edge2);
+  } else {
+    /* The edge opposite the destination is shortest. */
+    /* Find the square of the cosine of the angle at the destination. */
+    angle = dxod * dxda + dyod * dyda;
+    angle = angle * angle / (apexlen * orglen);
+    anglevertex = tdest;
+    tspivot(*testtri, edge1);
+    lnext(*testtri, sametesttri);
+    tspivot(sametesttri, edge2);
+  }
+  /* Check if both edges that form the angle are segments. */
+  if ((edge1.sh != dummysh) && (edge2.sh != dummysh)) {
+    /* The angle is a segment intersection. */
+    if ((angle > 0.9924) && !quiet) {                  /* Roughly 5 degrees. */
+      if (angle > 1.0) {
+        /* Beware of a floating exception in acos(). */
+        angle = 1.0;
+      }
+      /* Find the actual angle in degrees, for printing. */
+      angle = acos(sqrt(angle)) * (180.0 / PI);
+      printf(
+      "Warning:  Small angle (%.4g degrees) between segments at point\n",
+             angle);
+      printf("  (%.12g, %.12g)\n", anglevertex[0], anglevertex[1]);
+    }
+    /* Don't add this bad triangle to the list; there's nothing that */
+    /*   can be done about a small angle between two segments.       */
+    angle = 0.0;
+  }
+  /* Check whether the angle is smaller than permitted. */
+  if (angle > goodangle) {
+    /* Add this triangle to the list of bad triangles. */
+    enqueuebadtri(testtri, angle, tapex, torg, tdest);
+    return;
+  }
+  if (vararea || fixedarea) {
+    /* Check whether the area is larger than permitted. */
+    area = 0.5 * (dxod * dyda - dyod * dxda);
+
+#if 0
+    if ( area < 1.0 / (2.0 * 3600.0 * 3600.0) ) {
+      /* FGFS ADDITION!!! */
+      /* small enough, don't add to list of bad triangles */
+      printf("REJECTING TRIANGLE OF AREA %.6g\n", area);
+    }
+#endif
+
+    if (fixedarea && (area > maxarea)) {
+      /* Add this triangle to the list of bad triangles. */
+      enqueuebadtri(testtri, angle, tapex, torg, tdest);
+    } else if (vararea) {
+      /* Nonpositive area constraints are treated as unconstrained. */
+      if ((area > areabound(*testtri)) && (areabound(*testtri) > 0.0)) {
+        /* Add this triangle to the list of bad triangles. */
+        enqueuebadtri(testtri, angle, tapex, torg, tdest);
+      }
+    }
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Mesh quality testing routines end here                    *********/
+
+/********* Point location routines begin here                        *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  makepointmap()   Construct a mapping from points to triangles to improve  */
+/*                  the speed of point location for segment insertion.       */
+/*                                                                           */
+/*  Traverses all the triangles, and provides each corner of each triangle   */
+/*  with a pointer to that triangle.  Of course, pointers will be            */
+/*  overwritten by other pointers because (almost) each point is a corner    */
+/*  of several triangles, but in the end every point will point to some      */
+/*  triangle that contains it.                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+void makepointmap()
+{
+  struct triedge triangleloop;
+  point triorg;
+
+  if (verbose) {
+    printf("    Constructing mapping from points to triangles.\n");
+  }
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  while (triangleloop.tri != (triangle *) NULL) {
+    /* Check all three points of the triangle. */
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      org(triangleloop, triorg);
+      setpoint2tri(triorg, encode(triangleloop));
+    }
+    triangleloop.tri = triangletraverse();
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  preciselocate()   Find a triangle or edge containing a given point.      */
+/*                                                                           */
+/*  Begins its search from `searchtri'.  It is important that `searchtri'    */
+/*  be a handle with the property that `searchpoint' is strictly to the left */
+/*  of the edge denoted by `searchtri', or is collinear with that edge and   */
+/*  does not intersect that edge.  (In particular, `searchpoint' should not  */
+/*  be the origin or destination of that edge.)                              */
+/*                                                                           */
+/*  These conditions are imposed because preciselocate() is normally used in */
+/*  one of two situations:                                                   */
+/*                                                                           */
+/*  (1)  To try to find the location to insert a new point.  Normally, we    */
+/*       know an edge that the point is strictly to the left of.  In the     */
+/*       incremental Delaunay algorithm, that edge is a bounding box edge.   */
+/*       In Ruppert's Delaunay refinement algorithm for quality meshing,     */
+/*       that edge is the shortest edge of the triangle whose circumcenter   */
+/*       is being inserted.                                                  */
+/*                                                                           */
+/*  (2)  To try to find an existing point.  In this case, any edge on the    */
+/*       convex hull is a good starting edge.  The possibility that the      */
+/*       vertex one seeks is an endpoint of the starting edge must be        */
+/*       screened out before preciselocate() is called.                      */
+/*                                                                           */
+/*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
+/*                                                                           */
+/*  This implementation differs from that given by Guibas and Stolfi.  It    */
+/*  walks from triangle to triangle, crossing an edge only if `searchpoint'  */
+/*  is on the other side of the line containing that edge.  After entering   */
+/*  a triangle, there are two edges by which one can leave that triangle.    */
+/*  If both edges are valid (`searchpoint' is on the other side of both      */
+/*  edges), one of the two is chosen by drawing a line perpendicular to      */
+/*  the entry edge (whose endpoints are `forg' and `fdest') passing through  */
+/*  `fapex'.  Depending on which side of this perpendicular `searchpoint'    */
+/*  falls on, an exit edge is chosen.                                        */
+/*                                                                           */
+/*  This implementation is empirically faster than the Guibas and Stolfi     */
+/*  point location routine (which I originally used), which tends to spiral  */
+/*  in toward its target.                                                    */
+/*                                                                           */
+/*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
+/*  is a handle whose origin is the existing vertex.                         */
+/*                                                                           */
+/*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
+/*  handle whose primary edge is the edge on which the point lies.           */
+/*                                                                           */
+/*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
+/*  `searchtri' is a handle on the triangle that contains the point.         */
+/*                                                                           */
+/*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
+/*  handle whose primary edge the point is to the right of.  This might      */
+/*  occur when the circumcenter of a triangle falls just slightly outside    */
+/*  the mesh due to floating-point roundoff error.  It also occurs when      */
+/*  seeking a hole or region point that a foolish user has placed outside    */
+/*  the mesh.                                                                */
+/*                                                                           */
+/*  WARNING:  This routine is designed for convex triangulations, and will   */
+/*  not generally work after the holes and concavities have been carved.     */
+/*  However, it can still be used to find the circumcenter of a triangle, as */
+/*  long as the search is begun from the triangle in question.               */
+/*                                                                           */
+/*****************************************************************************/
+
+enum locateresult preciselocate(searchpoint, searchtri)
+point searchpoint;
+struct triedge *searchtri;
+{
+  struct triedge backtracktri;
+  point forg, fdest, fapex;
+  point swappoint;
+  REAL orgorient, destorient;
+  int moveleft;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (verbose > 2) {
+    printf("  Searching for point (%.12g, %.12g).\n",
+           searchpoint[0], searchpoint[1]);
+  }
+  /* Where are we? */
+  org(*searchtri, forg);
+  dest(*searchtri, fdest);
+  apex(*searchtri, fapex);
+  while (1) {
+    if (verbose > 2) {
+      printf("    At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+             forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
+    }
+    /* Check whether the apex is the point we seek. */
+    if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
+      lprevself(*searchtri);
+      return ONVERTEX;
+    }
+    /* Does the point lie on the other side of the line defined by the */
+    /*   triangle edge opposite the triangle's destination?            */
+    destorient = counterclockwise(forg, fapex, searchpoint);
+    /* Does the point lie on the other side of the line defined by the */
+    /*   triangle edge opposite the triangle's origin?                 */
+    orgorient = counterclockwise(fapex, fdest, searchpoint);
+    if (destorient > 0.0) {
+      if (orgorient > 0.0) {
+        /* Move left if the inner product of (fapex - searchpoint) and  */
+        /*   (fdest - forg) is positive.  This is equivalent to drawing */
+        /*   a line perpendicular to the line (forg, fdest) passing     */
+        /*   through `fapex', and determining which side of this line   */
+        /*   `searchpoint' falls on.                                    */
+        moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
+                   (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
+      } else {
+        moveleft = 1;
+      }
+    } else {
+      if (orgorient > 0.0) {
+        moveleft = 0;
+      } else {
+        /* The point we seek must be on the boundary of or inside this */
+        /*   triangle.                                                 */
+        if (destorient == 0.0) {
+          lprevself(*searchtri);
+          return ONEDGE;
+        }
+        if (orgorient == 0.0) {
+          lnextself(*searchtri);
+          return ONEDGE;
+        }
+        return INTRIANGLE;
+      }
+    }
+
+    /* Move to another triangle.  Leave a trace `backtracktri' in case */
+    /*   floating-point roundoff or some such bogey causes us to walk  */
+    /*   off a boundary of the triangulation.  We can just bounce off  */
+    /*   the boundary as if it were an elastic band.                   */
+    if (moveleft) {
+      lprev(*searchtri, backtracktri);
+      fdest = fapex;
+    } else {
+      lnext(*searchtri, backtracktri);
+      forg = fapex;
+    }
+    sym(backtracktri, *searchtri);
+
+    /* Check for walking off the edge. */
+    if (searchtri->tri == dummytri) {
+      /* Turn around. */
+      triedgecopy(backtracktri, *searchtri);
+      swappoint = forg;
+      forg = fdest;
+      fdest = swappoint;
+      apex(*searchtri, fapex);
+      /* Check if the point really is beyond the triangulation boundary. */
+      destorient = counterclockwise(forg, fapex, searchpoint);
+      orgorient = counterclockwise(fapex, fdest, searchpoint);
+      if ((orgorient < 0.0) && (destorient < 0.0)) {
+        return OUTSIDE;
+      }
+    } else {
+      apex(*searchtri, fapex);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  locate()   Find a triangle or edge containing a given point.             */
+/*                                                                           */
+/*  Searching begins from one of:  the input `searchtri', a recently         */
+/*  encountered triangle `recenttri', or from a triangle chosen from a       */
+/*  random sample.  The choice is made by determining which triangle's       */
+/*  origin is closest to the point we are searcing for.  Normally,           */
+/*  `searchtri' should be a handle on the convex hull of the triangulation.  */
+/*                                                                           */
+/*  Details on the random sampling method can be found in the Mucke, Saias,  */
+/*  and Zhu paper cited in the header of this code.                          */
+/*                                                                           */
+/*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
+/*                                                                           */
+/*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
+/*  is a handle whose origin is the existing vertex.                         */
+/*                                                                           */
+/*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
+/*  handle whose primary edge is the edge on which the point lies.           */
+/*                                                                           */
+/*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
+/*  `searchtri' is a handle on the triangle that contains the point.         */
+/*                                                                           */
+/*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
+/*  handle whose primary edge the point is to the right of.  This might      */
+/*  occur when the circumcenter of a triangle falls just slightly outside    */
+/*  the mesh due to floating-point roundoff error.  It also occurs when      */
+/*  seeking a hole or region point that a foolish user has placed outside    */
+/*  the mesh.                                                                */
+/*                                                                           */
+/*  WARNING:  This routine is designed for convex triangulations, and will   */
+/*  not generally work after the holes and concavities have been carved.     */
+/*                                                                           */
+/*****************************************************************************/
+
+enum locateresult locate(searchpoint, searchtri)
+point searchpoint;
+struct triedge *searchtri;
+{
+  VOID **sampleblock;
+  triangle *firsttri;
+  struct triedge sampletri;
+  point torg, tdest;
+  unsigned long alignptr;
+  REAL searchdist, dist;
+  REAL ahead;
+  long sampleblocks, samplesperblock, samplenum;
+  long triblocks;
+  long i, j;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (verbose > 2) {
+    printf("  Randomly sampling for a triangle near point (%.12g, %.12g).\n",
+           searchpoint[0], searchpoint[1]);
+  }
+  /* Record the distance from the suggested starting triangle to the */
+  /*   point we seek.                                                */
+  org(*searchtri, torg);
+  searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
+             + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
+  if (verbose > 2) {
+    printf("    Boundary triangle has origin (%.12g, %.12g).\n",
+           torg[0], torg[1]);
+  }
+
+  /* If a recently encountered triangle has been recorded and has not been */
+  /*   deallocated, test it as a good starting point.                      */
+  if (recenttri.tri != (triangle *) NULL) {
+    if (recenttri.tri[3] != (triangle) NULL) {
+      org(recenttri, torg);
+      if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
+        triedgecopy(recenttri, *searchtri);
+        return ONVERTEX;
+      }
+      dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
+           + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
+      if (dist < searchdist) {
+        triedgecopy(recenttri, *searchtri);
+        searchdist = dist;
+        if (verbose > 2) {
+          printf("    Choosing recent triangle with origin (%.12g, %.12g).\n",
+                 torg[0], torg[1]);
+        }
+      }
+    }
+  }
+
+  /* The number of random samples taken is proportional to the cube root of */
+  /*   the number of triangles in the mesh.  The next bit of code assumes   */
+  /*   that the number of triangles increases monotonically.                */
+  while (SAMPLEFACTOR * samples * samples * samples < triangles.items) {
+    samples++;
+  }
+  triblocks = (triangles.maxitems + TRIPERBLOCK - 1) / TRIPERBLOCK;
+  samplesperblock = 1 + (samples / triblocks);
+  sampleblocks = samples / samplesperblock;
+  sampleblock = triangles.firstblock;
+  sampletri.orient = 0;
+  for (i = 0; i < sampleblocks; i++) {
+    alignptr = (unsigned long) (sampleblock + 1);
+    firsttri = (triangle *) (alignptr + (unsigned long) triangles.alignbytes
+                          - (alignptr % (unsigned long) triangles.alignbytes));
+    for (j = 0; j < samplesperblock; j++) {
+      if (i == triblocks - 1) {
+        samplenum = randomnation((int)
+                                 (triangles.maxitems - (i * TRIPERBLOCK)));
+      } else {
+        samplenum = randomnation(TRIPERBLOCK);
+      }
+      sampletri.tri = (triangle *)
+                      (firsttri + (samplenum * triangles.itemwords));
+      if (sampletri.tri[3] != (triangle) NULL) {
+        org(sampletri, torg);
+        dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
+             + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
+        if (dist < searchdist) {
+          triedgecopy(sampletri, *searchtri);
+          searchdist = dist;
+          if (verbose > 2) {
+            printf("    Choosing triangle with origin (%.12g, %.12g).\n",
+                   torg[0], torg[1]);
+          }
+        }
+      }
+    }
+    sampleblock = (VOID **) *sampleblock;
+  }
+  /* Where are we? */
+  org(*searchtri, torg);
+  dest(*searchtri, tdest);
+  /* Check the starting triangle's vertices. */
+  if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
+    return ONVERTEX;
+  }
+  if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
+    lnextself(*searchtri);
+    return ONVERTEX;
+  }
+  /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
+  ahead = counterclockwise(torg, tdest, searchpoint);
+  if (ahead < 0.0) {
+    /* Turn around so that `searchpoint' is to the left of the */
+    /*   edge specified by `searchtri'.                        */
+    symself(*searchtri);
+  } else if (ahead == 0.0) {
+    /* Check if `searchpoint' is between `torg' and `tdest'. */
+    if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0]))
+        && ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
+      return ONEDGE;
+    }
+  }
+  return preciselocate(searchpoint, searchtri);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Point location routines end here                          *********/
+
+/********* Mesh transformation routines begin here                   *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  insertshelle()   Create a new shell edge and insert it between two       */
+/*                   triangles.                                              */
+/*                                                                           */
+/*  The new shell edge is inserted at the edge described by the handle       */
+/*  `tri'.  Its vertices are properly initialized.  The marker `shellemark'  */
+/*  is applied to the shell edge and, if appropriate, its vertices.          */
+/*                                                                           */
+/*****************************************************************************/
+
+void insertshelle(tri, shellemark)
+struct triedge *tri;          /* Edge at which to insert the new shell edge. */
+int shellemark;                            /* Marker for the new shell edge. */
+{
+  struct triedge oppotri;
+  struct edge newshelle;
+  point triorg, tridest;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  /* Mark points if possible. */
+  org(*tri, triorg);
+  dest(*tri, tridest);
+  if (pointmark(triorg) == 0) {
+    setpointmark(triorg, shellemark);
+  }
+  if (pointmark(tridest) == 0) {
+    setpointmark(tridest, shellemark);
+  }
+  /* Check if there's already a shell edge here. */
+  tspivot(*tri, newshelle);
+  if (newshelle.sh == dummysh) {
+    /* Make new shell edge and initialize its vertices. */
+    makeshelle(&newshelle);
+    setsorg(newshelle, tridest);
+    setsdest(newshelle, triorg);
+    /* Bond new shell edge to the two triangles it is sandwiched between. */
+    /*   Note that the facing triangle `oppotri' might be equal to        */
+    /*   `dummytri' (outer space), but the new shell edge is bonded to it */
+    /*   all the same.                                                    */
+    tsbond(*tri, newshelle);
+    sym(*tri, oppotri);
+    ssymself(newshelle);
+    tsbond(oppotri, newshelle);
+    setmark(newshelle, shellemark);
+    if (verbose > 2) {
+      printf("  Inserting new ");
+      printshelle(&newshelle);
+    }
+  } else {
+    if (mark(newshelle) == 0) {
+      setmark(newshelle, shellemark);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  Terminology                                                              */
+/*                                                                           */
+/*  A "local transformation" replaces a small set of triangles with another  */
+/*  set of triangles.  This may or may not involve inserting or deleting a   */
+/*  point.                                                                   */
+/*                                                                           */
+/*  The term "casing" is used to describe the set of triangles that are      */
+/*  attached to the triangles being transformed, but are not transformed     */
+/*  themselves.  Think of the casing as a fixed hollow structure inside      */
+/*  which all the action happens.  A "casing" is only defined relative to    */
+/*  a single transformation; each occurrence of a transformation will        */
+/*  involve a different casing.                                              */
+/*                                                                           */
+/*  A "shell" is similar to a "casing".  The term "shell" describes the set  */
+/*  of shell edges (if any) that are attached to the triangles being         */
+/*  transformed.  However, I sometimes use "shell" to refer to a single      */
+/*  shell edge, so don't get confused.                                       */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  flip()   Transform two triangles to two different triangles by flipping  */
+/*           an edge within a quadrilateral.                                 */
+/*                                                                           */
+/*  Imagine the original triangles, abc and bad, oriented so that the        */
+/*  shared edge ab lies in a horizontal plane, with the point b on the left  */
+/*  and the point a on the right.  The point c lies below the edge, and the  */
+/*  point d lies above the edge.  The `flipedge' handle holds the edge ab    */
+/*  of triangle abc, and is directed left, from vertex a to vertex b.        */
+/*                                                                           */
+/*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
+/*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
+/*  they are reused for dca and cdb, respectively.  Hence, any handles that  */
+/*  may have held the original triangles are still valid, although not       */
+/*  directed as they were before.                                            */
+/*                                                                           */
+/*  Upon completion of this routine, the `flipedge' handle holds the edge    */
+/*  dc of triangle dca, and is directed down, from vertex d to vertex c.     */
+/*  (Hence, the two triangles have rotated counterclockwise.)                */
+/*                                                                           */
+/*  WARNING:  This transformation is geometrically valid only if the         */
+/*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
+/*  valid only if there is not a shell edge between the triangles abc and    */
+/*  bad.  This routine does not check either of these preconditions, and     */
+/*  it is the responsibility of the calling routine to ensure that they are  */
+/*  met.  If they are not, the streets shall be filled with wailing and      */
+/*  gnashing of teeth.                                                       */
+/*                                                                           */
+/*****************************************************************************/
+
+void flip(flipedge)
+struct triedge *flipedge;                    /* Handle for the triangle abc. */
+{
+  struct triedge botleft, botright;
+  struct triedge topleft, topright;
+  struct triedge top;
+  struct triedge botlcasing, botrcasing;
+  struct triedge toplcasing, toprcasing;
+  struct edge botlshelle, botrshelle;
+  struct edge toplshelle, toprshelle;
+  point leftpoint, rightpoint, botpoint;
+  point farpoint;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  /* Identify the vertices of the quadrilateral. */
+  org(*flipedge, rightpoint);
+  dest(*flipedge, leftpoint);
+  apex(*flipedge, botpoint);
+  sym(*flipedge, top);
+#ifdef SELF_CHECK
+  if (top.tri == dummytri) {
+    printf("Internal error in flip():  Attempt to flip on boundary.\n");
+    lnextself(*flipedge);
+    return;
+  }
+  if (checksegments) {
+    tspivot(*flipedge, toplshelle);
+    if (toplshelle.sh != dummysh) {
+      printf("Internal error in flip():  Attempt to flip a segment.\n");
+      lnextself(*flipedge);
+      return;
+    }
+  }
+#endif /* SELF_CHECK */
+  apex(top, farpoint);
+
+  /* Identify the casing of the quadrilateral. */
+  lprev(top, topleft);
+  sym(topleft, toplcasing);
+  lnext(top, topright);
+  sym(topright, toprcasing);
+  lnext(*flipedge, botleft);
+  sym(botleft, botlcasing);
+  lprev(*flipedge, botright);
+  sym(botright, botrcasing);
+  /* Rotate the quadrilateral one-quarter turn counterclockwise. */
+  bond(topleft, botlcasing);
+  bond(botleft, botrcasing);
+  bond(botright, toprcasing);
+  bond(topright, toplcasing);
+
+  if (checksegments) {
+    /* Check for shell edges and rebond them to the quadrilateral. */
+    tspivot(topleft, toplshelle);
+    tspivot(botleft, botlshelle);
+    tspivot(botright, botrshelle);
+    tspivot(topright, toprshelle);
+    if (toplshelle.sh == dummysh) {
+      tsdissolve(topright);
+    } else {
+      tsbond(topright, toplshelle);
+    }
+    if (botlshelle.sh == dummysh) {
+      tsdissolve(topleft);
+    } else {
+      tsbond(topleft, botlshelle);
+    }
+    if (botrshelle.sh == dummysh) {
+      tsdissolve(botleft);
+    } else {
+      tsbond(botleft, botrshelle);
+    }
+    if (toprshelle.sh == dummysh) {
+      tsdissolve(botright);
+    } else {
+      tsbond(botright, toprshelle);
+    }
+  }
+
+  /* New point assignments for the rotated quadrilateral. */
+  setorg(*flipedge, farpoint);
+  setdest(*flipedge, botpoint);
+  setapex(*flipedge, rightpoint);
+  setorg(top, botpoint);
+  setdest(top, farpoint);
+  setapex(top, leftpoint);
+  if (verbose > 2) {
+    printf("  Edge flip results in left ");
+    lnextself(topleft);
+    printtriangle(&topleft);
+    printf("  and right ");
+    printtriangle(flipedge);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  insertsite()   Insert a vertex into a Delaunay triangulation,            */
+/*                 performing flips as necessary to maintain the Delaunay    */
+/*                 property.                                                 */
+/*                                                                           */
+/*  The point `insertpoint' is located.  If `searchtri.tri' is not NULL,     */
+/*  the search for the containing triangle begins from `searchtri'.  If      */
+/*  `searchtri.tri' is NULL, a full point location procedure is called.      */
+/*  If `insertpoint' is found inside a triangle, the triangle is split into  */
+/*  three; if `insertpoint' lies on an edge, the edge is split in two,       */
+/*  thereby splitting the two adjacent triangles into four.  Edge flips are  */
+/*  used to restore the Delaunay property.  If `insertpoint' lies on an      */
+/*  existing vertex, no action is taken, and the value DUPLICATEPOINT is     */
+/*  returned.  On return, `searchtri' is set to a handle whose origin is the */
+/*  existing vertex.                                                         */
+/*                                                                           */
+/*  Normally, the parameter `splitedge' is set to NULL, implying that no     */
+/*  segment should be split.  In this case, if `insertpoint' is found to     */
+/*  lie on a segment, no action is taken, and the value VIOLATINGPOINT is    */
+/*  returned.  On return, `searchtri' is set to a handle whose primary edge  */
+/*  is the violated segment.                                                 */
+/*                                                                           */
+/*  If the calling routine wishes to split a segment by inserting a point in */
+/*  it, the parameter `splitedge' should be that segment.  In this case,     */
+/*  `searchtri' MUST be the triangle handle reached by pivoting from that    */
+/*  segment; no point location is done.                                      */
+/*                                                                           */
+/*  `segmentflaws' and `triflaws' are flags that indicate whether or not     */
+/*  there should be checks for the creation of encroached segments or bad    */
+/*  quality faces.  If a newly inserted point encroaches upon segments,      */
+/*  these segments are added to the list of segments to be split if          */
+/*  `segmentflaws' is set.  If bad triangles are created, these are added    */
+/*  to the queue if `triflaws' is set.                                       */
+/*                                                                           */
+/*  If a duplicate point or violated segment does not prevent the point      */
+/*  from being inserted, the return value will be ENCROACHINGPOINT if the    */
+/*  point encroaches upon a segment (and checking is enabled), or            */
+/*  SUCCESSFULPOINT otherwise.  In either case, `searchtri' is set to a      */
+/*  handle whose origin is the newly inserted vertex.                        */
+/*                                                                           */
+/*  insertsite() does not use flip() for reasons of speed; some              */
+/*  information can be reused from edge flip to edge flip, like the          */
+/*  locations of shell edges.                                                */
+/*                                                                           */
+/*****************************************************************************/
+
+enum insertsiteresult insertsite(insertpoint, searchtri, splitedge,
+                                 segmentflaws, triflaws)
+point insertpoint;
+struct triedge *searchtri;
+struct edge *splitedge;
+int segmentflaws;
+int triflaws;
+{
+  struct triedge horiz;
+  struct triedge top;
+  struct triedge botleft, botright;
+  struct triedge topleft, topright;
+  struct triedge newbotleft, newbotright;
+  struct triedge newtopright;
+  struct triedge botlcasing, botrcasing;
+  struct triedge toplcasing, toprcasing;
+  struct triedge testtri;
+  struct edge botlshelle, botrshelle;
+  struct edge toplshelle, toprshelle;
+  struct edge brokenshelle;
+  struct edge checkshelle;
+  struct edge rightedge;
+  struct edge newedge;
+  struct edge *encroached;
+  point first;
+  point leftpoint, rightpoint, botpoint, toppoint, farpoint;
+  REAL attrib;
+  REAL area;
+  enum insertsiteresult success;
+  enum locateresult intersect;
+  int doflip;
+  int mirrorflag;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  shelle sptr;         /* Temporary variable used by spivot() and tspivot(). */
+
+  if (verbose > 1) {
+    printf("  Inserting (%.12g, %.12g).\n", insertpoint[0], insertpoint[1]);
+  }
+  if (splitedge == (struct edge *) NULL) {
+    /* Find the location of the point to be inserted.  Check if a good */
+    /*   starting triangle has already been provided by the caller.    */
+    if (searchtri->tri == (triangle *) NULL) {
+      /* Find a boundary triangle. */
+      horiz.tri = dummytri;
+      horiz.orient = 0;
+      symself(horiz);
+      /* Search for a triangle containing `insertpoint'. */
+      intersect = locate(insertpoint, &horiz);
+    } else {
+      /* Start searching from the triangle provided by the caller. */
+      triedgecopy(*searchtri, horiz);
+      intersect = preciselocate(insertpoint, &horiz);
+    }
+  } else {
+    /* The calling routine provides the edge in which the point is inserted. */
+    triedgecopy(*searchtri, horiz);
+    intersect = ONEDGE;
+  }
+  if (intersect == ONVERTEX) {
+    /* There's already a vertex there.  Return in `searchtri' a triangle */
+    /*   whose origin is the existing vertex.                            */
+    triedgecopy(horiz, *searchtri);
+    triedgecopy(horiz, recenttri);
+    return DUPLICATEPOINT;
+  }
+  if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
+    /* The vertex falls on an edge or boundary. */
+    if (checksegments && (splitedge == (struct edge *) NULL)) {
+      /* Check whether the vertex falls on a shell edge. */
+      tspivot(horiz, brokenshelle);
+      if (brokenshelle.sh != dummysh) {
+        /* The vertex falls on a shell edge. */
+        if (segmentflaws) {
+          if (nobisect == 0) {
+            /* Add the shell edge to the list of encroached segments. */
+            encroached = (struct edge *) poolalloc(&badsegments);
+            shellecopy(brokenshelle, *encroached);
+          } else if ((nobisect == 1) && (intersect == ONEDGE)) {
+            /* This segment may be split only if it is an internal boundary. */
+            sym(horiz, testtri);
+            if (testtri.tri != dummytri) {
+              /* Add the shell edge to the list of encroached segments. */
+              encroached = (struct edge *) poolalloc(&badsegments);
+              shellecopy(brokenshelle, *encroached);
+            }
+          }
+        }
+        /* Return a handle whose primary edge contains the point, */
+        /*   which has not been inserted.                         */
+        triedgecopy(horiz, *searchtri);
+        triedgecopy(horiz, recenttri);
+        return VIOLATINGPOINT;
+      }
+    }
+    /* Insert the point on an edge, dividing one triangle into two (if */
+    /*   the edge lies on a boundary) or two triangles into four.      */
+    lprev(horiz, botright);
+    sym(botright, botrcasing);
+    sym(horiz, topright);
+    /* Is there a second triangle?  (Or does this edge lie on a boundary?) */
+    mirrorflag = topright.tri != dummytri;
+    if (mirrorflag) {
+      lnextself(topright);
+      sym(topright, toprcasing);
+      maketriangle(&newtopright);
+    } else {
+      /* Splitting the boundary edge increases the number of boundary edges. */
+      hullsize++;
+    }
+    maketriangle(&newbotright);
+
+    /* Set the vertices of changed and new triangles. */
+    org(horiz, rightpoint);
+    dest(horiz, leftpoint);
+    apex(horiz, botpoint);
+    setorg(newbotright, botpoint);
+    setdest(newbotright, rightpoint);
+    setapex(newbotright, insertpoint);
+    setorg(horiz, insertpoint);
+    for (i = 0; i < eextras; i++) {
+      /* Set the element attributes of a new triangle. */
+      setelemattribute(newbotright, i, elemattribute(botright, i));
+    }
+    if (vararea) {
+      /* Set the area constraint of a new triangle. */
+      setareabound(newbotright, areabound(botright));
+    }
+    if (mirrorflag) {
+      dest(topright, toppoint);
+      setorg(newtopright, rightpoint);
+      setdest(newtopright, toppoint);
+      setapex(newtopright, insertpoint);
+      setorg(topright, insertpoint);
+      for (i = 0; i < eextras; i++) {
+        /* Set the element attributes of another new triangle. */
+        setelemattribute(newtopright, i, elemattribute(topright, i));
+      }
+      if (vararea) {
+        /* Set the area constraint of another new triangle. */
+        setareabound(newtopright, areabound(topright));
+      }
+    }
+
+    /* There may be shell edges that need to be bonded */
+    /*   to the new triangle(s).                       */
+    if (checksegments) {
+      tspivot(botright, botrshelle);
+      if (botrshelle.sh != dummysh) {
+        tsdissolve(botright);
+        tsbond(newbotright, botrshelle);
+      }
+      if (mirrorflag) {
+        tspivot(topright, toprshelle);
+        if (toprshelle.sh != dummysh) {
+          tsdissolve(topright);
+          tsbond(newtopright, toprshelle);
+        }
+      }
+    }
+
+    /* Bond the new triangle(s) to the surrounding triangles. */
+    bond(newbotright, botrcasing);
+    lprevself(newbotright);
+    bond(newbotright, botright);
+    lprevself(newbotright);
+    if (mirrorflag) {
+      bond(newtopright, toprcasing);
+      lnextself(newtopright);
+      bond(newtopright, topright);
+      lnextself(newtopright);
+      bond(newtopright, newbotright);
+    }
+
+    if (splitedge != (struct edge *) NULL) {
+      /* Split the shell edge into two. */
+      setsdest(*splitedge, insertpoint);
+      ssymself(*splitedge);
+      spivot(*splitedge, rightedge);
+      insertshelle(&newbotright, mark(*splitedge));
+      tspivot(newbotright, newedge);
+      sbond(*splitedge, newedge);
+      ssymself(newedge);
+      sbond(newedge, rightedge);
+      ssymself(*splitedge);
+    }
+
+#ifdef SELF_CHECK
+    if (counterclockwise(rightpoint, leftpoint, botpoint) < 0.0) {
+      printf("Internal error in insertsite():\n");
+      printf("  Clockwise triangle prior to edge point insertion (bottom).\n");
+    }
+    if (mirrorflag) {
+      if (counterclockwise(leftpoint, rightpoint, toppoint) < 0.0) {
+        printf("Internal error in insertsite():\n");
+        printf("  Clockwise triangle prior to edge point insertion (top).\n");
+      }
+      if (counterclockwise(rightpoint, toppoint, insertpoint) < 0.0) {
+        printf("Internal error in insertsite():\n");
+        printf("  Clockwise triangle after edge point insertion (top right).\n"
+               );
+      }
+      if (counterclockwise(toppoint, leftpoint, insertpoint) < 0.0) {
+        printf("Internal error in insertsite():\n");
+        printf("  Clockwise triangle after edge point insertion (top left).\n"
+               );
+      }
+    }
+    if (counterclockwise(leftpoint, botpoint, insertpoint) < 0.0) {
+      printf("Internal error in insertsite():\n");
+      printf("  Clockwise triangle after edge point insertion (bottom left).\n"
+             );
+    }
+    if (counterclockwise(botpoint, rightpoint, insertpoint) < 0.0) {
+      printf("Internal error in insertsite():\n");
+      printf(
+        "  Clockwise triangle after edge point insertion (bottom right).\n");
+    }
+#endif /* SELF_CHECK */
+    if (verbose > 2) {
+      printf("  Updating bottom left ");
+      printtriangle(&botright);
+      if (mirrorflag) {
+        printf("  Updating top left ");
+        printtriangle(&topright);
+        printf("  Creating top right ");
+        printtriangle(&newtopright);
+      }
+      printf("  Creating bottom right ");
+      printtriangle(&newbotright);
+    }
+
+    /* Position `horiz' on the first edge to check for */
+    /*   the Delaunay property.                        */
+    lnextself(horiz);
+  } else {
+    /* Insert the point in a triangle, splitting it into three. */
+    lnext(horiz, botleft);
+    lprev(horiz, botright);
+    sym(botleft, botlcasing);
+    sym(botright, botrcasing);
+    maketriangle(&newbotleft);
+    maketriangle(&newbotright);
+
+    /* Set the vertices of changed and new triangles. */
+    org(horiz, rightpoint);
+    dest(horiz, leftpoint);
+    apex(horiz, botpoint);
+    setorg(newbotleft, leftpoint);
+    setdest(newbotleft, botpoint);
+    setapex(newbotleft, insertpoint);
+    setorg(newbotright, botpoint);
+    setdest(newbotright, rightpoint);
+    setapex(newbotright, insertpoint);
+    setapex(horiz, insertpoint);
+    for (i = 0; i < eextras; i++) {
+      /* Set the element attributes of the new triangles. */
+      attrib = elemattribute(horiz, i);
+      setelemattribute(newbotleft, i, attrib);
+      setelemattribute(newbotright, i, attrib);
+    }
+    if (vararea) {
+      /* Set the area constraint of the new triangles. */
+      area = areabound(horiz);
+      setareabound(newbotleft, area);
+      setareabound(newbotright, area);
+    }
+
+    /* There may be shell edges that need to be bonded */
+    /*   to the new triangles.                         */
+    if (checksegments) {
+      tspivot(botleft, botlshelle);
+      if (botlshelle.sh != dummysh) {
+        tsdissolve(botleft);
+        tsbond(newbotleft, botlshelle);
+      }
+      tspivot(botright, botrshelle);
+      if (botrshelle.sh != dummysh) {
+        tsdissolve(botright);
+        tsbond(newbotright, botrshelle);
+      }
+    }
+
+    /* Bond the new triangles to the surrounding triangles. */
+    bond(newbotleft, botlcasing);
+    bond(newbotright, botrcasing);
+    lnextself(newbotleft);
+    lprevself(newbotright);
+    bond(newbotleft, newbotright);
+    lnextself(newbotleft);
+    bond(botleft, newbotleft);
+    lprevself(newbotright);
+    bond(botright, newbotright);
+
+#ifdef SELF_CHECK
+    if (counterclockwise(rightpoint, leftpoint, botpoint) < 0.0) {
+      printf("Internal error in insertsite():\n");
+      printf("  Clockwise triangle prior to point insertion.\n");
+    }
+    if (counterclockwise(rightpoint, leftpoint, insertpoint) < 0.0) {
+      printf("Internal error in insertsite():\n");
+      printf("  Clockwise triangle after point insertion (top).\n");
+    }
+    if (counterclockwise(leftpoint, botpoint, insertpoint) < 0.0) {
+      printf("Internal error in insertsite():\n");
+      printf("  Clockwise triangle after point insertion (left).\n");
+    }
+    if (counterclockwise(botpoint, rightpoint, insertpoint) < 0.0) {
+      printf("Internal error in insertsite():\n");
+      printf("  Clockwise triangle after point insertion (right).\n");
+    }
+#endif /* SELF_CHECK */
+    if (verbose > 2) {
+      printf("  Updating top ");
+      printtriangle(&horiz);
+      printf("  Creating left ");
+      printtriangle(&newbotleft);
+      printf("  Creating right ");
+      printtriangle(&newbotright);
+    }
+  }
+
+  /* The insertion is successful by default, unless an encroached */
+  /*   edge is found.                                             */
+  success = SUCCESSFULPOINT;
+  /* Circle around the newly inserted vertex, checking each edge opposite */
+  /*   it for the Delaunay property.  Non-Delaunay edges are flipped.     */
+  /*   `horiz' is always the edge being checked.  `first' marks where to  */
+  /*   stop circling.                                                     */
+  org(horiz, first);
+  rightpoint = first;
+  dest(horiz, leftpoint);
+  /* Circle until finished. */
+  while (1) {
+    /* By default, the edge will be flipped. */
+    doflip = 1;
+    if (checksegments) {
+      /* Check for a segment, which cannot be flipped. */
+      tspivot(horiz, checkshelle);
+      if (checkshelle.sh != dummysh) {
+        /* The edge is a segment and cannot be flipped. */
+        doflip = 0;
+#ifndef CDT_ONLY
+        if (segmentflaws) {
+          /* Does the new point encroach upon this segment? */
+          if (checkedge4encroach(&checkshelle)) {
+            success = ENCROACHINGPOINT;
+          }
+        }
+#endif /* not CDT_ONLY */
+      }
+    }
+    if (doflip) {
+      /* Check if the edge is a boundary edge. */
+      sym(horiz, top);
+      if (top.tri == dummytri) {
+        /* The edge is a boundary edge and cannot be flipped. */
+        doflip = 0;
+      } else {
+        /* Find the point on the other side of the edge. */
+        apex(top, farpoint);
+        /* In the incremental Delaunay triangulation algorithm, any of    */
+        /*   `leftpoint', `rightpoint', and `farpoint' could be vertices  */
+        /*   of the triangular bounding box.  These vertices must be      */
+        /*   treated as if they are infinitely distant, even though their */
+        /*   "coordinates" are not.                                       */
+        if ((leftpoint == infpoint1) || (leftpoint == infpoint2)
+                   || (leftpoint == infpoint3)) {
+          /* `leftpoint' is infinitely distant.  Check the convexity of */
+          /*   the boundary of the triangulation.  'farpoint' might be  */
+          /*   infinite as well, but trust me, this same condition      */
+          /*   should be applied.                                       */
+          doflip = counterclockwise(insertpoint, rightpoint, farpoint) > 0.0;
+        } else if ((rightpoint == infpoint1) || (rightpoint == infpoint2)
+                   || (rightpoint == infpoint3)) {
+          /* `rightpoint' is infinitely distant.  Check the convexity of */
+          /*   the boundary of the triangulation.  'farpoint' might be  */
+          /*   infinite as well, but trust me, this same condition      */
+          /*   should be applied.                                       */
+          doflip = counterclockwise(farpoint, leftpoint, insertpoint) > 0.0;
+        } else if ((farpoint == infpoint1) || (farpoint == infpoint2)
+            || (farpoint == infpoint3)) {
+          /* `farpoint' is infinitely distant and cannot be inside */
+          /*   the circumcircle of the triangle `horiz'.           */
+          doflip = 0;
+        } else {
+          /* Test whether the edge is locally Delaunay. */
+          doflip = incircle(leftpoint, insertpoint, rightpoint, farpoint)
+                   > 0.0;
+        }
+        if (doflip) {
+          /* We made it!  Flip the edge `horiz' by rotating its containing */
+          /*   quadrilateral (the two triangles adjacent to `horiz').      */
+          /* Identify the casing of the quadrilateral. */
+          lprev(top, topleft);
+          sym(topleft, toplcasing);
+          lnext(top, topright);
+          sym(topright, toprcasing);
+          lnext(horiz, botleft);
+          sym(botleft, botlcasing);
+          lprev(horiz, botright);
+          sym(botright, botrcasing);
+          /* Rotate the quadrilateral one-quarter turn counterclockwise. */
+          bond(topleft, botlcasing);
+          bond(botleft, botrcasing);
+          bond(botright, toprcasing);
+          bond(topright, toplcasing);
+          if (checksegments) {
+            /* Check for shell edges and rebond them to the quadrilateral. */
+            tspivot(topleft, toplshelle);
+            tspivot(botleft, botlshelle);
+            tspivot(botright, botrshelle);
+            tspivot(topright, toprshelle);
+            if (toplshelle.sh == dummysh) {
+              tsdissolve(topright);
+            } else {
+              tsbond(topright, toplshelle);
+            }
+            if (botlshelle.sh == dummysh) {
+              tsdissolve(topleft);
+            } else {
+              tsbond(topleft, botlshelle);
+            }
+            if (botrshelle.sh == dummysh) {
+              tsdissolve(botleft);
+            } else {
+              tsbond(botleft, botrshelle);
+            }
+            if (toprshelle.sh == dummysh) {
+              tsdissolve(botright);
+            } else {
+              tsbond(botright, toprshelle);
+            }
+          }
+          /* New point assignments for the rotated quadrilateral. */
+          setorg(horiz, farpoint);
+          setdest(horiz, insertpoint);
+          setapex(horiz, rightpoint);
+          setorg(top, insertpoint);
+          setdest(top, farpoint);
+          setapex(top, leftpoint);
+          for (i = 0; i < eextras; i++) {
+            /* Take the average of the two triangles' attributes. */
+            attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
+            setelemattribute(top, i, attrib);
+            setelemattribute(horiz, i, attrib);
+          }
+          if (vararea) {
+            if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
+              area = -1.0;
+            } else {
+              /* Take the average of the two triangles' area constraints.    */
+              /*   This prevents small area constraints from migrating a     */
+              /*   long, long way from their original location due to flips. */
+              area = 0.5 * (areabound(top) + areabound(horiz));
+            }
+            setareabound(top, area);
+            setareabound(horiz, area);
+          }
+#ifdef SELF_CHECK
+          if (insertpoint != (point) NULL) {
+            if (counterclockwise(leftpoint, insertpoint, rightpoint) < 0.0) {
+              printf("Internal error in insertsite():\n");
+              printf("  Clockwise triangle prior to edge flip (bottom).\n");
+            }
+            /* The following test has been removed because constrainededge() */
+            /*   sometimes generates inverted triangles that insertsite()    */
+            /*   removes.                                                    */
+/*
+            if (counterclockwise(rightpoint, farpoint, leftpoint) < 0.0) {
+              printf("Internal error in insertsite():\n");
+              printf("  Clockwise triangle prior to edge flip (top).\n");
+            }
+*/
+            if (counterclockwise(farpoint, leftpoint, insertpoint) < 0.0) {
+              printf("Internal error in insertsite():\n");
+              printf("  Clockwise triangle after edge flip (left).\n");
+            }
+            if (counterclockwise(insertpoint, rightpoint, farpoint) < 0.0) {
+              printf("Internal error in insertsite():\n");
+              printf("  Clockwise triangle after edge flip (right).\n");
+            }
+          }
+#endif /* SELF_CHECK */
+          if (verbose > 2) {
+            printf("  Edge flip results in left ");
+            lnextself(topleft);
+            printtriangle(&topleft);
+            printf("  and right ");
+            printtriangle(&horiz);
+          }
+          /* On the next iterations, consider the two edges that were  */
