1
0
Fork 0

First mostly successful tile triangulation works. There's plenty of tweaking

to do, but we are marching in the right direction.
This commit is contained in:
curt 1999-03-20 20:32:51 +00:00
parent e07ae2989e
commit b4a9bde0e9
9 changed files with 341 additions and 107 deletions

View file

@ -60,14 +60,14 @@ FG_USING_STD(string);
FGArray::FGArray( void ) {
// cout << "class FGArray CONstructor called." << endl;
in_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
// out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
}
FGArray::FGArray( const string &file ) {
// cout << "class FGArray CONstructor called." << endl;
in_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
// out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
FGArray::open(file);
}
@ -130,6 +130,16 @@ FGArray::parse() {
}
// add a node to the output (fitted) node list
void FGArray::add_fit_node( int i, int j, double val ) {
double x = (originx + i * col_step) / 3600.0;
double y = (originy + j * row_step) / 3600.0;
cout << Point3D(x, y, val) << endl;
node_list.push_back( Point3D(x, y, val) );
}
#if 0
// Initialize output mesh structure
void FGArray::outputmesh_init( void ) {
int i, j;
@ -153,6 +163,7 @@ void FGArray::outputmesh_set_pt( int i, int j, double value ) {
// cout << "Setting data[" << i << "][" << j << "] = " << value << endl;
out_data[i][j] = value;
}
#endif
// Use least squares to fit a simpler data set to dem data
@ -170,7 +181,7 @@ void FGArray::fit( double error ) {
error_sq = error * error;
cout << " Initializing output mesh structure" << endl;
outputmesh_init();
// outputmesh_init();
// determine dimensions
colmin = 0;
@ -181,10 +192,10 @@ void FGArray::fit( double error ) {
<< colmax << "," << rowmax << endl;;
// include the corners explicitly
outputmesh_set_pt(colmin, rowmin, in_data[colmin][rowmin]);
outputmesh_set_pt(colmin, rowmax, in_data[colmin][rowmax]);
outputmesh_set_pt(colmax, rowmax, in_data[colmax][rowmax]);
outputmesh_set_pt(colmax, rowmin, in_data[colmax][rowmin]);
add_fit_node( colmin, rowmin, in_data[colmin][rowmin] );
add_fit_node( colmin, rowmax-1, in_data[colmin][rowmax] );
add_fit_node( colmax-1, rowmin, in_data[colmax][rowmin] );
add_fit_node( colmax-1, rowmax-1, in_data[colmax][rowmax] );
cout << " Beginning best fit procedure" << endl;
lasty = 0;
@ -276,7 +287,7 @@ void FGArray::fit( double error ) {
if ( start > colmin ) {
// skip this for the first line segment
cury = m * x[0] + b;
outputmesh_set_pt(start, row, (lasty + cury) / 2);
add_fit_node( start, row, (lasty + cury) / 2 );
// fprintf(fit, "%.2f %.2f\n", x[0], (lasty + cury) / 2);
}
@ -544,11 +555,15 @@ void FGArray::outputmesh_output_nodes( const string& fg_root, FGBucket& p )
FGArray::~FGArray( void ) {
// printf("class FGArray DEstructor called.\n");
delete [] in_data;
delete [] out_data;
// delete [] out_data;
}
// $Log$
// Revision 1.4 1999/03/20 20:32:51 curt
// First mostly successful tile triangulation works. There's plenty of tweaking
// to do, but we are marching in the right direction.
//
// Revision 1.3 1999/03/17 23:48:17 curt
// Removed forced -g compile flag.
// Fixed a couple compiler warnings.

View file

@ -31,14 +31,26 @@
#endif
#include <Include/compiler.h>
#include <vector>
#include <Bucket/newbucket.hxx>
#include <Math/point3d.hxx>
#include <Misc/fgstream.hxx>
FG_USING_STD(vector);
#define ARRAY_SIZE 1200
#define ARRAY_SIZE_1 1201
typedef vector < Point3D > fitnode_list;
typedef fitnode_list::iterator fitnode_list_iterator;
typedef fitnode_list::const_iterator const_fitnode_list_iterator;
class FGArray {
private:
@ -58,37 +70,23 @@ private:
// pointers to the actual grid data allocated here
float (*in_data)[ARRAY_SIZE_1];
float (*out_data)[ARRAY_SIZE_1];
// float (*out_data)[ARRAY_SIZE_1];
// Current "A" Record Information
// char dem_description[80], dem_quadrangle[80];
// double dem_x1, dem_y1, dem_x2, dem_y2, dem_x3, dem_y3, dem_x4, dem_y4;
// double dem_z1, dem_z2;
// int dem_resolution, dem_num_profiles;
// Current "B" Record Information
// int prof_col, prof_row;
// int prof_num_cols, prof_num_rows;
// double prof_x1, prof_y1;
// int prof_data;
// temporary values for the class to use
// char option_name[32];
// int do_data;
// int cur