+          /*   exposed (this is, are now visible to the newly inserted */
+          /*   point) by the edge flip.                                */
+          lprevself(horiz);
+          leftpoint = farpoint;
+        }
+      }
+    }
+    if (!doflip) {
+      /* The handle `horiz' is accepted as locally Delaunay. */
+#ifndef CDT_ONLY
+      if (triflaws) {
+        /* Check the triangle `horiz' for quality. */
+        testtriangle(&horiz);
+      }
+#endif /* not CDT_ONLY */
+      /* Look for the next edge around the newly inserted point. */
+      lnextself(horiz);
+      sym(horiz, testtri);
+      /* Check for finishing a complete revolution about the new point, or */
+      /*   falling off the edge of the triangulation.  The latter will     */
+      /*   happen when a point is inserted at a boundary.                  */
+      if ((leftpoint == first) || (testtri.tri == dummytri)) {
+        /* We're done.  Return a triangle whose origin is the new point. */
+        lnext(horiz, *searchtri);
+        lnext(horiz, recenttri);
+        return success;
+      }
+      /* Finish finding the next edge around the newly inserted point. */
+      lnext(testtri, horiz);
+      rightpoint = leftpoint;
+      dest(horiz, leftpoint);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangulatepolygon()   Find the Delaunay triangulation of a polygon that */
+/*                         has a certain "nice" shape.  This includes the    */
+/*                         polygons that result from deletion of a point or  */
+/*                         insertion of a segment.                           */
+/*                                                                           */
+/*  This is a conceptually difficult routine.  The starting assumption is    */
+/*  that we have a polygon with n sides.  n - 1 of these sides are currently */
+/*  represented as edges in the mesh.  One side, called the "base", need not */
+/*  be.                                                                      */
+/*                                                                           */
+/*  Inside the polygon is a structure I call a "fan", consisting of n - 1    */
+/*  triangles that share a common origin.  For each of these triangles, the  */
+/*  edge opposite the origin is one of the sides of the polygon.  The        */
+/*  primary edge of each triangle is the edge directed from the origin to    */
+/*  the destination; note that this is not the same edge that is a side of   */
+/*  the polygon.  `firstedge' is the primary edge of the first triangle.     */
+/*  From there, the triangles follow in counterclockwise order about the     */
+/*  polygon, until `lastedge', the primary edge of the last triangle.        */
+/*  `firstedge' and `lastedge' are probably connected to other triangles     */
+/*  beyond the extremes of the fan, but their identity is not important, as  */
+/*  long as the fan remains connected to them.                               */
+/*                                                                           */
+/*  Imagine the polygon oriented so that its base is at the bottom.  This    */
+/*  puts `firstedge' on the far right, and `lastedge' on the far left.       */
+/*  The right vertex of the base is the destination of `firstedge', and the  */
+/*  left vertex of the base is the apex of `lastedge'.                       */
+/*                                                                           */
+/*  The challenge now is to find the right sequence of edge flips to         */
+/*  transform the fan into a Delaunay triangulation of the polygon.  Each    */
+/*  edge flip effectively removes one triangle from the fan, committing it   */
+/*  to the polygon.  The resulting polygon has one fewer edge.  If `doflip'  */
+/*  is set, the final flip will be performed, resulting in a fan of one      */
+/*  (useless?) triangle.  If `doflip' is not set, the final flip is not      */
+/*  performed, resulting in a fan of two triangles, and an unfinished        */
+/*  triangular polygon that is not yet filled out with a single triangle.    */
+/*  On completion of the routine, `lastedge' is the last remaining triangle, */
+/*  or the leftmost of the last two.                                         */
+/*                                                                           */
+/*  Although the flips are performed in the order described above, the       */
+/*  decisions about what flips to perform are made in precisely the reverse  */
+/*  order.  The recursive triangulatepolygon() procedure makes a decision,   */
+/*  uses up to two recursive calls to triangulate the "subproblems"          */
+/*  (polygons with fewer edges), and then performs an edge flip.             */
+/*                                                                           */
+/*  The "decision" it makes is which vertex of the polygon should be         */
+/*  connected to the base.  This decision is made by testing every possible  */
+/*  vertex.  Once the best vertex is found, the two edges that connect this  */
+/*  vertex to the base become the bases for two smaller polygons.  These     */
+/*  are triangulated recursively.  Unfortunately, this approach can take     */
+/*  O(n^2) time not only in the worst case, but in many common cases.  It's  */
+/*  rarely a big deal for point deletion, where n is rarely larger than ten, */
+/*  but it could be a big deal for segment insertion, especially if there's  */
+/*  a lot of long segments that each cut many triangles.  I ought to code    */
+/*  a faster algorithm some time.                                            */
+/*                                                                           */
+/*  The `edgecount' parameter is the number of sides of the polygon,         */
+/*  including its base.  `triflaws' is a flag that determines whether the    */
+/*  new triangles should be tested for quality, and enqueued if they are     */
+/*  bad.                                                                     */
+/*                                                                           */
+/*****************************************************************************/
+
+void triangulatepolygon(firstedge, lastedge, edgecount, doflip, triflaws)
+struct triedge *firstedge;
+struct triedge *lastedge;
+int edgecount;
+int doflip;
+int triflaws;
+{
+  struct triedge testtri;
+  struct triedge besttri;
+  struct triedge tempedge;
+  point leftbasepoint, rightbasepoint;
+  point testpoint;
+  point bestpoint;
+  int bestnumber;
+  int i;
+  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
+
+  /* Identify the base vertices. */
+  apex(*lastedge, leftbasepoint);
+  dest(*firstedge, rightbasepoint);
+  if (verbose > 2) {
+    printf("  Triangulating interior polygon at edge\n");
+    printf("    (%.12g, %.12g) (%.12g, %.12g)\n", leftbasepoint[0],
+           leftbasepoint[1], rightbasepoint[0], rightbasepoint[1]);
+  }
+  /* Find the best vertex to connect the base to. */
+  onext(*firstedge, besttri);
+  dest(besttri, bestpoint);
+  triedgecopy(besttri, testtri);
+  bestnumber = 1;
+  for (i = 2; i <= edgecount - 2; i++) {
+    onextself(testtri);
+    dest(testtri, testpoint);
+    /* Is this a better vertex? */
+    if (incircle(leftbasepoint, rightbasepoint, bestpoint, testpoint) > 0.0) {
+      triedgecopy(testtri, besttri);
+      bestpoint = testpoint;
+      bestnumber = i;
+    }
+  }
+  if (verbose > 2) {
+    printf("    Connecting edge to (%.12g, %.12g)\n", bestpoint[0],
+           bestpoint[1]);
+  }
+  if (bestnumber > 1) {
+    /* Recursively triangulate the smaller polygon on the right. */
+    oprev(besttri, tempedge);
+    triangulatepolygon(firstedge, &tempedge, bestnumber + 1, 1, triflaws);
+  }
+  if (bestnumber < edgecount - 2) {
+    /* Recursively triangulate the smaller polygon on the left. */
+    sym(besttri, tempedge);
+    triangulatepolygon(&besttri, lastedge, edgecount - bestnumber, 1,
+                       triflaws);
+    /* Find `besttri' again; it may have been lost to edge flips. */
+    sym(tempedge, besttri);
+  }
+  if (doflip) {
+    /* Do one final edge flip. */
+    flip(&besttri);
+#ifndef CDT_ONLY
+    if (triflaws) {
+      /* Check the quality of the newly committed triangle. */
+      sym(besttri, testtri);
+      testtriangle(&testtri);
+    }
+#endif /* not CDT_ONLY */
+  }
+  /* Return the base triangle. */
+  triedgecopy(besttri, *lastedge);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  deletesite()   Delete a vertex from a Delaunay triangulation, ensuring   */
+/*                 that the triangulation remains Delaunay.                  */
+/*                                                                           */
+/*  The origin of `deltri' is deleted.  The union of the triangles adjacent  */
+/*  to this point is a polygon, for which the Delaunay triangulation is      */
+/*  found.  Two triangles are removed from the mesh.                         */
+/*                                                                           */
+/*  Only interior points that do not lie on segments (shell edges) or        */
+/*  boundaries may be deleted.                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void deletesite(deltri)
+struct triedge *deltri;
+{
+  struct triedge countingtri;
+  struct triedge firstedge, lastedge;
+  struct triedge deltriright;
+  struct triedge lefttri, righttri;
+  struct triedge leftcasing, rightcasing;
+  struct edge leftshelle, rightshelle;
+  point delpoint;
+  point neworg;
+  int edgecount;
+  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  org(*deltri, delpoint);
+  if (verbose > 1) {
+    printf("  Deleting (%.12g, %.12g).\n", delpoint[0], delpoint[1]);
+  }
+  pointdealloc(delpoint);
+
+  /* Count the degree of the point being deleted. */
+  onext(*deltri, countingtri);
+  edgecount = 1;
+  while (!triedgeequal(*deltri, countingtri)) {
+#ifdef SELF_CHECK
+    if (countingtri.tri == dummytri) {
+      printf("Internal error in deletesite():\n");
+      printf("  Attempt to delete boundary point.\n");
+      internalerror();
+    }
+#endif /* SELF_CHECK */
+    edgecount++;
+    onextself(countingtri);
+  }
+
+#ifdef SELF_CHECK
+  if (edgecount < 3) {
+    printf("Internal error in deletesite():\n  Point has degree %d.\n",
+           edgecount);
+    internalerror();
+  }
+#endif /* SELF_CHECK */
+  if (edgecount > 3) {
+    /* Triangulate the polygon defined by the union of all triangles */
+    /*   adjacent to the point being deleted.  Check the quality of  */
+    /*   the resulting triangles.                                    */
+    onext(*deltri, firstedge);
+    oprev(*deltri, lastedge);
+    triangulatepolygon(&firstedge, &lastedge, edgecount, 0, !nobisect);
+  }
+  /* Splice out two triangles. */
+  lprev(*deltri, deltriright);
+  dnext(*deltri, lefttri);
+  sym(lefttri, leftcasing);
+  oprev(deltriright, righttri);
+  sym(righttri, rightcasing);
+  bond(*deltri, leftcasing);
+  bond(deltriright, rightcasing);
+  tspivot(lefttri, leftshelle);
+  if (leftshelle.sh != dummysh) {
+    tsbond(*deltri, leftshelle);
+  }
+  tspivot(righttri, rightshelle);
+  if (rightshelle.sh != dummysh) {
+    tsbond(deltriright, rightshelle);
+  }
+
+  /* Set the new origin of `deltri' and check its quality. */
+  org(lefttri, neworg);
+  setorg(*deltri, neworg);
+  if (!nobisect) {
+    testtriangle(deltri);
+  }
+
+  /* Delete the two spliced-out triangles. */
+  triangledealloc(lefttri.tri);
+  triangledealloc(righttri.tri);
+}
+
+#endif /* not CDT_ONLY */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Mesh transformation routines end here                     *********/
+
+/********* Divide-and-conquer Delaunay triangulation begins here     *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  The divide-and-conquer bounding box                                      */
+/*                                                                           */
+/*  I originally implemented the divide-and-conquer and incremental Delaunay */
+/*  triangulations using the edge-based data structure presented by Guibas   */
+/*  and Stolfi.  Switching to a triangle-based data structure doubled the    */
+/*  speed.  However, I had to think of a few extra tricks to maintain the    */
+/*  elegance of the original algorithms.                                     */
+/*                                                                           */
+/*  The "bounding box" used by my variant of the divide-and-conquer          */
+/*  algorithm uses one triangle for each edge of the convex hull of the      */
+/*  triangulation.  These bounding triangles all share a common apical       */
+/*  vertex, which is represented by NULL and which represents nothing.       */
+/*  The bounding triangles are linked in a circular fan about this NULL      */
+/*  vertex, and the edges on the convex hull of the triangulation appear     */
+/*  opposite the NULL vertex.  You might find it easiest to imagine that     */
+/*  the NULL vertex is a point in 3D space behind the center of the          */
+/*  triangulation, and that the bounding triangles form a sort of cone.      */
+/*                                                                           */
+/*  This bounding box makes it easy to represent degenerate cases.  For      */
+/*  instance, the triangulation of two vertices is a single edge.  This edge */
+/*  is represented by two bounding box triangles, one on each "side" of the  */
+/*  edge.  These triangles are also linked together in a fan about the NULL  */
+/*  vertex.                                                                  */
+/*                                                                           */
+/*  The bounding box also makes it easy to traverse the convex hull, as the  */
+/*  divide-and-conquer algorithm needs to do.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  pointsort()   Sort an array of points by x-coordinate, using the         */
+/*                y-coordinate as a secondary key.                           */
+/*                                                                           */
+/*  Uses quicksort.  Randomized O(n log n) time.  No, I did not make any of  */
+/*  the usual quicksort mistakes.                                            */
+/*                                                                           */
+/*****************************************************************************/
+
+void pointsort(sortarray, arraysize)
+point *sortarray;
+int arraysize;
+{
+  int left, right;
+  int pivot;
+  REAL pivotx, pivoty;
+  point temp;
+
+  if (arraysize == 2) {
+    /* Recursive base case. */
+    if ((sortarray[0][0] > sortarray[1][0]) ||
+        ((sortarray[0][0] == sortarray[1][0]) &&
+         (sortarray[0][1] > sortarray[1][1]))) {
+      temp = sortarray[1];
+      sortarray[1] = sortarray[0];
+      sortarray[0] = temp;
+    }
+    return;
+  }
+  /* Choose a random pivot to split the array. */
+  pivot = (int) randomnation(arraysize);
+  pivotx = sortarray[pivot][0];
+  pivoty = sortarray[pivot][1];
+  /* Split the array. */
+  left = -1;
+  right = arraysize;
+  while (left < right) {
+    /* Search for a point whose x-coordinate is too large for the left. */
+    do {
+      left++;
+    } while ((left <= right) && ((sortarray[left][0] < pivotx) ||
+                                 ((sortarray[left][0] == pivotx) &&
+                                  (sortarray[left][1] < pivoty))));
+    /* Search for a point whose x-coordinate is too small for the right. */
+    do {
+      right--;
+    } while ((left <= right) && ((sortarray[right][0] > pivotx) ||
+                                 ((sortarray[right][0] == pivotx) &&
+                                  (sortarray[right][1] > pivoty))));
+    if (left < right) {
+      /* Swap the left and right points. */
+      temp = sortarray[left];
+      sortarray[left] = sortarray[right];
+      sortarray[right] = temp;
+    }
+  }
+  if (left > 1) {
+    /* Recursively sort the left subset. */
+    pointsort(sortarray, left);
+  }
+  if (right < arraysize - 2) {
+    /* Recursively sort the right subset. */
+    pointsort(&sortarray[right + 1], arraysize - right - 1);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  pointmedian()   An order statistic algorithm, almost.  Shuffles an array */
+/*                  of points so that the first `median' points occur        */
+/*                  lexicographically before the remaining points.           */
+/*                                                                           */
+/*  Uses the x-coordinate as the primary key if axis == 0; the y-coordinate  */
+/*  if axis == 1.  Very similar to the pointsort() procedure, but runs in    */
+/*  randomized linear time.                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+void pointmedian(sortarray, arraysize, median, axis)
+point *sortarray;
+int arraysize;
+int median;
+int axis;
+{
+  int left, right;
+  int pivot;
+  REAL pivot1, pivot2;
+  point temp;
+
+  if (arraysize == 2) {
+    /* Recursive base case. */
+    if ((sortarray[0][axis] > sortarray[1][axis]) ||
+        ((sortarray[0][axis] == sortarray[1][axis]) &&
+         (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
+      temp = sortarray[1];
+      sortarray[1] = sortarray[0];
+      sortarray[0] = temp;
+    }
+    return;
+  }
+  /* Choose a random pivot to split the array. */
+  pivot = (int) randomnation(arraysize);
+  pivot1 = sortarray[pivot][axis];
+  pivot2 = sortarray[pivot][1 - axis];
+  /* Split the array. */
+  left = -1;
+  right = arraysize;
+  while (left < right) {
+    /* Search for a point whose x-coordinate is too large for the left. */
+    do {
+      left++;
+    } while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
+                                 ((sortarray[left][axis] == pivot1) &&
+                                  (sortarray[left][1 - axis] < pivot2))));
+    /* Search for a point whose x-coordinate is too small for the right. */
+    do {
+      right--;
+    } while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
+                                 ((sortarray[right][axis] == pivot1) &&
+                                  (sortarray[right][1 - axis] > pivot2))));
+    if (left < right) {
+      /* Swap the left and right points. */
+      temp = sortarray[left];
+      sortarray[left] = sortarray[right];
+      sortarray[right] = temp;
+    }
+  }
+  /* Unlike in pointsort(), at most one of the following */
+  /*   conditionals is true.                             */
+  if (left > median) {
+    /* Recursively shuffle the left subset. */
+    pointmedian(sortarray, left, median, axis);
+  }
+  if (right < median - 1) {
+    /* Recursively shuffle the right subset. */
+    pointmedian(&sortarray[right + 1], arraysize - right - 1,
+                median - right - 1, axis);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  alternateaxes()   Sorts the points as appropriate for the divide-and-    */
+/*                    conquer algorithm with alternating cuts.               */
+/*                                                                           */
+/*  Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1.   */
+/*  For the base case, subsets containing only two or three points are       */
+/*  always sorted by x-coordinate.                                           */
+/*                                                                           */
+/*****************************************************************************/
+
+void alternateaxes(sortarray, arraysize, axis)
+point *sortarray;
+int arraysize;
+int axis;
+{
+  int divider;
+
+  divider = arraysize >> 1;
+  if (arraysize <= 3) {
+    /* Recursive base case:  subsets of two or three points will be      */
+    /*   handled specially, and should always be sorted by x-coordinate. */
+    axis = 0;
+  }
+  /* Partition with a horizontal or vertical cut. */
+  pointmedian(sortarray, arraysize, divider, axis);
+  /* Recursively partition the subsets with a cross cut. */
+  if (arraysize - divider >= 2) {
+    if (divider >= 2) {
+      alternateaxes(sortarray, divider, 1 - axis);
+    }
+    alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  mergehulls()   Merge two adjacent Delaunay triangulations into a         */
+/*                 single Delaunay triangulation.                            */
+/*                                                                           */
+/*  This is similar to the algorithm given by Guibas and Stolfi, but uses    */
+/*  a triangle-based, rather than edge-based, data structure.                */
+/*                                                                           */
+/*  The algorithm walks up the gap between the two triangulations, knitting  */
+/*  them together.  As they are merged, some of their bounding triangles     */
+/*  are converted into real triangles of the triangulation.  The procedure   */
+/*  pulls each hull's bounding triangles apart, then knits them together     */
+/*  like the teeth of two gears.  The Delaunay property determines, at each  */
+/*  step, whether the next "tooth" is a bounding triangle of the left hull   */
+/*  or the right.  When a bounding triangle becomes real, its apex is        */
+/*  changed from NULL to a real point.                                       */
+/*                                                                           */
+/*  Only two new triangles need to be allocated.  These become new bounding  */
+/*  triangles at the top and bottom of the seam.  They are used to connect   */
+/*  the remaining bounding triangles (those that have not been converted     */
+/*  into real triangles) into a single fan.                                  */
+/*                                                                           */
+/*  On entry, `farleft' and `innerleft' are bounding triangles of the left   */
+/*  triangulation.  The origin of `farleft' is the leftmost vertex, and      */
+/*  the destination of `innerleft' is the rightmost vertex of the            */
+/*  triangulation.  Similarly, `innerright' and `farright' are bounding      */
+/*  triangles of the right triangulation.  The origin of `innerright' and    */
+/*  destination of `farright' are the leftmost and rightmost vertices.       */
+/*                                                                           */
+/*  On completion, the origin of `farleft' is the leftmost vertex of the     */
+/*  merged triangulation, and the destination of `farright' is the rightmost */
+/*  vertex.                                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+void mergehulls(farleft, innerleft, innerright, farright, axis)
+struct triedge *farleft;
+struct triedge *innerleft;
+struct triedge *innerright;
+struct triedge *farright;
+int axis;
+{
+  struct triedge leftcand, rightcand;
+  struct triedge baseedge;
+  struct triedge nextedge;
+  struct triedge sidecasing, topcasing, outercasing;
+  struct triedge checkedge;
+  point innerleftdest;
+  point innerrightorg;
+  point innerleftapex, innerrightapex;
+  point farleftpt, farrightpt;
+  point farleftapex, farrightapex;
+  point lowerleft, lowerright;
+  point upperleft, upperright;
+  point nextapex;
+  point checkvertex;
+  int changemade;
+  int badedge;
+  int leftfinished, rightfinished;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  dest(*innerleft, innerleftdest);
+  apex(*innerleft, innerleftapex);
+  org(*innerright, innerrightorg);
+  apex(*innerright, innerrightapex);
+  /* Special treatment for horizontal cuts. */
+  if (dwyer && (axis == 1)) {
+    org(*farleft, farleftpt);
+    apex(*farleft, farleftapex);
+    dest(*farright, farrightpt);
+    apex(*farright, farrightapex);
+    /* The pointers to the extremal points are shifted to point to the */
+    /*   topmost and bottommost point of each hull, rather than the    */
+    /*   leftmost and rightmost points.                                */
+    while (farleftapex[1] < farleftpt[1]) {
+      lnextself(*farleft);
+      symself(*farleft);
+      farleftpt = farleftapex;
+      apex(*farleft, farleftapex);
+    }
+    sym(*innerleft, checkedge);
+    apex(checkedge, checkvertex);
+    while (checkvertex[1] > innerleftdest[1]) {
+      lnext(checkedge, *innerleft);
+      innerleftapex = innerleftdest;
+      innerleftdest = checkvertex;
+      sym(*innerleft, checkedge);
+      apex(checkedge, checkvertex);
+    }
+    while (innerrightapex[1] < innerrightorg[1]) {
+      lnextself(*innerright);
+      symself(*innerright);
+      innerrightorg = innerrightapex;
+      apex(*innerright, innerrightapex);
+    }
+    sym(*farright, checkedge);
+    apex(checkedge, checkvertex);
+    while (checkvertex[1] > farrightpt[1]) {
+      lnext(checkedge, *farright);
+      farrightapex = farrightpt;
+      farrightpt = checkvertex;
+      sym(*farright, checkedge);
+      apex(checkedge, checkvertex);
+    }
+  }
+  /* Find a line tangent to and below both hulls. */
+  do {
+    changemade = 0;
+    /* Make innerleftdest the "bottommost" point of the left hull. */
+    if (counterclockwise(innerleftdest, innerleftapex, innerrightorg) > 0.0) {
+      lprevself(*innerleft);
+      symself(*innerleft);
+      innerleftdest = innerleftapex;
+      apex(*innerleft, innerleftapex);
+      changemade = 1;
+    }
+    /* Make innerrightorg the "bottommost" point of the right hull. */
+    if (counterclockwise(innerrightapex, innerrightorg, innerleftdest) > 0.0) {
+      lnextself(*innerright);
+      symself(*innerright);
+      innerrightorg = innerrightapex;
+      apex(*innerright, innerrightapex);
+      changemade = 1;
+    }
+  } while (changemade);
+  /* Find the two candidates to be the next "gear tooth". */
+  sym(*innerleft, leftcand);
+  sym(*innerright, rightcand);
+  /* Create the bottom new bounding triangle. */
+  maketriangle(&baseedge);
+  /* Connect it to the bounding boxes of the left and right triangulations. */
+  bond(baseedge, *innerleft);
+  lnextself(baseedge);
+  bond(baseedge, *innerright);
+  lnextself(baseedge);
+  setorg(baseedge, innerrightorg);
+  setdest(baseedge, innerleftdest);
+  /* Apex is intentionally left NULL. */
+  if (verbose > 2) {
+    printf("  Creating base bounding ");
+    printtriangle(&baseedge);
+  }
+  /* Fix the extreme triangles if necessary. */
+  org(*farleft, farleftpt);
+  if (innerleftdest == farleftpt) {
+    lnext(baseedge, *farleft);
+  }
+  dest(*farright, farrightpt);
+  if (innerrightorg == farrightpt) {
+    lprev(baseedge, *farright);
+  }
+  /* The vertices of the current knitting edge. */
+  lowerleft = innerleftdest;
+  lowerright = innerrightorg;
+  /* The candidate vertices for knitting. */
+  apex(leftcand, upperleft);
+  apex(rightcand, upperright);
+  /* Walk up the gap between the two triangulations, knitting them together. */
+  while (1) {
+    /* Have we reached the top?  (This isn't quite the right question,       */
+    /*   because even though the left triangulation might seem finished now, */
+    /*   moving up on the right triangulation might reveal a new point of    */
+    /*   the left triangulation.  And vice-versa.)                           */
+    leftfinished = counterclockwise(upperleft, lowerleft, lowerright) <= 0.0;
+    rightfinished = counterclockwise(upperright, lowerleft, lowerright) <= 0.0;
+    if (leftfinished && rightfinished) {
+      /* Create the top new bounding triangle. */
+      maketriangle(&nextedge);
+      setorg(nextedge, lowerleft);
+      setdest(nextedge, lowerright);
+      /* Apex is intentionally left NULL. */
+      /* Connect it to the bounding boxes of the two triangulations. */
+      bond(nextedge, baseedge);
+      lnextself(nextedge);
+      bond(nextedge, rightcand);
+      lnextself(nextedge);
+      bond(nextedge, leftcand);
+      if (verbose > 2) {
+        printf("  Creating top bounding ");
+        printtriangle(&baseedge);
+      }
+      /* Special treatment for horizontal cuts. */
+      if (dwyer && (axis == 1)) {
+        org(*farleft, farleftpt);
+        apex(*farleft, farleftapex);
+        dest(*farright, farrightpt);
+        apex(*farright, farrightapex);
+        sym(*farleft, checkedge);
+        apex(checkedge, checkvertex);
+        /* The pointers to the extremal points are restored to the leftmost */
+        /*   and rightmost points (rather than topmost and bottommost).     */
+        while (checkvertex[0] < farleftpt[0]) {
+          lprev(checkedge, *farleft);
+          farleftapex = farleftpt;
+          farleftpt = checkvertex;
+          sym(*farleft, checkedge);
+          apex(checkedge, checkvertex);
+        }
+        while (farrightapex[0] > farrightpt[0]) {
+          lprevself(*farright);
+          symself(*farright);
+          farrightpt = farrightapex;
+          apex(*farright, farrightapex);
+        }
+      }
+      return;
+    }
+    /* Consider eliminating edges from the left triangulation. */
+    if (!leftfinished) {
+      /* What vertex would be exposed if an edge were deleted? */
+      lprev(leftcand, nextedge);
+      symself(nextedge);
+      apex(nextedge, nextapex);
+      /* If nextapex is NULL, then no vertex would be exposed; the */
+      /*   triangulation would have been eaten right through.      */
+      if (nextapex != (point) NULL) {
+        /* Check whether the edge is Delaunay. */
+        badedge = incircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
+        while (badedge) {
+          /* Eliminate the edge with an edge flip.  As a result, the    */
+          /*   left triangulation will have one more boundary triangle. */
+          lnextself(nextedge);
+          sym(nextedge, topcasing);
+          lnextself(nextedge);
+          sym(nextedge, sidecasing);
+          bond(nextedge, topcasing);
+          bond(leftcand, sidecasing);
+          lnextself(leftcand);
+          sym(leftcand, outercasing);
+          lprevself(nextedge);
+          bond(nextedge, outercasing);
+          /* Correct the vertices to reflect the edge flip. */
+          setorg(leftcand, lowerleft);
+          setdest(leftcand, NULL);
+          setapex(leftcand, nextapex);
+          setorg(nextedge, NULL);
+          setdest(nextedge, upperleft);
+          setapex(nextedge, nextapex);
+          /* Consider the newly exposed vertex. */
+          upperleft = nextapex;
+          /* What vertex would be exposed if another edge were deleted? */
+          triedgecopy(sidecasing, nextedge);
+          apex(nextedge, nextapex);
+          if (nextapex != (point) NULL) {
+            /* Check whether the edge is Delaunay. */
+            badedge = incircle(lowerleft, lowerright, upperleft, nextapex)
+                      > 0.0;
+          } else {
+            /* Avoid eating right through the triangulation. */
+            badedge = 0;
+          }
+        }
+      }
+    }
+    /* Consider eliminating edges from the right triangulation. */
+    if (!rightfinished) {
+      /* What vertex would be exposed if an edge were deleted? */
+      lnext(rightcand, nextedge);
+      symself(nextedge);
+      apex(nextedge, nextapex);
+      /* If nextapex is NULL, then no vertex would be exposed; the */
+      /*   triangulation would have been eaten right through.      */
+      if (nextapex != (point) NULL) {
+        /* Check whether the edge is Delaunay. */
+        badedge = incircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
+        while (badedge) {
+          /* Eliminate the edge with an edge flip.  As a result, the     */
+          /*   right triangulation will have one more boundary triangle. */
+          lprevself(nextedge);
+          sym(nextedge, topcasing);
+          lprevself(nextedge);
+          sym(nextedge, sidecasing);
+          bond(nextedge, topcasing);
+          bond(rightcand, sidecasing);
+          lprevself(rightcand);
+          sym(rightcand, outercasing);
+          lnextself(nextedge);
+          bond(nextedge, outercasing);
+          /* Correct the vertices to reflect the edge flip. */
+          setorg(rightcand, NULL);
+          setdest(rightcand, lowerright);
+          setapex(rightcand, nextapex);
+          setorg(nextedge, upperright);
+          setdest(nextedge, NULL);
+          setapex(nextedge, nextapex);
+          /* Consider the newly exposed vertex. */
+          upperright = nextapex;
+          /* What vertex would be exposed if another edge were deleted? */
+          triedgecopy(sidecasing, nextedge);
+          apex(nextedge, nextapex);
+          if (nextapex != (point) NULL) {
+            /* Check whether the edge is Delaunay. */
+            badedge = incircle(lowerleft, lowerright, upperright, nextapex)
+                      > 0.0;
+          } else {
+            /* Avoid eating right through the triangulation. */
+            badedge = 0;
+          }
+        }
+      }
+    }
+    if (leftfinished || (!rightfinished &&
+           (incircle(upperleft, lowerleft, lowerright, upperright) > 0.0))) {
+      /* Knit the triangulations, adding an edge from `lowerleft' */
+      /*   to `upperright'.                                       */
+      bond(baseedge, rightcand);
+      lprev(rightcand, baseedge);
+      setdest(baseedge, lowerleft);
+      lowerright = upperright;
+      sym(baseedge, rightcand);
+      apex(rightcand, upperright);
+    } else {
+      /* Knit the triangulations, adding an edge from `upperleft' */
+      /*   to `lowerright'.                                       */
+      bond(baseedge, leftcand);
+      lnext(leftcand, baseedge);
+      setorg(baseedge, lowerright);
+      lowerleft = upperleft;
+      sym(baseedge, leftcand);
+      apex(leftcand, upperleft);
+    }
+    if (verbose > 2) {
+      printf("  Connecting ");
+      printtriangle(&baseedge);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  divconqrecurse()   Recursively form a Delaunay triangulation by the      */
+/*                     divide-and-conquer method.                            */
+/*                                                                           */
+/*  Recursively breaks down the problem into smaller pieces, which are       */
+/*  knitted together by mergehulls().  The base cases (problems of two or    */
+/*  three points) are handled specially here.                                */
+/*                                                                           */
+/*  On completion, `farleft' and `farright' are bounding triangles such that */
+/*  the origin of `farleft' is the leftmost vertex (breaking ties by         */
+/*  choosing the highest leftmost vertex), and the destination of            */
+/*  `farright' is the rightmost vertex (breaking ties by choosing the        */
+/*  lowest rightmost vertex).                                                */
+/*                                                                           */
+/*****************************************************************************/
+
+void divconqrecurse(sortarray, vertices, axis, farleft, farright)
+point *sortarray;
+int vertices;
+int axis;
+struct triedge *farleft;
+struct triedge *farright;
+{
+  struct triedge midtri, tri1, tri2, tri3;
+  struct triedge innerleft, innerright;
+  REAL area;
+  int divider;
+
+  if (verbose > 2) {
+    printf("  Triangulating %d points.\n", vertices);
+  }
+  if (vertices == 2) {
+    /* The triangulation of two vertices is an edge.  An edge is */
+    /*   represented by two bounding triangles.                  */
+    maketriangle(farleft);
+    setorg(*farleft, sortarray[0]);
+    setdest(*farleft, sortarray[1]);
+    /* The apex is intentionally left NULL. */
+    maketriangle(farright);
+    setorg(*farright, sortarray[1]);
+    setdest(*farright, sortarray[0]);
+    /* The apex is intentionally left NULL. */
+    bond(*farleft, *farright);
+    lprevself(*farleft);
+    lnextself(*farright);
+    bond(*farleft, *farright);
+    lprevself(*farleft);
+    lnextself(*farright);
+    bond(*farleft, *farright);
+    if (verbose > 2) {
+      printf("  Creating ");
+      printtriangle(farleft);
+      printf("  Creating ");
+      printtriangle(farright);
+    }
+    /* Ensure that the origin of `farleft' is sortarray[0]. */
+    lprev(*farright, *farleft);
+    return;
+  } else if (vertices == 3) {
+    /* The triangulation of three vertices is either a triangle (with */
+    /*   three bounding triangles) or two edges (with four bounding   */
+    /*   triangles).  In either case, four triangles are created.     */
+    maketriangle(&midtri);
+    maketriangle(&tri1);
+    maketriangle(&tri2);
+    maketriangle(&tri3);
+    area = counterclockwise(sortarray[0], sortarray[1], sortarray[2]);
+    if (area == 0.0) {
+      /* Three collinear points; the triangulation is two edges. */
+      setorg(midtri, sortarray[0]);
+      setdest(midtri, sortarray[1]);
+      setorg(tri1, sortarray[1]);
+      setdest(tri1, sortarray[0]);
+      setorg(tri2, sortarray[2]);
+      setdest(tri2, sortarray[1]);
+      setorg(tri3, sortarray[1]);
+      setdest(tri3, sortarray[2]);
+      /* All apices are intentionally left NULL. */
+      bond(midtri, tri1);
+      bond(tri2, tri3);
+      lnextself(midtri);
+      lprevself(tri1);
+      lnextself(tri2);
+      lprevself(tri3);
+      bond(midtri, tri3);
+      bond(tri1, tri2);
+      lnextself(midtri);
+      lprevself(tri1);
+      lnextself(tri2);
+      lprevself(tri3);
+      bond(midtri, tri1);
+      bond(tri2, tri3);
+      /* Ensure that the origin of `farleft' is sortarray[0]. */
+      triedgecopy(tri1, *farleft);
+      /* Ensure that the destination of `farright' is sortarray[2]. */
+      triedgecopy(tri2, *farright);
+    } else {
+      /* The three points are not collinear; the triangulation is one */
+      /*   triangle, namely `midtri'.                                 */
+      setorg(midtri, sortarray[0]);
+      setdest(tri1, sortarray[0]);
+      setorg(tri3, sortarray[0]);
+      /* Apices of tri1, tri2, and tri3 are left NULL. */
+      if (area > 0.0) {
+        /* The vertices are in counterclockwise order. */
+        setdest(midtri, sortarray[1]);
+        setorg(tri1, sortarray[1]);
+        setdest(tri2, sortarray[1]);
+        setapex(midtri, sortarray[2]);
+        setorg(tri2, sortarray[2]);
+        setdest(tri3, sortarray[2]);
+      } else {
+        /* The vertices are in clockwise order. */
+        setdest(midtri, sortarray[2]);
+        setorg(tri1, sortarray[2]);
+        setdest(tri2, sortarray[2]);
+        setapex(midtri, sortarray[1]);
+        setorg(tri2, sortarray[1]);
+        setdest(tri3, sortarray[1]);
+      }
+      /* The topology does not depend on how the vertices are ordered. */
+      bond(midtri, tri1);
+      lnextself(midtri);
+      bond(midtri, tri2);
+      lnextself(midtri);
+      bond(midtri, tri3);
+      lprevself(tri1);
+      lnextself(tri2);
+      bond(tri1, tri2);
+      lprevself(tri1);
+      lprevself(tri3);
+      bond(tri1, tri3);
+      lnextself(tri2);
+      lprevself(tri3);
+      bond(tri2, tri3);
+      /* Ensure that the origin of `farleft' is sortarray[0]. */
+      triedgecopy(tri1, *farleft);
+      /* Ensure that the destination of `farright' is sortarray[2]. */
+      if (area > 0.0) {
+        triedgecopy(tri2, *farright);
+      } else {
+        lnext(*farleft, *farright);
+      }
+    }
+    if (verbose > 2) {
+      printf("  Creating ");
+      printtriangle(&midtri);
+      printf("  Creating ");
+      printtriangle(&tri1);
+      printf("  Creating ");
+      printtriangle(&tri2);
+      printf("  Creating ");
+      printtriangle(&tri3);
+    }
+    return;
+  } else {
+    /* Split the vertices in half. */
+    divider = vertices >> 1;
+    /* Recursively triangulate each half. */
+    divconqrecurse(sortarray, divider, 1 - axis, farleft, &innerleft);
+    divconqrecurse(&sortarray[divider], vertices - divider, 1 - axis,
+                   &innerright, farright);
+    if (verbose > 1) {
+      printf("  Joining triangulations with %d and %d vertices.\n", divider,
+             vertices - divider);
+    }
+    /* Merge the two triangulations into one. */
+    mergehulls(farleft, &innerleft, &innerright, farright, axis);
+  }
+}
+
+long removeghosts(startghost)
+struct triedge *startghost;
+{
+  struct triedge searchedge;
+  struct triedge dissolveedge;
+  struct triedge deadtri;
+  point markorg;
+  long hullsize;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (verbose) {
+    printf("  Removing ghost triangles.\n");
+  }
+  /* Find an edge on the convex hull to start point location from. */
+  lprev(*startghost, searchedge);
+  symself(searchedge);
+  dummytri[0] = encode(searchedge);
+  /* Remove the bounding box and count the convex hull edges. */
+  triedgecopy(*startghost, dissolveedge);
+  hullsize = 0;
+  do {
+    hullsize++;
+    lnext(dissolveedge, deadtri);
+    lprevself(dissolveedge);
+    symself(dissolveedge);
+    /* If no PSLG is involved, set the boundary markers of all the points */
+    /*   on the convex hull.  If a PSLG is used, this step is done later. */
+    if (!poly) {
+      /* Watch out for the case where all the input points are collinear. */
+      if (dissolveedge.tri != dummytri) {
+        org(dissolveedge, markorg);
+        if (pointmark(markorg) == 0) {
+          setpointmark(markorg, 1);
+        }
+      }
+    }
+    /* Remove a bounding triangle from a convex hull triangle. */
+    dissolve(dissolveedge);
+    /* Find the next bounding triangle. */
+    sym(deadtri, dissolveedge);
+    /* Delete the bounding triangle. */
+    triangledealloc(deadtri.tri);
+  } while (!triedgeequal(dissolveedge, *startghost));
+  return hullsize;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  divconqdelaunay()   Form a Delaunay triangulation by the divide-and-     */
+/*                      conquer method.                                      */
+/*                                                                           */
+/*  Sorts the points, calls a recursive procedure to triangulate them, and   */
+/*  removes the bounding box, setting boundary markers as appropriate.       */
+/*                                                                           */
+/*****************************************************************************/
+
+long divconqdelaunay()
+{
+  point *sortarray;
+  struct triedge hullleft, hullright;
+  int divider;
+  int i, j;
+
+  /* Allocate an array of pointers to points for sorting. */
+  sortarray = (point *) malloc(inpoints * sizeof(point));
+  if (sortarray == (point *) NULL) {
+    printf("Error:  Out of memory.\n");
+    exit(1);
+  }
+  traversalinit(&points);
+  for (i = 0; i < inpoints; i++) {
+    sortarray[i] = pointtraverse();
+  }
+  if (verbose) {
+    printf("  Sorting points.\n");
+  }
+  /* Sort the points. */
+  pointsort(sortarray, inpoints);
+  /* Discard duplicate points, which can really mess up the algorithm. */
+  i = 0;
+  for (j = 1; j < inpoints; j++) {
+    if ((sortarray[i][0] == sortarray[j][0])
+        && (sortarray[i][1] == sortarray[j][1])) {
+      if (!quiet) {
+        printf(
+"Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
+               sortarray[j][0], sortarray[j][1]);
+      }
+/*  Commented out - would eliminate point from output .node file, but causes
+    a failure if some segment has this point as an endpoint.
+      setpointmark(sortarray[j], DEADPOINT);
+*/
+    } else {
+      i++;
+      sortarray[i] = sortarray[j];
+    }
+  }
+  i++;
+  if (dwyer) {
+    /* Re-sort the array of points to accommodate alternating cuts. */
+    divider = i >> 1;
+    if (i - divider >= 2) {
+      if (divider >= 2) {
+        alternateaxes(sortarray, divider, 1);
+      }
+      alternateaxes(&sortarray[divider], i - divider, 1);
+    }
+  }
+  if (verbose) {
+    printf("  Forming triangulation.\n");
+  }
+  /* Form the Delaunay triangulation. */
+  divconqrecurse(sortarray, i, 0, &hullleft, &hullright);
+  free(sortarray);
+
+  return removeghosts(&hullleft);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Divide-and-conquer Delaunay triangulation ends here       *********/
+
+/********* Incremental Delaunay triangulation begins here            *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  boundingbox()   Form an "infinite" bounding triangle to insert points    */
+/*                  into.                                                    */
+/*                                                                           */
+/*  The points at "infinity" are assigned finite coordinates, which are used */
+/*  by the point location routines, but (mostly) ignored by the Delaunay     */
+/*  edge flip routines.                                                      */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+
+void boundingbox()
+{
+  struct triedge inftri;          /* Handle for the triangular bounding box. */
+  REAL width;
+
+  if (verbose) {
+    printf("  Creating triangular bounding box.\n");
+  }
+  /* Find the width (or height, whichever is larger) of the triangulation. */
+  width = xmax - xmin;
+  if (ymax - ymin > width) {
+    width = ymax - ymin;
+  }
+  if (width == 0.0) {
+    width = 1.0;
+  }
+  /* Create the vertices of the bounding box. */
+  infpoint1 = (point) malloc(points.itembytes);
+  infpoint2 = (point) malloc(points.itembytes);
+  infpoint3 = (point) malloc(points.itembytes);
+  if ((infpoint1 == (point) NULL) || (infpoint2 == (point) NULL)
+      || (infpoint3 == (point) NULL)) {
+    printf("Error:  Out of memory.\n");
+    exit(1);
+  }
+  infpoint1[0] = xmin - 50.0 * width;
+  infpoint1[1] = ymin - 40.0 * width;
+  infpoint2[0] = xmax + 50.0 * width;
+  infpoint2[1] = ymin - 40.0 * width;
+  infpoint3[0] = 0.5 * (xmin + xmax);
+  infpoint3[1] = ymax + 60.0 * width;
+
+  /* Create the bounding box. */
+  maketriangle(&inftri);
+  setorg(inftri, infpoint1);
+  setdest(inftri, infpoint2);
+  setapex(inftri, infpoint3);
+  /* Link dummytri to the bounding box so we can always find an */
+  /*   edge to begin searching (point location) from.           */
+  dummytri[0] = (triangle) inftri.tri;
+  if (verbose > 2) {
+    printf("  Creating ");
+    printtriangle(&inftri);
+  }
+}
+
+#endif /* not REDUCED */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  removebox()   Remove the "infinite" bounding triangle, setting boundary  */
+/*                markers as appropriate.                                    */
+/*                                                                           */
+/*  The triangular bounding box has three boundary triangles (one for each   */
+/*  side of the bounding box), and a bunch of triangles fanning out from     */
+/*  the three bounding box vertices (one triangle for each edge of the       */
+/*  convex hull of the inner mesh).  This routine removes these triangles.   */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+
+long removebox()
+{
+  struct triedge deadtri;
+  struct triedge searchedge;
+  struct triedge checkedge;
+  struct triedge nextedge, finaledge, dissolveedge;
+  point markorg;
+  long hullsize;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (verbose) {
+    printf("  Removing triangular bounding box.\n");
+  }
+  /* Find a boundary triangle. */
+  nextedge.tri = dummytri;
+  nextedge.orient = 0;
+  symself(nextedge);
+  /* Mark a place to stop. */
+  lprev(nextedge, finaledge);
+  lnextself(nextedge);
+  symself(nextedge);
+  /* Find a triangle (on the boundary of the point set) that isn't */
+  /*   a bounding box triangle.                                    */
+  lprev(nextedge, searchedge);
+  symself(searchedge);
+  /* Check whether nextedge is another boundary triangle */
+  /*   adjacent to the first one.                        */
+  lnext(nextedge, checkedge);
+  symself(checkedge);
+  if (checkedge.tri == dummytri) {
+    /* Go on to the next triangle.  There are only three boundary   */
+    /*   triangles, and this next triangle cannot be the third one, */
+    /*   so it's safe to stop here.                                 */
+    lprevself(searchedge);
+    symself(searchedge);
+  }
+  /* Find a new boundary edge to search from, as the current search */
+  /*   edge lies on a bounding box triangle and will be deleted.    */
+  dummytri[0] = encode(searchedge);
+  hullsize = -2l;
+  while (!triedgeequal(nextedge, finaledge)) {
+    hullsize++;
+    lprev(nextedge, dissolveedge);
+    symself(dissolveedge);
+    /* If not using a PSLG, the vertices should be marked now. */
+    /*   (If using a PSLG, markhull() will do the job.)        */
+    if (!poly) {
+      /* Be careful!  One must check for the case where all the input   */
+      /*   points are collinear, and thus all the triangles are part of */
+      /*   the bounding box.  Otherwise, the setpointmark() call below  */
+      /*   will cause a bad pointer reference.                          */
+      if (dissolveedge.tri != dummytri) {
+        org(dissolveedge, markorg);
+        if (pointmark(markorg) == 0) {
+          setpointmark(markorg, 1);
+        }
+      }
+    }
+    /* Disconnect the bounding box triangle from the mesh triangle. */
+    dissolve(dissolveedge);
+    lnext(nextedge, deadtri);
+    sym(deadtri, nextedge);
+    /* Get rid of the bounding box triangle. */
+    triangledealloc(deadtri.tri);
+    /* Do we need to turn the corner? */
+    if (nextedge.tri == dummytri) {
+      /* Turn the corner. */
+      triedgecopy(dissolveedge, nextedge);
+    }
+  }
+  triangledealloc(finaledge.tri);
+
+  free(infpoint1);                  /* Deallocate the bounding box vertices. */
+  free(infpoint2);
+  free(infpoint3);
+
+  return hullsize;
+}
+
+#endif /* not REDUCED */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  incrementaldelaunay()   Form a Delaunay triangulation by incrementally   */
+/*                          adding vertices.                                 */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+
+long incrementaldelaunay()
+{
+  struct triedge starttri;
+  point pointloop;
+  int i;
+
+  /* Create a triangular bounding box. */
+  boundingbox();
+  if (verbose) {
+    printf("  Incrementally inserting points.\n");
+  }
+  traversalinit(&points);
+  pointloop = pointtraverse();
+  i = 1;
+  while (pointloop != (point) NULL) {
+    /* Find a boundary triangle to search from. */
+    starttri.tri = (triangle *) NULL;
+    if (insertsite(pointloop, &starttri, (struct edge *) NULL, 0, 0) ==
+        DUPLICATEPOINT) {
+      if (!quiet) {
+        printf(
+"Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
+               pointloop[0], pointloop[1]);
+      }
+/*  Commented out - would eliminate point from output .node file.
+      setpointmark(pointloop, DEADPOINT);
+*/
+    }
+    pointloop = pointtraverse();
+    i++;
+  }
+  /* Remove the bounding box. */
+  return removebox();
+}
+
+#endif /* not REDUCED */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Incremental Delaunay triangulation ends here              *********/
+
+/********* Sweepline Delaunay triangulation begins here              *********/
+/**                                                                         **/
+/**                                                                         **/
+
+#ifndef REDUCED
+
+void eventheapinsert(heap, heapsize, newevent)
+struct event **heap;
+int heapsize;
+struct event *newevent;
+{
+  REAL eventx, eventy;
+  int eventnum;
+  int parent;
+  int notdone;
+
+  eventx = newevent->xkey;
+  eventy = newevent->ykey;
+  eventnum = heapsize;
+  notdone = eventnum > 0;
+  while (notdone) {
+    parent = (eventnum - 1) >> 1;
+    if ((heap[parent]->ykey < eventy) ||
+        ((heap[parent]->ykey == eventy)
+         && (heap[parent]->xkey <= eventx))) {
+      notdone = 0;
+    } else {
+      heap[eventnum] = heap[parent];
+      heap[eventnum]->heapposition = eventnum;
+
+      eventnum = parent;
+      notdone = eventnum > 0;
+    }
+  }
+  heap[eventnum] = newevent;
+  newevent->heapposition = eventnum;
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+void eventheapify(heap, heapsize, eventnum)
+struct event **heap;
+int heapsize;
+int eventnum;
+{
+  struct event *thisevent;
+  REAL eventx, eventy;
+  int leftchild, rightchild;
+  int smallest;
+  int notdone;
+
+  thisevent = heap[eventnum];
+  eventx = thisevent->xkey;
+  eventy = thisevent->ykey;
+  leftchild = 2 * eventnum + 1;
+  notdone = leftchild < heapsize;
+  while (notdone) {
+    if ((heap[leftchild]->ykey < eventy) ||
+        ((heap[leftchild]->ykey == eventy)
+         && (heap[leftchild]->xkey < eventx))) {
+      smallest = leftchild;
+    } else {
+      smallest = eventnum;
+    }
+    rightchild = leftchild + 1;
+    if (rightchild < heapsize) {
+      if ((heap[rightchild]->ykey < heap[smallest]->ykey) ||
+          ((heap[rightchild]->ykey == heap[smallest]->ykey)
+           && (heap[rightchild]->xkey < heap[smallest]->xkey))) {
+        smallest = rightchild;
+      }
+    }
+    if (smallest == eventnum) {
+      notdone = 0;
+    } else {
+      heap[eventnum] = heap[smallest];
+      heap[eventnum]->heapposition = eventnum;
+      heap[smallest] = thisevent;
+      thisevent->heapposition = smallest;
+
+      eventnum = smallest;
+      leftchild = 2 * eventnum + 1;
+      notdone = leftchild < heapsize;
+    }
+  }
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+void eventheapdelete(heap, heapsize, eventnum)
+struct event **heap;
+int heapsize;
+int eventnum;
+{
+  struct event *moveevent;
+  REAL eventx, eventy;
+  int parent;
+  int notdone;
+
+  moveevent = heap[heapsize - 1];
+  if (eventnum > 0) {
+    eventx = moveevent->xkey;
+    eventy = moveevent->ykey;
+    do {
+      parent = (eventnum - 1) >> 1;
+      if ((heap[parent]->ykey < eventy) ||
+          ((heap[parent]->ykey == eventy)
+           && (heap[parent]->xkey <= eventx))) {
+        notdone = 0;
+      } else {
+        heap[eventnum] = heap[parent];
+        heap[eventnum]->heapposition = eventnum;
+
+        eventnum = parent;
+        notdone = eventnum > 0;
+      }
+    } while (notdone);
+  }
+  heap[eventnum] = moveevent;
+  moveevent->heapposition = eventnum;
+  eventheapify(heap, heapsize - 1, eventnum);
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+void createeventheap(eventheap, events, freeevents)
+struct event ***eventheap;
+struct event **events;
+struct event **freeevents;
+{
+  point thispoint;
+  int maxevents;
+  int i;
+
+  maxevents = (3 * inpoints) / 2;
+  *eventheap = (struct event **) malloc(maxevents * sizeof(struct event *));
+  if (*eventheap == (struct event **) NULL) {
+    printf("Error:  Out of memory.\n");
+    exit(1);
+  }
+  *events = (struct event *) malloc(maxevents * sizeof(struct event));
+  if (*events == (struct event *) NULL) {
+    printf("Error:  Out of memory.\n");
+    exit(1);
+  }
+  traversalinit(&points);
+  for (i = 0; i < inpoints; i++) {
+    thispoint = pointtraverse();
+    (*events)[i].eventptr = (VOID *) thispoint;
+    (*events)[i].xkey = thispoint[0];
+    (*events)[i].ykey = thispoint[1];
+    eventheapinsert(*eventheap, i, *events + i);
+  }
+  *freeevents = (struct event *) NULL;
+  for (i = maxevents - 1; i >= inpoints; i--) {
+    (*events)[i].eventptr = (VOID *) *freeevents;
+    *freeevents = *events + i;
+  }
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+int rightofhyperbola(fronttri, newsite)
+struct triedge *fronttri;
+point newsite;
+{
+  point leftpoint, rightpoint;
+  REAL dxa, dya, dxb, dyb;
+
+  hyperbolacount++;
+
+  dest(*fronttri, leftpoint);
+  apex(*fronttri, rightpoint);
+  if ((leftpoint[1] < rightpoint[1])
+      || ((leftpoint[1] == rightpoint[1]) && (leftpoint[0] < rightpoint[0]))) {
+    if (newsite[0] >= rightpoint[0]) {
+      return 1;
+    }
+  } else {
+    if (newsite[0] <= leftpoint[0]) {
+      return 0;
+    }
+  }
+  dxa = leftpoint[0] - newsite[0];
+  dya = leftpoint[1] - newsite[1];
+  dxb = rightpoint[0] - newsite[0];
+  dyb = rightpoint[1] - newsite[1];
+  return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+REAL circletop(pa, pb, pc, ccwabc)
+point pa;
+point pb;
+point pc;
+REAL ccwabc;
+{
+  REAL xac, yac, xbc, ybc, xab, yab;
+  REAL aclen2, bclen2, ablen2;
+
+  circletopcount++;
+
+  xac = pa[0] - pc[0];
+  yac = pa[1] - pc[1];
+  xbc = pb[0] - pc[0];
+  ybc = pb[1] - pc[1];
+  xab = pa[0] - pb[0];
+  yab = pa[1] - pb[1];
+  aclen2 = xac * xac + yac * yac;
+  bclen2 = xbc * xbc + ybc * ybc;
+  ablen2 = xab * xab + yab * yab;
+  return pc[1] + (xac * bclen2 - xbc * aclen2 + sqrt(aclen2 * bclen2 * ablen2))
+               / (2.0 * ccwabc);
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+void check4deadevent(checktri, freeevents, eventheap, heapsize)
+struct triedge *checktri;
+struct event **freeevents;
+struct event **eventheap;
+int *heapsize;
+{
+  struct event *deadevent;
+  point eventpoint;
+  int eventnum;
+
+  org(*checktri, eventpoint);
+  if (eventpoint != (point) NULL) {
+    deadevent = (struct event *) eventpoint;
+    eventnum = deadevent->heapposition;
+    deadevent->eventptr = (VOID *) *freeevents;
+    *freeevents = deadevent;
+    eventheapdelete(eventheap, *heapsize, eventnum);
+    (*heapsize)--;
+    setorg(*checktri, NULL);
+  }
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+struct splaynode *splay(splaytree, searchpoint, searchtri)
+struct splaynode *splaytree;
+point searchpoint;
+struct triedge *searchtri;
+{
+  struct splaynode *child, *grandchild;
+  struct splaynode *lefttree, *righttree;
+  struct splaynode *leftright;
+  point checkpoint;
+  int rightofroot, rightofchild;
+
+  if (splaytree == (struct splaynode *) NULL) {
+    return (struct splaynode *) NULL;
+  }
+  dest(splaytree->keyedge, checkpoint);
+  if (checkpoint == splaytree->keydest) {
+    rightofroot = rightofhyperbola(&splaytree->keyedge, searchpoint);
+    if (rightofroot) {
+      triedgecopy(splaytree->keyedge, *searchtri);
+      child = splaytree->rchild;
+    } else {
+      child = splaytree->lchild;
+    }
+    if (child == (struct splaynode *) NULL) {
+      return splaytree;
+    }
+    dest(child->keyedge, checkpoint);
+    if (checkpoint != child->keydest) {
+      child = splay(child, searchpoint, searchtri);
+      if (child == (struct splaynode *) NULL) {
+        if (rightofroot) {
+          splaytree->rchild = (struct splaynode *) NULL;
+        } else {
+          splaytree->lchild = (struct splaynode *) NULL;
+        }
+        return splaytree;
+      }
+    }
+    rightofchild = rightofhyperbola(&child->keyedge, searchpoint);
+    if (rightofchild) {
+      triedgecopy(child->keyedge, *searchtri);
+      grandchild = splay(child->rchild, searchpoint, searchtri);
+      child->rchild = grandchild;
+    } else {
+      grandchild = splay(child->lchild, searchpoint, searchtri);
+      child->lchild = grandchild;
+    }
+    if (grandchild == (struct splaynode *) NULL) {
+      if (rightofroot) {
+        splaytree->rchild = child->lchild;
+        child->lchild = splaytree;
+      } else {
+        splaytree->lchild = child->rchild;
+        child->rchild = splaytree;
+      }
+      return child;
+    }
+    if (rightofchild) {
+      if (rightofroot) {
+        splaytree->rchild = child->lchild;
+        child->lchild = splaytree;
+      } else {
+        splaytree->lchild = grandchild->rchild;
+        grandchild->rchild = splaytree;
+      }
+      child->rchild = grandchild->lchild;
+      grandchild->lchild = child;
+    } else {
+      if (rightofroot) {
+        splaytree->rchild = grandchild->lchild;
+        grandchild->lchild = splaytree;
+      } else {
+        splaytree->lchild = child->rchild;
+        child->rchild = splaytree;
+      }
+      child->lchild = grandchild->rchild;
+      grandchild->rchild = child;
+    }
+    return grandchild;
+  } else {
+    lefttree = splay(splaytree->lchild, searchpoint, searchtri);
+    righttree = splay(splaytree->rchild, searchpoint, searchtri);
+
+    pooldealloc(&splaynodes, (VOID *) splaytree);
+    if (lefttree == (struct splaynode *) NULL) {
+      return righttree;
+    } else if (righttree == (struct splaynode *) NULL) {
+      return lefttree;
+    } else if (lefttree->rchild == (struct splaynode *) NULL) {
+      lefttree->rchild = righttree->lchild;
+      righttree->lchild = lefttree;
+      return righttree;
+    } else if (righttree->lchild == (struct splaynode *) NULL) {
+      righttree->lchild = lefttree->rchild;
+      lefttree->rchild = righttree;
+      return lefttree;
+    } else {
+/*      printf("Holy Toledo!!!\n"); */
+      leftright = lefttree->rchild;
+      while (leftright->rchild != (struct splaynode *) NULL) {
+        leftright = leftright->rchild;
+      }
+      leftright->rchild = righttree;
+      return lefttree;
+    }
+  }
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+struct splaynode *splayinsert(splayroot, newkey, searchpoint)
+struct splaynode *splayroot;
+struct triedge *newkey;
+point searchpoint;
+{
+  struct splaynode *newsplaynode;
+
+  newsplaynode = (struct splaynode *) poolalloc(&splaynodes);
+  triedgecopy(*newkey, newsplaynode->keyedge);
+  dest(*newkey, newsplaynode->keydest);
+  if (splayroot == (struct splaynode *) NULL) {
+    newsplaynode->lchild = (struct splaynode *) NULL;
+    newsplaynode->rchild = (struct splaynode *) NULL;
+  } else if (rightofhyperbola(&splayroot->keyedge, searchpoint)) {
+    newsplaynode->lchild = splayroot;
+    newsplaynode->rchild = splayroot->rchild;
+    splayroot->rchild = (struct splaynode *) NULL;
+  } else {
+    newsplaynode->lchild = splayroot->lchild;
+    newsplaynode->rchild = splayroot;
+    splayroot->lchild = (struct splaynode *) NULL;
+  }
+  return newsplaynode;
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+struct splaynode *circletopinsert(splayroot, newkey, pa, pb, pc, topy)
+struct splaynode *splayroot;
+struct triedge *newkey;
+point pa;
+point pb;
+point pc;
+REAL topy;
+{
+  REAL ccwabc;
+  REAL xac, yac, xbc, ybc;
+  REAL aclen2, bclen2;
+  REAL searchpoint[2];
+  struct triedge dummytri;
+
+  ccwabc = counterclockwise(pa, pb, pc);
+  xac = pa[0] - pc[0];
+  yac = pa[1] - pc[1];
+  xbc = pb[0] - pc[0];
+  ybc = pb[1] - pc[1];
+  aclen2 = xac * xac + yac * yac;
+  bclen2 = xbc * xbc + ybc * ybc;
+  searchpoint[0] = pc[0] - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);
+  searchpoint[1] = topy;
+  return splayinsert(splay(splayroot, (point) searchpoint, &dummytri), newkey,
+                     (point) searchpoint);
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+struct splaynode *frontlocate(splayroot, bottommost, searchpoint, searchtri,
+                              farright)
+struct splaynode *splayroot;
+struct triedge *bottommost;
+point searchpoint;
+struct triedge *searchtri;
+int *farright;
+{
+  int farrightflag;
+  triangle ptr;                       /* Temporary variable used by onext(). */
+
+  triedgecopy(*bottommost, *searchtri);
+  splayroot = splay(splayroot, searchpoint, searchtri);
+
+  farrightflag = 0;
+  while (!farrightflag && rightofhyperbola(searchtri, searchpoint)) {
+    onextself(*searchtri);
+    farrightflag = triedgeequal(*searchtri, *bottommost);
+  }
+  *farright = farrightflag;
+  return splayroot;
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+long sweeplinedelaunay()
+{
+  struct event **eventheap;
+  struct event *events;
+  struct event *freeevents;
+  struct event *nextevent;
+  struct event *newevent;
+  struct splaynode *splayroot;
+  struct triedge bottommost;
+  struct triedge searchtri;
+  struct triedge fliptri;
+  struct triedge lefttri, righttri, farlefttri, farrighttri;
+  struct triedge inserttri;
+  point firstpoint, secondpoint;
+  point nextpoint, lastpoint;
+  point connectpoint;
+  point leftpoint, midpoint, rightpoint;
+  REAL lefttest, righttest;
+  int heapsize;
+  int check4events, farrightflag;
+  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
+
+  poolinit(&splaynodes, sizeof(struct splaynode), SPLAYNODEPERBLOCK, POINTER,
+           0);
+  splayroot = (struct splaynode *) NULL;
+
+  if (verbose) {
+    printf("  Placing points in event heap.\n");
+  }
+  createeventheap(&eventheap, &events, &freeevents);
+  heapsize = inpoints;
+
+  if (verbose) {
+    printf("  Forming triangulation.\n");
+  }
+  maketriangle(&lefttri);
+  maketriangle(&righttri);
+  bond(lefttri, righttri);
+  lnextself(lefttri);
+  lprevself(righttri);
+  bond(lefttri, righttri);
+  lnextself(lefttri);
+  lprevself(righttri);
+  bond(lefttri, righttri);
+  firstpoint = (point) eventheap[0]->eventptr;
+  eventheap[0]->eventptr = (VOID *) freeevents;
+  freeevents = eventheap[0];
+  eventheapdelete(eventheap, heapsize, 0);
+  heapsize--;
+  do {
+    if (heapsize == 0) {
+      printf("Error:  Input points are all identical.\n");
+      exit(1);
+    }
+    secondpoint = (point) eventheap[0]->eventptr;
+    eventheap[0]->eventptr = (VOID *) freeevents;
+    freeevents = eventheap[0];
+    eventheapdelete(eventheap, heapsize, 0);
+    heapsize--;
+    if ((firstpoint[0] == secondpoint[0])
+        && (firstpoint[1] == secondpoint[1])) {
+      printf(
+"Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
+             secondpoint[0], secondpoint[1]);
+/*  Commented out - would eliminate point from output .node file.
+      setpointmark(secondpoint, DEADPOINT);
+*/
+    }
+  } while ((firstpoint[0] == secondpoint[0])
+           && (firstpoint[1] == secondpoint[1]));
+  setorg(lefttri, firstpoint);
+  setdest(lefttri, secondpoint);
+  setorg(righttri, secondpoint);
+  setdest(righttri, firstpoint);
+  lprev(lefttri, bottommost);
+  lastpoint = secondpoint;
+  while (heapsize > 0) {
+    nextevent = eventheap[0];
+    eventheapdelete(eventheap, heapsize, 0);
+    heapsize--;
+    check4events = 1;
+    if (nextevent->xkey < xmin) {
+      decode(nextevent->eventptr, fliptri);
+      oprev(fliptri, farlefttri);
+      check4deadevent(&farlefttri, &freeevents, eventheap, &heapsize);
+      onext(fliptri, farrighttri);
+      check4deadevent(&farrighttri, &freeevents, eventheap, &heapsize);
+
+      if (triedgeequal(farlefttri, bottommost)) {
+        lprev(fliptri, bottommost);
+      }
+      flip(&fliptri);
+      setapex(fliptri, NULL);
+      lprev(fliptri, lefttri);
+      lnext(fliptri, righttri);
+      sym(lefttri, farlefttri);
+
+      if (randomnation(SAMPLERATE) == 0) {
+        symself(fliptri);
+        dest(fliptri, leftpoint);
+        apex(fliptri, midpoint);
+        org(fliptri, rightpoint);
+        splayroot = circletopinsert(splayroot, &lefttri, leftpoint, midpoint,
+                                    rightpoint, nextevent->ykey);
+      }
+    } else {
+      nextpoint = (point) nextevent->eventptr;
+      if ((nextpoint[0] == lastpoint[0]) && (nextpoint[1] == lastpoint[1])) {
+        printf(
+"Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
+               nextpoint[0], nextpoint[1]);
+/*  Commented out - would eliminate point from output .node file.
+        setpointmark(nextpoint, DEADPOINT);
+*/
+        check4events = 0;
+      } else {
+        lastpoint = nextpoint;
+
+        splayroot = frontlocate(splayroot, &bottommost, nextpoint, &searchtri,
+                                &farrightflag);
+/*
+        triedgecopy(bottommost, searchtri);
+        farrightflag = 0;
+        while (!farrightflag && rightofhyperbola(&searchtri, nextpoint)) {
+          onextself(searchtri);
+          farrightflag = triedgeequal(searchtri, bottommost);
+        }
+*/
+
+        check4deadevent(&searchtri, &freeevents, eventheap, &heapsize);
+
+        triedgecopy(searchtri, farrighttri);
+        sym(searchtri, farlefttri);
+        maketriangle(&lefttri);
+        maketriangle(&righttri);
+        dest(farrighttri, connectpoint);
+        setorg(lefttri, connectpoint);
+        setdest(lefttri, nextpoint);
+        setorg(righttri, nextpoint);
+        setdest(righttri, connectpoint);
+        bond(lefttri, righttri);
+        lnextself(lefttri);
+        lprevself(righttri);
+        bond(lefttri, righttri);
+        lnextself(lefttri);
+        lprevself(righttri);
+        bond(lefttri, farlefttri);
+        bond(righttri, farrighttri);
+        if (!farrightflag && triedgeequal(farrighttri, bottommost)) {
+          triedgecopy(lefttri, bottommost);
+        }
+
+        if (randomnation(SAMPLERATE) == 0) {
+          splayroot = splayinsert(splayroot, &lefttri, nextpoint);
+        } else if (randomnation(SAMPLERATE) == 0) {
+          lnext(righttri, inserttri);
+          splayroot = splayinsert(splayroot, &inserttri, nextpoint);
+        }
+      }
+    }
+    nextevent->eventptr = (VOID *) freeevents;
+    freeevents = nextevent;
+
+    if (check4events) {
+      apex(farlefttri, leftpoint);
+      dest(lefttri, midpoint);
+      apex(lefttri, rightpoint);
+      lefttest = counterclockwise(leftpoint, midpoint, rightpoint);
+      if (lefttest > 0.0) {
+        newevent = freeevents;
+        freeevents = (struct event *) freeevents->eventptr;
+        newevent->xkey = xminextreme;
+        newevent->ykey = circletop(leftpoint, midpoint, rightpoint,
+                                   lefttest);
+        newevent->eventptr = (VOID *) encode(lefttri);
+        eventheapinsert(eventheap, heapsize, newevent);
+        heapsize++;
+        setorg(lefttri, newevent);
+      }
+      apex(righttri, leftpoint);
+      org(righttri, midpoint);
+      apex(farrighttri, rightpoint);
+      righttest = counterclockwise(leftpoint, midpoint, rightpoint);
+      if (righttest > 0.0) {
+        newevent = freeevents;
+        freeevents = (struct event *) freeevents->eventptr;
+        newevent->xkey = xminextreme;
+        newevent->ykey = circletop(leftpoint, midpoint, rightpoint,
+                                   righttest);
+        newevent->eventptr = (VOID *) encode(farrighttri);
+        eventheapinsert(eventheap, heapsize, newevent);
+        heapsize++;
+        setorg(farrighttri, newevent);
+      }
+    }
+  }
+
+  pooldeinit(&splaynodes);
+  lprevself(bottommost);
+  return removeghosts(&bottommost);
+}
+
+#endif /* not REDUCED */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Sweepline Delaunay triangulation ends here                *********/
+
+/********* General mesh construction routines begin here             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  delaunay()   Form a Delaunay triangulation.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+long delaunay()
+{
+  eextras = 0;
+  initializetrisegpools();
+
+#ifdef REDUCED
+  if (!quiet) {
+    printf(
+      "Constructing Delaunay triangulation by divide-and-conquer method.\n");
+  }
+  return divconqdelaunay();
+#else /* not REDUCED */
+  if (!quiet) {
+    printf("Constructing Delaunay triangulation ");
+    if (incremental) {
+      printf("by incremental method.\n");
+    } else if (sweepline) {
+      printf("by sweepline method.\n");
+    } else {
+      printf("by divide-and-conquer method.\n");
+    }
+  }
+  if (incremental) {
+    return incrementaldelaunay();
+  } else if (sweepline) {
+    return sweeplinedelaunay();
+  } else {
+    return divconqdelaunay();
+  }
+#endif /* not REDUCED */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  reconstruct()   Reconstruct a triangulation from its .ele (and possibly  */
+/*                  .poly) file.  Used when the -r switch is used.           */
+/*                                                                           */
+/*  Reads an .ele file and reconstructs the original mesh.  If the -p switch */
+/*  is used, this procedure will also read a .poly file and reconstruct the  */
+/*  shell edges of the original mesh.  If the -a switch is used, this        */
+/*  procedure will also read an .area file and set a maximum area constraint */
+/*  on each triangle.                                                        */
+/*                                                                           */
+/*  Points that are not corners of triangles, such as nodes on edges of      */
+/*  subparametric elements, are discarded.                                   */
+/*                                                                           */
+/*  This routine finds the adjacencies between triangles (and shell edges)   */
+/*  by forming one stack of triangles for each vertex.  Each triangle is on  */
+/*  three different stacks simultaneously.  Each triangle's shell edge       */
+/*  pointers are used to link the items in each stack.  This memory-saving   */
+/*  feature makes the code harder to read.  The most important thing to keep */
+/*  in mind is that each triangle is removed from a stack precisely when     */
+/*  the corresponding pointer is adjusted to refer to a shell edge rather    */
+/*  than the next triangle of the stack.                                     */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef TRILIBRARY
+
+int reconstruct(trianglelist, triangleattriblist, trianglearealist, elements,
+                corners, attribs, segmentlist, segmentmarkerlist,
+                numberofsegments)
+int *trianglelist;
+REAL *triangleattriblist;
+REAL *trianglearealist;
+int elements;
+int corners;
+int attribs;
+int *segmentlist;
+int *segmentmarkerlist;
+int numberofsegments;
+
+#else /* not TRILIBRARY */
+
+long reconstruct(elefilename, areafilename, polyfilename, polyfile)
+char *elefilename;
+char *areafilename;
+char *polyfilename;
+FILE *polyfile;
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  int pointindex;
+  int attribindex;
+#else /* not TRILIBRARY */
+  FILE *elefile;
+  FILE *areafile;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  int areaelements;
+#endif /* not TRILIBRARY */
+  struct triedge triangleloop;
+  struct triedge triangleleft;
+  struct triedge checktri;
+  struct triedge checkleft;
+  struct triedge checkneighbor;
+  struct edge shelleloop;
+  triangle *vertexarray;
+  triangle *prevlink;
+  triangle nexttri;
+  point tdest, tapex;
+  point checkdest, checkapex;
+  point shorg;
+  point killpoint;
+  REAL area;
+  int corner[3];
+  int end[2];
+  int killpointindex;
+  int incorners;
+  int segmentmarkers;
+  int boundmarker;
+  int aroundpoint;
+  long hullsize;
+  int notfound;
+  int elementnumber, segmentnumber;
+  int i, j;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+#ifdef TRILIBRARY
+  inelements = elements;
+  incorners = corners;
+  if (incorners < 3) {
+    printf("Error:  Triangles must have at least 3 points.\n");
+    exit(1);
+  }
+  eextras = attribs;
+#else /* not TRILIBRARY */
+  /* Read the triangles from an .ele file. */
+  if (!quiet) {
+    printf("Opening %s.\n", elefilename);
+  }
+  elefile = fopen(elefilename, "r");
+  if (elefile == (FILE *) NULL) {
+    printf("  Error:  Cannot access file %s.\n", elefilename);
+    exit(1);
+  }
+  /* Read number of triangles, number of points per triangle, and */
+  /*   number of triangle attributes from .ele file.              */
+  stringptr = readline(inputline, elefile, elefilename);
+  inelements = (int) strtol (stringptr, &stringptr, 0);
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    incorners = 3;
+  } else {
+    incorners = (int) strtol (stringptr, &stringptr, 0);
+    if (incorners < 3) {
+      printf("Error:  Triangles in %s must have at least 3 points.\n",
+             elefilename);
+      exit(1);
+    }
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    eextras = 0;
+  } else {
+    eextras = (int) strtol (stringptr, &stringptr, 0);
+  }
+#endif /* not TRILIBRARY */
+
+  initializetrisegpools();
+
+  /* Create the triangles. */
+  for (elementnumber = 1; elementnumber <= inelements; elementnumber++) {
+    maketriangle(&triangleloop);
+    /* Mark the triangle as living. */
+    triangleloop.tri[3] = (triangle) triangleloop.tri;
+  }
+
+  if (poly) {
+#ifdef TRILIBRARY
+    insegments = numberofsegments;
+    segmentmarkers = segmentmarkerlist != (int *) NULL;
+#else /* not TRILIBRARY */
+    /* Read number of segments and number of segment */
+    /*   boundary markers from .poly file.           */
+    stringptr = readline(inputline, polyfile, inpolyfilename);
+    insegments = (int) strtol (stringptr, &stringptr, 0);
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      segmentmarkers = 0;
+    } else {
+      segmentmarkers = (int) strtol (stringptr, &stringptr, 0);
+    }
+#endif /* not TRILIBRARY */
+
+    /* Create the shell edges. */
+    for (segmentnumber = 1; segmentnumber <= insegments; segmentnumber++) {
+      makeshelle(&shelleloop);
+      /* Mark the shell edge as living. */
+      shelleloop.sh[2] = (shelle) shelleloop.sh;
+    }
+  }
+
+#ifdef TRILIBRARY
+  pointindex = 0;
+  attribindex = 0;
+#else /* not TRILIBRARY */
+  if (vararea) {
+    /* Open an .area file, check for consistency with the .ele file. */
+    if (!quiet) {
+      printf("Opening %s.\n", areafilename);
+    }
+    areafile = fopen(areafilename, "r");
+    if (areafile == (FILE *) NULL) {
+      printf("  Error:  Cannot access file %s.\n", areafilename);
+      exit(1);
+    }
+    stringptr = readline(inputline, areafile, areafilename);
+    areaelements = (int) strtol (stringptr, &stringptr, 0);
+    if (areaelements != inelements) {
+      printf("Error:  %s and %s disagree on number of triangles.\n",
+             elefilename, areafilename);
+      exit(1);
+    }
+  }
+#endif /* not TRILIBRARY */
+
+  if (!quiet) {
+    printf("Reconstructing mesh.\n");
+  }
+  /* Allocate a temporary array that maps each point to some adjacent  */
+  /*   triangle.  I took care to allocate all the permanent memory for */
+  /*   triangles and shell edges first.                                */
+  vertexarray = (triangle *) malloc(points.items * sizeof(triangle));
+  if (vertexarray == (triangle *) NULL) {
+    printf("Error:  Out of memory.\n");
+    exit(1);
+  }
+  /* Each point is initially unrepresented. */
+  for (i = 0; i < points.items; i++) {
+    vertexarray[i] = (triangle) dummytri;
+  }
+
+  if (verbose) {
+    printf("  Assembling triangles.\n");
+  }
+  /* Read the triangles from the .ele file, and link */
+  /*   together those that share an edge.            */
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  elementnumber = firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+#ifdef TRILIBRARY
+    /* Copy the triangle's three corners. */
+    for (j = 0; j < 3; j++) {
+      corner[j] = trianglelist[pointindex++];
+      if ((corner[j] < firstnumber) || (corner[j] >= firstnumber + inpoints)) {
+        printf("Error:  Triangle %d has an invalid vertex index.\n",
+               elementnumber);
+        exit(1);
+      }
+    }
+#else /* not TRILIBRARY */
+    /* Read triangle number and the triangle's three corners. */
+    stringptr = readline(inputline, elefile, elefilename);
+    for (j = 0; j < 3; j++) {
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Triangle %d is missing point %d in %s.\n",
+               elementnumber, j + 1, elefilename);
+        exit(1);
+      } else {
+        corner[j] = (int) strtol (stringptr, &stringptr, 0);
+        if ((corner[j] < firstnumber) ||
+            (corner[j] >= firstnumber + inpoints)) {
+          printf("Error:  Triangle %d has an invalid vertex index.\n",
+                 elementnumber);
+          exit(1);
+        }
+      }
+    }
+#endif /* not TRILIBRARY */
+
+    /* Find out about (and throw away) extra nodes. */
+    for (j = 3; j < incorners; j++) {
+#ifdef TRILIBRARY
+      killpointindex = trianglelist[pointindex++];
+#else /* not TRILIBRARY */
+      stringptr = findfield(stringptr);
+      if (*stringptr != '\0') {
+        killpointindex = (int) strtol (stringptr, &stringptr, 0);
+#endif /* not TRILIBRARY */
+        if ((killpointindex >= firstnumber) &&
+            (killpointindex < firstnumber + inpoints)) {
+          /* Delete the non-corner point if it's not already deleted. */
+          killpoint = getpoint(killpointindex);
+          if (pointmark(killpoint) != DEADPOINT) {
+            pointdealloc(killpoint);
+          }
+        }
+#ifndef TRILIBRARY
+      }
+#endif /* not TRILIBRARY */
+    }
+
+    /* Read the triangle's attributes. */
+    for (j = 0; j < eextras; j++) {
+#ifdef TRILIBRARY
+      setelemattribute(triangleloop, j, triangleattriblist[attribindex++]);
+#else /* not TRILIBRARY */
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        setelemattribute(triangleloop, j, 0);
+      } else {
+        setelemattribute(triangleloop, j,
+                         (REAL) strtod (stringptr, &stringptr));
+      }
+#endif /* not TRILIBRARY */
+    }
+
+    if (vararea) {
+#ifdef TRILIBRARY
+      area = trianglearealist[elementnumber - firstnumber];
+#else /* not TRILIBRARY */
+      /* Read an area constraint from the .area file. */
+      stringptr = readline(inputline, areafile, areafilename);
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        area = -1.0;                      /* No constraint on this triangle. */
+      } else {
+        area = (REAL) strtod(stringptr, &stringptr);
+      }
+#endif /* not TRILIBRARY */
+      setareabound(triangleloop, area);
+    }
+
+    /* Set the triangle's vertices. */
+    triangleloop.orient = 0;
+    setorg(triangleloop, getpoint(corner[0]));
+    setdest(triangleloop, getpoint(corner[1]));
+    setapex(triangleloop, getpoint(corner[2]));
+    /* Try linking the triangle to others that share these vertices. */
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      /* Take the number for the origin of triangleloop. */
+      aroundpoint = corner[triangleloop.orient];
+      /* Look for other triangles having this vertex. */
+      nexttri = vertexarray[aroundpoint - firstnumber];
+      /* Link the current triangle to the next one in the stack. */
+      triangleloop.tri[6 + triangleloop.orient] = nexttri;
+      /* Push the current triangle onto the stack. */
+      vertexarray[aroundpoint - firstnumber] = encode(triangleloop);
+      decode(nexttri, checktri);
+      if (checktri.tri != dummytri) {
+        dest(triangleloop, tdest);
+        apex(triangleloop, tapex);
+        /* Look for other triangles that share an edge. */
+        do {
+          dest(checktri, checkdest);
+          apex(checktri, checkapex);
+          if (tapex == checkdest) {
+            /* The two triangles share an edge; bond them together. */
+            lprev(triangleloop, triangleleft);
+            bond(triangleleft, checktri);
+          }
+          if (tdest == checkapex) {
+            /* The two triangles share an edge; bond them together. */
+            lprev(checktri, checkleft);
+            bond(triangleloop, checkleft);
+          }
+          /* Find the next triangle in the stack. */
+          nexttri = checktri.tri[6 + checktri.orient];
+          decode(nexttri, checktri);
+        } while (checktri.tri != dummytri);
+      }
+    }
+    triangleloop.tri = triangletraverse();
+    elementnumber++;
+  }
+
+#ifdef TRILIBRARY
+  pointindex = 0;
+#else /* not TRILIBRARY */
+  fclose(elefile);
+  if (vararea) {
+    fclose(areafile);
+  }
+#endif /* not TRILIBRARY */
+
+  hullsize = 0;                      /* Prepare to count the boundary edges. */
+  if (poly) {
+    if (verbose) {
+      printf("  Marking segments in triangulation.\n");
+    }
+    /* Read the segments from the .poly file, and link them */
+    /*   to their neighboring triangles.                    */
+    boundmarker = 0;
+    traversalinit(&shelles);
+    shelleloop.sh = shelletraverse();
+    segmentnumber = firstnumber;
+    while (shelleloop.sh != (shelle *) NULL) {
+#ifdef TRILIBRARY
+      end[0] = segmentlist[pointindex++];
+      end[1] = segmentlist[pointindex++];
+      if (segmentmarkers) {
+        boundmarker = segmentmarkerlist[segmentnumber - firstnumber];
+      }
+#else /* not TRILIBRARY */
+      /* Read the endpoints of each segment, and possibly a boundary marker. */
+      stringptr = readline(inputline, polyfile, inpolyfilename);
+      /* Skip the first (segment number) field. */
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Segment %d has no endpoints in %s.\n", segmentnumber,
+               polyfilename);
+        exit(1);
+      } else {
+        end[0] = (int) strtol (stringptr, &stringptr, 0);
+      }
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Segment %d is missing its second endpoint in %s.\n",
+               segmentnumber, polyfilename);
+        exit(1);
+      } else {
+        end[1] = (int) strtol (stringptr, &stringptr, 0);
+      }
+      if (segmentmarkers) {
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          boundmarker = 0;
+        } else {
+          boundmarker = (int) strtol (stringptr, &stringptr, 0);
+        }
+      }
+#endif /* not TRILIBRARY */
+      for (j = 0; j < 2; j++) {
+        if ((end[j] < firstnumber) || (end[j] >= firstnumber + inpoints)) {
+          printf("Error:  Segment %d has an invalid vertex index.\n", 
+                 segmentnumber);
+          exit(1);
+        }
+      }
+
+      /* set the shell edge's vertices. */
+      shelleloop.shorient = 0;
+      setsorg(shelleloop, getpoint(end[0]));
+      setsdest(shelleloop, getpoint(end[1]));
+      setmark(shelleloop, boundmarker);
+      /* Try linking the shell edge to triangles that share these vertices. */
+      for (shelleloop.shorient = 0; shelleloop.shorient < 2;
+           shelleloop.shorient++) {
+        /* Take the number for the destination of shelleloop. */
+        aroundpoint = end[1 - shelleloop.shorient];
+        /* Look for triangles having this vertex. */
+        prevlink = &vertexarray[aroundpoint - firstnumber];
+        nexttri = vertexarray[aroundpoint - firstnumber];
+        decode(nexttri, checktri);
+        sorg(shelleloop, shorg);
+        notfound = 1;
+        /* Look for triangles having this edge.  Note that I'm only       */
+        /*   comparing each triangle's destination with the shell edge;   */
+        /*   each triangle's apex is handled through a different vertex.  */
+        /*   Because each triangle appears on three vertices' lists, each */
+        /*   occurrence of a triangle on a list can (and does) represent  */
+        /*   an edge.  In this way, most edges are represented twice, and */
+        /*   every triangle-segment bond is represented once.             */
+        while (notfound && (checktri.tri != dummytri)) {
+          dest(checktri, checkdest);
+          if (shorg == checkdest) {
+            /* We have a match.  Remove this triangle from the list. */
+            *prevlink = checktri.tri[6 + checktri.orient];
+            /* Bond the shell edge to the triangle. */
+            tsbond(checktri, shelleloop);
+            /* Check if this is a boundary edge. */
+            sym(checktri, checkneighbor);
+            if (checkneighbor.tri == dummytri) {
+              /* The next line doesn't insert a shell edge (because there's */
+              /*   already one there), but it sets the boundary markers of  */
+              /*   the existing shell edge and its vertices.                */
+              insertshelle(&checktri, 1);
+              hullsize++;
+            }
+            notfound = 0;
+          }
+          /* Find the next triangle in the stack. */
+          prevlink = &checktri.tri[6 + checktri.orient];
+          nexttri = checktri.tri[6 + checktri.orient];
+          decode(nexttri, checktri);
+        }
+      }
+      shelleloop.sh = shelletraverse();
+      segmentnumber++;
+    }
+  }
+
+  /* Mark the remaining edges as not being attached to any shell edge. */
+  /* Also, count the (yet uncounted) boundary edges.                   */
+  for (i = 0; i < points.items; i++) {
+    /* Search the stack of triangles adjacent to a point. */
+    nexttri = vertexarray[i];
+    decode(nexttri, checktri);
+    while (checktri.tri != dummytri) {
+      /* Find the next triangle in the stack before this */
+      /*   information gets overwritten.                 */
+      nexttri = checktri.tri[6 + checktri.orient];
+      /* No adjacent shell edge.  (This overwrites the stack info.) */
+      tsdissolve(checktri);
+      sym(checktri, checkneighbor);
+      if (checkneighbor.tri == dummytri) {
+        insertshelle(&checktri, 1);
+        hullsize++;
+      }
+      decode(nexttri, checktri);
+    }
+  }
+
+  free(vertexarray);
+  return hullsize;
+}
+
+#endif /* not CDT_ONLY */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* General mesh construction routines end here               *********/
+
+/********* Segment (shell edge) insertion begins here                *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  finddirection()   Find the first triangle on the path from one point     */
+/*                    to another.                                            */
+/*                                                                           */
+/*  Finds the triangle that intersects a line segment drawn from the         */
+/*  origin of `searchtri' to the point `endpoint', and returns the result    */
+/*  in `searchtri'.  The origin of `searchtri' does not change, even though  */
+/*  the triangle returned may differ from the one passed in.  This routine   */
+/*  is used to find the direction to move in to get from one point to        */
+/*  another.                                                                 */
+/*                                                                           */
+/*  The return value notes whether the destination or apex of the found      */
+/*  triangle is collinear with the two points in question.                   */
+/*                                                                           */
+/*****************************************************************************/
+
+enum finddirectionresult finddirection(searchtri, endpoint)
+struct triedge *searchtri;
+point endpoint;
+{
+  struct triedge checktri;
+  point startpoint;
+  point leftpoint, rightpoint;
+  REAL leftccw, rightccw;
+  int leftflag, rightflag;
+  triangle ptr;           /* Temporary variable used by onext() and oprev(). */
+
+  org(*searchtri, startpoint);
+  dest(*searchtri, rightpoint);
+  apex(*searchtri, leftpoint);
+  /* Is `endpoint' to the left? */
+  leftccw = counterclockwise(endpoint, startpoint, leftpoint);
+  leftflag = leftccw > 0.0;
+  /* Is `endpoint' to the right? */
+  rightccw = counterclockwise(startpoint, endpoint, rightpoint);
+  rightflag = rightccw > 0.0;
+  if (leftflag && rightflag) {
+    /* `searchtri' faces directly away from `endpoint'.  We could go */
+    /*   left or right.  Ask whether it's a triangle or a boundary   */
+    /*   on the left.                                                */
+    onext(*searchtri, checktri);
+    if (checktri.tri == dummytri) {
+      leftflag = 0;
+    } else {
+      rightflag = 0;
+    }
+  }
+  while (leftflag) {
+    /* Turn left until satisfied. */
+    onextself(*searchtri);
+    if (searchtri->tri == dummytri) {
+      printf("Internal error in finddirection():  Unable to find a\n");
+      printf("  triangle leading from (%.12g, %.12g) to", startpoint[0],
+             startpoint[1]);
+      printf("  (%.12g, %.12g).\n", endpoint[0], endpoint[1]);
+      internalerror();
+    }
+    apex(*searchtri, leftpoint);
+    rightccw = leftccw;
+    leftccw = counterclockwise(endpoint, startpoint, leftpoint);
+    leftflag = leftccw > 0.0;
+  }
+  while (rightflag) {
+    /* Turn right until satisfied. */
+    oprevself(*searchtri);
+    if (searchtri->tri == dummytri) {
+      printf("Internal error in finddirection():  Unable to find a\n");
+      printf("  triangle leading from (%.12g, %.12g) to", startpoint[0],
+             startpoint[1]);
+      printf("  (%.12g, %.12g).\n", endpoint[0], endpoint[1]);
+      internalerror();
+    }
+    dest(*searchtri, rightpoint);
+    leftccw = rightccw;
+    rightccw = counterclockwise(startpoint, endpoint, rightpoint);
+    rightflag = rightccw > 0.0;
+  }
+  if (leftccw == 0.0) {
+    return LEFTCOLLINEAR;
+  } else if (rightccw == 0.0) {
+    return RIGHTCOLLINEAR;
+  } else {
+    return WITHIN;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  segmentintersection()   Find the intersection of an existing segment     */
+/*                          and a segment that is being inserted.  Insert    */
+/*                          a point at the intersection, splitting an        */
+/*                          existing shell edge.                             */
+/*                                                                           */
+/*  The segment being inserted connects the apex of splittri to endpoint2.   */
+/*  splitshelle is the shell edge being split, and MUST be opposite          */
+/*  splittri.  Hence, the edge being split connects the origin and           */
+/*  destination of splittri.                                                 */
+/*                                                                           */
+/*  On completion, splittri is a handle having the newly inserted            */
+/*  intersection point as its origin, and endpoint1 as its destination.      */
+/*                                                                           */
+/*****************************************************************************/
+
+void segmentintersection(splittri, splitshelle, endpoint2)
+struct triedge *splittri;
+struct edge *splitshelle;
+point endpoint2;
+{
+  point endpoint1;
+  point torg, tdest;
+  point leftpoint, rightpoint;
+  point newpoint;
+  enum insertsiteresult success;
+  enum finddirectionresult collinear;
+  REAL ex, ey;
+  REAL tx, ty;
+  REAL etx, ety;
+  REAL split, denom;
+  int i;
+  triangle ptr;                       /* Temporary variable used by onext(). */
+
+  /* Find the other three segment endpoints. */
+  apex(*splittri, endpoint1);
+  org(*splittri, torg);
+  dest(*splittri, tdest);
+  /* Segment intersection formulae; see the Antonio reference. */
+  tx = tdest[0] - torg[0];
+  ty = tdest[1] - torg[1];
+  ex = endpoint2[0] - endpoint1[0];
+  ey = endpoint2[1] - endpoint1[1];
+  etx = torg[0] - endpoint2[0];
+  ety = torg[1] - endpoint2[1];
+  denom = ty * ex - tx * ey;
+  if (denom == 0.0) {
+    printf("Internal error in segmentintersection():");
+    printf("  Attempt to find intersection of parallel segments.\n");
+    internalerror();
+  }
+  split = (ey * etx - ex * ety) / denom;
+  /* Create the new point. */
+  newpoint = (point) poolalloc(&points);
+  /* Interpolate its coordinate and attributes. */
+  for (i = 0; i < 2 + nextras; i++) {
+    newpoint[i] = torg[i] + split * (tdest[i] - torg[i]);
+  }
+  setpointmark(newpoint, mark(*splitshelle));
+  if (verbose > 1) {
+    printf(
+    "  Splitting edge (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
+           torg[0], torg[1], tdest[0], tdest[1], newpoint[0], newpoint[1]);
+  }
+  /* Insert the intersection point.  This should always succeed. */
+  success = insertsite(newpoint, splittri, splitshelle, 0, 0);
+  if (success != SUCCESSFULPOINT) {
+    printf("Internal error in segmentintersection():\n");
+    printf("  Failure to split a segment.\n");
+    internalerror();
+  }
+  if (steinerleft > 0) {
+    steinerleft--;
+  }
+  /* Inserting the point may have caused edge flips.  We wish to rediscover */
+  /*   the edge connecting endpoint1 to the new intersection point.         */
+  collinear = finddirection(splittri, endpoint1);
+  dest(*splittri, rightpoint);
+  apex(*splittri, leftpoint);
+  if ((leftpoint[0] == endpoint1[0]) && (leftpoint[1] == endpoint1[1])) {
+    onextself(*splittri);
+  } else if ((rightpoint[0] != endpoint1[0]) ||
+             (rightpoint[1] != endpoint1[1])) {
+    printf("Internal error in segmentintersection():\n");
+    printf("  Topological inconsistency after splitting a segment.\n");
+    internalerror();
+  }
+  /* `splittri' should have destination endpoint1. */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  scoutsegment()   Scout the first triangle on the path from one endpoint  */
+/*                   to another, and check for completion (reaching the      */
+/*                   second endpoint), a collinear point, and the            */
+/*                   intersection of two segments.                           */
+/*                                                                           */
+/*  Returns one if the entire segment is successfully inserted, and zero if  */
+/*  the job must be finished by conformingedge() or constrainededge().       */
+/*                                                                           */
+/*  If the first triangle on the path has the second endpoint as its         */
+/*  destination or apex, a shell edge is inserted and the job is done.       */
+/*                                                                           */
+/*  If the first triangle on the path has a destination or apex that lies on */
+/*  the segment, a shell edge is inserted connecting the first endpoint to   */
+/*  the collinear point, and the search is continued from the collinear      */
+/*  point.                                                                   */
+/*                                                                           */
+/*  If the first triangle on the path has a shell edge opposite its origin,  */
+/*  then there is a segment that intersects the segment being inserted.      */
+/*  Their intersection point is inserted, splitting the shell edge.          */
+/*                                                                           */
+/*  Otherwise, return zero.                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+int scoutsegment(searchtri, endpoint2, newmark)
+struct triedge *searchtri;
+point endpoint2;
+int newmark;
+{
+  struct triedge crosstri;
+  struct edge crossedge;
+  point leftpoint, rightpoint;
+  point endpoint1;
+  enum finddirectionresult collinear;
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  collinear = finddirection(searchtri, endpoint2);
+  dest(*searchtri, rightpoint);
+  apex(*searchtri, leftpoint);
+  if (((leftpoint[0] == endpoint2[0]) && (leftpoint[1] == endpoint2[1])) ||
+      ((rightpoint[0] == endpoint2[0]) && (rightpoint[1] == endpoint2[1]))) {
+    /* The segment is already an edge in the mesh. */
+    if ((leftpoint[0] == endpoint2[0]) && (leftpoint[1] == endpoint2[1])) {
+      lprevself(*searchtri);
+    }
+    /* Insert a shell edge, if there isn't already one there. */
+    insertshelle(searchtri, newmark);
+    return 1;
+  } else if (collinear == LEFTCOLLINEAR) {
+    /* We've collided with a point between the segment's endpoints. */
+    /* Make the collinear point be the triangle's origin. */
+    lprevself(*searchtri);
+    insertshelle(searchtri, newmark);
+    /* Insert the remainder of the segment. */
+    return scoutsegment(searchtri, endpoint2, newmark);
+  } else if (collinear == RIGHTCOLLINEAR) {
+    /* We've collided with a point between the segment's endpoints. */
+    insertshelle(searchtri, newmark);
+    /* Make the collinear point be the triangle's origin. */
+    lnextself(*searchtri);
+    /* Insert the remainder of the segment. */
+    return scoutsegment(searchtri, endpoint2, newmark);
+  } else {
+    lnext(*searchtri, crosstri);
+    tspivot(crosstri, crossedge);
+    /* Check for a crossing segment. */
+    if (crossedge.sh == dummysh) {
+      return 0;
+    } else {
+      org(*searchtri, endpoint1);
+      /* Insert a point at the intersection. */
+      segmentintersection(&crosstri, &crossedge, endpoint2);
+      triedgecopy(crosstri, *searchtri);
+      insertshelle(searchtri, newmark);
+      /* Insert the remainder of the segment. */
+      return scoutsegment(searchtri, endpoint2, newmark);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  conformingedge()   Force a segment into a conforming Delaunay            */
+/*                     triangulation by inserting a point at its midpoint,   */
+/*                     and recursively forcing in the two half-segments if   */
+/*                     necessary.                                            */
+/*                                                                           */
+/*  Generates a sequence of edges connecting `endpoint1' to `endpoint2'.     */
+/*  `newmark' is the boundary marker of the segment, assigned to each new    */
+/*  splitting point and shell edge.                                          */
+/*                                                                           */
+/*  Note that conformingedge() does not always maintain the conforming       */
+/*  Delaunay property.  Once inserted, segments are locked into place;       */
+/*  points inserted later (to force other segments in) may render these      */
+/*  fixed segments non-Delaunay.  The conforming Delaunay property will be   */
+/*  restored by enforcequality() by splitting encroached segments.           */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+#ifndef CDT_ONLY
+
+void conformingedge(endpoint1, endpoint2, newmark)
+point endpoint1;
+point endpoint2;
+int newmark;
+{
+  struct triedge searchtri1, searchtri2;
+  struct edge brokenshelle;
+  point newpoint;
+  point midpoint1, midpoint2;
+  enum insertsiteresult success;
+  int result1, result2;
+  int i;
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (verbose > 2) {
+    printf("Forcing segment into triangulation by recursive splitting:\n");
+    printf("  (%.12g, %.12g) (%.12g, %.12g)\n", endpoint1[0], endpoint1[1],
+           endpoint2[0], endpoint2[1]);
+  }
+  /* Create a new point to insert in the middle of the segment. */
+  newpoint = (point) poolalloc(&points);
+  /* Interpolate coordinates and attributes. */
+  for (i = 0; i < 2 + nextras; i++) {
+    newpoint[i] = 0.5 * (endpoint1[i] + endpoint2[i]);
+  }
+  setpointmark(newpoint, newmark);
+  /* Find a boundary triangle to search from. */
+  searchtri1.tri = (triangle *) NULL;
+  /* Attempt to insert the new point. */
+  success = insertsite(newpoint, &searchtri1, (struct edge *) NULL, 0, 0);
+  if (success == DUPLICATEPOINT) {
+    if (verbose > 2) {
+      printf("  Segment intersects existing point (%.12g, %.12g).\n",
+             newpoint[0], newpoint[1]);
+    }
+    /* Use the point that's already there. */
+    pointdealloc(newpoint);
+    org(searchtri1, newpoint);
+  } else {
+    if (success == VIOLATINGPOINT) {
+      if (verbose > 2) {
+        printf("  Two segments intersect at (%.12g, %.12g).\n",
+               newpoint[0], newpoint[1]);
+      }
+      /* By fluke, we've landed right on another segment.  Split it. */
+      tspivot(searchtri1, brokenshelle);
+      success = insertsite(newpoint, &searchtri1, &brokenshelle, 0, 0);
+      if (success != SUCCESSFULPOINT) {
+        printf("Internal error in conformingedge():\n");
+        printf("  Failure to split a segment.\n");
+        internalerror();
+      }
+    }
+    /* The point has been inserted successfully. */
+    if (steinerleft > 0) {
+      steinerleft--;
+    }
+  }
+  triedgecopy(searchtri1, searchtri2);
+  result1 = scoutsegment(&searchtri1, endpoint1, newmark);
+  result2 = scoutsegment(&searchtri2, endpoint2, newmark);
+  if (!result1) {
+    /* The origin of searchtri1 may have changed if a collision with an */
+    /*   intervening vertex on the segment occurred.                    */
+    org(searchtri1, midpoint1);
+    conformingedge(midpoint1, endpoint1, newmark);
+  }
+  if (!result2) {
+    /* The origin of searchtri2 may have changed if a collision with an */
+    /*   intervening vertex on the segment occurred.                    */
+    org(searchtri2, midpoint2);
+    conformingedge(midpoint2, endpoint2, newmark);
+  }
+}
+
+#endif /* not CDT_ONLY */
+#endif /* not REDUCED */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  delaunayfixup()   Enforce the Delaunay condition at an edge, fanning out */
+/*                    recursively from an existing point.  Pay special       */
+/*                    attention to stacking inverted triangles.              */
+/*                                                                           */
+/*  This is a support routine for inserting segments into a constrained      */
+/*  Delaunay triangulation.                                                  */
+/*                                                                           */
+/*  The origin of fixuptri is treated as if it has just been inserted, and   */
+/*  the local Delaunay condition needs to be enforced.  It is only enforced  */
+/*  in one sector, however, that being the angular range defined by          */
+/*  fixuptri.                                                                */
+/*                                                                           */
+/*  This routine also needs to make decisions regarding the "stacking" of    */
+/*  triangles.  (Read the description of constrainededge() below before      */
+/*  reading on here, so you understand the algorithm.)  If the position of   */
+/*  the new point (the origin of fixuptri) indicates that the vertex before  */
+/*  it on the polygon is a reflex vertex, then "stack" the triangle by       */
+/*  doing nothing.  (fixuptri is an inverted triangle, which is how stacked  */
+/*  triangles are identified.)                                               */
+/*                                                                           */
+/*  Otherwise, check whether the vertex before that was a reflex vertex.     */
+/*  If so, perform an edge flip, thereby eliminating an inverted triangle    */
+/*  (popping it off the stack).  The edge flip may result in the creation    */
+/*  of a new inverted triangle, depending on whether or not the new vertex   */
+/*  is visible to the vertex three edges behind on the polygon.              */
+/*                                                                           */
+/*  If neither of the two vertices behind the new vertex are reflex          */
+/*  vertices, fixuptri and fartri, the triangle opposite it, are not         */
+/*  inverted; hence, ensure that the edge between them is locally Delaunay.  */
+/*                                                                           */
+/*  `leftside' indicates whether or not fixuptri is to the left of the       */
+/*  segment being inserted.  (Imagine that the segment is pointing up from   */
+/*  endpoint1 to endpoint2.)                                                 */
+/*                                                                           */
+/*****************************************************************************/
+
+void delaunayfixup(fixuptri, leftside)
+struct triedge *fixuptri;
+int leftside;
+{
+  struct triedge neartri;
+  struct triedge fartri;
+  struct edge faredge;
+  point nearpoint, leftpoint, rightpoint, farpoint;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  lnext(*fixuptri, neartri);
+  sym(neartri, fartri);
+  /* Check if the edge opposite the origin of fixuptri can be flipped. */
+  if (fartri.tri == dummytri) {
+    return;
+  }
+  tspivot(neartri, faredge);
+  if (faredge.sh != dummysh) {
+    return;
+  }
+  /* Find all the relevant vertices. */
+  apex(neartri, nearpoint);
+  org(neartri, leftpoint);
+  dest(neartri, rightpoint);
+  apex(fartri, farpoint);
+  /* Check whether the previous polygon vertex is a reflex vertex. */
+  if (leftside) {
+    if (counterclockwise(nearpoint, leftpoint, farpoint) <= 0.0) {
+      /* leftpoint is a reflex vertex too.  Nothing can */
+      /*   be done until a convex section is found.     */
+      return;
+    }
+  } else {
+    if (counterclockwise(farpoint, rightpoint, nearpoint) <= 0.0) {
+      /* rightpoint is a reflex vertex too.  Nothing can */
+      /*   be done until a convex section is found.      */
+      return;
+    }
+  }
+  if (counterclockwise(rightpoint, leftpoint, farpoint) > 0.0) {
+    /* fartri is not an inverted triangle, and farpoint is not a reflex */
+    /*   vertex.  As there are no reflex vertices, fixuptri isn't an    */
+    /*   inverted triangle, either.  Hence, test the edge between the   */
+    /*   triangles to ensure it is locally Delaunay.                    */
+    if (incircle(leftpoint, farpoint, rightpoint, nearpoint) <= 0.0) {
+      return;
+    }
+    /* Not locally Delaunay; go on to an edge flip. */
+  }        /* else fartri is inverted; remove it from the stack by flipping. */
+  flip(&neartri);
+  lprevself(*fixuptri);    /* Restore the origin of fixuptri after the flip. */
+  /* Recursively process the two triangles that result from the flip. */
+  delaunayfixup(fixuptri, leftside);
+  delaunayfixup(&fartri, leftside);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  constrainededge()   Force a segment into a constrained Delaunay          */
+/*                      triangulation by deleting the triangles it           */
+/*                      intersects, and triangulating the polygons that      */
+/*                      form on each side of it.                             */
+/*                                                                           */
+/*  Generates a single edge connecting `endpoint1' to `endpoint2'.  The      */
+/*  triangle `starttri' has `endpoint1' as its origin.  `newmark' is the     */
+/*  boundary marker of the segment.                                          */
+/*                                                                           */
+/*  To insert a segment, every triangle whose interior intersects the        */
+/*  segment is deleted.  The union of these deleted triangles is a polygon   */
+/*  (which is not necessarily monotone, but is close enough), which is       */
+/*  divided into two polygons by the new segment.  This routine's task is    */
+/*  to generate the Delaunay triangulation of these two polygons.            */
+/*                                                                           */
+/*  You might think of this routine's behavior as a two-step process.  The   */
+/*  first step is to walk from endpoint1 to endpoint2, flipping each edge    */
+/*  encountered.  This step creates a fan of edges connected to endpoint1,   */
+/*  including the desired edge to endpoint2.  The second step enforces the   */
+/*  Delaunay condition on each side of the segment in an incremental manner: */
+/*  proceeding along the polygon from endpoint1 to endpoint2 (this is done   */
+/*  independently on each side of the segment), each vertex is "enforced"    */
+/*  as if it had just been inserted, but affecting only the previous         */
+/*  vertices.  The result is the same as if the vertices had been inserted   */
+/*  in the order they appear on the polygon, so the result is Delaunay.      */
+/*                                                                           */
+/*  In truth, constrainededge() interleaves these two steps.  The procedure  */
+/*  walks from endpoint1 to endpoint2, and each time an edge is encountered  */
+/*  and flipped, the newly exposed vertex (at the far end of the flipped     */
+/*  edge) is "enforced" upon the previously flipped edges, usually affecting */
+/*  only one side of the polygon (depending upon which side of the segment   */
+/*  the vertex falls on).                                                    */
+/*                                                                           */
+/*  The algorithm is complicated by the need to handle polygons that are not */
+/*  convex.  Although the polygon is not necessarily monotone, it can be     */
+/*  triangulated in a manner similar to the stack-based algorithms for       */
+/*  monotone polygons.  For each reflex vertex (local concavity) of the      */
+/*  polygon, there will be an inverted triangle formed by one of the edge    */
+/*  flips.  (An inverted triangle is one with negative area - that is, its   */
+/*  vertices are arranged in clockwise order - and is best thought of as a   */
+/*  wrinkle in the fabric of the mesh.)  Each inverted triangle can be       */
+/*  thought of as a reflex vertex pushed on the stack, waiting to be fixed   */
+/*  later.                                                                   */
+/*                                                                           */
+/*  A reflex vertex is popped from the stack when a vertex is inserted that  */
+/*  is visible to the reflex vertex.  (However, if the vertex behind the     */
+/*  reflex vertex is not visible to the reflex vertex, a new inverted        */
+/*  triangle will take its place on the stack.)  These details are handled   */
+/*  by the delaunayfixup() routine above.                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+void constrainededge(starttri, endpoint2, newmark)
+struct triedge *starttri;
+point endpoint2;
+int newmark;
+{
+  struct triedge fixuptri, fixuptri2;
+  struct edge fixupedge;
+  point endpoint1;
+  point farpoint;
+  REAL area;
+  int collision;
+  int done;
+  triangle ptr;             /* Temporary variable used by sym() and oprev(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  org(*starttri, endpoint1);
+  lnext(*starttri, fixuptri);
+  flip(&fixuptri);
+  /* `collision' indicates whether we have found a point directly */
+  /*   between endpoint1 and endpoint2.                           */
+  collision = 0;
+  done = 0;
+  do {
+    org(fixuptri, farpoint);
+    /* `farpoint' is the extreme point of the polygon we are "digging" */
+    /*   to get from endpoint1 to endpoint2.                           */
+    if ((farpoint[0] == endpoint2[0]) && (farpoint[1] == endpoint2[1])) {
+      oprev(fixuptri, fixuptri2);
+      /* Enforce the Delaunay condition around endpoint2. */
+      delaunayfixup(&fixuptri, 0);
+      delaunayfixup(&fixuptri2, 1);
+      done = 1;
+    } else {
+      /* Check whether farpoint is to the left or right of the segment */
+      /*   being inserted, to decide which edge of fixuptri to dig     */
+      /*   through next.                                               */
+      area = counterclockwise(endpoint1, endpoint2, farpoint);
+      if (area == 0.0) {
+        /* We've collided with a point between endpoint1 and endpoint2. */
+        collision = 1;
+        oprev(fixuptri, fixuptri2);
+        /* Enforce the Delaunay condition around farpoint. */
+        delaunayfixup(&fixuptri, 0);
+        delaunayfixup(&fixuptri2, 1);
+        done = 1;
+      } else {
+        if (area > 0.0) {         /* farpoint is to the left of the segment. */
+          oprev(fixuptri, fixuptri2);
+          /* Enforce the Delaunay condition around farpoint, on the */
+          /*   left side of the segment only.                       */
+          delaunayfixup(&fixuptri2, 1);
+          /* Flip the edge that crosses the segment.  After the edge is */
+          /*   flipped, one of its endpoints is the fan vertex, and the */
+          /*   destination of fixuptri is the fan vertex.               */
+          lprevself(fixuptri);
+        } else {                 /* farpoint is to the right of the segment. */
+          delaunayfixup(&fixuptri, 0);
+          /* Flip the edge that crosses the segment.  After the edge is */
+          /*   flipped, one of its endpoints is the fan vertex, and the */
+          /*   destination of fixuptri is the fan vertex.               */
+          oprevself(fixuptri);
+        }
+        /* Check for two intersecting segments. */
+        tspivot(fixuptri, fixupedge);
+        if (fixupedge.sh == dummysh) {
+          flip(&fixuptri);   /* May create an inverted triangle on the left. */
+        } else {
+          /* We've collided with a segment between endpoint1 and endpoint2. */
+          collision = 1;
+          /* Insert a point at the intersection. */
+          segmentintersection(&fixuptri, &fixupedge, endpoint2);
+          done = 1;
+        }
+      }
+    }
+  } while (!done);
+  /* Insert a shell edge to make the segment permanent. */
+  insertshelle(&fixuptri, newmark);
+  /* If there was a collision with an interceding vertex, install another */
+  /*   segment connecting that vertex with endpoint2.                     */
+  if (collision) {
+    /* Insert the remainder of the segment. */
+    if (!scoutsegment(&fixuptri, endpoint2, newmark)) {
+      constrainededge(&fixuptri, endpoint2, newmark);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  insertsegment()   Insert a PSLG segment into a triangulation.            */
+/*                                                                           */
+/*****************************************************************************/
+
+void insertsegment(endpoint1, endpoint2, newmark)
+point endpoint1;
+point endpoint2;
+int newmark;
+{
+  struct triedge searchtri1, searchtri2;
+  triangle encodedtri;
+  point checkpoint;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (verbose > 1) {
+    printf("  Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
+           endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
+  }
+
+  /* Find a triangle whose origin is the segment's first endpoint. */
+  checkpoint = (point) NULL;
+  encodedtri = point2tri(endpoint1);
+  if (encodedtri != (triangle) NULL) {
+    decode(encodedtri, searchtri1);
+    org(searchtri1, checkpoint);
+  }
+  if (checkpoint != endpoint1) {
+    /* Find a boundary triangle to search from. */
+    searchtri1.tri = dummytri;
+    searchtri1.orient = 0;
+    symself(searchtri1);
+    /* Search for the segment's first endpoint by point location. */
+    if (locate(endpoint1, &searchtri1) != ONVERTEX) {
+      printf(
+        "Internal error in insertsegment():  Unable to locate PSLG point\n");
+      printf("  (%.12g, %.12g) in triangulation.\n",
+             endpoint1[0], endpoint1[1]);
+      internalerror();
+    }
+  }
+  /* Remember this triangle to improve subsequent point location. */
+  triedgecopy(searchtri1, recenttri);
+  /* Scout the beginnings of a path from the first endpoint */
+  /*   toward the second.                                   */
+  if (scoutsegment(&searchtri1, endpoint2, newmark)) {
+    /* The segment was easily inserted. */
+    return;
+  }
+  /* The first endpoint may have changed if a collision with an intervening */
+  /*   vertex on the segment occurred.                                      */
+  org(searchtri1, endpoint1);
+
+  /* Find a triangle whose origin is the segment's second endpoint. */
+  checkpoint = (point) NULL;
+  encodedtri = point2tri(endpoint2);
+  if (encodedtri != (triangle) NULL) {
+    decode(encodedtri, searchtri2);
+    org(searchtri2, checkpoint);
+  }
+  if (checkpoint != endpoint2) {
+    /* Find a boundary triangle to search from. */
+    searchtri2.tri = dummytri;
+    searchtri2.orient = 0;
+    symself(searchtri2);
+    /* Search for the segment's second endpoint by point location. */
+    if (locate(endpoint2, &searchtri2) != ONVERTEX) {
+      printf(
+        "Internal error in insertsegment():  Unable to locate PSLG point\n");
+      printf("  (%.12g, %.12g) in triangulation.\n",
+             endpoint2[0], endpoint2[1]);
+      internalerror();
+    }
+  }
+  /* Remember this triangle to improve subsequent point location. */
+  triedgecopy(searchtri2, recenttri);
+  /* Scout the beginnings of a path from the second endpoint */
+  /*   toward the first.                                     */
+  if (scoutsegment(&searchtri2, endpoint1, newmark)) {
+    /* The segment was easily inserted. */
+    return;
+  }
+  /* The second endpoint may have changed if a collision with an intervening */
+  /*   vertex on the segment occurred.                                       */
+  org(searchtri2, endpoint2);
+
+#ifndef REDUCED
+#ifndef CDT_ONLY
+  if (splitseg) {
+    /* Insert vertices to force the segment into the triangulation. */
+    conformingedge(endpoint1, endpoint2, newmark);
+  } else {
+#endif /* not CDT_ONLY */
+#endif /* not REDUCED */
+    /* Insert the segment directly into the triangulation. */
+    constrainededge(&searchtri1, endpoint2, newmark);
+#ifndef REDUCED
+#ifndef CDT_ONLY
+  }
+#endif /* not CDT_ONLY */
+#endif /* not REDUCED */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  markhull()   Cover the convex hull of a triangulation with shell edges.  */
+/*                                                                           */
+/*****************************************************************************/
+
+void markhull()
+{
+  struct triedge hulltri;
+  struct triedge nexttri;
+  struct triedge starttri;
+  triangle ptr;             /* Temporary variable used by sym() and oprev(). */
+
+  /* Find a triangle handle on the hull. */
+  hulltri.tri = dummytri;
+  hulltri.orient = 0;
+  symself(hulltri);
+  /* Remember where we started so we know when to stop. */
+  triedgecopy(hulltri, starttri);
+  /* Go once counterclockwise around the convex hull. */
+  do {
+    /* Create a shell edge if there isn't already one here. */
+    insertshelle(&hulltri, 1);
+    /* To find the next hull edge, go clockwise around the next vertex. */
+    lnextself(hulltri);
+    oprev(hulltri, nexttri);
+    while (nexttri.tri != dummytri) {
+      triedgecopy(nexttri, hulltri);
+      oprev(hulltri, nexttri);
+    }
+  } while (!triedgeequal(hulltri, starttri));
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  formskeleton()   Create the shell edges of a triangulation, including    */
+/*                   PSLG edges and edges on the convex hull.                */
+/*                                                                           */
+/*  The PSLG edges are read from a .poly file.  The return value is the      */
+/*  number of segments in the file.                                          */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+int formskeleton(segmentlist, segmentmarkerlist, numberofsegments)
+int *segmentlist;
+int *segmentmarkerlist;
+int numberofsegments;
+
+#else /* not TRILIBRARY */
+
+int formskeleton(polyfile, polyfilename)
+FILE *polyfile;
+char *polyfilename;
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  char polyfilename[6];
+  int index;
+#else /* not TRILIBRARY */
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+#endif /* not TRILIBRARY */
+  point endpoint1, endpoint2;
+  int segments;
+  int segmentmarkers;
+  int end1, end2;
+  int boundmarker;
+  int i;
+
+  if (poly) {
+    if (!quiet) {
+      printf("Inserting segments into Delaunay triangulation.\n");
+    }
+#ifdef TRILIBRARY
+    strcpy(polyfilename, "input");
+    segments = numberofsegments;
+    segmentmarkers = segmentmarkerlist != (int *) NULL;
+    index = 0;
+#else /* not TRILIBRARY */
+    /* Read the segments from a .poly file. */
+    /* Read number of segments and number of boundary markers. */
+    stringptr = readline(inputline, polyfile, polyfilename);
+    segments = (int) strtol (stringptr, &stringptr, 0);
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      segmentmarkers = 0;
+    } else {
+      segmentmarkers = (int) strtol (stringptr, &stringptr, 0);
+    }
+#endif /* not TRILIBRARY */
+    /* If segments are to be inserted, compute a mapping */
+    /*   from points to triangles.                       */
+    if (segments > 0) {
+      if (verbose) {
+        printf("  Inserting PSLG segments.\n");
+      }
+      makepointmap();
+    }
+
+    boundmarker = 0;
+    /* Read and insert the segments. */
+    for (i = 1; i <= segments; i++) {
+#ifdef TRILIBRARY
+      end1 = segmentlist[index++];
+      end2 = segmentlist[index++];
+      if (segmentmarkers) {
+        boundmarker = segmentmarkerlist[i - 1];
+      }
+#else /* not TRILIBRARY */
+      stringptr = readline(inputline, polyfile, inpolyfilename);
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Segment %d has no endpoints in %s.\n", i,
+               polyfilename);
+        exit(1);
+      } else {
+        end1 = (int) strtol (stringptr, &stringptr, 0);
+      }
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Segment %d is missing its second endpoint in %s.\n", i,
+               polyfilename);
+        exit(1);
+      } else {
+        end2 = (int) strtol (stringptr, &stringptr, 0);
+      }
+      if (segmentmarkers) {
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          boundmarker = 0;
+        } else {
+          boundmarker = (int) strtol (stringptr, &stringptr, 0);
+        }
+      }
+#endif /* not TRILIBRARY */
+      if ((end1 < firstnumber) || (end1 >= firstnumber + inpoints)) {
+        if (!quiet) {
+          printf("Warning:  Invalid first endpoint of segment %d in %s.\n", i,
+                 polyfilename);
+        }
+      } else if ((end2 < firstnumber) || (end2 >= firstnumber + inpoints)) {
+        if (!quiet) {
+          printf("Warning:  Invalid second endpoint of segment %d in %s.\n", i,
+                 polyfilename);
+        }
+      } else {
+        endpoint1 = getpoint(end1);
+        endpoint2 = getpoint(end2);
+        if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
+          if (!quiet) {
+            printf("Warning:  Endpoints of segment %d are coincident in %s.\n",
+                   i, polyfilename);
+          }
+        } else {
+          insertsegment(endpoint1, endpoint2, boundmarker);
+        }
+      }
+    }
+  } else {
+    segments = 0;
+  }
+  if (convex || !poly) {
+    /* Enclose the convex hull with shell edges. */
+    if (verbose) {
+      printf("  Enclosing convex hull with segments.\n");
+    }
+    markhull();
+  }
+  return segments;
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Segment (shell edge) insertion ends here                  *********/
+
+/********* Carving out holes and concavities begins here             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  infecthull()   Virally infect all of the triangles of the convex hull    */
+/*                 that are not protected by shell edges.  Where there are   */
+/*                 shell edges, set boundary markers as appropriate.         */
+/*                                                                           */
+/*****************************************************************************/
+
+void infecthull()
+{
+  struct triedge hulltri;
+  struct triedge nexttri;
+  struct triedge starttri;
+  struct edge hulledge;
+  triangle **deadtri;
+  point horg, hdest;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (verbose) {
+    printf("  Marking concavities (external triangles) for elimination.\n");
+  }
+  /* Find a triangle handle on the hull. */
+  hulltri.tri = dummytri;
+  hulltri.orient = 0;
+  symself(hulltri);
+  /* Remember where we started so we know when to stop. */
+  triedgecopy(hulltri, starttri);
+  /* Go once counterclockwise around the convex hull. */
+  do {
+    /* Ignore triangles that are already infected. */
+    if (!infected(hulltri)) {
+      /* Is the triangle protected by a shell edge? */
+      tspivot(hulltri, hulledge);
+      if (hulledge.sh == dummysh) {
+        /* The triangle is not protected; infect it. */
+        infect(hulltri);
+        deadtri = (triangle **) poolalloc(&viri);
+        *deadtri = hulltri.tri;
+      } else {
+        /* The triangle is protected; set boundary markers if appropriate. */
+        if (mark(hulledge) == 0) {
+          setmark(hulledge, 1);
+          org(hulltri, horg);
+          dest(hulltri, hdest);
+          if (pointmark(horg) == 0) {
+            setpointmark(horg, 1);
+          }
+          if (pointmark(hdest) == 0) {
+            setpointmark(hdest, 1);
+          }
+        }
+      }
+    }
+    /* To find the next hull edge, go clockwise around the next vertex. */
+    lnextself(hulltri);
+    oprev(hulltri, nexttri);
+    while (nexttri.tri != dummytri) {
+      triedgecopy(nexttri, hulltri);
+      oprev(hulltri, nexttri);
+    }
+  } while (!triedgeequal(hulltri, starttri));
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  plague()   Spread the virus from all infected triangles to any neighbors */
+/*             not protected by shell edges.  Delete all infected triangles. */
+/*                                                                           */
+/*  This is the procedure that actually creates holes and concavities.       */
+/*                                                                           */
+/*  This procedure operates in two phases.  The first phase identifies all   */
+/*  the triangles that will die, and marks them as infected.  They are       */
+/*  marked to ensure that each triangle is added to the virus pool only      */
+/*  once, so the procedure will terminate.                                   */
+/*                                                                           */
+/*  The second phase actually eliminates the infected triangles.  It also    */
+/*  eliminates orphaned points.                                              */
+/*                                                                           */
+/*****************************************************************************/
+
+void plague()
+{
+  struct triedge testtri;
+  struct triedge neighbor;
+  triangle **virusloop;
+  triangle **deadtri;
+  struct edge neighborshelle;
+  point testpoint;
+  point norg, ndest;
+  point deadorg, deaddest, deadapex;
+  int killorg;
+  triangle ptr;             /* Temporary variable used by sym() and onext(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (verbose) {
+    printf("  Marking neighbors of marked triangles.\n");
+  }
+  /* Loop through all the infected triangles, spreading the virus to */
+  /*   their neighbors, then to their neighbors' neighbors.          */
+  traversalinit(&viri);
+  virusloop = (triangle **) traverse(&viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+    /* A triangle is marked as infected by messing with one of its shell */
+    /*   edges, setting it to an illegal value.  Hence, we have to       */
+    /*   temporarily uninfect this triangle so that we can examine its   */
+    /*   adjacent shell edges.                                           */
+    uninfect(testtri);
+    if (verbose > 2) {
+      /* Assign the triangle an orientation for convenience in */
+      /*   checking its points.                                */
+      testtri.orient = 0;
+      org(testtri, deadorg);
+      dest(testtri, deaddest);
+      apex(testtri, deadapex);
+      printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+             deadorg[0], deadorg[1], deaddest[0], deaddest[1],
+             deadapex[0], deadapex[1]);
+    }
+    /* Check each of the triangle's three neighbors. */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      /* Find the neighbor. */
+      sym(testtri, neighbor);
+      /* Check for a shell between the triangle and its neighbor. */
+      tspivot(testtri, neighborshelle);
+      /* Check if the neighbor is nonexistent or already infected. */
+      if ((neighbor.tri == dummytri) || infected(neighbor)) {
+        if (neighborshelle.sh != dummysh) {
+          /* There is a shell edge separating the triangle from its */
+          /*   neighbor, but both triangles are dying, so the shell */
+          /*   edge dies too.                                       */
+          shelledealloc(neighborshelle.sh);
+          if (neighbor.tri != dummytri) {
+            /* Make sure the shell edge doesn't get deallocated again */
+            /*   later when the infected neighbor is visited.         */
+            uninfect(neighbor);
+            tsdissolve(neighbor);
+            infect(neighbor);
+          }
+        }
+      } else {                   /* The neighbor exists and is not infected. */
+        if (neighborshelle.sh == dummysh) {
+          /* There is no shell edge protecting the neighbor, so */
+          /*   the neighbor becomes infected.                   */
+          if (verbose > 2) {
+            org(neighbor, deadorg);
+            dest(neighbor, deaddest);
+            apex(neighbor, deadapex);
+            printf(
+              "    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+                   deadorg[0], deadorg[1], deaddest[0], deaddest[1],
+                   deadapex[0], deadapex[1]);
+          }
+          infect(neighbor);
+          /* Ensure that the neighbor's neighbors will be infected. */
+          deadtri = (triangle **) poolalloc(&viri);
+          *deadtri = neighbor.tri;
+        } else {               /* The neighbor is protected by a shell edge. */
+          /* Remove this triangle from the shell edge. */
+          stdissolve(neighborshelle);
+          /* The shell edge becomes a boundary.  Set markers accordingly. */
+          if (mark(neighborshelle) == 0) {
+            setmark(neighborshelle, 1);
+          }
+          org(neighbor, norg);
+          dest(neighbor, ndest);
+          if (pointmark(norg) == 0) {
+            setpointmark(norg, 1);
+          }
+          if (pointmark(ndest) == 0) {
+            setpointmark(ndest, 1);
+          }
+        }
+      }
+    }
+    /* Remark the triangle as infected, so it doesn't get added to the */
+    /*   virus pool again.                                             */
+    infect(testtri);
+    virusloop = (triangle **) traverse(&viri);
+  }
+
+  if (verbose) {
+    printf("  Deleting marked triangles.\n");
+  }
+  traversalinit(&viri);
+  virusloop = (triangle **) traverse(&viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+
+    /* Check each of the three corners of the triangle for elimination. */
+    /*   This is done by walking around each point, checking if it is   */
+    /*   still connected to at least one live triangle.                 */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      org(testtri, testpoint);
+      /* Check if the point has already been tested. */
+      if (testpoint != (point) NULL) {
+        killorg = 1;
+        /* Mark the corner of the triangle as having been tested. */
+        setorg(testtri, NULL);
+        /* Walk counterclockwise about the point. */
+        onext(testtri, neighbor);
+        /* Stop upon reaching a boundary or the starting triangle. */
+        while ((neighbor.tri != dummytri)
+               && (!triedgeequal(neighbor, testtri))) {
+          if (infected(neighbor)) {
+            /* Mark the corner of this triangle as having been tested. */
+            setorg(neighbor, NULL);
+          } else {
+            /* A live triangle.  The point survives. */
+            killorg = 0;
+          }
+          /* Walk counterclockwise about the point. */
+          onextself(neighbor);
+        }
+        /* If we reached a boundary, we must walk clockwise as well. */
+        if (neighbor.tri == dummytri) {
+          /* Walk clockwise about the point. */
+          oprev(testtri, neighbor);
+          /* Stop upon reaching a boundary. */
+          while (neighbor.tri != dummytri) {
+            if (infected(neighbor)) {
+            /* Mark the corner of this triangle as having been tested. */
+              setorg(neighbor, NULL);
+            } else {
+              /* A live triangle.  The point survives. */
+              killorg = 0;
+            }
+            /* Walk clockwise about the point. */
+            oprevself(neighbor);
+          }
+        }
+        if (killorg) {
+          if (verbose > 1) {
+            printf("    Deleting point (%.12g, %.12g)\n",
+                   testpoint[0], testpoint[1]);
+          }
+          pointdealloc(testpoint);
+        }
+      }
+    }
+
+    /* Record changes in the number of boundary edges, and disconnect */
+    /*   dead triangles from their neighbors.                         */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      sym(testtri, neighbor);
+      if (neighbor.tri == dummytri) {
+        /* There is no neighboring triangle on this edge, so this edge    */
+        /*   is a boundary edge.  This triangle is being deleted, so this */
+        /*   boundary edge is deleted.                                    */
+        hullsize--;
+      } else {
+        /* Disconnect the triangle from its neighbor. */
+        dissolve(neighbor);
+        /* There is a neighboring triangle on this edge, so this edge */
+        /*   becomes a boundary edge when this triangle is deleted.   */
+        hullsize++;
+      }
+    }
+    /* Return the dead triangle to the pool of triangles. */
+    triangledealloc(testtri.tri);
+    virusloop = (triangle **) traverse(&viri);
+  }
+  /* Empty the virus pool. */
+  poolrestart(&viri);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  regionplague()   Spread regional attributes and/or area constraints      */
+/*                   (from a .poly file) throughout the mesh.                */
+/*                                                                           */
+/*  This procedure operates in two phases.  The first phase spreads an       */
+/*  attribute and/or an area constraint through a (segment-bounded) region.  */
+/*  The triangles are marked to ensure that each triangle is added to the    */
+/*  virus pool only once, so the procedure will terminate.                   */
+/*                                                                           */
+/*  The second phase uninfects all infected triangles, returning them to     */
+/*  normal.                                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+void regionplague(attribute, area)
+REAL attribute;
+REAL area;
+{
+  struct triedge testtri;
+  struct triedge neighbor;
+  triangle **virusloop;
+  triangle **regiontri;
+  struct edge neighborshelle;
+  point regionorg, regiondest, regionapex;
+  triangle ptr;             /* Temporary variable used by sym() and onext(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (verbose > 1) {
+    printf("  Marking neighbors of marked triangles.\n");
+  }
+  /* Loop through all the infected triangles, spreading the attribute      */
+  /*   and/or area constraint to their neighbors, then to their neighbors' */
+  /*   neighbors.                                                          */
+  traversalinit(&viri);
+  virusloop = (triangle **) traverse(&viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+    /* A triangle is marked as infected by messing with one of its shell */
+    /*   edges, setting it to an illegal value.  Hence, we have to       */
+    /*   temporarily uninfect this triangle so that we can examine its   */
+    /*   adjacent shell edges.                                           */
+    uninfect(testtri);
+    if (regionattrib) {
+      /* Set an attribute. */
+      setelemattribute(testtri, eextras, attribute);
+    }
+    if (vararea) {
+      /* Set an area constraint. */
+      setareabound(testtri, area);
+    }
+    if (verbose > 2) {
+      /* Assign the triangle an orientation for convenience in */
+      /*   checking its points.                                */
+      testtri.orient = 0;
+      org(testtri, regionorg);
+      dest(testtri, regiondest);
+      apex(testtri, regionapex);
+      printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+             regionorg[0], regionorg[1], regiondest[0], regiondest[1],
+             regionapex[0], regionapex[1]);
+    }
+    /* Check each of the triangle's three neighbors. */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      /* Find the neighbor. */
+      sym(testtri, neighbor);
+      /* Check for a shell between the triangle and its neighbor. */
+      tspivot(testtri, neighborshelle);
+      /* Make sure the neighbor exists, is not already infected, and */
+      /*   isn't protected by a shell edge.                          */
+      if ((neighbor.tri != dummytri) && !infected(neighbor)
+          && (neighborshelle.sh == dummysh)) {
+        if (verbose > 2) {
+          org(neighbor, regionorg);
+          dest(neighbor, regiondest);
+          apex(neighbor, regionapex);
+          printf("    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+                 regionorg[0], regionorg[1], regiondest[0], regiondest[1],
+                 regionapex[0], regionapex[1]);
+        }
+        /* Infect the neighbor. */
+        infect(neighbor);
+        /* Ensure that the neighbor's neighbors will be infected. */
+        regiontri = (triangle **) poolalloc(&viri);
+        *regiontri = neighbor.tri;
+      }
+    }
+    /* Remark the triangle as infected, so it doesn't get added to the */
+    /*   virus pool again.                                             */
+    infect(testtri);
+    virusloop = (triangle **) traverse(&viri);
+  }
+
+  /* Uninfect all triangles. */
+  if (verbose > 1) {
+    printf("  Unmarking marked triangles.\n");
+  }
+  traversalinit(&viri);
+  virusloop = (triangle **) traverse(&viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+    uninfect(testtri);
+    virusloop = (triangle **) traverse(&viri);
+  }
+  /* Empty the virus pool. */
+  poolrestart(&viri);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  carveholes()   Find the holes and infect them.  Find the area            */
+/*                 constraints and infect them.  Infect the convex hull.     */
+/*                 Spread the infection and kill triangles.  Spread the      */
+/*                 area constraints.                                         */
+/*                                                                           */
+/*  This routine mainly calls other routines to carry out all these          */
+/*  functions.                                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+void carveholes(holelist, holes, regionlist, regions)
+REAL *holelist;
+int holes;
+REAL *regionlist;
+int regions;
+{
+  struct triedge searchtri;
+  struct triedge triangleloop;
+  struct triedge *regiontris;
+  triangle **holetri;
+  triangle **regiontri;
+  point searchorg, searchdest;
+  enum locateresult intersect;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (!(quiet || (noholes && convex))) {
+    printf("Removing unwanted triangles.\n");
+    if (verbose && (holes > 0)) {
+      printf("  Marking holes for elimination.\n");
+    }
+  }
+
+  if (regions > 0) {
+    /* Allocate storage for the triangles in which region points fall. */
+    regiontris = (struct triedge *) malloc(regions * sizeof(struct triedge));
+    if (regiontris == (struct triedge *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+
+  if (((holes > 0) && !noholes) || !convex || (regions > 0)) {
+    /* Initialize a pool of viri to be used for holes, concavities, */
+    /*   regional attributes, and/or regional area constraints.     */
+    poolinit(&viri, sizeof(triangle *), VIRUSPERBLOCK, POINTER, 0);
+  }
+
+  if (!convex) {
+    /* Mark as infected any unprotected triangles on the boundary. */
+    /*   This is one way by which concavities are created.         */
+    infecthull();
+  }
+
+  if ((holes > 0) && !noholes) {
+    /* Infect each triangle in which a hole lies. */
+    for (i = 0; i < 2 * holes; i += 2) {
+      /* Ignore holes that aren't within the bounds of the mesh. */
+      if ((holelist[i] >= xmin) && (holelist[i] <= xmax)
+          && (holelist[i + 1] >= ymin) && (holelist[i + 1] <= ymax)) {
+        /* Start searching from some triangle on the outer boundary. */
+        searchtri.tri = dummytri;
+        searchtri.orient = 0;
+        symself(searchtri);
+        /* Ensure that the hole is to the left of this boundary edge; */
+        /*   otherwise, locate() will falsely report that the hole    */
+        /*   falls within the starting triangle.                      */
+        org(searchtri, searchorg);
+        dest(searchtri, searchdest);
+        if (counterclockwise(searchorg, searchdest, &holelist[i]) > 0.0) {
+          /* Find a triangle that contains the hole. */
+          intersect = locate(&holelist[i], &searchtri);
+          if ((intersect != OUTSIDE) && (!infected(searchtri))) {
+            /* Infect the triangle.  This is done by marking the triangle */
+            /*   as infect and including the triangle in the virus pool.  */
+            infect(searchtri);
+            holetri = (triangle **) poolalloc(&viri);
+            *holetri = searchtri.tri;
+          }
+        }
+      }
+    }
+  }
+
+  /* Now, we have to find all the regions BEFORE we carve the holes, because */
+  /*   locate() won't work when the triangulation is no longer convex.       */
+  /*   (Incidentally, this is the reason why regional attributes and area    */
+  /*   constraints can't be used when refining a preexisting mesh, which     */
+  /*   might not be convex; they can only be used with a freshly             */
+  /*   triangulated PSLG.)                                                   */
+  if (regions > 0) {
+    /* Find the starting triangle for each region. */
+    for (i = 0; i < regions; i++) {
+      regiontris[i].tri = dummytri;
+      /* Ignore region points that aren't within the bounds of the mesh. */
+      if ((regionlist[4 * i] >= xmin) && (regionlist[4 * i] <= xmax) &&
+          (regionlist[4 * i + 1] >= ymin) && (regionlist[4 * i + 1] <= ymax)) {
+        /* Start searching from some triangle on the outer boundary. */
+        searchtri.tri = dummytri;
+        searchtri.orient = 0;
+        symself(searchtri);
+        /* Ensure that the region point is to the left of this boundary */
+        /*   edge; otherwise, locate() will falsely report that the     */
+        /*   region point falls within the starting triangle.           */
+        org(searchtri, searchorg);
+        dest(searchtri, searchdest);
+        if (counterclockwise(searchorg, searchdest, &regionlist[4 * i]) >
+            0.0) {
+          /* Find a triangle that contains the region point. */
+          intersect = locate(&regionlist[4 * i], &searchtri);
+          if ((intersect != OUTSIDE) && (!infected(searchtri))) {
+            /* Record the triangle for processing after the */
+            /*   holes have been carved.                    */
+            triedgecopy(searchtri, regiontris[i]);
+          }
+        }
+      }
+    }
+  }
+
+  if (viri.items > 0) {
+    /* Carve the holes and concavities. */
+    plague();
+  }
+  /* The virus pool should be empty now. */
+
+  if (regions > 0) {
+    if (!quiet) {
+      if (regionattrib) {
+        if (vararea) {
+          printf("Spreading regional attributes and area constraints.\n");
+        } else {
+          printf("Spreading regional attributes.\n");
+        }
+      } else { 
+        printf("Spreading regional area constraints.\n");
+      }
+    }
+    if (regionattrib && !refine) {
+      /* Assign every triangle a regional attribute of zero. */
+      traversalinit(&triangles);
+      triangleloop.orient = 0;
+      triangleloop.tri = triangletraverse();
+      while (triangleloop.tri != (triangle *) NULL) {
+        setelemattribute(triangleloop, eextras, 0.0);
+        triangleloop.tri = triangletraverse();
+      }
+    }
+    for (i = 0; i < regions; i++) {
+      if (regiontris[i].tri != dummytri) {
+        /* Make sure the triangle under consideration still exists. */
+        /*   It may have been eaten by the virus.                   */
+        if (regiontris[i].tri[3] != (triangle) NULL) {
+          /* Put one triangle in the virus pool. */
+          infect(regiontris[i]);
+          regiontri = (triangle **) poolalloc(&viri);
+          *regiontri = regiontris[i].tri;
+          /* Apply one region's attribute and/or area constraint. */
+          regionplague(regionlist[4 * i + 2], regionlist[4 * i + 3]);
+          /* The virus pool should be empty now. */
+        }
+      }
+    }
+    if (regionattrib && !refine) {
+      /* Note the fact that each triangle has an additional attribute. */
+      eextras++;
+    }
+  }
+
+  /* Free up memory. */
+  if (((holes > 0) && !noholes) || !convex || (regions > 0)) {
+    pooldeinit(&viri);
+  }
+  if (regions > 0) {
+    free(regiontris);
+  }
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Carving out holes and concavities ends here               *********/
+
+/********* Mesh quality maintenance begins here                      *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  tallyencs()   Traverse the entire list of shell edges, check each edge   */
+/*                to see if it is encroached.  If so, add it to the list.    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void tallyencs()
+{
+  struct edge edgeloop;
+  int dummy;
+
+  traversalinit(&shelles);
+  edgeloop.shorient = 0;
+  edgeloop.sh = shelletraverse();
+  while (edgeloop.sh != (shelle *) NULL) {
+    /* If the segment is encroached, add it to the list. */
+    dummy = checkedge4encroach(&edgeloop);
+    edgeloop.sh = shelletraverse();
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  precisionerror()  Print an error message for precision problems.         */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void precisionerror()
+{
+  printf("Try increasing the area criterion and/or reducing the minimum\n");
+  printf("  allowable angle so that tiny triangles are not created.\n");
+#ifdef SINGLE
+  printf("Alternatively, try recompiling me with double precision\n");
+  printf("  arithmetic (by removing \"#define SINGLE\" from the\n");
+  printf("  source file or \"-DSINGLE\" from the makefile).\n");
+#endif /* SINGLE */
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  repairencs()   Find and repair all the encroached segments.              */
+/*                                                                           */
+/*  Encroached segments are repaired by splitting them by inserting a point  */
+/*  at or near their centers.                                                */
+/*                                                                           */
+/*  `flaws' is a flag that specifies whether one should take note of new     */
+/*  encroached segments and bad triangles that result from inserting points  */
+/*  to repair existing encroached segments.                                  */
+/*                                                                           */
+/*  When a segment is split, the two resulting subsegments are always        */
+/*  tested to see if they are encroached upon, regardless of the value       */
+/*  of `flaws'.                                                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void repairencs(flaws)
+int flaws;
+{
+  struct triedge enctri;
+  struct triedge testtri;
+  struct edge *encloop;
+  struct edge testsh;
+  point eorg, edest;
+  point newpoint;
+  enum insertsiteresult success;
+  REAL segmentlength, nearestpoweroftwo;
+  REAL split;
+  int acuteorg, acutedest;
+  int dummy;
+  int i;
+  triangle ptr;                     /* Temporary variable used by stpivot(). */
+  shelle sptr;                        /* Temporary variable used by snext(). */
+
+  while ((badsegments.items > 0) && (steinerleft != 0)) {
+    traversalinit(&badsegments);
+    encloop = badsegmenttraverse();
+    while ((encloop != (struct edge *) NULL) && (steinerleft != 0)) {
+      /* To decide where to split a segment, we need to know if the  */
+      /*   segment shares an endpoint with an adjacent segment.      */
+      /*   The concern is that, if we simply split every encroached  */
+      /*   segment in its center, two adjacent segments with a small */
+      /*   angle between them might lead to an infinite loop; each   */
+      /*   point added to split one segment will encroach upon the   */
+      /*   other segment, which must then be split with a point that */
+      /*   will encroach upon the first segment, and so on forever.  */
+      /* To avoid this, imagine a set of concentric circles, whose   */
+      /*   radii are powers of two, about each segment endpoint.     */
+      /*   These concentric circles determine where the segment is   */
+      /*   split.  (If both endpoints are shared with adjacent       */
+      /*   segments, split the segment in the middle, and apply the  */
+      /*   concentric shells for later splittings.)                  */
+
+      /* Is the origin shared with another segment? */
+      stpivot(*encloop, enctri);
+      lnext(enctri, testtri);
+      tspivot(testtri, testsh);
+      acuteorg = testsh.sh != dummysh;
+      /* Is the destination shared with another segment? */
+      lnextself(testtri);
+      tspivot(testtri, testsh);
+      acutedest = testsh.sh != dummysh;
+      /* Now, check the other side of the segment, if there's a triangle */
+      /*   there.                                                        */
+      sym(enctri, testtri);
+      if (testtri.tri != dummytri) {
+        /* Is the destination shared with another segment? */
+        lnextself(testtri);
+        tspivot(testtri, testsh);
+        acutedest = acutedest || (testsh.sh != dummysh);
+        /* Is the origin shared with another segment? */
+        lnextself(testtri);
+        tspivot(testtri, testsh);
+        acuteorg = acuteorg || (testsh.sh != dummysh);
+      }
+
+      sorg(*encloop, eorg);
+      sdest(*encloop, edest);
+      /* Use the concentric circles if exactly one endpoint is shared */
+      /*   with another adjacent segment.                             */
+      if (acuteorg ^ acutedest) {
+        segmentlength = sqrt((edest[0] - eorg[0]) * (edest[0] - eorg[0])
+                             + (edest[1] - eorg[1]) * (edest[1] - eorg[1]));
+        /* Find the power of two nearest the segment's length. */
+        nearestpoweroftwo = 1.0;
+        while (segmentlength > SQUAREROOTTWO * nearestpoweroftwo) {
+          nearestpoweroftwo *= 2.0;
+        }
+        while (segmentlength < (0.5 * SQUAREROOTTWO) * nearestpoweroftwo) {
+          nearestpoweroftwo *= 0.5;
+        }
+        /* Where do we split the segment? */
+        split = 0.5 * nearestpoweroftwo / segmentlength;
+        if (acutedest) {
+          split = 1.0 - split;
+        }
+      } else {
+        /* If we're not worried about adjacent segments, split */
+        /*   this segment in the middle.                       */
+        split = 0.5;
+      }
+
+      /* Create the new point. */
+      newpoint = (point) poolalloc(&points);
+      /* Interpolate its coordinate and attributes. */
+      for (i = 0; i < 2 + nextras; i++) {
+        newpoint[i] = (1.0 - split) * eorg[i] + split * edest[i];
+      }
+      setpointmark(newpoint, mark(*encloop));
+      if (verbose > 1) {
+        printf(
+        "  Splitting edge (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
+               eorg[0], eorg[1], edest[0], edest[1], newpoint[0], newpoint[1]);
+      }
+      /* Check whether the new point lies on an endpoint. */
+      if (((newpoint[0] == eorg[0]) && (newpoint[1] == eorg[1]))
+        || ((newpoint[0] == edest[0]) && (newpoint[1] == edest[1]))) {
+        printf("Error:  Ran out of precision at (%.12g, %.12g).\n",
+               newpoint[0], newpoint[1]);
+        printf("I attempted to split a segment to a smaller size than can\n");
+        printf("  be accommodated by the finite precision of floating point\n"
+               );
+        printf("  arithmetic.\n");
+        precisionerror();
+        exit(1);
+      }
+      /* Insert the splitting point.  This should always succeed. */
+      success = insertsite(newpoint, &enctri, encloop, flaws, flaws);
+      if ((success != SUCCESSFULPOINT) && (success != ENCROACHINGPOINT)) {
+        printf("Internal error in repairencs():\n");
+        printf("  Failure to split a segment.\n");
+        internalerror();
+      }
+      if (steinerleft > 0) {
+        steinerleft--;
+      }
+      /* Check the two new subsegments to see if they're encroached. */
+      dummy = checkedge4encroach(encloop);
+      snextself(*encloop);
+      dummy = checkedge4encroach(encloop);
+
+      badsegmentdealloc(encloop);
+      encloop = badsegmenttraverse();
+    }
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  tallyfaces()   Test every triangle in the mesh for quality measures.     */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void tallyfaces()
+{
+  struct triedge triangleloop;
+
+  if (verbose) {
+    printf("  Making a list of bad triangles.\n");
+  }
+  traversalinit(&triangles);
+  triangleloop.orient = 0;
+  triangleloop.tri = triangletraverse();
+  while (triangleloop.tri != (triangle *) NULL) {
+    /* If the triangle is bad, enqueue it. */
+    testtriangle(&triangleloop);
+    triangleloop.tri = triangletraverse();
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  findcircumcenter()   Find the circumcenter of a triangle.                */
+/*                                                                           */
+/*  The result is returned both in terms of x-y coordinates and xi-eta       */
+/*  coordinates.  The xi-eta coordinate system is defined in terms of the    */
+/*  triangle:  the origin of the triangle is the origin of the coordinate    */
+/*  system; the destination of the triangle is one unit along the xi axis;   */
+/*  and the apex of the triangle is one unit along the eta axis.             */
+/*                                                                           */
+/*  The return value indicates which edge of the triangle is shortest.       */
+/*                                                                           */
+/*****************************************************************************/
+
+enum circumcenterresult findcircumcenter(torg, tdest, tapex, circumcenter,
+                                         xi, eta)
+point torg;
+point tdest;
+point tapex;
+point circumcenter;
+REAL *xi;
+REAL *eta;
+{
+  REAL xdo, ydo, xao, yao, xad, yad;
+  REAL dodist, aodist, addist;
+  REAL denominator;
+  REAL dx, dy;
+
+  circumcentercount++;
+
+  /* Compute the circumcenter of the triangle. */
+  xdo = tdest[0] - torg[0];
+  ydo = tdest[1] - torg[1];
+  xao = tapex[0] - torg[0];
+  yao = tapex[1] - torg[1];
+  dodist = xdo * xdo + ydo * ydo;
+  aodist = xao * xao + yao * yao;
+  if (noexact) {
+    denominator = 0.5 / (xdo * yao - xao * ydo);
+  } else {
+    /* Use the counterclockwise() routine to ensure a positive (and */
+    /*   reasonably accurate) result, avoiding any possibility of   */
+    /*   division by zero.                                          */
+    denominator = 0.5 / counterclockwise(tdest, tapex, torg);
+    /* Don't count the above as an orientation test. */
+    counterclockcount--;
+  }
+  circumcenter[0] = torg[0] - (ydo * aodist - yao * dodist) * denominator;  
+  circumcenter[1] = torg[1] + (xdo * aodist - xao * dodist) * denominator;  
+
+  /* To interpolate point attributes for the new point inserted at  */
+  /*   the circumcenter, define a coordinate system with a xi-axis, */
+  /*   directed from the triangle's origin to its destination, and  */
+  /*   an eta-axis, directed from its origin to its apex.           */
+  /*   Calculate the xi and eta coordinates of the circumcenter.    */
+  dx = circumcenter[0] - torg[0];
+  dy = circumcenter[1] - torg[1];
+  *xi = (dx * yao - xao * dy) * (2.0 * denominator);
+  *eta = (xdo * dy - dx * ydo) * (2.0 * denominator);
+
+  xad = tapex[0] - tdest[0];
+  yad = tapex[1] - tdest[1];
+  addist = xad * xad + yad * yad;
+  if ((addist < dodist) && (addist < aodist)) {
+    return OPPOSITEORG;
+  } else if (dodist < aodist) {
+    return OPPOSITEAPEX;
+  } else {
+    return OPPOSITEDEST;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  splittriangle()   Inserts a point at the circumcenter of a triangle.     */
+/*                    Deletes the newly inserted point if it encroaches upon */
+/*                    a segment.                                             */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void splittriangle(badtri)
+struct badface *badtri;
+{
+  point borg, bdest, bapex;
+  point newpoint;
+  REAL xi, eta;
+  enum insertsiteresult success;
+  enum circumcenterresult shortedge;
+  int errorflag;
+  int i;
+
+  org(badtri->badfacetri, borg);
+  dest(badtri->badfacetri, bdest);
+  apex(badtri->badfacetri, bapex);
+  /* Make sure that this triangle is still the same triangle it was      */
+  /*   when it was tested and determined to be of bad quality.           */
+  /*   Subsequent transformations may have made it a different triangle. */
+  if ((borg == badtri->faceorg) && (bdest == badtri->facedest) &&
+      (bapex == badtri->faceapex)) {
+    if (verbose > 1) {
+      printf("  Splitting this triangle at its circumcenter:\n");
+      printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", borg[0],
+             borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
+    }
+    errorflag = 0;
+    /* Create a new point at the triangle's circumcenter. */
+    newpoint = (point) poolalloc(&points);
+    shortedge = findcircumcenter(borg, bdest, bapex, newpoint, &xi, &eta);
+    /* Check whether the new point lies on a triangle vertex. */
+    if (((newpoint[0] == borg[0]) && (newpoint[1] == borg[1]))
+        || ((newpoint[0] == bdest[0]) && (newpoint[1] == bdest[1]))
+        || ((newpoint[0] == bapex[0]) && (newpoint[1] == bapex[1]))) {
+      if (!quiet) {
+        printf("Warning:  New point (%.12g, %.12g) falls on existing vertex.\n"
+               , newpoint[0], newpoint[1]);
+        errorflag = 1;
+      }
+      pointdealloc(newpoint);
+    } else {
+      for (i = 2; i < 2 + nextras; i++) {
+        /* Interpolate the point attributes at the circumcenter. */
+        newpoint[i] = borg[i] + xi * (bdest[i] - borg[i])
+                             + eta * (bapex[i] - borg[i]);
+      }
+      /* The new point must be in the interior, and have a marker of zero. */
+      setpointmark(newpoint, 0);
+      /* Ensure that the handle `badtri->badfacetri' represents the shortest */
+      /*   edge of the triangle.  This ensures that the circumcenter must    */
+      /*   fall to the left of this edge, so point location will work.       */
+      if (shortedge == OPPOSITEORG) {
+        lnextself(badtri->badfacetri);
+      } else if (shortedge == OPPOSITEDEST) {
+        lprevself(badtri->badfacetri);
+      }
+      /* Insert the circumcenter, searching from the edge of the triangle, */
+      /*   and maintain the Delaunay property of the triangulation.        */
+      success = insertsite(newpoint, &(badtri->badfacetri),
+                           (struct edge *) NULL, 1, 1);
+      if (success == SUCCESSFULPOINT) {
+        if (steinerleft > 0) {
+          steinerleft--;
+        }
+      } else if (success == ENCROACHINGPOINT) {
+        /* If the newly inserted point encroaches upon a segment, delete it. */
+        deletesite(&(badtri->badfacetri));
+      } else if (success == VIOLATINGPOINT) {
+        /* Failed to insert the new point, but some segment was */
+        /*   marked as being encroached.                        */
+        pointdealloc(newpoint);
+      } else {                                  /* success == DUPLICATEPOINT */
+        /* Failed to insert the new point because a vertex is already there. */
+        if (!quiet) {
+          printf(
+            "Warning:  New point (%.12g, %.12g) falls on existing vertex.\n"
+                 , newpoint[0], newpoint[1]);
+          errorflag = 1;
+        }
+        pointdealloc(newpoint);
+      }
+    }
+    if (errorflag) {
+      if (verbose) {
+        printf("  The new point is at the circumcenter of triangle\n");
+        printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+               borg[0], borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
+      }
+      printf("This probably means that I am trying to refine triangles\n");
+      printf("  to a smaller size than can be accommodated by the finite\n");
+      printf("  precision of floating point arithmetic.  (You can be\n");
+      printf("  sure of this if I fail to terminate.)\n");
+      precisionerror();
+    }
+  }
+  /* Return the bad triangle to the pool. */
+  pooldealloc(&badtriangles, (VOID *) badtri);
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  enforcequality()   Remove all the encroached edges and bad triangles     */
+/*                     from the triangulation.                               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void enforcequality()
+{
+  int i;
+
+  if (!quiet) {
+    printf("Adding Steiner points to enforce quality.\n");
+  }
+  /* Initialize the pool of encroached segments. */
+  poolinit(&badsegments, sizeof(struct edge), BADSEGMENTPERBLOCK, POINTER, 0);
+  if (verbose) {
+    printf("  Looking for encroached segments.\n");
+  }
+  /* Test all segments to see if they're encroached. */
+  tallyencs();
+  if (verbose && (badsegments.items > 0)) {
+    printf("  Splitting encroached segments.\n");
+  }
+  /* Note that steinerleft == -1 if an unlimited number */
+  /*   of Steiner points is allowed.                    */
+  while ((badsegments.items > 0) && (steinerleft != 0)) {
+    /* Fix the segments without noting newly encroached segments or   */
+    /*   bad triangles.  The reason we don't want to note newly       */
+    /*   encroached segments is because some encroached segments are  */
+    /*   likely to be noted multiple times, and would then be blindly */
+    /*   split multiple times.  I should fix that some time.          */
+    repairencs(0);
+    /* Now, find all the segments that became encroached while adding */
+    /*   points to split encroached segments.                         */
+    tallyencs();
+  }
+  /* At this point, if we haven't run out of Steiner points, the */
+  /*   triangulation should be (conforming) Delaunay.            */
+
+  /* Next, we worry about enforcing triangle quality. */
+  if ((minangle > 0.0) || vararea || fixedarea) {
+    /* Initialize the pool of bad triangles. */
+    poolinit(&badtriangles, sizeof(struct badface), BADTRIPERBLOCK, POINTER,
+             0);
+    /* Initialize the queues of bad triangles. */
+    for (i = 0; i < 64; i++) {
+      queuefront[i] = (struct badface *) NULL;
+      queuetail[i] = &queuefront[i];
+    }
+    /* Test all triangles to see if they're bad. */
+    tallyfaces();
+    if (verbose) {
+      printf("  Splitting bad triangles.\n");
+    }
+    while ((badtriangles.items > 0) && (steinerleft != 0)) {
+      /* Fix one bad triangle by inserting a point at its circumcenter. */
+      splittriangle(dequeuebadtri());
+      /* Fix any encroached segments that may have resulted.  Record */
+      /*   any new bad triangles or encroached segments that result. */
+      if (badsegments.items > 0) {
+        repairencs(1);
+      }
+    }
+  }
+  /* At this point, if we haven't run out of Steiner points, the */
+  /*   triangulation should be (conforming) Delaunay and have no */
+  /*   low-quality triangles.                                    */
+
+  /* Might we have run out of Steiner points too soon? */
+  if (!quiet && (badsegments.items > 0) && (steinerleft == 0)) {
+    printf("\nWarning:  I ran out of Steiner points, but the mesh has\n");
+    if (badsegments.items == 1) {
+      printf("  an encroached segment, and therefore might not be truly\n");
+    } else {
+      printf("  %ld encroached segments, and therefore might not be truly\n",
+             badsegments.items);
+    }
+    printf("  Delaunay.  If the Delaunay property is important to you,\n");
+    printf("  try increasing the number of Steiner points (controlled by\n");
+    printf("  the -S switch) slightly and try again.\n\n");
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Mesh quality maintenance ends here                        *********/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  highorder()   Create extra nodes for quadratic subparametric elements.   */
+/*                                                                           */
+/*****************************************************************************/
+
+void highorder()
+{
+  struct triedge triangleloop, trisym;
+  struct edge checkmark;
+  point newpoint;
+  point torg, tdest;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (!quiet) {
+    printf("Adding vertices for second-order triangles.\n");
+  }
+  /* The following line ensures that dead items in the pool of nodes    */
+  /*   cannot be allocated for the extra nodes associated with high     */
+  /*   order elements.  This ensures that the primary nodes (at the     */
+  /*   corners of elements) will occur earlier in the output files, and */
+  /*   have lower indices, than the extra nodes.                        */
+  points.deaditemstack = (VOID *) NULL;
+
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  /* To loop over the set of edges, loop over all triangles, and look at   */
+  /*   the three edges of each triangle.  If there isn't another triangle  */
+  /*   adjacent to the edge, operate on the edge.  If there is another     */
+  /*   adjacent triangle, operate on the edge only if the current triangle */
+  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
+  /*   considered only once.                                               */
+  while (triangleloop.tri != (triangle *) NULL) {
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      sym(triangleloop, trisym);
+      if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
+        org(triangleloop, torg);
+        dest(triangleloop, tdest);
+        /* Create a new node in the middle of the edge.  Interpolate */
+        /*   its attributes.                                         */
+        newpoint = (point) poolalloc(&points);
+        for (i = 0; i < 2 + nextras; i++) {
+          newpoint[i] = 0.5 * (torg[i] + tdest[i]);
+        }
+        /* Set the new node's marker to zero or one, depending on */
+        /*   whether it lies on a boundary.                       */
+        setpointmark(newpoint, trisym.tri == dummytri);
+        if (useshelles) {
+          tspivot(triangleloop, checkmark);
+          /* If this edge is a segment, transfer the marker to the new node. */
+          if (checkmark.sh != dummysh) {
+            setpointmark(newpoint, mark(checkmark));
+          }
+        }
+        if (verbose > 1) {
+          printf("  Creating (%.12g, %.12g).\n", newpoint[0], newpoint[1]);
+        }
+        /* Record the new node in the (one or two) adjacent elements. */
+        triangleloop.tri[highorderindex + triangleloop.orient] =
+                (triangle) newpoint;
+        if (trisym.tri != dummytri) {
+          trisym.tri[highorderindex + trisym.orient] = (triangle) newpoint;
+        }
+      }
+    }
+    triangleloop.tri = triangletraverse();
+  }
+}
+
+/********* File I/O routines begin here                              *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  readline()   Read a nonempty line from a file.                           */
+/*                                                                           */
+/*  A line is considered "nonempty" if it contains something that looks like */
+/*  a number.                                                                */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+char *readline(string, infile, infilename)
+char *string;
+FILE *infile;
+char *infilename;
+{
+  char *result;
+
+  /* Search for something that looks like a number. */
+  do {
+    result = fgets(string, INPUTLINESIZE, infile);
+    if (result == (char *) NULL) {
+      printf("  Error:  Unexpected end of file in %s.\n", infilename);
+      exit(1);
+    }
+    /* Skip anything that doesn't look like a number, a comment, */
+    /*   or the end of a line.                                   */
+    while ((*result != '\0') && (*result != '#')
+           && (*result != '.') && (*result != '+') && (*result != '-')
+           && ((*result < '0') || (*result > '9'))) {
+      result++;
+    }
+  /* If it's a comment or end of line, read another line and try again. */
+  } while ((*result == '#') || (*result == '\0'));
+  return result;
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  findfield()   Find the next field of a string.                           */
+/*                                                                           */
+/*  Jumps past the current field by searching for whitespace, then jumps     */
+/*  past the whitespace to find the next field.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+char *findfield(string)
+char *string;
+{
+  char *result;
+
+  result = string;
+  /* Skip the current field.  Stop upon reaching whitespace. */
+  while ((*result != '\0') && (*result != '#')
+         && (*result != ' ') && (*result != '\t')) {
+    result++;
+  }
+  /* Now skip the whitespace and anything else that doesn't look like a */
+  /*   number, a comment, or the end of a line.                         */
+  while ((*result != '\0') && (*result != '#')
+         && (*result != '.') && (*result != '+') && (*result != '-')
+         && ((*result < '0') || (*result > '9'))) {
+    result++;
+  }
+  /* Check for a comment (prefixed with `#'). */
+  if (*result == '#') {
+    *result = '\0';
+  }
+  return result;
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  readnodes()   Read the points from a file, which may be a .node or .poly */
+/*                file.                                                      */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+void readnodes(nodefilename, polyfilename, polyfile)
+char *nodefilename;
+char *polyfilename;
+FILE **polyfile;
+{
+  FILE *infile;
+  point pointloop;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  char *infilename;
+  REAL x, y;
+  int firstnode;
+  int nodemarkers;
+  int currentmarker;
+  int i, j;
+
+  if (poly) {
+    /* Read the points from a .poly file. */
+    if (!quiet) {
+      printf("Opening %s.\n", polyfilename);
+    }
+    *polyfile = fopen(polyfilename, "r");
+    if (*polyfile == (FILE *) NULL) {
+      printf("  Error:  Cannot access file %s.\n", polyfilename);
+      exit(1);
+    }
+    /* Read number of points, number of dimensions, number of point */
+    /*   attributes, and number of boundary markers.                */
+    stringptr = readline(inputline, *polyfile, polyfilename);
+    inpoints = (int) strtol (stringptr, &stringptr, 0);
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      mesh_dim = 2;
+    } else {
+      mesh_dim = (int) strtol (stringptr, &stringptr, 0);
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      nextras = 0;
+    } else {
+      nextras = (int) strtol (stringptr, &stringptr, 0);
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      nodemarkers = 0;
+    } else {
+      nodemarkers = (int) strtol (stringptr, &stringptr, 0);
+    }
+    if (inpoints > 0) {
+      infile = *polyfile;
+      infilename = polyfilename;
+      readnodefile = 0;
+    } else {
+      /* If the .poly file claims there are zero points, that means that */
+      /*   the points should be read from a separate .node file.         */
+      readnodefile = 1;
+      infilename = innodefilename;
+    }
+  } else {
+    readnodefile = 1;
+    infilename = innodefilename;
+    *polyfile = (FILE *) NULL;
+  }
+
+  if (readnodefile) {
+    /* Read the points from a .node file. */
+    if (!quiet) {
+      printf("Opening %s.\n", innodefilename);
+    }
+    infile = fopen(innodefilename, "r");
+    if (infile == (FILE *) NULL) {
+      printf("  Error:  Cannot access file %s.\n", innodefilename);
+      exit(1);
+    }
+    /* Read number of points, number of dimensions, number of point */
+    /*   attributes, and number of boundary markers.                */
+    stringptr = readline(inputline, infile, innodefilename);
+    inpoints = (int) strtol (stringptr, &stringptr, 0);
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      mesh_dim = 2;
+    } else {
+      mesh_dim = (int) strtol (stringptr, &stringptr, 0);
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      nextras = 0;
+    } else {
+      nextras = (int) strtol (stringptr, &stringptr, 0);
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      nodemarkers = 0;
+    } else {
+      nodemarkers = (int) strtol (stringptr, &stringptr, 0);
+    }
+  }
+
+  if (inpoints < 3) {
+    printf("Error:  Input must have at least three input points.\n");
+    exit(1);
+  }
+  if (mesh_dim != 2) {
+    printf("Error:  Triangle only works with two-dimensional meshes.\n");
+    exit(1);
+  }
+
+  initializepointpool();
+
+  /* Read the points. */
+  for (i = 0; i < inpoints; i++) {
+    pointloop = (point) poolalloc(&points);
+    stringptr = readline(inputline, infile, infilename);
+    if (i == 0) {
+      firstnode = (int) strtol (stringptr, &stringptr, 0);
+      if ((firstnode == 0) || (firstnode == 1)) {
+        firstnumber = firstnode;
+      }
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      printf("Error:  Point %d has no x coordinate.\n", firstnumber + i);
+      exit(1);
+    }
+    x = (REAL) strtod(stringptr, &stringptr);
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      printf("Error:  Point %d has no y coordinate.\n", firstnumber + i);
+      exit(1);
+    }
+    y = (REAL) strtod(stringptr, &stringptr);
+    pointloop[0] = x;
+    pointloop[1] = y;
+    /* Read the point attributes. */
+    for (j = 2; j < 2 + nextras; j++) {
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        pointloop[j] = 0.0;
+      } else {
+        pointloop[j] = (REAL) strtod(stringptr, &stringptr);
+      }
+    }
+    if (nodemarkers) {
+      /* Read a point marker. */
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        setpointmark(pointloop, 0);
+      } else {
+        currentmarker = (int) strtol (stringptr, &stringptr, 0);
+        setpointmark(pointloop, currentmarker);
+      }
+    } else {
+      /* If no markers are specified in the file, they default to zero. */
+      setpointmark(pointloop, 0);
+    }
+    /* Determine the smallest and largest x and y coordinates. */
+    if (i == 0) {
+      xmin = xmax = x;
+      ymin = ymax = y;
+    } else {
+      xmin = (x < xmin) ? x : xmin;
+      xmax = (x > xmax) ? x : xmax;
+      ymin = (y < ymin) ? y : ymin;
+      ymax = (y > ymax) ? y : ymax;
+    }
+  }
+  if (readnodefile) {
+    fclose(infile);
+  }
+
+  /* Nonexistent x value used as a flag to mark circle events in sweepline */
+  /*   Delaunay algorithm.                                                 */
+  xminextreme = 10 * xmin - 9 * xmax;
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  transfernodes()   Read the points from memory.                           */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+void transfernodes(pointlist, pointattriblist, pointmarkerlist, numberofpoints,
+                   numberofpointattribs)
+REAL *pointlist;
+REAL *pointattriblist;
+int *pointmarkerlist;
+int numberofpoints;
+int numberofpointattribs;
+{
+  point pointloop;
+  REAL x, y;
+  int i, j;
+  int coordindex;
+  int attribindex;
+
+  inpoints = numberofpoints;
+  mesh_dim = 2;
+  nextras = numberofpointattribs;
+  readnodefile = 0;
+  if (inpoints < 3) {
+    printf("Error:  Input must have at least three input points.\n");
+    exit(1);
+  }
+
+  initializepointpool();
+
+  /* Read the points. */
+  coordindex = 0;
+  attribindex = 0;
+  for (i = 0; i < inpoints; i++) {
+    pointloop = (point) poolalloc(&points);
+    /* Read the point coordinates. */
+    x = pointloop[0] = pointlist[coordindex++];
+    y = pointloop[1] = pointlist[coordindex++];
+    /* Read the point attributes. */
+    for (j = 0; j < numberofpointattribs; j++) {
+      pointloop[2 + j] = pointattriblist[attribindex++];
+    }
+    if (pointmarkerlist != (int *) NULL) {
+      /* Read a point marker. */
+      setpointmark(pointloop, pointmarkerlist[i]);
+    } else {
+      /* If no markers are specified, they default to zero. */
+      setpointmark(pointloop, 0);
+    }
+    x = pointloop[0];
+    y = pointloop[1];
+    /* Determine the smallest and largest x and y coordinates. */
+    if (i == 0) {
+      xmin = xmax = x;
+      ymin = ymax = y;
+    } else {
+      xmin = (x < xmin) ? x : xmin;
+      xmax = (x > xmax) ? x : xmax;
+      ymin = (y < ymin) ? y : ymin;
+      ymax = (y > ymax) ? y : ymax;
+    }
+  }
+
+  /* Nonexistent x value used as a flag to mark circle events in sweepline */
+  /*   Delaunay algorithm.                                                 */
+  xminextreme = 10 * xmin - 9 * xmax;
+}
+
+#endif /* TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  readholes()   Read the holes, and possibly regional attributes and area  */
+/*                constraints, from a .poly file.                            */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+void readholes(polyfile, polyfilename, hlist, holes, rlist, regions)
+FILE *polyfile;
+char *polyfilename;
+REAL **hlist;
+int *holes;
+REAL **rlist;
+int *regions;
+{
+  REAL *holelist;
+  REAL *regionlist;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  int index;
+  int i;
+
+  /* Read the holes. */
+  stringptr = readline(inputline, polyfile, polyfilename);
+  *holes = (int) strtol (stringptr, &stringptr, 0);
+  if (*holes > 0) {
+    holelist = (REAL *) malloc(2 * *holes * sizeof(REAL));
+    *hlist = holelist;
+    if (holelist == (REAL *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+    for (i = 0; i < 2 * *holes; i += 2) {
+      stringptr = readline(inputline, polyfile, polyfilename);
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Hole %d has no x coordinate.\n",
+               firstnumber + (i >> 1));
+        exit(1);
+      } else {
+        holelist[i] = (REAL) strtod(stringptr, &stringptr);
+      }
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        printf("Error:  Hole %d has no y coordinate.\n",
+               firstnumber + (i >> 1));
+        exit(1);
+      } else {
+        holelist[i + 1] = (REAL) strtod(stringptr, &stringptr);
+      }
+    }
+  } else {
+    *hlist = (REAL *) NULL;
+  }
+
+#ifndef CDT_ONLY
+  if ((regionattrib || vararea) && !refine) {
+    /* Read the area constraints. */
+    stringptr = readline(inputline, polyfile, polyfilename);
+    *regions = (int) strtol (stringptr, &stringptr, 0);
+    if (*regions > 0) {
+      regionlist = (REAL *) malloc(4 * *regions * sizeof(REAL));
+      *rlist = regionlist;
+      if (regionlist == (REAL *) NULL) {
+        printf("Error:  Out of memory.\n");
+        exit(1);
+      }
+      index = 0;
+      for (i = 0; i < *regions; i++) {
+        stringptr = readline(inputline, polyfile, polyfilename);
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          printf("Error:  Region %d has no x coordinate.\n",
+                 firstnumber + i);
+          exit(1);
+        } else {
+          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
+        }
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          printf("Error:  Region %d has no y coordinate.\n",
+                 firstnumber + i);
+          exit(1);
+        } else {
+          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
+        }
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          printf(
+            "Error:  Region %d has no region attribute or area constraint.\n",
+                 firstnumber + i);
+          exit(1);
+        } else {
+          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
+        }
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          regionlist[index] = regionlist[index - 1];
+        } else {
+          regionlist[index] = (REAL) strtod(stringptr, &stringptr);
+        }
+        index++;
+      }
+    }
+  } else {
+    /* Set `*regions' to zero to avoid an accidental free() later. */
+    *regions = 0;
+    *rlist = (REAL *) NULL;
+  }
+#endif /* not CDT_ONLY */
+
+  fclose(polyfile);
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  finishfile()   Write the command line to the output file so the user     */
+/*                 can remember how the file was generated.  Close the file. */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+void finishfile(outfile, argc, argv)
+FILE *outfile;
+int argc;
+char **argv;
+{
+  int i;
+
+  fprintf(outfile, "# Generated by");
+  for (i = 0; i < argc; i++) {
+    fprintf(outfile, " ");
+    fputs(argv[i], outfile);
+  }
+  fprintf(outfile, "\n");
+  fclose(outfile);
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writenodes()   Number the points and write them to a .node file.         */
+/*                                                                           */
+/*  To save memory, the point numbers are written over the shell markers     */
+/*  after the points are written to a file.                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+void writenodes(pointlist, pointattriblist, pointmarkerlist)
+REAL **pointlist;
+REAL **pointattriblist;
+int **pointmarkerlist;
+
+#else /* not TRILIBRARY */
+
+void writenodes(nodefilename, argc, argv)
+char *nodefilename;
+int argc;
+char **argv;
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  REAL *plist;
+  REAL *palist;
+  int *pmlist;
+  int coordindex;
+  int attribindex;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+#endif /* not TRILIBRARY */
+  point pointloop;
+  int pointnumber;
+  int i;
+
+#ifdef TRILIBRARY
+  if (!quiet) {
+    printf("Writing points.\n");
+  }
+  /* Allocate memory for output points if necessary. */
+  if (*pointlist == (REAL *) NULL) {
+    *pointlist = (REAL *) malloc(points.items * 2 * sizeof(REAL));
+    if (*pointlist == (REAL *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  /* Allocate memory for output point attributes if necessary. */
+  if ((nextras > 0) && (*pointattriblist == (REAL *) NULL)) {
+    *pointattriblist = (REAL *) malloc(points.items * nextras * sizeof(REAL));
+    if (*pointattriblist == (REAL *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  /* Allocate memory for output point markers if necessary. */
+  if (!nobound && (*pointmarkerlist == (int *) NULL)) {
+    *pointmarkerlist = (int *) malloc(points.items * sizeof(int));
+    if (*pointmarkerlist == (int *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  plist = *pointlist;
+  palist = *pointattriblist;
+  pmlist = *pointmarkerlist;
+  coordindex = 0;
+  attribindex = 0;
+#else /* not TRILIBRARY */
+  if (!quiet) {
+    printf("Writing %s.\n", nodefilename);
+  }
+  outfile = fopen(nodefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    printf("  Error:  Cannot create file %s.\n", nodefilename);
+    exit(1);
+  }
+  /* Number of points, number of dimensions, number of point attributes, */
+  /*   and number of boundary markers (zero or one).                     */
+  fprintf(outfile, "%ld  %d  %d  %d\n", points.items, mesh_dim, nextras,
+          1 - nobound);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&points);
+  pointloop = pointtraverse();
+  pointnumber = firstnumber;
+  while (pointloop != (point) NULL) {
+#ifdef TRILIBRARY
+    /* X and y coordinates. */
+    plist[coordindex++] = pointloop[0];
+    plist[coordindex++] = pointloop[1];
+    /* Point attributes. */
+    for (i = 0; i < nextras; i++) {
+      palist[attribindex++] = pointloop[2 + i];
+    }
+    if (!nobound) {
+      /* Copy the boundary marker. */
+      pmlist[pointnumber - firstnumber] = pointmark(pointloop);
+    }
+#else /* not TRILIBRARY */
+    /* Point number, x and y coordinates. */
+    fprintf(outfile, "%4d    %.17g  %.17g", pointnumber, pointloop[0],
+            pointloop[1]);
+    for (i = 0; i < nextras; i++) {
+      /* Write an attribute. */
+      fprintf(outfile, "  %.17g", pointloop[i + 2]);
+    }
+    if (nobound) {
+      fprintf(outfile, "\n");
+    } else {
+      /* Write the boundary marker. */
+      fprintf(outfile, "    %d\n", pointmark(pointloop));
+    }
+#endif /* not TRILIBRARY */
+
+    setpointmark(pointloop, pointnumber);
+    pointloop = pointtraverse();
+    pointnumber++;
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  numbernodes()   Number the points.                                       */
+/*                                                                           */
+/*  Each point is assigned a marker equal to its number.                     */
+/*                                                                           */
+/*  Used when writenodes() is not called because no .node file is written.   */
+/*                                                                           */
+/*****************************************************************************/
+
+void numbernodes()
+{
+  point pointloop;
+  int pointnumber;
+
+  traversalinit(&points);
+  pointloop = pointtraverse();
+  pointnumber = firstnumber;
+  while (pointloop != (point) NULL) {
+    setpointmark(pointloop, pointnumber);
+    pointloop = pointtraverse();
+    pointnumber++;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writeelements()   Write the triangles to an .ele file.                   */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+void writeelements(trianglelist, triangleattriblist)
+int **trianglelist;
+REAL **triangleattriblist;
+
+#else /* not TRILIBRARY */
+
+void writeelements(elefilename, argc, argv)
+char *elefilename;
+int argc;
+char **argv;
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  int *tlist;
+  REAL *talist;
+  int pointindex;
+  int attribindex;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+#endif /* not TRILIBRARY */
+  struct triedge triangleloop;
+  point p1, p2, p3;
+  point mid1, mid2, mid3;
+  int elementnumber;
+  int i;
+
+#ifdef TRILIBRARY
+  if (!quiet) {
+    printf("Writing triangles.\n");
+  }
+  /* Allocate memory for output triangles if necessary. */
+  if (*trianglelist == (int *) NULL) {
+    *trianglelist = (int *) malloc(triangles.items *
+                               ((order + 1) * (order + 2) / 2) * sizeof(int));
+    if (*trianglelist == (int *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  /* Allocate memory for output triangle attributes if necessary. */
+  if ((eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {
+    *triangleattriblist = (REAL *) malloc(triangles.items * eextras *
+                                          sizeof(REAL));
+    if (*triangleattriblist == (REAL *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  tlist = *trianglelist;
+  talist = *triangleattriblist;
+  pointindex = 0;
+  attribindex = 0;
+#else /* not TRILIBRARY */
+  if (!quiet) {
+    printf("Writing %s.\n", elefilename);
+  }
+  outfile = fopen(elefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    printf("  Error:  Cannot create file %s.\n", elefilename);
+    exit(1);
+  }
+  /* Number of triangles, points per triangle, attributes per triangle. */
+  fprintf(outfile, "%ld  %d  %d\n", triangles.items,
+          (order + 1) * (order + 2) / 2, eextras);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  triangleloop.orient = 0;
+  elementnumber = firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, p1);
+    dest(triangleloop, p2);
+    apex(triangleloop, p3);
+    if (order == 1) {
+#ifdef TRILIBRARY
+      tlist[pointindex++] = pointmark(p1);
+      tlist[pointindex++] = pointmark(p2);
+      tlist[pointindex++] = pointmark(p3);
+#else /* not TRILIBRARY */
+      /* Triangle number, indices for three points. */
+      fprintf(outfile, "%4d    %4d  %4d  %4d", elementnumber,
+              pointmark(p1), pointmark(p2), pointmark(p3));
+#endif /* not TRILIBRARY */
+    } else {
+      mid1 = (point) triangleloop.tri[highorderindex + 1];
+      mid2 = (point) triangleloop.tri[highorderindex + 2];
+      mid3 = (point) triangleloop.tri[highorderindex];
+#ifdef TRILIBRARY
+      tlist[pointindex++] = pointmark(p1);
+      tlist[pointindex++] = pointmark(p2);
+      tlist[pointindex++] = pointmark(p3);
+      tlist[pointindex++] = pointmark(mid1);
+      tlist[pointindex++] = pointmark(mid2);
+      tlist[pointindex++] = pointmark(mid3);
+#else /* not TRILIBRARY */
+      /* Triangle number, indices for six points. */
+      fprintf(outfile, "%4d    %4d  %4d  %4d  %4d  %4d  %4d", elementnumber,
+              pointmark(p1), pointmark(p2), pointmark(p3), pointmark(mid1),
+              pointmark(mid2), pointmark(mid3));
+#endif /* not TRILIBRARY */
+    }
+
+#ifdef TRILIBRARY
+    for (i = 0; i < eextras; i++) {
+      talist[attribindex++] = elemattribute(triangleloop, i);
+    }
+#else /* not TRILIBRARY */
+    for (i = 0; i < eextras; i++) {
+      fprintf(outfile, "  %.17g", elemattribute(triangleloop, i));
+    }
+    fprintf(outfile, "\n");
+#endif /* not TRILIBRARY */
+
+    triangleloop.tri = triangletraverse();
+    elementnumber++;
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writepoly()   Write the segments and holes to a .poly file.              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+void writepoly(segmentlist, segmentmarkerlist)
+int **segmentlist;
+int **segmentmarkerlist;
+
+#else /* not TRILIBRARY */
+
+void writepoly(polyfilename, holelist, holes, regionlist, regions, argc, argv)
+char *polyfilename;
+REAL *holelist;
+int holes;
+REAL *regionlist;
+int regions;
+int argc;
+char **argv;
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  int *slist;
+  int *smlist;
+  int index;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+  int i;
+#endif /* not TRILIBRARY */
+  struct edge shelleloop;
+  point endpoint1, endpoint2;
+  int shellenumber;
+
+#ifdef TRILIBRARY
+  if (!quiet) {
+    printf("Writing segments.\n");
+  }
+  /* Allocate memory for output segments if necessary. */
+  if (*segmentlist == (int *) NULL) {
+    *segmentlist = (int *) malloc(shelles.items * 2 * sizeof(int));
+    if (*segmentlist == (int *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  /* Allocate memory for output segment markers if necessary. */
+  if (!nobound && (*segmentmarkerlist == (int *) NULL)) {
+    *segmentmarkerlist = (int *) malloc(shelles.items * sizeof(int));
+    if (*segmentmarkerlist == (int *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  slist = *segmentlist;
+  smlist = *segmentmarkerlist;
+  index = 0;
+#else /* not TRILIBRARY */
+  if (!quiet) {
+    printf("Writing %s.\n", polyfilename);
+  }
+  outfile = fopen(polyfilename, "w");
+  if (outfile == (FILE *) NULL) {
+    printf("  Error:  Cannot create file %s.\n", polyfilename);
+    exit(1);
+  }
+  /* The zero indicates that the points are in a separate .node file. */
+  /*   Followed by number of dimensions, number of point attributes,  */
+  /*   and number of boundary markers (zero or one).                  */
+  fprintf(outfile, "%d  %d  %d  %d\n", 0, mesh_dim, nextras, 1 - nobound);
+  /* Number of segments, number of boundary markers (zero or one). */
+  fprintf(outfile, "%ld  %d\n", shelles.items, 1 - nobound);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&shelles);
+  shelleloop.sh = shelletraverse();
+  shelleloop.shorient = 0;
+  shellenumber = firstnumber;
+  while (shelleloop.sh != (shelle *) NULL) {
+    sorg(shelleloop, endpoint1);
+    sdest(shelleloop, endpoint2);
+#ifdef TRILIBRARY
+    /* Copy indices of the segment's two endpoints. */
+    slist[index++] = pointmark(endpoint1);
+    slist[index++] = pointmark(endpoint2);
+    if (!nobound) {
+      /* Copy the boundary marker. */
+      smlist[shellenumber - firstnumber] = mark(shelleloop);
+    }
+#else /* not TRILIBRARY */
+    /* Segment number, indices of its two endpoints, and possibly a marker. */
+    if (nobound) {
+      fprintf(outfile, "%4d    %4d  %4d\n", shellenumber,
+              pointmark(endpoint1), pointmark(endpoint2));
+    } else {
+      fprintf(outfile, "%4d    %4d  %4d    %4d\n", shellenumber,
+              pointmark(endpoint1), pointmark(endpoint2), mark(shelleloop));
+    }
+#endif /* not TRILIBRARY */
+
+    shelleloop.sh = shelletraverse();
+    shellenumber++;
+  }
+
+#ifndef TRILIBRARY
+#ifndef CDT_ONLY
+  fprintf(outfile, "%d\n", holes);
+  if (holes > 0) {
+    for (i = 0; i < holes; i++) {
+      /* Hole number, x and y coordinates. */
+      fprintf(outfile, "%4d   %.17g  %.17g\n", firstnumber + i,
+              holelist[2 * i], holelist[2 * i + 1]);
+    }
+  }
+  if (regions > 0) {
+    fprintf(outfile, "%d\n", regions);
+    for (i = 0; i < regions; i++) {
+      /* Region number, x and y coordinates, attribute, maximum area. */
+      fprintf(outfile, "%4d   %.17g  %.17g  %.17g  %.17g\n", firstnumber + i,
+              regionlist[4 * i], regionlist[4 * i + 1],
+              regionlist[4 * i + 2], regionlist[4 * i + 3]);
+    }
+  }
+#endif /* not CDT_ONLY */
+
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writeedges()   Write the edges to a .edge file.                          */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+void writeedges(edgelist, edgemarkerlist)
+int **edgelist;
+int **edgemarkerlist;
+
+#else /* not TRILIBRARY */
+
+void writeedges(edgefilename, argc, argv)
+char *edgefilename;
+int argc;
+char **argv;
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  int *elist;
+  int *emlist;
+  int index;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+#endif /* not TRILIBRARY */
+  struct triedge triangleloop, trisym;
+  struct edge checkmark;
+  point p1, p2;
+  int edgenumber;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  shelle sptr;                      /* Temporary variable used by tspivot(). */
+
+#ifdef TRILIBRARY
+  if (!quiet) {
+    printf("Writing edges.\n");
+  }
+  /* Allocate memory for edges if necessary. */
+  if (*edgelist == (int *) NULL) {
+    *edgelist = (int *) malloc(edges * 2 * sizeof(int));
+    if (*edgelist == (int *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  /* Allocate memory for edge markers if necessary. */
+  if (!nobound && (*edgemarkerlist == (int *) NULL)) {
+    *edgemarkerlist = (int *) malloc(edges * sizeof(int));
+    if (*edgemarkerlist == (int *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  elist = *edgelist;
+  emlist = *edgemarkerlist;
+  index = 0;
+#else /* not TRILIBRARY */
+  if (!quiet) {
+    printf("Writing %s.\n", edgefilename);
+  }
+  outfile = fopen(edgefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    printf("  Error:  Cannot create file %s.\n", edgefilename);
+    exit(1);
+  }
+  /* Number of edges, number of boundary markers (zero or one). */
+  fprintf(outfile, "%ld  %d\n", edges, 1 - nobound);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  edgenumber = firstnumber;
+  /* To loop over the set of edges, loop over all triangles, and look at   */
+  /*   the three edges of each triangle.  If there isn't another triangle  */
+  /*   adjacent to the edge, operate on the edge.  If there is another     */
+  /*   adjacent triangle, operate on the edge only if the current triangle */
+  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
+  /*   considered only once.                                               */
+  while (triangleloop.tri != (triangle *) NULL) {
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      sym(triangleloop, trisym);
+      if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
+        org(triangleloop, p1);
+        dest(triangleloop, p2);
+#ifdef TRILIBRARY
+        elist[index++] = pointmark(p1);
+        elist[index++] = pointmark(p2);
+#endif /* TRILIBRARY */
+        if (nobound) {
+#ifndef TRILIBRARY
+          /* Edge number, indices of two endpoints. */
+          fprintf(outfile, "%4d   %d  %d\n", edgenumber,
+                  pointmark(p1), pointmark(p2));
+#endif /* not TRILIBRARY */
+        } else {
+          /* Edge number, indices of two endpoints, and a boundary marker. */
+          /*   If there's no shell edge, the boundary marker is zero.      */
+          if (useshelles) {
+            tspivot(triangleloop, checkmark);
+            if (checkmark.sh == dummysh) {
+#ifdef TRILIBRARY
+              emlist[edgenumber - firstnumber] = 0;
+#else /* not TRILIBRARY */
+              fprintf(outfile, "%4d   %d  %d  %d\n", edgenumber,
+                      pointmark(p1), pointmark(p2), 0);
+#endif /* not TRILIBRARY */
+            } else {
+#ifdef TRILIBRARY
+              emlist[edgenumber - firstnumber] = mark(checkmark);
+#else /* not TRILIBRARY */
+              fprintf(outfile, "%4d   %d  %d  %d\n", edgenumber,
+                      pointmark(p1), pointmark(p2), mark(checkmark));
+#endif /* not TRILIBRARY */
+            }
+          } else {
+#ifdef TRILIBRARY
+            emlist[edgenumber - firstnumber] = trisym.tri == dummytri;
+#else /* not TRILIBRARY */
+            fprintf(outfile, "%4d   %d  %d  %d\n", edgenumber,
+                    pointmark(p1), pointmark(p2), trisym.tri == dummytri);
+#endif /* not TRILIBRARY */
+          }
+        }
+        edgenumber++;
+      }
+    }
+    triangleloop.tri = triangletraverse();
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writevoronoi()   Write the Voronoi diagram to a .v.node and .v.edge      */
+/*                   file.                                                   */
+/*                                                                           */
+/*  The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
+/*  Hence, the Voronoi vertices are listed by traversing the Delaunay        */
+/*  triangles, and the Voronoi edges are listed by traversing the Delaunay   */
+/*  edges.                                                                   */
+/*                                                                           */
+/*  WARNING:  In order to assign numbers to the Voronoi vertices, this       */
+/*  procedure messes up the shell edges or the extra nodes of every          */
+/*  element.  Hence, you should call this procedure last.                    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+void writevoronoi(vpointlist, vpointattriblist, vpointmarkerlist, vedgelist,
+                  vedgemarkerlist, vnormlist)
+REAL **vpointlist;
+REAL **vpointattriblist;
+int **vpointmarkerlist;
+int **vedgelist;
+int **vedgemarkerlist;
+REAL **vnormlist;
+
+#else /* not TRILIBRARY */
+
+void writevoronoi(vnodefilename, vedgefilename, argc, argv)
+char *vnodefilename;
+char *vedgefilename;
+int argc;
+char **argv;
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  REAL *plist;
+  REAL *palist;
+  int *elist;
+  REAL *normlist;
+  int coordindex;
+  int attribindex;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+#endif /* not TRILIBRARY */
+  struct triedge triangleloop, trisym;
+  point torg, tdest, tapex;
+  REAL circumcenter[2];
+  REAL xi, eta;
+  int vnodenumber, vedgenumber;
+  int p1, p2;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+#ifdef TRILIBRARY
+  if (!quiet) {
+    printf("Writing Voronoi vertices.\n");
+  }
+  /* Allocate memory for Voronoi vertices if necessary. */
+  if (*vpointlist == (REAL *) NULL) {
+    *vpointlist = (REAL *) malloc(triangles.items * 2 * sizeof(REAL));
+    if (*vpointlist == (REAL *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  /* Allocate memory for Voronoi vertex attributes if necessary. */
+  if (*vpointattriblist == (REAL *) NULL) {
+    *vpointattriblist = (REAL *) malloc(triangles.items * nextras *
+                                        sizeof(REAL));
+    if (*vpointattriblist == (REAL *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  *vpointmarkerlist = (int *) NULL;
+  plist = *vpointlist;
+  palist = *vpointattriblist;
+  coordindex = 0;
+  attribindex = 0;
+#else /* not TRILIBRARY */
+  if (!quiet) {
+    printf("Writing %s.\n", vnodefilename);
+  }
+  outfile = fopen(vnodefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    printf("  Error:  Cannot create file %s.\n", vnodefilename);
+    exit(1);
+  }
+  /* Number of triangles, two dimensions, number of point attributes, */
+  /*   zero markers.                                                  */
+  fprintf(outfile, "%ld  %d  %d  %d\n", triangles.items, 2, nextras, 0);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  triangleloop.orient = 0;
+  vnodenumber = firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, torg);
+    dest(triangleloop, tdest);
+    apex(triangleloop, tapex);
+    findcircumcenter(torg, tdest, tapex, circumcenter, &xi, &eta);
+#ifdef TRILIBRARY
+    /* X and y coordinates. */
+    plist[coordindex++] = circumcenter[0];
+    plist[coordindex++] = circumcenter[1];
+    for (i = 2; i < 2 + nextras; i++) {
+      /* Interpolate the point attributes at the circumcenter. */
+      palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])
+                                     + eta * (tapex[i] - torg[i]);
+    }
+#else /* not TRILIBRARY */
+    /* Voronoi vertex number, x and y coordinates. */
+    fprintf(outfile, "%4d    %.17g  %.17g", vnodenumber, circumcenter[0],
+            circumcenter[1]);
+    for (i = 2; i < 2 + nextras; i++) {
+      /* Interpolate the point attributes at the circumcenter. */
+      fprintf(outfile, "  %.17g", torg[i] + xi * (tdest[i] - torg[i])
+                                         + eta * (tapex[i] - torg[i]));
+    }
+    fprintf(outfile, "\n");
+#endif /* not TRILIBRARY */
+
+    * (int *) (triangleloop.tri + 6) = vnodenumber;
+    triangleloop.tri = triangletraverse();
+    vnodenumber++;
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+
+#ifdef TRILIBRARY
+  if (!quiet) {
+    printf("Writing Voronoi edges.\n");
+  }
+  /* Allocate memory for output Voronoi edges if necessary. */
+  if (*vedgelist == (int *) NULL) {
+    *vedgelist = (int *) malloc(edges * 2 * sizeof(int));
+    if (*vedgelist == (int *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  *vedgemarkerlist = (int *) NULL;
+  /* Allocate memory for output Voronoi norms if necessary. */
+  if (*vnormlist == (REAL *) NULL) {
+    *vnormlist = (REAL *) malloc(edges * 2 * sizeof(REAL));
+    if (*vnormlist == (REAL *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  elist = *vedgelist;
+  normlist = *vnormlist;
+  coordindex = 0;
+#else /* not TRILIBRARY */
+  if (!quiet) {
+    printf("Writing %s.\n", vedgefilename);
+  }
+  outfile = fopen(vedgefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    printf("  Error:  Cannot create file %s.\n", vedgefilename);
+    exit(1);
+  }
+  /* Number of edges, zero boundary markers. */
+  fprintf(outfile, "%ld  %d\n", edges, 0);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  vedgenumber = firstnumber;
+  /* To loop over the set of edges, loop over all triangles, and look at   */
+  /*   the three edges of each triangle.  If there isn't another triangle  */
+  /*   adjacent to the edge, operate on the edge.  If there is another     */
+  /*   adjacent triangle, operate on the edge only if the current triangle */
+  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
+  /*   considered only once.                                               */
+  while (triangleloop.tri != (triangle *) NULL) {
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      sym(triangleloop, trisym);
+      if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
+        /* Find the number of this triangle (and Voronoi vertex). */
+        p1 = * (int *) (triangleloop.tri + 6);
+        if (trisym.tri == dummytri) {
+          org(triangleloop, torg);
+          dest(triangleloop, tdest);
+#ifdef TRILIBRARY
+          /* Copy an infinite ray.  Index of one endpoint, and -1. */
+          elist[coordindex] = p1;
+          normlist[coordindex++] = tdest[1] - torg[1];
+          elist[coordindex] = -1;
+          normlist[coordindex++] = torg[0] - tdest[0];
+#else /* not TRILIBRARY */
+          /* Write an infinite ray.  Edge number, index of one endpoint, -1, */
+          /*   and x and y coordinates of a vector representing the          */
+          /*   direction of the ray.                                         */
+          fprintf(outfile, "%4d   %d  %d   %.17g  %.17g\n", vedgenumber,
+                  p1, -1, tdest[1] - torg[1], torg[0] - tdest[0]);
+#endif /* not TRILIBRARY */
+        } else {
+          /* Find the number of the adjacent triangle (and Voronoi vertex). */
+          p2 = * (int *) (trisym.tri + 6);
+          /* Finite edge.  Write indices of two endpoints. */
+#ifdef TRILIBRARY
+          elist[coordindex] = p1;
+          normlist[coordindex++] = 0.0;
+          elist[coordindex] = p2;
+          normlist[coordindex++] = 0.0;
+#else /* not TRILIBRARY */
+          fprintf(outfile, "%4d   %d  %d\n", vedgenumber, p1, p2);
+#endif /* not TRILIBRARY */
+        }
+        vedgenumber++;
+      }
+    }
+    triangleloop.tri = triangletraverse();
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+#ifdef TRILIBRARY
+
+void writeneighbors(neighborlist)
+int **neighborlist;
+
+#else /* not TRILIBRARY */
+
+void writeneighbors(neighborfilename, argc, argv)
+char *neighborfilename;
+int argc;
+char **argv;
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  int *nlist;
+  int index;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+#endif /* not TRILIBRARY */
+  struct triedge triangleloop, trisym;
+  int elementnumber;
+  int neighbor1, neighbor2, neighbor3;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+#ifdef TRILIBRARY
+  if (!quiet) {
+    printf("Writing neighbors.\n");
+  }
+  /* Allocate memory for neighbors if necessary. */
+  if (*neighborlist == (int *) NULL) {
+    *neighborlist = (int *) malloc(triangles.items * 3 * sizeof(int));
+    if (*neighborlist == (int *) NULL) {
+      printf("Error:  Out of memory.\n");
+      exit(1);
+    }
+  }
+  nlist = *neighborlist;
+  index = 0;
+#else /* not TRILIBRARY */
+  if (!quiet) {
+    printf("Writing %s.\n", neighborfilename);
+  }
+  outfile = fopen(neighborfilename, "w");
+  if (outfile == (FILE *) NULL) {
+    printf("  Error:  Cannot create file %s.\n", neighborfilename);
+    exit(1);
+  }
+  /* Number of triangles, three edges per triangle. */
+  fprintf(outfile, "%ld  %d\n", triangles.items, 3);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  triangleloop.orient = 0;
+  elementnumber = firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    * (int *) (triangleloop.tri + 6) = elementnumber;
+    triangleloop.tri = triangletraverse();
+    elementnumber++;
+  }
+  * (int *) (dummytri + 6) = -1;
+
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  elementnumber = firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    triangleloop.orient = 1;
+    sym(triangleloop, trisym);
+    neighbor1 = * (int *) (trisym.tri + 6);
+    triangleloop.orient = 2;
+    sym(triangleloop, trisym);
+    neighbor2 = * (int *) (trisym.tri + 6);
+    triangleloop.orient = 0;
+    sym(triangleloop, trisym);
+    neighbor3 = * (int *) (trisym.tri + 6);
+#ifdef TRILIBRARY
+    nlist[index++] = neighbor1;
+    nlist[index++] = neighbor2;
+    nlist[index++] = neighbor3;
+#else /* not TRILIBRARY */
+    /* Triangle number, neighboring triangle numbers. */
+    fprintf(outfile, "%4d    %d  %d  %d\n", elementnumber,
+            neighbor1, neighbor2, neighbor3);
+#endif /* not TRILIBRARY */
+
+    triangleloop.tri = triangletraverse();
+    elementnumber++;
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* TRILIBRARY */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writeoff()   Write the triangulation to an .off file.                    */
+/*                                                                           */
+/*  OFF stands for the Object File Format, a format used by the Geometry     */
+/*  Center's Geomview package.                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+void writeoff(offfilename, argc, argv)
+char *offfilename;
+int argc;
+char **argv;
+{
+  FILE *outfile;
+  struct triedge triangleloop;
+  point pointloop;
+  point p1, p2, p3;
+
+  if (!quiet) {
+    printf("Writing %s.\n", offfilename);
+  }
+  outfile = fopen(offfilename, "w");
+  if (outfile == (FILE *) NULL) {
+    printf("  Error:  Cannot create file %s.\n", offfilename);
+    exit(1);
+  }
+  /* Number of points, triangles, and edges. */
+  fprintf(outfile, "OFF\n%ld  %ld  %ld\n", points.items, triangles.items,
+          edges);
+
+  /* Write the points. */
+  traversalinit(&points);
+  pointloop = pointtraverse();
+  while (pointloop != (point) NULL) {
+    /* The "0.0" is here because the OFF format uses 3D coordinates. */
+    fprintf(outfile, " %.17g  %.17g  %.17g\n", pointloop[0],
+            pointloop[1], 0.0);
+    pointloop = pointtraverse();
+  }
+
+  /* Write the triangles. */
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  triangleloop.orient = 0;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, p1);
+    dest(triangleloop, p2);
+    apex(triangleloop, p3);
+    /* The "3" means a three-vertex polygon. */
+    fprintf(outfile, " 3   %4d  %4d  %4d\n", pointmark(p1) - 1,
+            pointmark(p2) - 1, pointmark(p3) - 1);
+    triangleloop.tri = triangletraverse();
+  }
+  finishfile(outfile, argc, argv);
+}
+
+#endif /* not TRILIBRARY */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* File I/O routines end here                                *********/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  quality_statistics()   Print statistics about the quality of the mesh.   */
+/*                                                                           */
+/*****************************************************************************/
+
+void quality_statistics()
+{
+  struct triedge triangleloop;
+  point p[3];
+  REAL cossquaretable[8];
+  REAL ratiotable[16];
+  REAL dx[3], dy[3];
+  REAL edgelength[3];
+  REAL dotproduct;
+  REAL cossquare;
+  REAL triarea;
+  REAL shortest, longest;
+  REAL trilongest2;
+  REAL smallestarea, biggestarea;
+  REAL triminaltitude2;
+  REAL minaltitude;
+  REAL triaspect2;
+  REAL worstaspect;
+  REAL smallestangle, biggestangle;
+  REAL radconst, degconst;
+  int angletable[18];
+  int aspecttable[16];
+  int aspectindex;
+  int tendegree;
+  int acutebiggest;
+  int i, ii, j, k;
+
+  printf("Mesh quality statistics:\n\n");
+  radconst = PI / 18.0;
+  degconst = 180.0 / PI;
+  for (i = 0; i < 8; i++) {
+    cossquaretable[i] = cos(radconst * (REAL) (i + 1));
+    cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
+  }
+  for (i = 0; i < 18; i++) {
+    angletable[i] = 0;
+  }
+
+  ratiotable[0]  =      1.5;      ratiotable[1]  =     2.0;
+  ratiotable[2]  =      2.5;      ratiotable[3]  =     3.0;
+  ratiotable[4]  =      4.0;      ratiotable[5]  =     6.0;
+  ratiotable[6]  =     10.0;      ratiotable[7]  =    15.0;
+  ratiotable[8]  =     25.0;      ratiotable[9]  =    50.0;
+  ratiotable[10] =    100.0;      ratiotable[11] =   300.0;
+  ratiotable[12] =   1000.0;      ratiotable[13] = 10000.0;
+  ratiotable[14] = 100000.0;      ratiotable[15] =     0.0;
+  for (i = 0; i < 16; i++) {
+    aspecttable[i] = 0;
+  }
+
+  worstaspect = 0.0;
+  minaltitude = xmax - xmin + ymax - ymin;
+  minaltitude = minaltitude * minaltitude;
+  shortest = minaltitude;
+  longest = 0.0;
+  smallestarea = minaltitude;
+  biggestarea = 0.0;
+  worstaspect = 0.0;
+  smallestangle = 0.0;
+  biggestangle = 2.0;
+  acutebiggest = 1;
+
+  traversalinit(&triangles);
+  triangleloop.tri = triangletraverse();
+  triangleloop.orient = 0;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, p[0]);
+    dest(triangleloop, p[1]);
+    apex(triangleloop, p[2]);
+    trilongest2 = 0.0;
+
+    for (i = 0; i < 3; i++) {
+      j = plus1mod3[i];
+      k = minus1mod3[i];
+      dx[i] = p[j][0] - p[k][0];
+      dy[i] = p[j][1] - p[k][1];
+      edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
+      if (edgelength[i] > trilongest2) {
+        trilongest2 = edgelength[i];
+      }
+      if (edgelength[i] > longest) {
+        longest = edgelength[i];
+      }
+      if (edgelength[i] < shortest) {
+        shortest = edgelength[i];
+      }
+    }
+
+    triarea = counterclockwise(p[0], p[1], p[2]);
+    if (triarea < smallestarea) {
+      smallestarea = triarea;
+    }
+    if (triarea > biggestarea) {
+      biggestarea = triarea;
+    }
+    triminaltitude2 = triarea * triarea / trilongest2;
+    if (triminaltitude2 < minaltitude) {
+      minaltitude = triminaltitude2;
+    }
+    triaspect2 = trilongest2 / triminaltitude2;
+    if (triaspect2 > worstaspect) {
+      worstaspect = triaspect2;
+    }
+    aspectindex = 0;
+    while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])
+           && (aspectindex < 15)) {
+      aspectindex++;
+    }
+    aspecttable[aspectindex]++;
+
+    for (i = 0; i < 3; i++) {
+      j = plus1mod3[i];
+      k = minus1mod3[i];
+      dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
+      cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
+      tendegree = 8;
+      for (ii = 7; ii >= 0; ii--) {
+        if (cossquare > cossquaretable[ii]) {
+          tendegree = ii;
+        }
+      }
+      if (dotproduct <= 0.0) {
+        angletable[tendegree]++;
+        if (cossquare > smallestangle) {
+          smallestangle = cossquare;
+        }
+        if (acutebiggest && (cossquare < biggestangle)) {
+          biggestangle = cossquare;
+        }
+      } else {
+        angletable[17 - tendegree]++;
+        if (acutebiggest || (cossquare > biggestangle)) {
+          biggestangle = cossquare;
+          acutebiggest = 0;
+        }
+      }
+    }
+    triangleloop.tri = triangletraverse();
+  }
+
+  shortest = sqrt(shortest);
+  longest = sqrt(longest);
+  minaltitude = sqrt(minaltitude);
+  worstaspect = sqrt(worstaspect);
+  smallestarea *= 2.0;
+  biggestarea *= 2.0;
+  if (smallestangle >= 1.0) {
+    smallestangle = 0.0;
+  } else {
+    smallestangle = degconst * acos(sqrt(smallestangle));
+  }
+  if (biggestangle >= 1.0) {
+    biggestangle = 180.0;
+  } else {
+    if (acutebiggest) {
+      biggestangle = degconst * acos(sqrt(biggestangle));
+    } else {
+      biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
+    }
+  }
+
+  printf("  Smallest area: %16.5g   |  Largest area: %16.5g\n",
+         smallestarea, biggestarea);
+  printf("  Shortest edge: %16.5g   |  Longest edge: %16.5g\n",
+         shortest, longest);
+  printf("  Shortest altitude: %12.5g   |  Largest aspect ratio: %8.5g\n\n",
+         minaltitude, worstaspect);
+  printf("  Aspect ratio histogram:\n");
+  printf("  1.1547 - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
+         ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8],
+         aspecttable[8]);
+  for (i = 1; i < 7; i++) {
+    printf("  %6.6g - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
+           ratiotable[i - 1], ratiotable[i], aspecttable[i],
+           ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
+  }
+  printf("  %6.6g - %-6.6g    :  %8d    | %6.6g -            :  %8d\n",
+         ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14],
+         aspecttable[15]);
+  printf(
+"  (Triangle aspect ratio is longest edge divided by shortest altitude)\n\n");
+  printf("  Smallest angle: %15.5g   |  Largest angle: %15.5g\n\n",
+         smallestangle, biggestangle);
+  printf("  Angle histogram:\n");
+  for (i = 0; i < 9; i++) {
+    printf("    %3d - %3d degrees:  %8d    |    %3d - %3d degrees:  %8d\n",
+           i * 10, i * 10 + 10, angletable[i],
+           i * 10 + 90, i * 10 + 100, angletable[i + 9]);
+  }
+  printf("\n");
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  statistics()   Print all sorts of cool facts.                            */
+/*                                                                           */
+/*****************************************************************************/
+
+void statistics()
+{
+  printf("\nStatistics:\n\n");
+  printf("  Input points: %d\n", inpoints);
+  if (refine) {
+    printf("  Input triangles: %d\n", inelements);
+  }
+  if (poly) {
+    printf("  Input segments: %d\n", insegments);
+    if (!refine) {
+      printf("  Input holes: %d\n", holes);
+    }
+  }
+
+  printf("\n  Mesh points: %ld\n", points.items);
+  printf("  Mesh triangles: %ld\n", triangles.items);
+  printf("  Mesh edges: %ld\n", edges);
+  if (poly || refine) {
+    printf("  Mesh boundary edges: %ld\n", hullsize);
+    printf("  Mesh segments: %ld\n\n", shelles.items);
+  } else {
+    printf("  Mesh convex hull edges: %ld\n\n", hullsize);
+  }
+  if (verbose) {
+    quality_statistics();
+    printf("Memory allocation statistics:\n\n");
+    printf("  Maximum number of points: %ld\n", points.maxitems);
+    printf("  Maximum number of triangles: %ld\n", triangles.maxitems);
+    if (shelles.maxitems > 0) {
+      printf("  Maximum number of segments: %ld\n", shelles.maxitems);
+    }
+    if (viri.maxitems > 0) {
+      printf("  Maximum number of viri: %ld\n", viri.maxitems);
+    }
+    if (badsegments.maxitems > 0) {
+      printf("  Maximum number of encroached segments: %ld\n",
+             badsegments.maxitems);
+    }
+    if (badtriangles.maxitems > 0) {
+      printf("  Maximum number of bad triangles: %ld\n",
+             badtriangles.maxitems);
+    }
+    if (splaynodes.maxitems > 0) {
+      printf("  Maximum number of splay tree nodes: %ld\n",
+             splaynodes.maxitems);
+    }
+    printf("  Approximate heap memory use (bytes): %ld\n\n",
+           points.maxitems * points.itembytes
+           + triangles.maxitems * triangles.itembytes
+           + shelles.maxitems * shelles.itembytes
+           + viri.maxitems * viri.itembytes
+           + badsegments.maxitems * badsegments.itembytes
+           + badtriangles.maxitems * badtriangles.itembytes
+           + splaynodes.maxitems * splaynodes.itembytes);
+
+    printf("Algorithmic statistics:\n\n");
+    printf("  Number of incircle tests: %ld\n", incirclecount);
+    printf("  Number of orientation tests: %ld\n", counterclockcount);
+    if (hyperbolacount > 0) {
+      printf("  Number of right-of-hyperbola tests: %ld\n",
+             hyperbolacount);
+    }
+    if (circumcentercount > 0) {
+      printf("  Number of circumcenter computations: %ld\n",
+             circumcentercount);
+    }
+    if (circletopcount > 0) {
+      printf("  Number of circle top computations: %ld\n",
+             circletopcount);
+    }
+    printf("\n");
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  main() or triangulate()   Gosh, do everything.                           */
+/*                                                                           */
+/*  The sequence is roughly as follows.  Many of these steps can be skipped, */
+/*  depending on the command line switches.                                  */
+/*                                                                           */
+/*  - Initialize constants and parse the command line.                       */
+/*  - Read the points from a file and either                                 */
+/*    - triangulate them (no -r), or                                         */
+/*    - read an old mesh from files and reconstruct it (-r).                 */
+/*  - Insert the PSLG segments (-p), and possibly segments on the convex     */
+/*      hull (-c).                                                           */
+/*  - Read the holes (-p), regional attributes (-pA), and regional area      */
+/*      constraints (-pa).  Carve the holes and concavities, and spread the  */
+/*      regional attributes and area constraints.                            */
+/*  - Enforce the constraints on minimum angle (-q) and maximum area (-a).   */
+/*      Also enforce the conforming Delaunay property (-q and -a).           */
+/*  - Compute the number of edges in the resulting mesh.                     */
+/*  - Promote the mesh's linear triangles to higher order elements (-o).     */
+/*  - Write the output files and print the statistics.                       */
+/*  - Check the consistency and Delaunay property of the mesh (-C).          */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+void triangulate(triswitches, in, out, vorout)
+char *triswitches;
+struct triangulateio *in;
+struct triangulateio *out;
+struct triangulateio *vorout;
+
+#else /* not TRILIBRARY */
+
+int main(argc, argv)
+int argc;
+char **argv;
+
+#endif /* not TRILIBRARY */
+
+{
+  REAL *holearray;                                        /* Array of holes. */
+  REAL *regionarray;   /* Array of regional attributes and area constraints. */
+#ifndef TRILIBRARY
+  FILE *polyfile;
+#endif /* not TRILIBRARY */
+#ifndef NO_TIMER
+  /* Variables for timing the performance of Triangle.  The types are */
+  /*   defined in sys/time.h.                                         */
+  struct timeval tv0, tv1, tv2, tv3, tv4, tv5, tv6;
+  struct timezone tz;
+#endif /* NO_TIMER */
+
+#ifndef NO_TIMER
+  gettimeofday(&tv0, &tz);
+#endif /* NO_TIMER */
+
+  triangleinit();
+#ifdef TRILIBRARY
+  parsecommandline(1, &triswitches);
+#else /* not TRILIBRARY */
+  parsecommandline(argc, argv);
+#endif /* not TRILIBRARY */
+
+#ifdef TRILIBRARY
+  transfernodes(in->pointlist, in->pointattributelist, in->pointmarkerlist,
+                in->numberofpoints, in->numberofpointattributes);
+#else /* not TRILIBRARY */
+  readnodes(innodefilename, inpolyfilename, &polyfile);
+#endif /* not TRILIBRARY */
+
+#ifndef NO_TIMER
+  if (!quiet) {
+    gettimeofday(&tv1, &tz);
+  }
+#endif /* NO_TIMER */
+
+#ifdef CDT_ONLY
+  hullsize = delaunay();                          /* Triangulate the points. */
+#else /* not CDT_ONLY */
+  if (refine) {
+    /* Read and reconstruct a mesh. */
+#ifdef TRILIBRARY
+    hullsize = reconstruct(in->trianglelist, in->triangleattributelist,
+                           in->trianglearealist, in->numberoftriangles,
+                           in->numberofcorners, in->numberoftriangleattributes,
+                           in->segmentlist, in->segmentmarkerlist,
+                           in->numberofsegments);
+#else /* not TRILIBRARY */
+    hullsize = reconstruct(inelefilename, areafilename, inpolyfilename,
+                           polyfile);
+#endif /* not TRILIBRARY */
+  } else {
+    hullsize = delaunay();                        /* Triangulate the points. */
+  }
+#endif /* not CDT_ONLY */
+
+#ifndef NO_TIMER
+  if (!quiet) {
+    gettimeofday(&tv2, &tz);
+    if (refine) {
+      printf("Mesh reconstruction");
+    } else {
+      printf("Delaunay");
+    }
+    printf(" milliseconds:  %ld\n", 1000l * (tv2.tv_sec - tv1.tv_sec)
+           + (tv2.tv_usec - tv1.tv_usec) / 1000l);
+  }
+#endif /* NO_TIMER */
+
+  /* Ensure that no point can be mistaken for a triangular bounding */
+  /*   box point in insertsite().                                   */
+  infpoint1 = (point) NULL;
+  infpoint2 = (point) NULL;
+  infpoint3 = (point) NULL;
+
+  if (useshelles) {
+    checksegments = 1;                  /* Segments will be introduced next. */
+    if (!refine) {
+      /* Insert PSLG segments and/or convex hull segments. */
+#ifdef TRILIBRARY
+      insegments = formskeleton(in->segmentlist, in->segmentmarkerlist,
+                                in->numberofsegments);
+#else /* not TRILIBRARY */
+      insegments = formskeleton(polyfile, inpolyfilename);
+#endif /* not TRILIBRARY */
+    }
+  }
+
+#ifndef NO_TIMER
+  if (!quiet) {
+    gettimeofday(&tv3, &tz);
+    if (useshelles && !refine) {
+      printf("Segment milliseconds:  %ld\n",
+             1000l * (tv3.tv_sec - tv2.tv_sec)
+             + (tv3.tv_usec - tv2.tv_usec) / 1000l);
+    }
+  }
+#endif /* NO_TIMER */
+
+  if (poly) {
+#ifdef TRILIBRARY
+    holearray = in->holelist;
+    holes = in->numberofholes;
+    regionarray = in->regionlist;
+    regions = in->numberofregions;
+#else /* not TRILIBRARY */
+    readholes(polyfile, inpolyfilename, &holearray, &holes,
+              &regionarray, &regions);
+#endif /* not TRILIBRARY */
+    if (!refine) {
+      /* Carve out holes and concavities. */
+      carveholes(holearray, holes, regionarray, regions);
+    }
+  } else {
+    /* Without a PSLG, there can be no holes or regional attributes   */
+    /*   or area constraints.  The following are set to zero to avoid */
+    /*   an accidental free() later.                                  */
+    holes = 0;
+    regions = 0;
+  }
+
+#ifndef NO_TIMER
+  if (!quiet) {
+    gettimeofday(&tv4, &tz);
+    if (poly && !refine) {
+      printf("Hole milliseconds:  %ld\n", 1000l * (tv4.tv_sec - tv3.tv_sec)
+             + (tv4.tv_usec - tv3.tv_usec) / 1000l);
+    }
+  }
+#endif /* NO_TIMER */
+
+#ifndef CDT_ONLY
+  if (quality) {
+    enforcequality();                 /* Enforce angle and area constraints. */
+  }
+#endif /* not CDT_ONLY */
+
+#ifndef NO_TIMER
+  if (!quiet) {
+    gettimeofday(&tv5, &tz);
+#ifndef CDT_ONLY
+    if (quality) {
+      printf("Quality milliseconds:  %ld\n",
+             1000l * (tv5.tv_sec - tv4.tv_sec)
+             + (tv5.tv_usec - tv4.tv_usec) / 1000l);
+    }
+#endif /* not CDT_ONLY */
+  }
+#endif /* NO_TIMER */
+
+  /* Compute the number of edges. */
+  edges = (3l * triangles.items + hullsize) / 2l;
+
+  if (order > 1) {
+    highorder();             /* Promote elements to higher polynomial order. */
+  }
+  if (!quiet) {
+    printf("\n");
+  }
+
+#ifdef TRILIBRARY
+  out->numberofpoints = points.items;
+  out->numberofpointattributes = nextras;
+  out->numberoftriangles = triangles.items;
+  out->numberofcorners = (order + 1) * (order + 2) / 2;
+  out->numberoftriangleattributes = eextras;
+  out->numberofedges = edges;
+  if (useshelles) {
+    out->numberofsegments = shelles.items;
+  } else {
+    out->numberofsegments = hullsize;
+  }
+  if (vorout != (struct triangulateio *) NULL) {
+    vorout->numberofpoints = triangles.items;
+    vorout->numberofpointattributes = nextras;
+    vorout->numberofedges = edges;
+  }
+#endif /* TRILIBRARY */
+  /* If not using iteration numbers, don't write a .node file if one was */
+  /*   read, because the original one would be overwritten!              */
+  if (nonodewritten || (noiterationnum && readnodefile)) {
+    if (!quiet) {
+#ifdef TRILIBRARY
+      printf("NOT writing points.\n");
+#else /* not TRILIBRARY */
+      printf("NOT writing a .node file.\n");
+#endif /* not TRILIBRARY */
+    }
+    numbernodes();                 /* We must remember to number the points. */
+  } else {
+#ifdef TRILIBRARY
+    writenodes(&out->pointlist, &out->pointattributelist,
+               &out->pointmarkerlist);
+#else /* not TRILIBRARY */
+    writenodes(outnodefilename, argc, argv);      /* Numbers the points too. */
+#endif /* TRILIBRARY */
+  }
+  if (noelewritten) {
+    if (!quiet) {
+#ifdef TRILIBRARY
+      printf("NOT writing triangles.\n");
+#else /* not TRILIBRARY */
+      printf("NOT writing an .ele file.\n");
+#endif /* not TRILIBRARY */
+    }
+  } else {
+#ifdef TRILIBRARY
+    writeelements(&out->trianglelist, &out->triangleattributelist);
+#else /* not TRILIBRARY */
+    writeelements(outelefilename, argc, argv);
+#endif /* not TRILIBRARY */
+  }
+  /* The -c switch (convex switch) causes a PSLG to be written */
+  /*   even if none was read.                                  */
+  if (poly || convex) {
+    /* If not using iteration numbers, don't overwrite the .poly file. */
+    if (nopolywritten || noiterationnum) {
+      if (!quiet) {
+#ifdef TRILIBRARY
+        printf("NOT writing segments.\n");
+#else /* not TRILIBRARY */
+        printf("NOT writing a .poly file.\n");
+#endif /* not TRILIBRARY */
+      }
+    } else {
+#ifdef TRILIBRARY
+      writepoly(&out->segmentlist, &out->segmentmarkerlist);
+      out->numberofholes = holes;
+      out->numberofregions = regions;
+      if (poly) {
+        out->holelist = in->holelist;
+        out->regionlist = in->regionlist;
+      } else {
+        out->holelist = (REAL *) NULL;
+        out->regionlist = (REAL *) NULL;
+      }
+#else /* not TRILIBRARY */
+      writepoly(outpolyfilename, holearray, holes, regionarray, regions,
+                argc, argv);
+#endif /* not TRILIBRARY */
+    }
+  }
+#ifndef TRILIBRARY
+#ifndef CDT_ONLY
+  if (regions > 0) {
+    free(regionarray);
+  }
+#endif /* not CDT_ONLY */
+  if (holes > 0) {
+    free(holearray);
+  }
+  if (geomview) {
+    writeoff(offfilename, argc, argv);
+  }
+#endif /* not TRILIBRARY */
+  if (edgesout) {
+#ifdef TRILIBRARY
+    writeedges(&out->edgelist, &out->edgemarkerlist);
+#else /* not TRILIBRARY */
+    writeedges(edgefilename, argc, argv);
+#endif /* not TRILIBRARY */
+  }
+  if (voronoi) {
+#ifdef TRILIBRARY
+    writevoronoi(&vorout->pointlist, &vorout->pointattributelist,
+                 &vorout->pointmarkerlist, &vorout->edgelist,
+                 &vorout->edgemarkerlist, &vorout->normlist);
+#else /* not TRILIBRARY */
+    writevoronoi(vnodefilename, vedgefilename, argc, argv);
+#endif /* not TRILIBRARY */
+  }
+  if (neighbors) {
+#ifdef TRILIBRARY
+    writeneighbors(&out->neighborlist);
+#else /* not TRILIBRARY */
+    writeneighbors(neighborfilename, argc, argv);
+#endif /* not TRILIBRARY */
+  }
+
+  if (!quiet) {
+#ifndef NO_TIMER
+    gettimeofday(&tv6, &tz);
+    printf("\nOutput milliseconds:  %ld\n",
+           1000l * (tv6.tv_sec - tv5.tv_sec)
+           + (tv6.tv_usec - tv5.tv_usec) / 1000l);
+    printf("Total running milliseconds:  %ld\n",
+           1000l * (tv6.tv_sec - tv0.tv_sec)
+           + (tv6.tv_usec - tv0.tv_usec) / 1000l);
+#endif /* NO_TIMER */
+
+    statistics();
+  }
+
+#ifndef REDUCED
+  if (docheck) {
+    checkmesh();
+    checkdelaunay();
+  }
+#endif /* not REDUCED */
+
+  triangledeinit();
+#ifndef TRILIBRARY
+  return 0;
+#endif /* not TRILIBRARY */
+}
diff --git a/Tools/Triangle/triangle.doc b/Tools/Triangle/triangle.doc
new file mode 100644
index 000000000..28b633978
--- /dev/null
+++ b/Tools/Triangle/triangle.doc
@@ -0,0 +1,817 @@
+Triangle
+A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.
+Version 1.3
+
+Copyright 1996 Jonathan Richard Shewchuk  (bugs/comments to jrs@cs.cmu.edu)
+School of Computer Science / Carnegie Mellon University
+5000 Forbes Avenue / Pittsburgh, Pennsylvania  15213-3891
+Created as part of the Archimedes project (tools for parallel FEM).
+Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.
+There is no warranty whatsoever.  Use at your own risk.
+This executable is compiled for double precision arithmetic.
+
+
+Triangle generates exact Delaunay triangulations, constrained Delaunay
+triangulations, and quality conforming Delaunay triangulations.  The latter
+can be generated with no small angles, and are thus suitable for finite
+element analysis.  If no command line switches are specified, your .node
+input file will be read, and the Delaunay triangulation will be returned in
+.node and .ele output files.  The command syntax is:
+
+triangle [-prq__a__AcevngBPNEIOXzo_YS__iFlsCQVh] input_file
+
+Underscores indicate that numbers may optionally follow certain switches;
+do not leave any space between a switch and its numeric parameter.
+input_file must be a file with extension .node, or extension .poly if the
+-p switch is used.  If -r is used, you must supply .node and .ele files,
+and possibly a .poly file and .area file as well.  The formats of these
+files are described below.
+
+Command Line Switches:
+
+    -p  Reads a Planar Straight Line Graph (.poly file), which can specify
+        points, segments, holes, and regional attributes and area
+        constraints.  Will generate a constrained Delaunay triangulation
+        fitting the input; or, if -s, -q, or -a is used, a conforming
+        Delaunay triangulation.  If -p is not used, Triangle reads a .node
+        file by default.
+    -r  Refines a previously generated mesh.  The mesh is read from a .node
+        file and an .ele file.  If -p is also used, a .poly file is read
+        and used to constrain edges in the mesh.  Further details on
+        refinement are given below.
+    -q  Quality mesh generation by Jim Ruppert's Delaunay refinement
+        algorithm.  Adds points to the mesh to ensure that no angles
+        smaller than 20 degrees occur.  An alternative minimum angle may be
+        specified after the `q'.  If the minimum angle is 20.7 degrees or
+        smaller, the triangulation algorithm is theoretically guaranteed to
+        terminate (assuming infinite precision arithmetic - Triangle may
+        fail to terminate if you run out of precision).  In practice, the
+        algorithm often succeeds for minimum angles up to 33.8 degrees.
+        For highly refined meshes, however, it may be necessary to reduce
+        the minimum angle to well below 20 to avoid problems associated
+        with insufficient floating-point precision.  The specified angle
+        may include a decimal point.
+    -a  Imposes a maximum triangle area.  If a number follows the `a', no
+        triangle will be generated whose area is larger than that number.
+        If no number is specified, an .area file (if -r is used) or .poly
+        file (if -r is not used) specifies a number of maximum area
+        constraints.  An .area file contains a separate area constraint for
+        each triangle, and is useful for refining a finite element mesh
+        based on a posteriori error estimates.  A .poly file can optionally
+        contain an area constraint for each segment-bounded region, thereby
+        enforcing triangle densities in a first triangulation.  You can
+        impose both a fixed area constraint and a varying area constraint
+        by invoking the -a switch twice, once with and once without a
+        number following.  Each area specified may include a decimal point.
+    -A  Assigns an additional attribute to each triangle that identifies
+        what segment-bounded region each triangle belongs to.  Attributes
+        are assigned to regions by the .poly file.  If a region is not
+        explicitly marked by the .poly file, triangles in that region are
+        assigned an attribute of zero.  The -A switch has an effect only
+        when the -p switch is used and the -r switch is not.
+    -c  Creates segments on the convex hull of the triangulation.  If you
+        are triangulating a point set, this switch causes a .poly file to
+        be written, containing all edges in the convex hull.  (By default,
+        a .poly file is written only if a .poly file is read.)  If you are
+        triangulating a PSLG, this switch specifies that the interior of
+        the convex hull of the PSLG should be triangulated.  If you do not
+        use this switch when triangulating a PSLG, it is assumed that you
+        have identified the region to be triangulated by surrounding it
+        with segments of the input PSLG.  Beware:  if you are not careful,
+        this switch can cause the introduction of an extremely thin angle
+        between a PSLG segment and a convex hull segment, which can cause
+        overrefinement or failure if Triangle runs out of precision.  If
+        you are refining a mesh, the -c switch works differently; it
+        generates the set of boundary edges of the mesh, rather than the
+        convex hull.
+    -e  Outputs (to an .edge file) a list of edges of the triangulation.
+    -v  Outputs the Voronoi diagram associated with the triangulation.
+        Does not attempt to detect degeneracies.
+    -n  Outputs (to a .neigh file) a list of triangles neighboring each
+        triangle.
+    -g  Outputs the mesh to an Object File Format (.off) file, suitable for
+        viewing with the Geometry Center's Geomview package.
+    -B  No boundary markers in the output .node, .poly, and .edge output
+        files.  See the detailed discussion of boundary markers below.
+    -P  No output .poly file.  Saves disk space, but you lose the ability
+        to impose segment constraints on later refinements of the mesh.
+    -N  No output .node file.
+    -E  No output .ele file.
+    -I  No iteration numbers.  Suppresses the output of .node and .poly
+        files, so your input files won't be overwritten.  (If your input is
+        a .poly file only, a .node file will be written.)  Cannot be used
+        with the -r switch, because that would overwrite your input .ele
+        file.  Shouldn't be used with the -s, -q, or -a switch if you are
+        using a .node file for input, because no .node file will be
+        written, so there will be no record of any added points.
+    -O  No holes.  Ignores the holes in the .poly file.
+    -X  No exact arithmetic.  Normally, Triangle uses exact floating-point
+        arithmetic for certain tests if it thinks the inexact tests are not
+        accurate enough.  Exact arithmetic ensures the robustness of the
+        triangulation algorithms, despite floating-point roundoff error.
+        Disabling exact arithmetic with the -X switch will cause a small
+        improvement in speed and create the possibility (albeit small) that
+        Triangle will fail to produce a valid mesh.  Not recommended.
+    -z  Numbers all items starting from zero (rather than one).  Note that
+        this switch is normally overrided by the value used to number the
+        first point of the input .node or .poly file.  However, this switch
+        is useful when calling Triangle from another program.
+    -o2 Generates second-order subparametric elements with six nodes each.
+    -Y  No new points on the boundary.  This switch is useful when the mesh
+        boundary must be preserved so that it conforms to some adjacent
+        mesh.  Be forewarned that you will probably sacrifice some of the
+        quality of the mesh; Triangle will try, but the resulting mesh may
+        contain triangles of poor aspect ratio.  Works well if all the
+        boundary points are closely spaced.  Specify this switch twice
+        (`-YY') to prevent all segment splitting, including internal
+        boundaries.
+    -S  Specifies the maximum number of Steiner points (points that are not
+        in the input, but are added to meet the constraints of minimum
+        angle and maximum area).  The default is to allow an unlimited
+        number.  If you specify this switch with no number after it,
+        the limit is set to zero.  Triangle always adds points at segment
+        intersections, even if it needs to use more points than the limit
+        you set.  When Triangle inserts segments by splitting (-s), it
+        always adds enough points to ensure that all the segments appear in
+        the triangulation, again ignoring the limit.  Be forewarned that
+        the -S switch may result in a conforming triangulation that is not
+        truly Delaunay, because Triangle may be forced to stop adding
+        points when the mesh is in a state where a segment is non-Delaunay
+        and needs to be split.  If so, Triangle will print a warning.
+    -i  Uses an incremental rather than divide-and-conquer algorithm to
+        form a Delaunay triangulation.  Try it if the divide-and-conquer
+        algorithm fails.
+    -F  Uses Steven Fortune's sweepline algorithm to form a Delaunay
+        triangulation.  Warning:  does not use exact arithmetic for all
+        calculations.  An exact result is not guaranteed.
+    -l  Uses only vertical cuts in the divide-and-conquer algorithm.  By
+        default, Triangle uses alternating vertical and horizontal cuts,
+        which usually improve the speed except with point sets that are
+        small or short and wide.  This switch is primarily of theoretical
+        interest.
+    -s  Specifies that segments should be forced into the triangulation by
+        recursively splitting them at their midpoints, rather than by
+        generating a constrained Delaunay triangulation.  Segment splitting
+        is true to Ruppert's original algorithm, but can create needlessly
+        small triangles near external small features.
+    -C  Check the consistency of the final mesh.  Uses exact arithmetic for
+        checking, even if the -X switch is used.  Useful if you suspect
+        Triangle is buggy.
+    -Q  Quiet: Suppresses all explanation of what Triangle is doing, unless
+        an error occurs.
+    -V  Verbose: Gives detailed information about what Triangle is doing.
+        Add more `V's for increasing amount of detail.  `-V' gives
+        information on algorithmic progress and more detailed statistics.
+        `-VV' gives point-by-point details, and will print so much that
+        Triangle will run much more slowly.  `-VVV' gives information only
+        a debugger could love.
+    -h  Help:  Displays these instructions.
+
+Definitions:
+
+  A Delaunay triangulation of a point set is a triangulation whose vertices
+  are the point set, having the property that no point in the point set
+  falls in the interior of the circumcircle (circle that passes through all
+  three vertices) of any triangle in the triangulation.
+
+  A Voronoi diagram of a point set is a subdivision of the plane into
+  polygonal regions (some of which may be infinite), where each region is
+  the set of points in the plane that are closer to some input point than
+  to any other input point.  (The Voronoi diagram is the geometric dual of
+  the Delaunay triangulation.)
+
+  A Planar Straight Line Graph (PSLG) is a collection of points and
+  segments.  Segments are simply edges, whose endpoints are points in the
+  PSLG.  The file format for PSLGs (.poly files) is described below.
+
+  A constrained Delaunay triangulation of a PSLG is similar to a Delaunay
+  triangulation, but each PSLG segment is present as a single edge in the
+  triangulation.  (A constrained Delaunay triangulation is not truly a
+  Delaunay triangulation.)
+
+  A conforming Delaunay triangulation of a PSLG is a true Delaunay
+  triangulation in which each PSLG segment may have been subdivided into
+  several edges by the insertion of additional points.  These inserted
+  points are necessary to allow the segments to exist in the mesh while
+  maintaining the Delaunay property.
+
+File Formats:
+
+  All files may contain comments prefixed by the character '#'.  Points,
+  triangles, edges, holes, and maximum area constraints must be numbered
+  consecutively, starting from either 1 or 0.  Whichever you choose, all
+  input files must be consistent; if the nodes are numbered from 1, so must
+  be all other objects.  Triangle automatically detects your choice while
+  reading the .node (or .poly) file.  (When calling Triangle from another
+  program, use the -z switch if you wish to number objects from zero.)
+  Examples of these file formats are given below.
+
+  .node files:
+    First line:  <# of points> <dimension (must be 2)> <# of attributes>
+                                           <# of boundary markers (0 or 1)>
+    Remaining lines:  <point #> <x> <y> [attributes] [boundary marker]
+
+    The attributes, which are typically floating-point values of physical
+    quantities (such as mass or conductivity) associated with the nodes of
+    a finite element mesh, are copied unchanged to the output mesh.  If -s,
+    -q, or -a is selected, each new Steiner point added to the mesh will
+    have attributes assigned to it by linear interpolation.
+
+    If the fourth entry of the first line is `1', the last column of the
+    remainder of the file is assumed to contain boundary markers.  Boundary
+    markers are used to identify boundary points and points resting on PSLG
+    segments; a complete description appears in a section below.  The .node
+    file produced by Triangle will contain boundary markers in the last
+    column unless they are suppressed by the -B switch.
+
+  .ele files:
+    First line:  <# of triangles> <points per triangle> <# of attributes>
+    Remaining lines:  <triangle #> <point> <point> <point> ... [attributes]
+
+    Points are indices into the corresponding .node file.  The first three
+    points are the corners, and are listed in counterclockwise order around
+    each triangle.  (The remaining points, if any, depend on the type of
+    finite element used.)  The attributes are just like those of .node
+    files.  Because there is no simple mapping from input to output
+    triangles, an attempt is made to interpolate attributes, which may
+    result in a good deal of diffusion of attributes among nearby triangles
+    as the triangulation is refined.  Diffusion does not occur across
+    segments, so attributes used to identify segment-bounded regions remain
+    intact.  In output .ele files, all triangles have three points each
+    unless the -o2 switch is used, in which case they have six, and the
+    fourth, fifth, and sixth points lie on the midpoints of the edges
+    opposite the first, second, and third corners.
+
+  .poly files:
+    First line:  <# of points> <dimension (must be 2)> <# of attributes>
+                                           <# of boundary markers (0 or 1)>
+    Following lines:  <point #> <x> <y> [attributes] [boundary marker]
+    One line:  <# of segments> <# of boundary markers (0 or 1)>
+    Following lines:  <segment #> <endpoint> <endpoint> [boundary marker]
+    One line:  <# of holes>
+    Following lines:  <hole #> <x> <y>
+    Optional line:  <# of regional attributes and/or area constraints>
+    Optional following lines:  <constraint #> <x> <y> <attrib> <max area>
+
+    A .poly file represents a PSLG, as well as some additional information.
+    The first section lists all the points, and is identical to the format
+    of .node files.  <# of points> may be set to zero to indicate that the
+    points are listed in a separate .node file; .poly files produced by
+    Triangle always have this format.  This has the advantage that a point
+    set may easily be triangulated with or without segments.  (The same
+    effect can be achieved, albeit using more disk space, by making a copy
+    of the .poly file with the extension .node; all sections of the file
+    but the first are ignored.)
+
+    The second section lists the segments.  Segments are edges whose
+    presence in the triangulation is enforced.  Each segment is specified
+    by listing the indices of its two endpoints.  This means that you must
+    include its endpoints in the point list.  If -s, -q, and -a are not
+    selected, Triangle will produce a constrained Delaunay triangulation,
+    in which each segment appears as a single edge in the triangulation.
+    If -q or -a is selected, Triangle will produce a conforming Delaunay
+    triangulation, in which segments may be subdivided into smaller edges.
+    Each segment, like each point, may have a boundary marker.
+
+    The third section lists holes (and concavities, if -c is selected) in
+    the triangulation.  Holes are specified by identifying a point inside
+    each hole.  After the triangulation is formed, Triangle creates holes
+    by eating triangles, spreading out from each hole point until its
+    progress is blocked by PSLG segments; you must be careful to enclose
+    each hole in segments, or your whole triangulation may be eaten away.
+    If the two triangles abutting a segment are eaten, the segment itself
+    is also eaten.  Do not place a hole directly on a segment; if you do,
+    Triangle will choose one side of the segment arbitrarily.
+
+    The optional fourth section lists regional attributes (to be assigned
+    to all triangles in a region) and regional constraints on the maximum
+    triangle area.  Triangle will read this section only if the -A switch
+    is used or the -a switch is used without a number following it, and the
+    -r switch is not used.  Regional attributes and area constraints are
+    propagated in the same manner as holes; you specify a point for each
+    attribute and/or constraint, and the attribute and/or constraint will
+    affect the whole region (bounded by segments) containing the point.  If
+    two values are written on a line after the x and y coordinate, the
+    former is assumed to be a regional attribute (but will only be applied
+    if the -A switch is selected), and the latter is assumed to be a
+    regional area constraint (but will only be applied if the -a switch is
+    selected).  You may also specify just one value after the coordinates,
+    which can serve as both an attribute and an area constraint, depending
+    on the choice of switches.  If you are using the -A and -a switches
+    simultaneously and wish to assign an attribute to some region without
+    imposing an area constraint, use a negative maximum area.
+
+    When a triangulation is created from a .poly file, you must either
+    enclose the entire region to be triangulated in PSLG segments, or
+    use the -c switch, which encloses the convex hull of the input point
+    set.  If you do not use the -c switch, Triangle will eat all triangles
+    on the outer boundary that are not protected by segments; if you are
+    not careful, your whole triangulation may be eaten away.  If you do
+    use the -c switch, you can still produce concavities by appropriate
+    placement of holes just inside the convex hull.
+
+    An ideal PSLG has no intersecting segments, nor any points that lie
+    upon segments (except, of course, the endpoints of each segment.)  You
+    aren't required to make your .poly files ideal, but you should be aware
+    of what can go wrong.  Segment intersections are relatively safe -
+    Triangle will calculate the intersection points for you and add them to
+    the triangulation - as long as your machine's floating-point precision
+    doesn't become a problem.  You are tempting the fates if you have three
+    segments that cross at the same location, and expect Triangle to figure
+    out where the intersection point is.  Thanks to floating-point roundoff
+    error, Triangle will probably decide that the three segments intersect
+    at three different points, and you will find a minuscule triangle in
+    your output - unless Triangle tries to refine the tiny triangle, uses
+    up the last bit of machine precision, and fails to terminate at all.
+    You're better off putting the intersection point in the input files,
+    and manually breaking up each segment into two.  Similarly, if you
+    place a point at the middle of a segment, and hope that Triangle will
+    break up the segment at that point, you might get lucky.  On the other
+    hand, Triangle might decide that the point doesn't lie precisely on the
+    line, and you'll have a needle-sharp triangle in your output - or a lot
+    of tiny triangles if you're generating a quality mesh.
+
+    When Triangle reads a .poly file, it also writes a .poly file, which
+    includes all edges that are part of input segments.  If the -c switch
+    is used, the output .poly file will also include all of the edges on
+    the convex hull.  Hence, the output .poly file is useful for finding
+    edges associated with input segments and setting boundary conditions in
+    finite element simulations.  More importantly, you will need it if you
+    plan to refine the output mesh, and don't want segments to be missing
+    in later triangulations.
+
+  .area files:
+    First line:  <# of triangles>
+    Following lines:  <triangle #> <maximum area>
+
+    An .area file associates with each triangle a maximum area that is used
+    for mesh refinement.  As with other file formats, every triangle must
+    be represented, and they must be numbered consecutively.  A triangle
+    may be left unconstrained by assigning it a negative maximum area.
+
+  .edge files:
+    First line:  <# of edges> <# of boundary markers (0 or 1)>
+    Following lines:  <edge #> <endpoint> <endpoint> [boundary marker]
+
+    Endpoints are indices into the corresponding .node file.  Triangle can
+    produce .edge files (use the -e switch), but cannot read them.  The
+    optional column of boundary markers is suppressed by the -B switch.
+
+    In Voronoi diagrams, one also finds a special kind of edge that is an
+    infinite ray with only one endpoint.  For these edges, a different
+    format is used:
+
+        <edge #> <endpoint> -1 <direction x> <direction y>
+
+    The `direction' is a floating-point vector that indicates the direction
+    of the infinite ray.
+
+  .neigh files:
+    First line:  <# of triangles> <# of neighbors per triangle (always 3)>
+    Following lines:  <triangle #> <neighbor> <neighbor> <neighbor>
+
+    Neighbors are indices into the corresponding .ele file.  An index of -1
+    indicates a mesh boundary, and therefore no neighbor.  Triangle can
+    produce .neigh files (use the -n switch), but cannot read them.
+
+    The first neighbor of triangle i is opposite the first corner of
+    triangle i, and so on.
+
+Boundary Markers:
+
+  Boundary markers are tags used mainly to identify which output points and
+  edges are associated with which PSLG segment, and to identify which
+  points and edges occur on a boundary of the triangulation.  A common use
+  is to determine where boundary conditions should be applied to a finite
+  element mesh.  You can prevent boundary markers from being written into
+  files produced by Triangle by using the -B switch.
+
+  The boundary marker associated with each segment in an output .poly file
+  or edge in an output .edge file is chosen as follows:
+    - If an output edge is part or all of a PSLG segment with a nonzero
+      boundary marker, then the edge is assigned the same marker.
+    - Otherwise, if the edge occurs on a boundary of the triangulation
+      (including boundaries of holes), then the edge is assigned the marker
+      one (1).
+    - Otherwise, the edge is assigned the marker zero (0).
+  The boundary marker associated with each point in an output .node file is
+  chosen as follows:
+    - If a point is assigned a nonzero boundary marker in the input file,
+      then it is assigned the same marker in the output .node file.
+    - Otherwise, if the point lies on a PSLG segment (including the
+      segment's endpoints) with a nonzero boundary marker, then the point
+      is assigned the same marker.  If the point lies on several such
+      segments, one of the markers is chosen arbitrarily.
+    - Otherwise, if the point occurs on a boundary of the triangulation,
+      then the point is assigned the marker one (1).
+    - Otherwise, the point is assigned the marker zero (0).
+
+  If you want Triangle to determine for you which points and edges are on
+  the boundary, assign them the boundary marker zero (or use no markers at
+  all) in your input files.  Alternatively, you can mark some of them and
+  leave others marked zero, allowing Triangle to label them.
+
+Triangulation Iteration Numbers:
+
+  Because Triangle can read and refine its own triangulations, input
+  and output files have iteration numbers.  For instance, Triangle might
+  read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the
+  triangulation, and output the files mesh.4.node, mesh.4.ele, and
+  mesh.4.poly.  Files with no iteration number are treated as if
+  their iteration number is zero; hence, Triangle might read the file
+  points.node, triangulate it, and produce the files points.1.node and
+  points.1.ele.
+
+  Iteration numbers allow you to create a sequence of successively finer
+  meshes suitable for multigrid methods.  They also allow you to produce a
+  sequence of meshes using error estimate-driven mesh refinement.
+
+  If you're not using refinement or quality meshing, and you don't like
+  iteration numbers, use the -I switch to disable them.  This switch will
+  also disable output of .node and .poly files to prevent your input files
+  from being overwritten.  (If the input is a .poly file that contains its
+  own points, a .node file will be written.)
+
+Examples of How to Use Triangle:
+
+  `triangle dots' will read points from dots.node, and write their Delaunay
+  triangulation to dots.1.node and dots.1.ele.  (dots.1.node will be
+  identical to dots.node.)  `triangle -I dots' writes the triangulation to
+  dots.ele instead.  (No additional .node file is needed, so none is
+  written.)
+
+  `triangle -pe object.1' will read a PSLG from object.1.poly (and possibly
+  object.1.node, if the points are omitted from object.1.poly) and write
+  their constrained Delaunay triangulation to object.2.node and
+  object.2.ele.  The segments will be copied to object.2.poly, and all
+  edges will be written to object.2.edge.
+
+  `triangle -pq31.5a.1 object' will read a PSLG from object.poly (and
+  possibly object.node), generate a mesh whose angles are all greater than
+  31.5 degrees and whose triangles all have area smaller than 0.1, and
+  write the mesh to object.1.node and object.1.ele.  Each segment may have
+  been broken up into multiple edges; the resulting constrained edges are
+  written to object.1.poly.
+
+  Here is a sample file `box.poly' describing a square with a square hole:
+
+    # A box with eight points in 2D, no attributes, one boundary marker.
+    8 2 0 1
+    # Outer box has these vertices:
+     1   0 0   0
+     2   0 3   0
+     3   3 0   0
+     4   3 3   33     # A special marker for this point.
+    # Inner square has these vertices:
+     5   1 1   0
+     6   1 2   0
+     7   2 1   0
+     8   2 2   0
+    # Five segments with boundary markers.
+    5 1
+     1   1 2   5      # Left side of outer box.
+     2   5 7   0      # Segments 2 through 5 enclose the hole.
+     3   7 8   0
+     4   8 6   10
+     5   6 5   0
+    # One hole in the middle of the inner square.
+    1
+     1   1.5 1.5
+
+  Note that some segments are missing from the outer square, so one must
+  use the `-c' switch.  After `triangle -pqc box.poly', here is the output
+  file `box.1.node', with twelve points.  The last four points were added
+  to meet the angle constraint.  Points 1, 2, and 9 have markers from
+  segment 1.  Points 6 and 8 have markers from segment 4.  All the other
+  points but 4 have been marked to indicate that they lie on a boundary.
+
+    12  2  0  1
+       1    0   0      5
+       2    0   3      5
+       3    3   0      1
+       4    3   3     33
+       5    1   1      1
+       6    1   2     10
+       7    2   1      1
+       8    2   2     10
+       9    0   1.5    5
+      10    1.5   0    1
+      11    3   1.5    1
+      12    1.5   3    1
+    # Generated by triangle -pqc box.poly
+
+  Here is the output file `box.1.ele', with twelve triangles.
+
+    12  3  0
+       1     5   6   9
+       2    10   3   7
+       3     6   8  12
+       4     9   1   5
+       5     6   2   9
+       6     7   3  11
+       7    11   4   8
+       8     7   5  10
+       9    12   2   6
+      10     8   7  11
+      11     5   1  10
+      12     8   4  12
+    # Generated by triangle -pqc box.poly
+
+  Here is the output file `box.1.poly'.  Note that segments have been added
+  to represent the convex hull, and some segments have been split by newly
+  added points.  Note also that <# of points> is set to zero to indicate
+  that the points should be read from the .node file.
+
+    0  2  0  1
+    12  1
+       1     1   9     5
+       2     5   7     1
+       3     8   7     1
+       4     6   8    10
+       5     5   6     1
+       6     3  10     1
+       7     4  11     1
+       8     2  12     1
+       9     9   2     5
+      10    10   1     1
+      11    11   3     1
+      12    12   4     1
+    1
+       1   1.5 1.5
+    # Generated by triangle -pqc box.poly
+
+Refinement and Area Constraints:
+
+  The -r switch causes a mesh (.node and .ele files) to be read and
+  refined.  If the -p switch is also used, a .poly file is read and used to
+  specify edges that are constrained and cannot be eliminated (although
+  they can be divided into smaller edges) by the refinement process.
+
+  When you refine a mesh, you generally want to impose tighter quality
+  constraints.  One way to accomplish this is to use -q with a larger
+  angle, or -a followed by a smaller area than you used to generate the
+  mesh you are refining.  Another way to do this is to create an .area
+  file, which specifies a maximum area for each triangle, and use the -a
+  switch (without a number following).  Each triangle's area constraint is
+  applied to that triangle.  Area constraints tend to diffuse as the mesh
+  is refined, so if there are large variations in area constraint between
+  adjacent triangles, you may not get the results you want.
+
+  If you are refining a mesh composed of linear (three-node) elements, the
+  output mesh will contain all the nodes present in the input mesh, in the
+  same order, with new nodes added at the end of the .node file.  However,
+  there is no guarantee that each output element is contained in a single
+  input element.  Often, output elements will overlap two input elements,
+  and input edges are not present in the output mesh.  Hence, a sequence of
+  refined meshes will form a hierarchy of nodes, but not a hierarchy of
+  elements.  If you a refining a mesh of higher-order elements, the
+  hierarchical property applies only to the nodes at the corners of an
+  element; other nodes may not be present in the refined mesh.
+
+  It is important to understand that maximum area constraints in .poly
+  files are handled differently from those in .area files.  A maximum area
+  in a .poly file applies to the whole (segment-bounded) region in which a
+  point falls, whereas a maximum area in an .area file applies to only one
+  triangle.  Area constraints in .poly files are used only when a mesh is
+  first generated, whereas area constraints in .area files are used only to
+  refine an existing mesh, and are typically based on a posteriori error
+  estimates resulting from a finite element simulation on that mesh.
+
+  `triangle -rq25 object.1' will read object.1.node and object.1.ele, then
+  refine the triangulation to enforce a 25 degree minimum angle, and then
+  write the refined triangulation to object.2.node and object.2.ele.
+
+  `triangle -rpaa6.2 z.3' will read z.3.node, z.3.ele, z.3.poly, and
+  z.3.area.  After reconstructing the mesh and its segments, Triangle will
+  refine the mesh so that no triangle has area greater than 6.2, and
+  furthermore the triangles satisfy the maximum area constraints in
+  z.3.area.  The output is written to z.4.node, z.4.ele, and z.4.poly.
+
+  The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1
+  x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,
+  suitable for multigrid.
+
+Convex Hulls and Mesh Boundaries:
+
+  If the input is a point set (rather than a PSLG), Triangle produces its
+  convex hull as a by-product in the output .poly file if you use the -c
+  switch.  There are faster algorithms for finding a two-dimensional convex
+  hull than triangulation, of course, but this one comes for free.  If the
+  input is an unconstrained mesh (you are using the -r switch but not the
+  -p switch), Triangle produces a list of its boundary edges (including
+  hole boundaries) as a by-product if you use the -c switch.
+
+Voronoi Diagrams:
+
+  The -v switch produces a Voronoi diagram, in files suffixed .v.node and
+  .v.edge.  For example, `triangle -v points' will read points.node,
+  produce its Delaunay triangulation in points.1.node and points.1.ele,
+  and produce its Voronoi diagram in points.1.v.node and points.1.v.edge.
+  The .v.node file contains a list of all Voronoi vertices, and the .v.edge
+  file contains a list of all Voronoi edges, some of which may be infinite
+  rays.  (The choice of filenames makes it easy to run the set of Voronoi
+  vertices through Triangle, if so desired.)
+
+  This implementation does not use exact arithmetic to compute the Voronoi
+  vertices, and does not check whether neighboring vertices are identical.
+  Be forewarned that if the Delaunay triangulation is degenerate or
+  near-degenerate, the Voronoi diagram may have duplicate points, crossing
+  edges, or infinite rays whose direction vector is zero.  Also, if you
+  generate a constrained (as opposed to conforming) Delaunay triangulation,
+  or if the triangulation has holes, the corresponding Voronoi diagram is
+  likely to have crossing edges and unlikely to make sense.
+
+Mesh Topology:
+
+  You may wish to know which triangles are adjacent to a certain Delaunay
+  edge in an .edge file, which Voronoi regions are adjacent to a certain
+  Voronoi edge in a .v.edge file, or which Voronoi regions are adjacent to
+  each other.  All of this information can be found by cross-referencing
+  output files with the recollection that the Delaunay triangulation and
+  the Voronoi diagrams are planar duals.
+
+  Specifically, edge i of an .edge file is the dual of Voronoi edge i of
+  the corresponding .v.edge file, and is rotated 90 degrees counterclock-
+  wise from the Voronoi edge.  Triangle j of an .ele file is the dual of
+  vertex j of the corresponding .v.node file; and Voronoi region k is the
+  dual of point k of the corresponding .node file.
+
+  Hence, to find the triangles adjacent to a Delaunay edge, look at the
+  vertices of the corresponding Voronoi edge; their dual triangles are on
+  the left and right of the Delaunay edge, respectively.  To find the
+  Voronoi regions adjacent to a Voronoi edge, look at the endpoints of the
+  corresponding Delaunay edge; their dual regions are on the right and left
+  of the Voronoi edge, respectively.  To find which Voronoi regions are
+  adjacent to each other, just read the list of Delaunay edges.
+
+Statistics:
+
+  After generating a mesh, Triangle prints a count of the number of points,
+  triangles, edges, boundary edges, and segments in the output mesh.  If
+  you've forgotten the statistics for an existing mesh, the -rNEP switches
+  (or -rpNEP if you've got a .poly file for the existing mesh) will
+  regenerate these statistics without writing any output.
+
+  The -V switch produces extended statistics, including a rough estimate
+  of memory use and a histogram of triangle aspect ratios and angles in the
+  mesh.
+
+Exact Arithmetic:
+
+  Triangle uses adaptive exact arithmetic to perform what computational
+  geometers call the `orientation' and `incircle' tests.  If the floating-
+  point arithmetic of your machine conforms to the IEEE 754 standard (as
+  most workstations do), and does not use extended precision internal
+  registers, then your output is guaranteed to be an absolutely true
+  Delaunay or conforming Delaunay triangulation, roundoff error
+  notwithstanding.  The word `adaptive' implies that these arithmetic
+  routines compute the result only to the precision necessary to guarantee
+  correctness, so they are usually nearly as fast as their approximate
+  counterparts.  The exact tests can be disabled with the -X switch.  On
+  most inputs, this switch will reduce the computation time by about eight
+  percent - it's not worth the risk.  There are rare difficult inputs
+  (having many collinear and cocircular points), however, for which the
+  difference could be a factor of two.  These are precisely the inputs most
+  likely to cause errors if you use the -X switch.
+
+  Unfortunately, these routines don't solve every numerical problem.  Exact
+  arithmetic is not used to compute the positions of points, because the
+  bit complexity of point coordinates would grow without bound.  Hence,
+  segment intersections aren't computed exactly; in very unusual cases,
+  roundoff error in computing an intersection point might actually lead to
+  an inverted triangle and an invalid triangulation.  (This is one reason
+  to compute your own intersection points in your .poly files.)  Similarly,
+  exact arithmetic is not used to compute the vertices of the Voronoi
+  diagram.
+
+  Underflow and overflow can also cause difficulties; the exact arithmetic
+  routines do not ameliorate out-of-bounds exponents, which can arise
+  during the orientation and incircle tests.  As a rule of thumb, you
+  should ensure that your input values are within a range such that their
+  third powers can be taken without underflow or overflow.  Underflow can
+  silently prevent the tests from being performed exactly, while overflow
+  will typically cause a floating exception.
+
+Calling Triangle from Another Program:
+
+  Read the file triangle.h for details.
+
+Troubleshooting:
+
+  Please read this section before mailing me bugs.
+
+  `My output mesh has no triangles!'
+
+    If you're using a PSLG, you've probably failed to specify a proper set
+    of bounding segments, or forgotten to use the -c switch.  Or you may
+    have placed a hole badly.  To test these possibilities, try again with
+    the -c and -O switches.  Alternatively, all your input points may be
+    collinear, in which case you can hardly expect to triangulate them.
+
+  `Triangle doesn't terminate, or just crashes.'
+
+    Bad things can happen when triangles get so small that the distance
+    between their vertices isn't much larger than the precision of your
+    machine's arithmetic.  If you've compiled Triangle for single-precision
+    arithmetic, you might do better by recompiling it for double-precision.
+    Then again, you might just have to settle for more lenient constraints
+    on the minimum angle and the maximum area than you had planned.
+
+    You can minimize precision problems by ensuring that the origin lies
+    inside your point set, or even inside the densest part of your
+    mesh.  On the other hand, if you're triangulating an object whose x
+    coordinates all fall between 6247133 and 6247134, you're not leaving
+    much floating-point precision for Triangle to work with.
+
+    Precision problems can occur covertly if the input PSLG contains two
+    segments that meet (or intersect) at a very small angle, or if such an
+    angle is introduced by the -c switch, which may occur if a point lies
+    ever-so-slightly inside the convex hull, and is connected by a PSLG
+    segment to a point on the convex hull.  If you don't realize that a
+    small angle is being formed, you might never discover why Triangle is
+    crashing.  To check for this possibility, use the -S switch (with an
+    appropriate limit on the number of Steiner points, found by trial-and-
+    error) to stop Triangle early, and view the output .poly file with
+    Show Me (described below).  Look carefully for small angles between
+    segments; zoom in closely, as such segments might look like a single
+    segment from a distance.
+
+    If some of the input values are too large, Triangle may suffer a
+    floating exception due to overflow when attempting to perform an
+    orientation or incircle test.  (Read the section on exact arithmetic
+    above.)  Again, I recommend compiling Triangle for double (rather
+    than single) precision arithmetic.
+
+  `The numbering of the output points doesn't match the input points.'
+
+    You may have eaten some of your input points with a hole, or by placing
+    them outside the area enclosed by segments.
+
+  `Triangle executes without incident, but when I look at the resulting
+  mesh, it has overlapping triangles or other geometric inconsistencies.'
+
+    If you select the -X switch, Triangle's divide-and-conquer Delaunay
+    triangulation algorithm occasionally makes mistakes due to floating-
+    point roundoff error.  Although these errors are rare, don't use the -X
+    switch.  If you still have problems, please report the bug.
+
+  Strange things can happen if you've taken liberties with your PSLG.  Do
+  you have a point lying in the middle of a segment?  Triangle sometimes
+  copes poorly with that sort of thing.  Do you want to lay out a collinear
+  row of evenly spaced, segment-connected points?  Have you simply defined
+  one long segment connecting the leftmost point to the rightmost point,
+  and a bunch of points lying along it?  This method occasionally works,
+  especially with horizontal and vertical lines, but often it doesn't, and
+  you'll have to connect each adjacent pair of points with a separate
+  segment.  If you don't like it, tough.
+
+  Furthermore, if you have segments that intersect other than at their
+  endpoints, try not to let the intersections fall extremely close to PSLG
+  points or each other.
+
+  If you have problems refining a triangulation not produced by Triangle:
+  Are you sure the triangulation is geometrically valid?  Is it formatted
+  correctly for Triangle?  Are the triangles all listed so the first three
+  points are their corners in counterclockwise order?
+
+Show Me:
+
+  Triangle comes with a separate program named `Show Me', whose primary
+  purpose is to draw meshes on your screen or in PostScript.  Its secondary
+  purpose is to check the validity of your input files, and do so more
+  thoroughly than Triangle does.  Show Me requires that you have the X
+  Windows system.  If you didn't receive Show Me with Triangle, complain to
+  whomever you obtained Triangle from, then send me mail.
+
+Triangle on the Web:
+
+  To see an illustrated, updated version of these instructions, check out
+
+    http://www.cs.cmu.edu/~quake/triangle.html
+
+A Brief Plea:
+
+  If you use Triangle, and especially if you use it to accomplish real
+  work, I would like very much to hear from you.  A short letter or email
+  (to jrs@cs.cmu.edu) describing how you use Triangle will mean a lot to
+  me.  The more people I know are using this program, the more easily I can
+  justify spending time on improvements and on the three-dimensional
+  successor to Triangle, which in turn will benefit you.  Also, I can put
+  you on a list to receive email whenever a new version of Triangle is
+  available.
+
+  If you use a mesh generated by Triangle in a publication, please include
+  an acknowledgment as well.
+
+Research credit:
+
+  Of course, I can take credit for only a fraction of the ideas that made
+  this mesh generator possible.  Triangle owes its existence to the efforts
+  of many fine computational geometers and other researchers, including
+  Marshall Bern, L. Paul Chew, Boris Delaunay, Rex A. Dwyer, David
+  Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E. Knuth, C. L.
+  Lawson, Der-Tsai Lee, Ernst P. Mucke, Douglas M. Priest, Jim Ruppert,
+  Isaac Saias, Bruce J. Schachter, Micha Sharir, Jorge Stolfi, Christopher
+  J. Van Wyk, David F. Watson, and Binhai Zhu.  See the comments at the
+  beginning of the source code for references.
+
diff --git a/Tools/Triangle/triangle.h b/Tools/Triangle/triangle.h
new file mode 100644
index 000000000..b9be696c3
--- /dev/null
+++ b/Tools/Triangle/triangle.h
@@ -0,0 +1,289 @@
+/*****************************************************************************/
+/*                                                                           */
+/*  (triangle.h)                                                             */
+/*                                                                           */
+/*  Include file for programs that call Triangle.                            */
+/*                                                                           */
+/*  Accompanies Triangle Version 1.3                                         */
+/*  July 19, 1996                                                            */
+/*                                                                           */
+/*  Copyright 1996                                                           */
+/*  Jonathan Richard Shewchuk                                                */
+/*  School of Computer Science                                               */
+/*  Carnegie Mellon University                                               */
+/*  5000 Forbes Avenue                                                       */
+/*  Pittsburgh, Pennsylvania  15213-3891                                     */
+/*  jrs@cs.cmu.edu                                                           */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  How to call Triangle from another program                                */
+/*                                                                           */
+/*                                                                           */
+/*  If you haven't read Triangle's instructions (run "triangle -h" to read   */
+/*  them), you won't understand what follows.                                */
+/*                                                                           */
+/*  Triangle must be compiled into an object file (triangle.o) with the      */
+/*  TRILIBRARY symbol defined (preferably by using the -DTRILIBRARY compiler */
+/*  switch).  The makefile included with Triangle will do this for you if    */
+/*  you run "make trilibrary".  The resulting object file can be called via  */
+/*  the procedure triangulate().                                             */
+/*                                                                           */
+/*  If the size of the object file is important to you, you may wish to      */
+/*  generate a reduced version of triangle.o.  The REDUCED symbol gets rid   */
+/*  of all features that are primarily of research interest.  Specifically,  */
+/*  the -DREDUCED switch eliminates Triangle's -i, -F, -s, and -C switches.  */
+/*  The CDT_ONLY symbol gets rid of all meshing algorithms above and beyond  */
+/*  constrained Delaunay triangulation.  Specifically, the -DCDT_ONLY switch */
+/*  eliminates Triangle's -r, -q, -a, -S, and -s switches.                   */
+/*                                                                           */
+/*  IMPORTANT:  These definitions (TRILIBRARY, REDUCED, CDT_ONLY) must be    */
+/*  made in the makefile or in triangle.c itself.  Putting these definitions */
+/*  in this file will not create the desired effect.                         */
+/*                                                                           */
+/*                                                                           */
+/*  The calling convention for triangulate() follows.                        */
+/*                                                                           */
+/*      void triangulate(triswitches, in, out, vorout)                       */
+/*      char *triswitches;                                                   */
+/*      struct triangulateio *in;                                            */
+/*      struct triangulateio *out;                                           */
+/*      struct triangulateio *vorout;                                        */
+/*                                                                           */
+/*  `triswitches' is a string containing the command line switches you wish  */
+/*  to invoke.  No initial dash is required.  Some suggestions:              */
+/*                                                                           */
+/*  - You'll probably find it convenient to use the `z' switch so that       */
+/*    points (and other items) are numbered from zero.  This simplifies      */
+/*    indexing, because the first item of any type always starts at index    */
+/*    [0] of the corresponding array, whether that item's number is zero or  */
+/*    one.                                                                   */
+/*  - You'll probably want to use the `Q' (quiet) switch in your final code, */
+/*    but you can take advantage of Triangle's printed output (including the */
+/*    `V' switch) while debugging.                                           */
+/*  - If you are not using the `q' or `a' switches, then the output points   */
+/*    will be identical to the input points, except possibly for the         */
+/*    boundary markers.  If you don't need the boundary markers, you should  */
+/*    use the `N' (no nodes output) switch to save memory.  (If you do need  */
+/*    boundary markers, but need to save memory, a good nasty trick is to    */
+/*    set out->pointlist equal to in->pointlist before calling triangulate(),*/
+/*    so that Triangle overwrites the input points with identical copies.)   */
+/*  - The `I' (no iteration numbers) and `g' (.off file output) switches     */
+/*    have no effect when Triangle is compiled with TRILIBRARY defined.      */
+/*                                                                           */
+/*  `in', `out', and `vorout' are descriptions of the input, the output,     */
+/*  and the Voronoi output.  If the `v' (Voronoi output) switch is not used, */
+/*  `vorout' may be NULL.  `in' and `out' may never be NULL.                 */
+/*                                                                           */
+/*  Certain fields of the input and output structures must be initialized,   */
+/*  as described below.                                                      */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  The `triangulateio' structure.                                           */
+/*                                                                           */
+/*  Used to pass data into and out of the triangulate() procedure.           */
+/*                                                                           */
+/*                                                                           */
+/*  Arrays are used to store points, triangles, markers, and so forth.  In   */
+/*  all cases, the first item in any array is stored starting at index [0].  */
+/*  However, that item is item number `1' unless the `z' switch is used, in  */
+/*  which case it is item number `0'.  Hence, you may find it easier to      */
+/*  index points (and triangles in the neighbor list) if you use the `z'     */
+/*  switch.  Unless, of course, you're calling Triangle from a Fortran       */
+/*  program.                                                                 */
+/*                                                                           */
+/*  Description of fields (except the `numberof' fields, which are obvious): */
+/*                                                                           */
+/*  `pointlist':  An array of point coordinates.  The first point's x        */
+/*    coordinate is at index [0] and its y coordinate at index [1], followed */
+/*    by the coordinates of the remaining points.  Each point occupies two   */
+/*    REALs.                                                                 */
+/*  `pointattributelist':  An array of point attributes.  Each point's       */
+/*    attributes occupy `numberofpointattributes' REALs.                     */
+/*  `pointmarkerlist':  An array of point markers; one int per point.        */
+/*                                                                           */
+/*  `trianglelist':  An array of triangle corners.  The first triangle's     */
+/*    first corner is at index [0], followed by its other two corners in     */
+/*    counterclockwise order, followed by any other nodes if the triangle    */
+/*    represents a nonlinear element.  Each triangle occupies                */
+/*    `numberofcorners' ints.                                                */
+/*  `triangleattributelist':  An array of triangle attributes.  Each         */
+/*    triangle's attributes occupy `numberoftriangleattributes' REALs.       */
+/*  `trianglearealist':  An array of triangle area constraints; one REAL per */
+/*    triangle.  Input only.                                                 */
+/*  `neighborlist':  An array of triangle neighbors; three ints per          */
+/*    triangle.  Output only.                                                */
+/*                                                                           */
+/*  `segmentlist':  An array of segment endpoints.  The first segment's      */
+/*    endpoints are at indices [0] and [1], followed by the remaining        */
+/*    segments.  Two ints per segment.                                       */
+/*  `segmentmarkerlist':  An array of segment markers; one int per segment.  */
+/*                                                                           */
+/*  `holelist':  An array of holes.  The first hole's x and y coordinates    */
+/*    are at indices [0] and [1], followed by the remaining holes.  Two      */
+/*    REALs per hole.  Input only, although the pointer is copied to the     */
+/*    output structure for your convenience.                                 */
+/*                                                                           */
+/*  `regionlist':  An array of regional attributes and area constraints.     */
+/*    The first constraint's x and y coordinates are at indices [0] and [1], */
+/*    followed by the regional attribute and index [2], followed by the      */
+/*    maximum area at index [3], followed by the remaining area constraints. */
+/*    Four REALs per area constraint.  Note that each regional attribute is  */
+/*    used only if you select the `A' switch, and each area constraint is    */
+/*    used only if you select the `a' switch (with no number following), but */
+/*    omitting one of these switches does not change the memory layout.      */
+/*    Input only, although the pointer is copied to the output structure for */
+/*    your convenience.                                                      */
+/*                                                                           */
+/*  `edgelist':  An array of edge endpoints.  The first edge's endpoints are */
+/*    at indices [0] and [1], followed by the remaining edges.  Two ints per */
+/*    edge.  Output only.                                                    */
+/*  `edgemarkerlist':  An array of edge markers; one int per edge.  Output   */
+/*    only.                                                                  */
+/*  `normlist':  An array of normal vectors, used for infinite rays in       */
+/*    Voronoi diagrams.  The first normal vector's x and y magnitudes are    */
+/*    at indices [0] and [1], followed by the remaining vectors.  For each   */
+/*    finite edge in a Voronoi diagram, the normal vector written is the     */
+/*    zero vector.  Two REALs per edge.  Output only.                        */
+/*                                                                           */
+/*                                                                           */
+/*  Any input fields that Triangle will examine must be initialized.         */
+/*  Furthermore, for each output array that Triangle will write to, you      */
+/*  must either provide space by setting the appropriate pointer to point    */
+/*  to the space you want the data written to, or you must initialize the    */
+/*  pointer to NULL, which tells Triangle to allocate space for the results. */
+/*  The latter option is preferable, because Triangle always knows exactly   */
+/*  how much space to allocate.  The former option is provided mainly for    */
+/*  people who need to call Triangle from Fortran code, though it also makes */
+/*  possible some nasty space-saving tricks, like writing the output to the  */
+/*  same arrays as the input.                                                */
+/*                                                                           */
+/*  Triangle will not free() any input or output arrays, including those it  */
+/*  allocates itself; that's up to you.                                      */
+/*                                                                           */
+/*  Here's a guide to help you decide which fields you must initialize       */
+/*  before you call triangulate().                                           */
+/*                                                                           */
+/*  `in':                                                                    */
+/*                                                                           */
+/*    - `pointlist' must always point to a list of points; `numberofpoints'  */
+/*      and `numberofpointattributes' must be properly set.                  */
+/*      `pointmarkerlist' must either be set to NULL (in which case all      */
+/*      markers default to zero), or must point to a list of markers.  If    */
+/*      `numberofpointattributes' is not zero, `pointattributelist' must     */
+/*      point to a list of point attributes.                                 */
+/*    - If the `r' switch is used, `trianglelist' must point to a list of    */
+/*      triangles, and `numberoftriangles', `numberofcorners', and           */
+/*      `numberoftriangleattributes' must be properly set.  If               */
+/*      `numberoftriangleattributes' is not zero, `triangleattributelist'    */
+/*      must point to a list of triangle attributes.  If the `a' switch is   */
+/*      used (with no number following), `trianglearealist' must point to a  */
+/*      list of triangle area constraints.  `neighborlist' may be ignored.   */
+/*    - If the `p' switch is used, `segmentlist' must point to a list of     */
+/*      segments, `numberofsegments' must be properly set, and               */
+/*      `segmentmarkerlist' must either be set to NULL (in which case all    */
+/*      markers default to zero), or must point to a list of markers.        */
+/*    - If the `p' switch is used without the `r' switch, then               */
+/*      `numberofholes' and `numberofregions' must be properly set.  If      */
+/*      `numberofholes' is not zero, `holelist' must point to a list of      */
+/*      holes.  If `numberofregions' is not zero, `regionlist' must point to */
+/*      a list of region constraints.                                        */
+/*    - If the `p' switch is used, `holelist', `numberofholes',              */
+/*      `regionlist', and `numberofregions' is copied to `out'.  (You can    */
+/*      nonetheless get away with not initializing them if the `r' switch is */
+/*      used.)                                                               */
+/*    - `edgelist', `edgemarkerlist', `normlist', and `numberofedges' may be */
+/*      ignored.                                                             */
+/*                                                                           */
+/*  `out':                                                                   */
+/*                                                                           */
+/*    - `pointlist' must be initialized (NULL or pointing to memory) unless  */
+/*      the `N' switch is used.  `pointmarkerlist' must be initialized       */
+/*      unless the `N' or `B' switch is used.  If `N' is not used and        */
+/*      `in->numberofpointattributes' is not zero, `pointattributelist' must */
+/*      be initialized.                                                      */
+/*    - `trianglelist' must be initialized unless the `E' switch is used.    */
+/*      `neighborlist' must be initialized if the `n' switch is used.  If    */
+/*      the `E' switch is not used and (`in->numberofelementattributes' is   */
+/*      not zero or the `A' switch is used), `elementattributelist' must be  */
+/*      initialized.  `trianglearealist' may be ignored.                     */
+/*    - `segmentlist' must be initialized if the `p' or `c' switch is used,  */
+/*      and the `P' switch is not used.  `segmentmarkerlist' must also be    */
+/*      initialized under these circumstances unless the `B' switch is used. */
+/*    - `edgelist' must be initialized if the `e' switch is used.            */
+/*      `edgemarkerlist' must be initialized if the `e' switch is used and   */
+/*      the `B' switch is not.                                               */
+/*    - `holelist', `regionlist', `normlist', and all scalars may be ignored.*/
+/*                                                                           */
+/*  `vorout' (only needed if `v' switch is used):                            */
+/*                                                                           */
+/*    - `pointlist' must be initialized.  If `in->numberofpointattributes'   */
+/*      is not zero, `pointattributelist' must be initialized.               */
+/*      `pointmarkerlist' may be ignored.                                    */
+/*    - `edgelist' and `normlist' must both be initialized.                  */
+/*      `edgemarkerlist' may be ignored.                                     */
+/*    - Everything else may be ignored.                                      */
+/*                                                                           */
+/*  After a call to triangulate(), the valid fields of `out' and `vorout'    */
+/*  will depend, in an obvious way, on the choice of switches used.  Note    */
+/*  that when the `p' switch is used, the pointers `holelist' and            */
+/*  `regionlist' are copied from `in' to `out', but no new space is          */
+/*  allocated; be careful that you don't free() the same array twice.  On    */
+/*  the other hand, Triangle will never copy the `pointlist' pointer (or any */
+/*  others); new space is allocated for `out->pointlist', or if the `N'      */
+/*  switch is used, `out->pointlist' remains uninitialized.                  */
+/*                                                                           */
+/*  All of the meaningful `numberof' fields will be properly set; for        */
+/*  instance, `numberofedges' will represent the number of edges in the      */
+/*  triangulation whether or not the edges were written.  If segments are    */
+/*  not used, `numberofsegments' will indicate the number of boundary edges. */
+/*                                                                           */
+/*****************************************************************************/
+
+/* CLO: 3/21/99 - this could be done as a compile flag, but I always want
+this defined and I don't want to sprinkle extra stuff throughout the 
+Makefile system if I don't have to. */
+#define ANSI_DECLARATORS 1
+
+struct triangulateio {
+  REAL *pointlist;                                               /* In / out */
+  REAL *pointattributelist;                                      /* In / out */
+  int *pointmarkerlist;                                          /* In / out */
+  int numberofpoints;                                            /* In / out */
+  int numberofpointattributes;                                   /* In / out */
+
+  int *trianglelist;                                             /* In / out */
+  REAL *triangleattributelist;                                   /* In / out */
+  REAL *trianglearealist;                                         /* In only */
+  int *neighborlist;                                             /* Out only */
+  int numberoftriangles;                                         /* In / out */
+  int numberofcorners;                                           /* In / out */
+  int numberoftriangleattributes;                                /* In / out */
+
+  int *segmentlist;                                              /* In / out */
+  int *segmentmarkerlist;                                        /* In / out */
+  int numberofsegments;                                          /* In / out */
+
+  REAL *holelist;                        /* In / pointer to array copied out */
+  int numberofholes;                                      /* In / copied out */
+
+  REAL *regionlist;                      /* In / pointer to array copied out */
+  int numberofregions;                                    /* In / copied out */
+
+  int *edgelist;                                                 /* Out only */
+  int *edgemarkerlist;            /* Not used with Voronoi diagram; out only */
+  REAL *normlist;                /* Used only with Voronoi diagram; out only */
+  int numberofedges;                                             /* Out only */
+};
+
+#ifdef ANSI_DECLARATORS
+void triangulate(char *, struct triangulateio *, struct triangulateio *,
+                 struct triangulateio *);
+#else /* not ANSI_DECLARATORS */
+void triangulate();
+#endif /* not ANSI_DECLARATORS */
diff --git a/Tools/Triangle/tricall.c b/Tools/Triangle/tricall.c
new file mode 100644
index 000000000..6beccdc81
--- /dev/null
+++ b/Tools/Triangle/tricall.c
@@ -0,0 +1,279 @@
+/*****************************************************************************/
+/*                                                                           */
+/*  (tricall.c)                                                              */
+/*                                                                           */
+/*  Example program that demonstrates how to call Triangle.                  */
+/*                                                                           */
+/*  Accompanies Triangle Version 1.3                                         */
+/*  July 19, 1996                                                            */
+/*                                                                           */
+/*  This file is placed in the public domain (but the file that it calls     */
+/*  is still copyrighted!) by                                                */
+/*  Jonathan Richard Shewchuk                                                */
+/*  School of Computer Science                                               */
+/*  Carnegie Mellon University                                               */
+/*  5000 Forbes Avenue                                                       */
+/*  Pittsburgh, Pennsylvania  15213-3891                                     */
+/*  jrs@cs.cmu.edu                                                           */
+/*                                                                           */
+/*****************************************************************************/
+
+/* If SINGLE is defined when triangle.o is compiled, it should also be       */
+/*   defined here.  If not, it should not be defined here.                   */
+
+/* #define SINGLE */
+
+#ifdef SINGLE
+#define REAL float
+#else /* not SINGLE */
+#define REAL double
+#endif /* not SINGLE */
+
+#include <stdio.h>
+#include "triangle.h"
+
+#ifndef _STDLIB_H_
+extern void *malloc();
+extern void free();
+#endif /* _STDLIB_H_ */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  report()   Print the input or output.                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+void report(io, markers, reporttriangles, reportneighbors, reportsegments,
+            reportedges, reportnorms)
+struct triangulateio *io;
+int markers;
+int reporttriangles;
+int reportneighbors;
+int reportsegments;
+int reportedges;
+int reportnorms;
+{
+  int i, j;
+
+  for (i = 0; i < io->numberofpoints; i++) {
+    printf("Point %4d:", i);
+    for (j = 0; j < 2; j++) {
+      printf("  %.6g", io->pointlist[i * 2 + j]);
+    }
+    if (io->numberofpointattributes > 0) {
+      printf("   attributes");
+    }
+    for (j = 0; j < io->numberofpointattributes; j++) {
+      printf("  %.6g",
+             io->pointattributelist[i * io->numberofpointattributes + j]);
+    }
+    if (markers) {
+      printf("   marker %d\n", io->pointmarkerlist[i]);
+    } else {
+      printf("\n");
+    }
+  }
+  printf("\n");
+
+  if (reporttriangles || reportneighbors) {
+    for (i = 0; i < io->numberoftriangles; i++) {
+      if (reporttriangles) {
+        printf("Triangle %4d points:", i);
+        for (j = 0; j < io->numberofcorners; j++) {
+          printf("  %4d", io->trianglelist[i * io->numberofcorners + j]);
+        }
+        if (io->numberoftriangleattributes > 0) {
+          printf("   attributes");
+        }
+        for (j = 0; j < io->numberoftriangleattributes; j++) {
+          printf("  %.6g", io->triangleattributelist[i *
+                                         io->numberoftriangleattributes + j]);
+        }
+        printf("\n");
+      }
+      if (reportneighbors) {
+        printf("Triangle %4d neighbors:", i);
+        for (j = 0; j < 3; j++) {
+          printf("  %4d", io->neighborlist[i * 3 + j]);
+        }
+        printf("\n");
+      }
+    }
+    printf("\n");
+  }
+
+  if (reportsegments) {
+    for (i = 0; i < io->numberofsegments; i++) {
+      printf("Segment %4d points:", i);
+      for (j = 0; j < 2; j++) {
+        printf("  %4d", io->segmentlist[i * 2 + j]);
+      }
+      if (markers) {
+        printf("   marker %d\n", io->segmentmarkerlist[i]);
+      } else {
+        printf("\n");
+      }
+    }
+    printf("\n");
+  }
+
+  if (reportedges) {
+    for (i = 0; i < io->numberofedges; i++) {
+      printf("Edge %4d points:", i);
+      for (j = 0; j < 2; j++) {
+        printf("  %4d", io->edgelist[i * 2 + j]);
+      }
+      if (reportnorms && (io->edgelist[i * 2 + 1] == -1)) {
+        for (j = 0; j < 2; j++) {
+          printf("  %.6g", io->normlist[i * 2 + j]);
+        }
+      }
+      if (markers) {
+        printf("   marker %d\n", io->edgemarkerlist[i]);
+      } else {
+        printf("\n");
+      }
+    }
+    printf("\n");
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  main()   Create and refine a mesh.                                       */
+/*                                                                           */
+/*****************************************************************************/
+
+int main()
+{
+  struct triangulateio in, mid, out, vorout;
+
+  /* Define input points. */
+
+  in.numberofpoints = 4;
+  in.numberofpointattributes = 1;
+  in.pointlist = (REAL *) malloc(in.numberofpoints * 2 * sizeof(REAL));
+  in.pointlist[0] = 0.0;
+  in.pointlist[1] = 0.0;
+  in.pointlist[2] = 1.0;
+  in.pointlist[3] = 0.0;
+  in.pointlist[4] = 1.0;
+  in.pointlist[5] = 10.0;
+  in.pointlist[6] = 0.0;
+  in.pointlist[7] = 10.0;
+  in.pointattributelist = (REAL *) malloc(in.numberofpoints *
+                                          in.numberofpointattributes *
+                                          sizeof(REAL));
+  in.pointattributelist[0] = 0.0;
+  in.pointattributelist[1] = 1.0;
+  in.pointattributelist[2] = 11.0;
+  in.pointattributelist[3] = 10.0;
+  in.pointmarkerlist = (int *) malloc(in.numberofpoints * sizeof(int));
+  in.pointmarkerlist[0] = 0;
+  in.pointmarkerlist[1] = 2;
+  in.pointmarkerlist[2] = 0;
+  in.pointmarkerlist[3] = 0;
+
+  in.numberofsegments = 0;
+  in.numberofholes = 0;
+  in.numberofregions = 1;
+  in.regionlist = (REAL *) malloc(in.numberofregions * 4 * sizeof(REAL));
+  in.regionlist[0] = 0.5;
+  in.regionlist[1] = 5.0;
+  in.regionlist[2] = 7.0;            /* Regional attribute (for whole mesh). */
+  in.regionlist[3] = 0.1;          /* Area constraint that will not be used. */
+
+  printf("Input point set:\n\n");
+  report(&in, 1, 0, 0, 0, 0, 0);
+
+  /* Make necessary initializations so that Triangle can return a */
+  /*   triangulation in `mid' and a voronoi diagram in `vorout'.  */
+
+  mid.pointlist = (REAL *) NULL;            /* Not needed if -N switch used. */
+  /* Not needed if -N switch used or number of point attributes is zero: */
+  mid.pointattributelist = (REAL *) NULL;
+  mid.pointmarkerlist = (int *) NULL; /* Not needed if -N or -B switch used. */
+  mid.trianglelist = (int *) NULL;          /* Not needed if -E switch used. */
+  /* Not needed if -E switch used or number of triangle attributes is zero: */
+  mid.triangleattributelist = (REAL *) NULL;
+  mid.neighborlist = (int *) NULL;         /* Needed only if -n switch used. */
+  /* Needed only if segments are output (-p or -c) and -P not used: */
+  mid.segmentlist = (int *) NULL;
+  /* Needed only if segments are output (-p or -c) and -P and -B not used: */
+  mid.segmentmarkerlist = (int *) NULL;
+  mid.edgelist = (int *) NULL;             /* Needed only if -e switch used. */
+  mid.edgemarkerlist = (int *) NULL;   /* Needed if -e used and -B not used. */
+
+  vorout.pointlist = (REAL *) NULL;        /* Needed only if -v switch used. */
+  /* Needed only if -v switch used and number of attributes is not zero: */
+  vorout.pointattributelist = (REAL *) NULL;
+  vorout.edgelist = (int *) NULL;          /* Needed only if -v switch used. */
+  vorout.normlist = (REAL *) NULL;         /* Needed only if -v switch used. */
+
+  /* Triangulate the points.  Switches are chosen to read and write a  */
+  /*   PSLG (p), preserve the convex hull (c), number everything from  */
+  /*   zero (z), assign a regional attribute to each element (A), and  */
+  /*   produce an edge list (e), a Voronoi diagram (v), and a triangle */
+  /*   neighbor list (n).                                              */
+
+  triangulate("pczAevn", &in, &mid, &vorout);
+
+  printf("Initial triangulation:\n\n");
+  report(&mid, 1, 1, 1, 1, 1, 0);
+  printf("Initial Voronoi diagram:\n\n");
+  report(&vorout, 0, 0, 0, 0, 1, 1);
+
+  /* Attach area constraints to the triangles in preparation for */
+  /*   refining the triangulation.                               */
+
+  /* Needed only if -r and -a switches used: */
+  mid.trianglearealist = (REAL *) malloc(mid.numberoftriangles * sizeof(REAL));
+  mid.trianglearealist[0] = 3.0;
+  mid.trianglearealist[1] = 1.0;
+
+  /* Make necessary initializations so that Triangle can return a */
+  /*   triangulation in `out'.                                    */
+
+  out.pointlist = (REAL *) NULL;            /* Not needed if -N switch used. */
+  /* Not needed if -N switch used or number of attributes is zero: */
+  out.pointattributelist = (REAL *) NULL;
+  out.trianglelist = (int *) NULL;          /* Not needed if -E switch used. */
+  /* Not needed if -E switch used or number of triangle attributes is zero: */
+  out.triangleattributelist = (REAL *) NULL;
+
+  /* Refine the triangulation according to the attached */
+  /*   triangle area constraints.                       */
+
+  triangulate("prazBP", &mid, &out, (struct triangulateio *) NULL);
+
+  printf("Refined triangulation:\n\n");
+  report(&out, 0, 1, 0, 0, 0, 0);
+
+  /* Free all allocated arrays, including those allocated by Triangle. */
+
+  free(in.pointlist);
+  free(in.pointattributelist);
+  free(in.pointmarkerlist);
+  free(in.regionlist);
+  free(mid.pointlist);
+  free(mid.pointattributelist);
+  free(mid.pointmarkerlist);
+  free(mid.trianglelist);
+  free(mid.triangleattributelist);
+  free(mid.trianglearealist);
+  free(mid.neighborlist);
+  free(mid.segmentlist);
+  free(mid.segmentmarkerlist);
+  free(mid.edgelist);
+  free(mid.edgemarkerlist);
+  free(vorout.pointlist);
+  free(vorout.pointattributelist);
+  free(vorout.edgelist);
+  free(vorout.normlist);
+  free(out.pointlist);
+  free(out.pointattributelist);
+  free(out.trianglelist);
+  free(out.triangleattributelist);
+
+  return 0;
+}
diff --git a/Tools/Triangulate/Makefile.am b/Tools/Triangulate/Makefile.am
new file mode 100644
index 000000000..34c320f91
--- /dev/null
+++ b/Tools/Triangulate/Makefile.am
@@ -0,0 +1,14 @@
+noinst_LIBRARIES = libTriangulate.a
+
+libTriangulate_a_SOURCES = \
+	triangle.cxx triangle.hxx \
+	trieles.cxx trieles.hxx \
+	trinodes.cxx trinodes.hxx \
+	tripoly.cxx tripoly.hxx \
+	trisegs.cxx trisegs.hxx
+
+INCLUDES += \
+	-I$(top_builddir) \
+	-I$(top_builddir)/Lib \
+	-I$(top_builddir)/Tools/Lib \
+	-I$(top_builddir)/Tools/Construct
diff --git a/Tools/Triangulate/triangle.cxx b/Tools/Triangulate/triangle.cxx
new file mode 100644
index 000000000..38b8bf1ac
--- /dev/null
+++ b/Tools/Triangulate/triangle.cxx
@@ -0,0 +1,476 @@
+// triangle.cxx -- "Triangle" interface class
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include "triangle.hxx"
+#include "tripoly.hxx"
+
+// Constructor
+FGTriangle::FGTriangle( void ) {
+}
+
+
+// Destructor
+FGTriangle::~FGTriangle( void ) {
+}
+
+
+// populate this class based on the specified gpc_polys list
+int 
+FGTriangle::build( const point_list& corner_list,
+		   const point_list& fit_list, 
+		   const FGgpcPolyList& gpc_polys )
+{
+    FGTriPoly poly;
+    int index;
+
+    in_nodes.clear();
+    trisegs.clear();
+
+    // Point3D junkp;
+    // int junkc = 0;
+    // char junkn[256];
+    // FILE *junkfp;
+
+    // traverse the dem corner and fit lists and gpc_polys building a
+    // unified node list and converting the polygons so that they
+    // reference the node list by index (starting at zero) rather than
+    // listing the points explicitely
+
+    // first the corners since these are important
+    const_point_list_iterator f_current, f_last;
+    f_current = corner_list.begin();
+    f_last = corner_list.end();
+    for ( ; f_current != f_last; ++f_current ) {
+	index = in_nodes.unique_add( *f_current );
+    }
+
+    // next process the polygons
+    gpc_polygon *gpc_poly;
+    const_gpcpoly_iterator current, last;
+
+    // process polygons in priority order
+    cout << "prepairing node list and polygons" << endl;
+
+    for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
+	polylist[i].clear();
+
+	// cout << "area type = " << i << endl;
+	current = gpc_polys.polys[i].begin();
+	last = gpc_polys.polys[i].end();
+	for ( ; current != last; ++current ) {
+	    gpc_poly = *current;
+	    cout << "processing a polygon, contours = " 
+		 << gpc_poly->num_contours << endl;
+
+	    if (gpc_poly->num_contours <= 0 ) {
+		cout << "FATAL ERROR! no contours in this polygon" << endl;
+		exit(-1);
+	    }
+
+	    if (gpc_poly->num_contours > 1 ) {
+		cout << "FATAL ERROR! no multi-contour support" << endl;
+		sleep(2);
+		// exit(-1);
+	    }
+
+	    for ( int j = 0; j < gpc_poly->num_contours; j++ ) {
+		cout << " processing contour, nodes = " 
+		     << gpc_poly->contour[j].num_vertices << endl;
+
+		poly.erase();
+
+		// sprintf(junkn, "g.%d", junkc++);
+		// junkfp = fopen(junkn, "w");
+
+		for ( int k = 0; k < gpc_poly->contour[j].num_vertices; k++ ) {
+		    Point3D p( gpc_poly->contour[j].vertex[k].x,
+			       gpc_poly->contour[j].vertex[k].y,
+			       0 );
+		    index = in_nodes.unique_add( p );
+		    // junkp = in_nodes.get_node( index );
+		    // fprintf(junkfp, "%.4f %.4f\n", junkp.x(), junkp.y());
+		    poly.add_node(index);
+		    // cout << index << endl;
+		}
+		// fprintf(junkfp, "%.4f %.4f\n", 
+		//    gpc_poly->contour[j].vertex[0].x, 
+		//    gpc_poly->contour[j].vertex[0].y);
+		// fclose(junkfp);
+
+		poly.calc_point_inside( in_nodes );
+
+		polylist[i].push_back(poly);
+	    }
+	}
+    }
+
+    // last, do the rest of the height nodes
+    f_current = fit_list.begin();
+    f_last = fit_list.end();
+    for ( ; f_current != f_last; ++f_current ) {
+	index = in_nodes.course_add( *f_current );
+    }
+
+    for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
+	if ( polylist[i].size() ) {
+	    cout << get_area_name((AreaType)i) << " = " 
+		 << polylist[i].size() << endl;
+	}
+    }
+
+    // traverse the polygon lists and build the segment (edge) list
+    // that is used by the "Triangle" lib.
+
+    int i1, i2;
+    point_list node_list = in_nodes.get_node_list();
+    for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
+	// cout << "area type = " << i << endl;
+	tripoly_list_iterator tp_current, tp_last;
+	tp_current = polylist[i].begin();
+	tp_last = polylist[i].end();
+
+	// process each polygon in list
+	for ( ; tp_current != tp_last; ++tp_current ) {
+	    poly = *tp_current;
+
+	    for ( int j = 0; j < (int)(poly.size()) - 1; ++j ) {
+		i1 = poly.get_pt_index( j );
+		i2 = poly.get_pt_index( j + 1 );
+		// calc_line_params(i1, i2, &m, &b);
+		trisegs.unique_divide_and_add( node_list, FGTriSeg(i1, i2) );
+	    }
+	    i1 = poly.get_pt_index( 0 );
+	    i2 = poly.get_pt_index( poly.size() - 1 );
+	    // calc_line_params(i1, i2, &m, &b);
+	    trisegs.unique_divide_and_add( node_list, FGTriSeg(i1, i2) );
+	}
+    }
+
+    return 0;
+}
+
+
+static void write_out_data(struct triangulateio *out) {
+    FILE *node = fopen("tile.node", "w");
+    fprintf(node, "%d 2 %d 0\n", 
+	    out->numberofpoints, out->numberofpointattributes);
+    for (int i = 0; i < out->numberofpoints; i++) {
+	fprintf(node, "%d %.6f %.6f %.2f\n", 
+		i, out->pointlist[2*i], out->pointlist[2*i + 1], 0.0);
+    }
+    fclose(node);
+
+    FILE *ele = fopen("tile.ele", "w");
+    fprintf(ele, "%d 3 0\n", out->numberoftriangles);
+    for (int i = 0; i < out->numberoftriangles; i++) {
+        fprintf(ele, "%d ", i);
+        for (int j = 0; j < out->numberofcorners; j++) {
+	    fprintf(ele, "%d ", out->trianglelist[i * out->numberofcorners + j]);
+        }
+        for (int j = 0; j < out->numberoftriangleattributes; j++) {
+	    fprintf(ele, "%.6f ", 
+		    out->triangleattributelist[i 
+					      * out->numberoftriangleattributes
+					      + j]
+		    );
+        }
+	fprintf(ele, "\n");
+    }
+    fclose(ele);
+
+    FILE *fp = fopen("tile.poly", "w");
+    fprintf(fp, "0 2 1 0\n");
+    fprintf(fp, "%d 0\n", out->numberofsegments);
+    for (int i = 0; i < out->numberofsegments; ++i) {
+	fprintf(fp, "%d %d %d\n", 
+		i, out->segmentlist[2*i], out->segmentlist[2*i + 1]);
+    }
+    fprintf(fp, "%d\n", out->numberofholes);
+    for (int i = 0; i < out->numberofholes; i++) {
+	fprintf(fp, "%d %.6f %.6f\n", 
+		i, out->holelist[2*i], out->holelist[2*i + 1]);
+    }
+    fprintf(fp, "%d\n", out->numberofregions);
+    for (int i = 0; i < out->numberofregions; i++) {
+	fprintf(fp, "%d %.6f %.6f %.6f\n", 
+		i, out->regionlist[4*i], out->regionlist[4*i + 1],
+		out->regionlist[4*i + 2]);
+    }
+    fclose(fp);
+}
+
+
+// triangulate each of the polygon areas
+int FGTriangle::run_triangulate() {
+    FGTriPoly poly;
+    Point3D p;
+    struct triangulateio in, out, vorout;
+    int counter;
+
+    // point list
+    point_list node_list = in_nodes.get_node_list();
+    in.numberofpoints = node_list.size();
+    in.pointlist = (REAL *) malloc(in.numberofpoints * 2 * sizeof(REAL));
+
+    point_list_iterator tn_current, tn_last;
+    tn_current = node_list.begin();
+    tn_last = node_list.end();
+    counter = 0;
+    for ( ; tn_current != tn_last; ++tn_current ) {
+	in.pointlist[counter++] = tn_current->x();
+	in.pointlist[counter++] = tn_current->y();
+    }
+
+    in.numberofpointattributes = 1;
+    in.pointattributelist = (REAL *) malloc(in.numberofpoints *
+					    in.numberofpointattributes *
+					    sizeof(REAL));
+    for ( int i = 0; i < in.numberofpoints * in.numberofpointattributes; i++) {
+	in.pointattributelist[i] = 0.0;
+    }
+
+    in.pointmarkerlist = (int *) malloc(in.numberofpoints * sizeof(int));
+    for ( int i = 0; i < in.numberofpoints; i++) {
+	in.pointmarkerlist[i] = 0;
+    }
+
+    // triangle list
+    in.numberoftriangles = 0;
+
+    // segment list
+    triseg_list seg_list = trisegs.get_seg_list();
+    in.numberofsegments = seg_list.size();
+    in.segmentlist = (int *) malloc(in.numberofsegments * 2 * sizeof(int));
+    in.segmentmarkerlist = (int *) NULL;
+
+    triseg_list_iterator s_current, s_last;
+    s_current = seg_list.begin();
+    s_last = seg_list.end();
+    counter = 0;
+    for ( ; s_current != s_last; ++s_current ) {
+	in.segmentlist[counter++] = s_current->get_n1();
+	in.segmentlist[counter++] = s_current->get_n2();
+    }
+
+    // hole list (make holes for airport ignore areas)
+    in.numberofholes = polylist[(int)AirportIgnoreArea].size();
+    in.holelist = (REAL *) malloc(in.numberofholes * 2 * sizeof(REAL));
+
+    tripoly_list_iterator h_current, h_last;
+    h_current = polylist[(int)AirportIgnoreArea].begin();
+    h_last = polylist[(int)AirportIgnoreArea].end();
+    counter = 0;
+    for ( ; h_current != h_last; ++h_current ) {
+	poly = *h_current;
+	p = poly.get_point_inside();
+	in.holelist[counter++] = p.x();
+	in.holelist[counter++] = p.y();
+    }
+
+    // region list
+    in.numberofregions = 0;
+    for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
+	in.numberofregions += polylist[i].size();
+    }
+
+    in.regionlist = (REAL *) malloc(in.numberofregions * 4 * sizeof(REAL));
+    counter = 0;
+    for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
+	tripoly_list_iterator h_current, h_last;
+	h_current = polylist[(int)i].begin();
+	h_last = polylist[(int)i].end();
+	for ( ; h_current != h_last; ++h_current ) {
+	    poly = *h_current;
+	    p = poly.get_point_inside();
+	    in.regionlist[counter++] = p.x();  // x coord
+	    in.regionlist[counter++] = p.y();  // y coord
+	    in.regionlist[counter++] = i;      // region attribute
+	    in.regionlist[counter++] = -1.0;   // area constraint (unused)
+	}
+    }
+
+    // prep the output structures
+    out.pointlist = (REAL *) NULL;        // Not needed if -N switch used.
+    // Not needed if -N switch used or number of point attributes is zero:
+    out.pointattributelist = (REAL *) NULL;
+    out.pointmarkerlist = (int *) NULL;   // Not needed if -N or -B switch used.
+    out.trianglelist = (int *) NULL;      // Not needed if -E switch used.
+    // Not needed if -E switch used or number of triangle attributes is zero:
+    out.triangleattributelist = (REAL *) NULL;
+    out.neighborlist = (int *) NULL;      // Needed only if -n switch used.
+    // Needed only if segments are output (-p or -c) and -P not used:
+    out.segmentlist = (int *) NULL;
+    // Needed only if segments are output (-p or -c) and -P and -B not used:
+    out.segmentmarkerlist = (int *) NULL;
+    out.edgelist = (int *) NULL;          // Needed only if -e switch used.
+    out.edgemarkerlist = (int *) NULL;    // Needed if -e used and -B not used.
+  
+    vorout.pointlist = (REAL *) NULL;     // Needed only if -v switch used.
+    // Needed only if -v switch used and number of attributes is not zero:
+    vorout.pointattributelist = (REAL *) NULL;
+    vorout.edgelist = (int *) NULL;       // Needed only if -v switch used.
+    vorout.normlist = (REAL *) NULL;      // Needed only if -v switch used.
+    
+    // TEMPORARY
+    // write_out_data(&in);
+
+    // Triangulate the points.  Switches are chosen to read and write
+    // a PSLG (p), preserve the convex hull (c), number everything
+    // from zero (z), assign a regional attribute to each element (A),
+    // and produce an edge list (e), and a triangle neighbor list (n).
+
+    string tri_options = "pczq10Aen";
+    // string tri_options = "pzAen";
+    // string tri_options = "pczq15S400Aen";
+    cout << "Triangulation with options = " << tri_options << endl;
+
+    triangulate(tri_options.c_str(), &in, &out, &vorout);
+
+    // TEMPORARY
+    write_out_data(&out);
+
+    // now copy the results back into the corresponding FGTriangle
+    // structures
+
+    // nodes
+    out_nodes.clear();
+    for ( int i = 0; i < out.numberofpoints; i++ ) {
+	Point3D p( out.pointlist[2*i], out.pointlist[2*i + 1], 0.0 );
+	// cout << "point = " << p << endl;
+	out_nodes.simple_add( p );
+    }
+
+    // triangles
+    elelist.clear();
+    int n1, n2, n3;
+    double attribute;
+    for ( int i = 0; i < out.numberoftriangles; i++ ) {
+	n1 = out.trianglelist[i * 3];
+	n2 = out.trianglelist[i * 3 + 1];
+	n3 = out.trianglelist[i * 3 + 2];
+	if ( out.numberoftriangleattributes > 0 ) {
+	    attribute = out.triangleattributelist[i];
+	} else {
+	    attribute = 0.0;
+	}
+	// cout << "triangle = " << n1 << " " << n2 << " " << n3 << endl;
+
+	elelist.push_back( FGTriEle( n1, n2, n3, attribute ) );
+    }
+
+    // free mem allocated to the "Triangle" structures
+    free(in.pointlist);
+    free(in.pointattributelist);
+    free(in.pointmarkerlist);
+    free(in.regionlist);
+    free(out.pointlist);
+    free(out.pointattributelist);
+    free(out.pointmarkerlist);
+    free(out.trianglelist);
+    free(out.triangleattributelist);
+    // free(out.trianglearealist);
+    free(out.neighborlist);
+    free(out.segmentlist);
+    free(out.segmentmarkerlist);
+    free(out.edgelist);
+    free(out.edgemarkerlist);
+    free(vorout.pointlist);
+    free(vorout.pointattributelist);
+    free(vorout.edgelist);
+    free(vorout.normlist);
+
+    return 0;
+}
+
+
+// $Log$
+// Revision 1.16  1999/04/05 02:17:11  curt
+// Dynamically update "error" until the resulting tile data scales within
+// a lower and upper bounds.
+//
+// Revision 1.15  1999/04/03 05:22:58  curt
+// Found a bug in dividing and adding unique verticle segments which could
+// cause the triangulator to end up in an infinite loop.  Basically the code
+// was correct, but the verticle line test was a bit to selective.
+//
+// Revision 1.14  1999/03/31 23:47:09  curt
+// Debugging output tweaks.
+//
+// Revision 1.13  1999/03/29 13:11:07  curt
+// Shuffled stl type names a bit.
+// Began adding support for tri-fanning (or maybe other arrangments too.)
+//
+// Revision 1.12  1999/03/27 05:30:12  curt
+// Handle corner nodes separately from the rest of the fitted nodes.
+// Add fitted nodes in after corners and polygon nodes since the fitted nodes
+//   are less important.  Subsequent nodes will "snap" to previous nodes if
+//   they are "close enough."
+// Need to manually divide segments to prevent "T" intersetions which can
+//   confound the triangulator.  Hey, I got to use a recursive method!
+// Pass along correct triangle attributes to output file generator.
+// Do fine grained node snapping for corners and polygons, but course grain
+//   node snapping for fitted terrain nodes.
+//
+// Revision 1.11  1999/03/23 22:02:51  curt
+// Refinements in naming and organization.
+//
+// Revision 1.10  1999/03/22 23:49:02  curt
+// Modifications to facilitate conversion to output format.
+//
+// Revision 1.9  1999/03/21 15:48:02  curt
+// Removed Dem2node from the Tools fold.
+// Tweaked the triangulator options to add quality mesh refinement.
+//
+// Revision 1.8  1999/03/21 14:02:06  curt
+// Added a mechanism to dump out the triangle structures for viewing.
+// Fixed a couple bugs in first pass at triangulation.
+// - needed to explicitely initialize the polygon accumulator in triangle.cxx
+//   before each polygon rather than depending on the default behavior.
+// - Fixed a problem with region attribute propagation where I wasn't generating
+//   the hole points correctly.
+//
+// Revision 1.7  1999/03/20 20:32:55  curt
+// First mostly successful tile triangulation works.  There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
+// Revision 1.6  1999/03/20 13:22:11  curt
+// Added trisegs.[ch]xx tripoly.[ch]xx.
+//
+// Revision 1.5  1999/03/20 02:21:52  curt
+// Continue shaping the code towards triangulation bliss.  Added code to
+// calculate some point guaranteed to be inside a polygon.
+//
+// Revision 1.4  1999/03/19 22:29:04  curt
+// Working on preparationsn for triangulation.
+//
+// Revision 1.3  1999/03/19 00:27:10  curt
+// Continued work on triangulation preparation.
+//
+// Revision 1.2  1999/03/18 04:31:11  curt
+// Let's not pass copies of huge structures on the stack ... ye might see a
+// segfault ... :-)
+//
+// Revision 1.1  1999/03/17 23:51:59  curt
+// Initial revision.
+//
diff --git a/Tools/Triangulate/triangle.hxx b/Tools/Triangulate/triangle.hxx
new file mode 100644
index 000000000..676f5056c
--- /dev/null
+++ b/Tools/Triangulate/triangle.hxx
@@ -0,0 +1,141 @@
+// triangle.hxx -- "Triangle" interface class
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _TRIANGLE_HXX
+#define _TRIANGLE_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Include/compiler.h>
+
+#include <Array/array.hxx>
+#include <Clipper/clipper.hxx>
+#include <Math/point3d.hxx>
+#include <Polygon/names.hxx>
+
+#define REAL double
+extern "C" {
+#include <Triangle/triangle.h>
+}
+
+#include "trieles.hxx"
+#include "trinodes.hxx"
+#include "tripoly.hxx"
+#include "trisegs.hxx"
+
+
+class FGTriangle {
+
+private:
+
+    // list of nodes
+    FGTriNodes in_nodes;
+    FGTriNodes out_nodes;
+
+    // list of segments
+    FGTriSegments trisegs;
+
+    // polygon list
+    tripoly_list polylist[FG_MAX_AREA_TYPES];
+    
+    // triangle list
+    triele_list elelist;
+
+public:
+
+    // Constructor and destructor
+    FGTriangle( void );
+    ~FGTriangle( void );
+
+    // add nodes from the dem fit
+    int add_nodes();
+
+    // populate this class based on the specified gpc_polys list
+    int build( const point_list& corner_list, 
+	       const point_list& fit_list,
+	       const FGgpcPolyList& gpc_polys );
+
+    // front end triangulator for polygon list
+    int run_triangulate();
+
+    inline FGTriNodes get_out_nodes() const { return out_nodes; }
+    inline size_t get_out_nodes_size() const { return out_nodes.size(); }
+    inline triele_list get_elelist() const { return elelist; }
+};
+
+
+#endif // _TRIANGLE_HXX
+
+
+// $Log$
+// Revision 1.11  1999/04/05 02:17:12  curt
+// Dynamically update "error" until the resulting tile data scales within
+// a lower and upper bounds.
+//
+// Revision 1.10  1999/03/29 13:11:08  curt
+// Shuffled stl type names a bit.
+// Began adding support for tri-fanning (or maybe other arrangments too.)
+//
+// Revision 1.9  1999/03/27 05:30:13  curt
+// Handle corner nodes separately from the rest of the fitted nodes.
+// Add fitted nodes in after corners and polygon nodes since the fitted nodes
+//   are less important.  Subsequent nodes will "snap" to previous nodes if
+//   they are "close enough."
+// Need to manually divide segments to prevent "T" intersetions which can
+//   confound the triangulator.  Hey, I got to use a recursive method!
+// Pass along correct triangle attributes to output file generator.
+// Do fine grained node snapping for corners and polygons, but course grain
+//   node snapping for fitted terrain nodes.
+//
+// Revision 1.8  1999/03/23 22:02:52  curt
+// Refinements in naming and organization.
+//
+// Revision 1.7  1999/03/22 23:49:03  curt
+// Modifications to facilitate conversion to output format.
+//
+// Revision 1.6  1999/03/20 20:32:56  curt
+// First mostly successful tile triangulation works.  There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
+// Revision 1.5  1999/03/20 02:21:53  curt
+// Continue shaping the code towards triangulation bliss.  Added code to
+// calculate some point guaranteed to be inside a polygon.
+//
+// Revision 1.4  1999/03/19 22:29:05  curt
+// Working on preparationsn for triangulation.
+//
+// Revision 1.3  1999/03/19 00:27:11  curt
+// Continued work on triangulation preparation.
+//
+// Revision 1.2  1999/03/18 04:31:12  curt
+// Let's not pass copies of huge structures on the stack ... ye might see a
+// segfault ... :-)
+//
+// Revision 1.1  1999/03/17 23:51:59  curt
+// Initial revision.
+//
diff --git a/Tools/Triangulate/trieles.cxx b/Tools/Triangulate/trieles.cxx
new file mode 100644
index 000000000..406a19a91
--- /dev/null
+++ b/Tools/Triangulate/trieles.cxx
@@ -0,0 +1,31 @@
+// trieles.cxx -- "Triangle" element management class
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include "trieles.hxx"
+
+
+// $Log$
+// Revision 1.1  1999/03/22 23:58:57  curt
+// Initial revision.
+//
diff --git a/Tools/Triangulate/trieles.hxx b/Tools/Triangulate/trieles.hxx
new file mode 100644
index 000000000..2d22c7db5
--- /dev/null
+++ b/Tools/Triangulate/trieles.hxx
@@ -0,0 +1,94 @@
+// trieles.hxx -- "Triangle" element management class
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _TRIELES_HXX
+#define _TRIELES_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Include/compiler.h>
+
+#include <vector>
+
+FG_USING_STD(vector);
+
+
+// a segment is two integer pointers into the node list
+class FGTriEle {
+    int n1, n2, n3;
+
+    double attribute;
+
+public:
+
+    // Constructor and destructor
+    inline FGTriEle( void ) { };
+    inline FGTriEle( int i1, int i2, int i3, double a ) {
+	n1 = i1; n2 = i2; n3 = i3; attribute = a;
+    }
+
+    inline ~FGTriEle( void ) { };
+
+    inline int get_n1() const { return n1; }
+    inline void set_n1( int i ) { n1 = i; }
+    inline int get_n2() const { return n2; }
+    inline void set_n2( int i ) { n2 = i; }
+    inline int get_n3() const { return n3; }
+    inline void set_n3( int i ) { n3 = i; }
+
+    inline double get_attribute() const { return attribute; }
+    inline void set_attribute( double a ) { attribute = a; }
+};
+
+
+typedef vector < FGTriEle > triele_list;
+typedef triele_list::iterator triele_list_iterator;
+typedef triele_list::const_iterator const_triele_list_iterator;
+
+
+#endif // _TRIELES_HXX
+
+
+// $Log$
+// Revision 1.3  1999/03/27 05:30:14  curt
+// Handle corner nodes separately from the rest of the fitted nodes.
+// Add fitted nodes in after corners and polygon nodes since the fitted nodes
+//   are less important.  Subsequent nodes will "snap" to previous nodes if
+//   they are "close enough."
+// Need to manually divide segments to prevent "T" intersetions which can
+//   confound the triangulator.  Hey, I got to use a recursive method!
+// Pass along correct triangle attributes to output file generator.
+// Do fine grained node snapping for corners and polygons, but course grain
+//   node snapping for fitted terrain nodes.
+//
+// Revision 1.2  1999/03/23 22:02:53  curt
+// Refinements in naming and organization.
+//
+// Revision 1.1  1999/03/22 23:58:57  curt
+// Initial revision.
+//
diff --git a/Tools/Triangulate/trinodes.cxx b/Tools/Triangulate/trinodes.cxx
new file mode 100644
index 000000000..50e7df7ee
--- /dev/null
+++ b/Tools/Triangulate/trinodes.cxx
@@ -0,0 +1,130 @@
+// trinodes.cxx -- "Triangle" nodes management class
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include "trinodes.hxx"
+
+
+// Constructor 
+FGTriNodes::FGTriNodes( void ) {
+}
+
+
+// Destructor
+FGTriNodes::~FGTriNodes( void ) {
+}
+
+
+// Add a point to the point list if it doesn't already exist.  Returns
+// the index (starting at zero) of the point in the list.
+int FGTriNodes::unique_add( const Point3D& p ) {
+    point_list_iterator current, last;
+    int counter = 0;
+
+    // cout << p.x() << "," << p.y() << endl;
+
+    // see if point already exists
+    current = node_list.begin();
+    last = node_list.end();
+    for ( ; current != last; ++current ) {
+	if ( close_enough(p, *current) ) {
+	    // cout << "found an existing match!" << endl;
+	    return counter;
+	}
+	
+	++counter;
+    }
+
+    // add to list
+    node_list.push_back( p );
+
+    return counter;
+}
+
+
+// Add the point with no uniqueness checking
+int FGTriNodes::simple_add( const Point3D& p ) {
+    node_list.push_back( p );
+
+    return node_list.size() - 1;
+}
+
+
+// Add a point to the point list if it doesn't already exist.  Returns
+// the index (starting at zero) of the point in the list.  Use a
+// course proximity check
+int FGTriNodes::course_add( const Point3D& p ) {
+    point_list_iterator current, last;
+    int counter = 0;
+
+    // cout << p.x() << "," << p.y() << endl;
+
+    // see if point already exists
+    current = node_list.begin();
+    last = node_list.end();
+    for ( ; current != last; ++current ) {
+	if ( course_close_enough(p, *current) ) {
+	    // cout << "found an existing match!" << endl;
+	    return counter;
+	}
+	
+	++counter;
+    }
+
+    // add to list
+    node_list.push_back( p );
+
+    return counter;
+}
+
+
+// $Log$
+// Revision 1.6  1999/03/27 05:30:15  curt
+// Handle corner nodes separately from the rest of the fitted nodes.
+// Add fitted nodes in after corners and polygon nodes since the fitted nodes
+//   are less important.  Subsequent nodes will "snap" to previous nodes if
+//   they are "close enough."
+// Need to manually divide segments to prevent "T" intersetions which can
+//   confound the triangulator.  Hey, I got to use a recursive method!
+// Pass along correct triangle attributes to output file generator.
+// Do fine grained node snapping for corners and polygons, but course grain
+//   node snapping for fitted terrain nodes.
+//
+// Revision 1.5  1999/03/23 22:02:54  curt
+// Refinements in naming and organization.
+//
+// Revision 1.4  1999/03/22 23:49:04  curt
+// Modifications to facilitate conversion to output format.
+//
+// Revision 1.3  1999/03/20 02:21:54  curt
+// Continue shaping the code towards triangulation bliss.  Added code to
+// calculate some point guaranteed to be inside a polygon.
+//
+// Revision 1.2  1999/03/19 00:27:12  curt
+// Continued work on triangulation preparation.
+//
+// Revision 1.1  1999/03/17 23:52:00  curt
+// Initial revision.
+//
+
+
diff --git a/Tools/Triangulate/trinodes.hxx b/Tools/Triangulate/trinodes.hxx
new file mode 100644
index 000000000..f7c5fdd55
--- /dev/null
+++ b/Tools/Triangulate/trinodes.hxx
@@ -0,0 +1,155 @@
+// trinodes.hxx -- "Triangle" nodes management class
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _TRINODES_HXX
+#define _TRINODES_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Include/compiler.h>
+
+#include <Math/point3d.hxx>
+
+#include <Main/construct_types.hxx>
+
+
+#define FG_PROXIMITY_EPSILON 0.000001
+#define FG_COURSE_EPSILON 0.0003
+
+
+class FGTriNodes {
+
+private:
+
+    point_list node_list;
+
+    // return true of the two points are "close enough" as defined by
+    // FG_PROXIMITY_EPSILON
+    bool close_enough( const Point3D& p, const Point3D& p );
+
+    // return true of the two points are "close enough" as defined by
+    // FG_COURSE_EPSILON
+    bool course_close_enough( const Point3D& p1, const Point3D& p2 );
+
+public:
+
+    // Constructor and destructor
+    FGTriNodes( void );
+    ~FGTriNodes( void );
+
+    // delete all the data out of node_list
+    inline void clear() { node_list.clear(); }
+
+    // Add a point to the point list if it doesn't already exist.
+    // Returns the index (starting at zero) of the point in the list.
+    int unique_add( const Point3D& p );
+
+    // Add the point with no uniqueness checking
+    int simple_add( const Point3D& p );
+
+    // Add a point to the point list if it doesn't already exist.
+    // Returns the index (starting at zero) of the point in the list.
+    // Use a course proximity check
+    int course_add( const Point3D& p );
+
+    // return the master node list
+    inline point_list get_node_list() const { return node_list; }
+
+    // return the ith point
+    inline Point3D get_node( int i ) const { return node_list[i]; }
+
+    // return the size of the node list
+    inline size_t size() const { return node_list.size(); }
+};
+
+
+// return true of the two points are "close enough" as defined by
+// FG_PROXIMITY_EPSILON
+inline bool FGTriNodes::close_enough( const Point3D& p1, const Point3D& p2 ) {
+    if ( ( fabs(p1.x() - p2.x()) < FG_PROXIMITY_EPSILON ) &&
+	 ( fabs(p1.y() - p2.y()) < FG_PROXIMITY_EPSILON ) ) {
+	return true;
+    } else {
+	return false;
+    }
+}
+
+
+// return true of the two points are "close enough" as defined by
+// FG_COURSE_EPSILON
+inline bool FGTriNodes::course_close_enough( const Point3D& p1, 
+					     const Point3D& p2 )
+{
+    if ( ( fabs(p1.x() - p2.x()) < FG_COURSE_EPSILON ) &&
+	 ( fabs(p1.y() - p2.y()) < FG_COURSE_EPSILON ) ) {
+	return true;
+    } else {
+	return false;
+    }
+}
+
+
+#endif // _TRINODES_HXX
+
+
+// $Log$
+// Revision 1.8  1999/04/05 02:17:13  curt
+// Dynamically update "error" until the resulting tile data scales within
+// a lower and upper bounds.
+//
+// Revision 1.7  1999/03/29 13:11:10  curt
+// Shuffled stl type names a bit.
+// Began adding support for tri-fanning (or maybe other arrangments too.)
+//
+// Revision 1.6  1999/03/27 05:30:16  curt
+// Handle corner nodes separately from the rest of the fitted nodes.
+// Add fitted nodes in after corners and polygon nodes since the fitted nodes
+//   are less important.  Subsequent nodes will "snap" to previous nodes if
+//   they are "close enough."
+// Need to manually divide segments to prevent "T" intersetions which can
+//   confound the triangulator.  Hey, I got to use a recursive method!
+// Pass along correct triangle attributes to output file generator.
+// Do fine grained node snapping for corners and polygons, but course grain
+//   node snapping for fitted terrain nodes.
+//
+// Revision 1.5  1999/03/23 22:02:55  curt
+// Refinements in naming and organization.
+//
+// Revision 1.4  1999/03/22 23:49:05  curt
+// Modifications to facilitate conversion to output format.
+//
+// Revision 1.3  1999/03/20 02:21:55  curt
+// Continue shaping the code towards triangulation bliss.  Added code to
+// calculate some point guaranteed to be inside a polygon.
+//
+// Revision 1.2  1999/03/19 22:29:06  curt
+// Working on preparationsn for triangulation.
+//
+// Revision 1.1  1999/03/17 23:52:00  curt
+// Initial revision.
+//
diff --git a/Tools/Triangulate/tripoly.cxx b/Tools/Triangulate/tripoly.cxx
new file mode 100644
index 000000000..d01bb8b40
--- /dev/null
+++ b/Tools/Triangulate/tripoly.cxx
@@ -0,0 +1,189 @@
+// tripoly.cxx -- "Triangle" polygon management class
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <Include/fg_constants.h>
+#include <Math/point3d.hxx>
+
+#include "tripoly.hxx"
+
+
+// Constructor 
+FGTriPoly::FGTriPoly( void ) {
+}
+
+
+// Destructor
+FGTriPoly::~FGTriPoly( void ) {
+}
+
+
+// Given a line segment specified by two endpoints p1 and p2, return
+// the slope of the line.
+static double slope( const Point3D& p0, const Point3D& p1 ) {
+    if ( fabs(p0.x() - p1.x()) > FG_EPSILON ) {
+	return (p0.y() - p1.y()) / (p0.x() - p1.x());
+    } else {
+	return 1.0e+999; // really big number
+    }
+}
+
+
+// Given a line segment specified by two endpoints p1 and p2, return
+// the y value of a point on the line that intersects with the
+// verticle line through x.  Return true if an intersection is found,
+// false otherwise.
+static bool intersects( const Point3D& p0, const Point3D& p1, double x, 
+			 Point3D *result ) {
+    // equation of a line through (x0,y0) and (x1,y1):
+    // 
+    //     y = y1 + (x - x1) * (y0 - y1) / (x0 - x1)
+
+    double y;
+
+    if ( fabs(p0.x() - p1.x()) > FG_EPSILON ) {
+	y = p1.y() + (x - p1.x()) * (p0.y() - p1.y()) / (p0.x() - p1.x());
+    } else {
+	return false;
+    }
+    result->setx(x);
+    result->sety(y);
+
+    if ( p0.y() <= p1.y() ) {
+	if ( (p0.y() <= y) && (y <= p1.y()) ) {
+	    return true;
+	}
+    } else {
+ 	if ( (p0.y() >= y) && (y >= p1.y()) ) {
+	    return true;
+	}
+    }
+
+    return false;
+}
+
+
+// calculate an "arbitrary" point inside this polygon for assigning
+// attribute areas
+void FGTriPoly::calc_point_inside( const FGTriNodes& trinodes ) {
+    Point3D tmp, min, ln, p1, p2, p3, m, result;
+
+    // 1. find point, min, with smallest y
+
+    // min.y() starts greater than the biggest possible lat (degrees)
+    min.sety( 100.0 );
+    // int min_index;
+    int min_node_index = 0;
+
+    int_list_iterator current, last;
+    current = poly.begin();
+    last = poly.end();
+
+    int counter = 0;
+    for ( ; current != last; ++current ) {
+	tmp = trinodes.get_node( *current );
+	if ( tmp.y() < min.y() ) {
+	    min = tmp;
+	    // min_index = *current;
+	    min_node_index = counter;
+
+	    // cout << "min index = " << *current 
+	    //      << " value = " << min_y << endl;
+	} else {
+	    // cout << "  index = " << *current << endl;
+	}
+	++counter;
+    }
+    cout << "min node index = " << min_node_index << endl;
+    cout << "min index = " << poly[min_node_index] 
+	 << " value = " << trinodes.get_node( poly[min_node_index] ) 
+	 << " == " << min << endl;
+
+    // 2. take midpoint, m, of min with neighbor having lowest
+    // fabs(slope)
+
+    if ( min_node_index == 0 ) {
+	p1 = trinodes.get_node( poly[1] );
+	p2 = trinodes.get_node( poly[poly.size() - 1] );
+    } else if ( min_node_index == (int)(poly.size()) - 1 ) {
+	p1 = trinodes.get_node( poly[0] );
+	p2 = trinodes.get_node( poly[poly.size() - 1] );
+    } else {
+	p1 = trinodes.get_node( poly[min_node_index - 1] );
+	p2 = trinodes.get_node( poly[min_node_index + 1] );
+    }
+    double s1 = fabs( slope(min, p1) );
+    double s2 = fabs( slope(min, p2) );
+    if ( s1 < s2  ) {
+	ln = p1;
+    } else {
+	ln = p2;
+    }
+
+    m.setx( (min.x() + ln.x()) / 2.0 );
+    m.sety( (min.y() + ln.y()) / 2.0 );
+    cout << "low mid point = " << m << endl;
+
+    // 3. intersect vertical line through m and all other segments.
+    // save point, p3, with smallest y > m.y
+
+    p3.sety(100);
+    for ( int i = 0; i < (int)(poly.size()) - 1; ++i ) {
+	p1 = trinodes.get_node( poly[i] );
+	p2 = trinodes.get_node( poly[i+1] );
+
+	if ( intersects(p1, p2, m.x(), &result) ) {
+	    // cout << "intersection = " << result << endl;
+	    if ( ( result.y() < p3.y() ) &&
+		 ( fabs(result.y() - m.y()) > FG_EPSILON ) ) {
+		p3 = result;
+	    }
+	}
+    }
+    p1 = trinodes.get_node( poly[0] );
+    p2 = trinodes.get_node( poly[poly.size() - 1] );
+    if ( intersects(p1, p2, m.x(), &result) ) {
+	// cout << "intersection = " << result << endl;
+	if ( ( result.y() < p3.y() ) &&
+	     ( fabs(result.y() - m.y()) > FG_EPSILON ) ) {
+	    p3 = result;
+	}
+    }
+    cout << "low intersection of other segment = " << p3 << endl;
+
+    // 4. take midpoint of p2 && m as an arbitrary point inside polygon
+
+    inside.setx( (m.x() + p3.x()) / 2.0 );
+    inside.sety( (m.y() + p3.y()) / 2.0 );
+    cout << "inside point = " << inside << endl;
+}
+
+
+// $Log$
+// Revision 1.2  1999/03/29 13:11:11  curt
+// Shuffled stl type names a bit.
+// Began adding support for tri-fanning (or maybe other arrangments too.)
+//
+// Revision 1.1  1999/03/20 13:21:36  curt
+// Initial revision.
+//
diff --git a/Tools/Triangulate/tripoly.hxx b/Tools/Triangulate/tripoly.hxx
new file mode 100644
index 000000000..0e156dbae
--- /dev/null
+++ b/Tools/Triangulate/tripoly.hxx
@@ -0,0 +1,106 @@
+// tripoly.hxx -- "Triangle" polygon management class
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _TRIPOLY_HXX
+#define _TRIPOLY_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Include/compiler.h>
+
+#include <vector>
+
+#include <Main/construct_types.hxx>
+
+#include "trinodes.hxx"
+
+FG_USING_STD(vector);
+
+
+class FGTriPoly {
+
+private:
+
+    int_list poly;
+    Point3D inside;
+
+public:
+
+    // Constructor and destructor
+    FGTriPoly( void );
+    ~FGTriPoly( void );
+
+    // Add the specified node (index) to the polygon
+    inline void add_node( int index ) { poly.push_back( index ); }
+
+    // return size
+    inline int size() const { return poly.size(); }
+
+    // return the ith polygon point index
+    inline int get_pt_index( int i ) const { return poly[i]; }
+
+    // calculate an "arbitrary" point inside this polygon for
+    // assigning attribute areas
+    void calc_point_inside( const FGTriNodes& trinodes );
+    inline Point3D get_point_inside() const { return inside; }
+
+    inline void erase() { poly.erase( poly.begin(), poly.end() ); }
+};
+
+
+typedef vector < FGTriPoly > tripoly_list;
+typedef tripoly_list::iterator tripoly_list_iterator;
+typedef tripoly_list::const_iterator const_tripoly_list_iterator;
+
+
+#endif // _TRIPOLY_HXX
+
+
+// $Log$
+// Revision 1.5  1999/03/29 13:11:12  curt
+// Shuffled stl type names a bit.
+// Began adding support for tri-fanning (or maybe other arrangments too.)
+//
+// Revision 1.4  1999/03/23 22:02:56  curt
+// Refinements in naming and organization.
+//
+// Revision 1.3  1999/03/21 14:02:07  curt
+// Added a mechanism to dump out the triangle structures for viewing.
+// Fixed a couple bugs in first pass at triangulation.
+// - needed to explicitely initialize the polygon accumulator in triangle.cxx
+//   before each polygon rather than depending on the default behavior.
+// - Fixed a problem with region attribute propagation where I wasn't generating
+//   the hole points correctly.
+//
+// Revision 1.2  1999/03/20 20:32:58  curt
+// First mostly successful tile triangulation works.  There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
+// Revision 1.1  1999/03/20 13:21:36  curt
+// Initial revision.
+//
diff --git a/Tools/Triangulate/trisegs.cxx b/Tools/Triangulate/trisegs.cxx
new file mode 100644
index 000000000..d05c6ccf1
--- /dev/null
+++ b/Tools/Triangulate/trisegs.cxx
@@ -0,0 +1,211 @@
+// trisegs.cxx -- "Triangle" segment management class
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#include <Include/fg_constants.h>
+#include <Math/point3d.hxx>
+
+#include "trinodes.hxx"
+#include "trisegs.hxx"
+
+
+// Constructor 
+FGTriSegments::FGTriSegments( void ) {
+}
+
+
+// Destructor
+FGTriSegments::~FGTriSegments( void ) {
+}
+
+
+// Add a segment to the segment list if it doesn't already exist.
+// Returns the index (starting at zero) of the segment in the list.
+int FGTriSegments::unique_add( const FGTriSeg& s )
+{
+    triseg_list_iterator current, last;
+    int counter = 0;
+
+    // cout << s.get_n1() << "," << s.get_n2() << endl;
+
+    // check if segment already exists
+    current = seg_list.begin();
+    last = seg_list.end();
+    for ( ; current != last; ++current ) {
+	if ( s == *current ) {
+	    // cout << "found an existing segment match" << endl;
+	    return counter;
+	}
+	
+	++counter;
+    }
+
+    // add to list
+    seg_list.push_back( s );
+
+    return counter;
+}
+
+
+// Divide segment if there are other points on it, return the divided
+// list of segments
+void FGTriSegments::unique_divide_and_add( const point_list& nodes, 
+					   const FGTriSeg& s )
+{
+    Point3D p0 = nodes[ s.get_n1() ];
+    Point3D p1 = nodes[ s.get_n2() ];
+
+    bool found_extra = false;
+    int extra_index = 0;
+    int counter;
+    double m, b, y_err, x_err;
+    const_point_list_iterator current, last;
+
+    // bool temp = false;
+    // if ( s == FGTriSeg( 170, 206 ) ) {
+    //   cout << "this is it!" << endl;
+    //   temp = true;
+    // }
+
+    if ( fabs(p0.x() - p1.x()) > 3 * FG_EPSILON ) {
+	// use y = mx + b
+
+	// sort these in a sensable order
+	if ( p0.x() > p1.x() ) {
+	    Point3D tmp = p0;
+	    p0 = p1;
+	    p1 = tmp;
+	}
+
+	m = (p0.y() - p1.y()) / (p0.x() - p1.x());
+	b = p1.y() - m * p1.x();
+
+	// if ( temp ) {
+	//   cout << "m = " << m << " b = " << b << endl;
+	// }
+
+	current = nodes.begin();
+	last = nodes.end();
+	counter = 0;
+	for ( ; current != last; ++current ) {
+	    if ( (current->x() > (p0.x() + FG_EPSILON)) 
+		 && (current->x() < (p1.x() - FG_EPSILON)) ) {
+
+		// if ( temp ) {
+		//   cout << counter << endl;
+		// }
+
+		y_err = fabs(current->y() - (m * current->x() + b));
+
+		if ( y_err < 10 * FG_EPSILON ) {
+		    cout << "FOUND EXTRA SEGMENT NODE (Y)" << endl;
+		    cout << p0 << " < " << *current << " < "
+			 << p1 << endl;
+		    found_extra = true;
+		    extra_index = counter;
+		    break;
+		}
+	    }
+	    ++counter;
+	}
+    } else {
+	// use x = constant
+
+	// cout << "FOUND VERTICLE SEGMENT" << endl;
+
+	// sort these in a sensable order
+	if ( p0.y() > p1.y() ) {
+	    Point3D tmp = p0;
+	    p0 = p1;
+	    p1 = tmp;
+	}
+
+	// cout << " p0 = " << p0 << " p1 = " << p1 << endl;
+
+	current = nodes.begin();
+	last = nodes.end();
+	counter = 0;
+	for ( ; current != last; ++current ) {
+	    // cout << counter << endl;
+	    if ( (current->y() > (p0.y() + FG_EPSILON))
+		 && (current->y() < (p1.y() - FG_EPSILON)) ) {
+		x_err = fabs(current->x() - p0.x());
+		// cout << "  found a potential point, x err = " 
+		//      << x_err << endl;
+		if ( x_err < 10*FG_EPSILON ) {
+		    cout << "FOUND EXTRA SEGMENT NODE (X)" << endl;
+		    cout << p0 << " < " << *current << " < "
+			 << p1 << endl;
+		    found_extra = true;
+		    extra_index = counter;
+		    break;
+		}
+	    }
+	    ++counter;
+	}
+    }
+
+    if ( found_extra ) {
+	// recurse with two sub segments
+	cout << "dividing " << s.get_n1() << " " << extra_index 
+	     << " " << s.get_n2() << endl;
+	unique_divide_and_add( nodes, FGTriSeg( s.get_n1(), extra_index ) );
+	unique_divide_and_add( nodes, FGTriSeg( extra_index, s.get_n2() ) );
+    } else {
+	// this segment does not need to be divided, lets add it
+	unique_add( s );
+    }
+}
+
+
+// $Log$
+// Revision 1.6  1999/04/03 05:22:59  curt
+// Found a bug in dividing and adding unique verticle segments which could
+// cause the triangulator to end up in an infinite loop.  Basically the code
+// was correct, but the verticle line test was a bit to selective.
+//
+// Revision 1.5  1999/03/29 13:11:13  curt
+// Shuffled stl type names a bit.
+// Began adding support for tri-fanning (or maybe other arrangments too.)
+//
+// Revision 1.4  1999/03/27 05:30:17  curt
+// Handle corner nodes separately from the rest of the fitted nodes.
+// Add fitted nodes in after corners and polygon nodes since the fitted nodes
+//   are less important.  Subsequent nodes will "snap" to previous nodes if
+//   they are "close enough."
+// Need to manually divide segments to prevent "T" intersetions which can
+//   confound the triangulator.  Hey, I got to use a recursive method!
+// Pass along correct triangle attributes to output file generator.
+// Do fine grained node snapping for corners and polygons, but course grain
+//   node snapping for fitted terrain nodes.
+//
+// Revision 1.3  1999/03/23 22:02:57  curt
+// Refinements in naming and organization.
+//
+// Revision 1.2  1999/03/20 20:32:59  curt
+// First mostly successful tile triangulation works.  There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
+// Revision 1.1  1999/03/20 13:21:36  curt
+// Initial revision.
+//
diff --git a/Tools/Triangulate/trisegs.hxx b/Tools/Triangulate/trisegs.hxx
new file mode 100644
index 000000000..2766bcf15
--- /dev/null
+++ b/Tools/Triangulate/trisegs.hxx
@@ -0,0 +1,142 @@
+// trisegs.hxx -- "Triangle" segment management class
+//
+// Written by Curtis Olson, started March 1999.
+//
+// Copyright (C) 1999  Curtis L. Olson  - curt@flightgear.org
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+//
+// $Id$
+// (Log is kept at end of this file)
+
+
+#ifndef _TRISEGS_HXX
+#define _TRISEGS_HXX
+
+
+#ifndef __cplusplus                                                          
+# error This library requires C++
+#endif                                   
+
+
+#include <Include/compiler.h>
+
+#include <vector>
+
+#include "trinodes.hxx"
+
+FG_USING_STD(vector);
+
+
+// a segment is two integer pointers into the node list
+class FGTriSeg {
+    int n1, n2;
+
+public:
+
+    // Constructor and destructor
+    inline FGTriSeg( void ) { };
+    inline FGTriSeg( int i1, int i2 ) { 
+	n1 = i1;
+	n2 = i2;
+    }
+
+    inline ~FGTriSeg( void ) { };
+
+    inline int get_n1() const { return n1; }
+    inline void set_n1( int i ) { n1 = i; }
+    inline int get_n2() const { return n2; }
+    inline void set_n2( int i ) { n2 = i; }
+
+    friend bool operator == (const FGTriSeg& a, const FGTriSeg& b);
+
+};
+
+inline bool operator == (const FGTriSeg& a, const FGTriSeg& b)
+{
+    return ((a.n1 == b.n1) && (a.n2 == b.n2)) 
+	|| ((a.n1 == b.n2) && (a.n2 == b.n1));
+}
+
+
+typedef vector < FGTriSeg > triseg_list;
+typedef triseg_list::iterator triseg_list_iterator;
+typedef triseg_list::const_iterator const_triseg_list_iterator;
+
+
+class FGTriSegments {
+
+private:
+
+    triseg_list seg_list;
+
+    // Divide segment if there are other points on it, return the
+    // divided list of segments
+    triseg_list divide_segment( const point_list& nodes, 
+				const FGTriSeg& s );
+
+public:
+
+    // Constructor and destructor
+    FGTriSegments( void );
+    ~FGTriSegments( void );
+
+    // delete all the data out of seg_list
+    inline void clear() { seg_list.clear(); }
+
+    // Add a segment to the segment list if it doesn't already exist.
+    // Returns the index (starting at zero) of the segment in the
+    // list.
+    int unique_add( const FGTriSeg& s );
+
+    // Add a segment to the segment list if it doesn't already exist.
+    // Returns the index (starting at zero) of the segment in the list.
+    void unique_divide_and_add( const point_list& node_list, 
+				const FGTriSeg& s );
+
+    // return the master node list
+    inline triseg_list get_seg_list() const { return seg_list; }
+
+    // return the ith segment
+    inline FGTriSeg get_seg( int i ) const { return seg_list[i]; }
+};
+
+
+#endif // _TRISEGS_HXX
+
+
+// $Log$
+// Revision 1.4  1999/04/05 02:17:14  curt
+// Dynamically update "error" until the resulting tile data scales within
+// a lower and upper bounds.
+//
+// Revision 1.3  1999/03/27 05:30:18  curt
+// Handle corner nodes separately from the rest of the fitted nodes.
+// Add fitted nodes in after corners and polygon nodes since the fitted nodes
+//   are less important.  Subsequent nodes will "snap" to previous nodes if
+//   they are "close enough."
+// Need to manually divide segments to prevent "T" intersetions which can
+//   confound the triangulator.  Hey, I got to use a recursive method!
+// Pass along correct triangle attributes to output file generator.
+// Do fine grained node snapping for corners and polygons, but course grain
+//   node snapping for fitted terrain nodes.
+//
+// Revision 1.2  1999/03/20 20:33:00  curt
+// First mostly successful tile triangulation works.  There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
+// Revision 1.1  1999/03/20 13:21:36  curt
+// Initial revision.
+//
diff --git a/Tools/Utils/Makefile.am b/Tools/Utils/Makefile.am
new file mode 100644
index 000000000..5c3f005b0
--- /dev/null
+++ b/Tools/Utils/Makefile.am
@@ -0,0 +1,2 @@
+SUBDIRS = \
+	Makedir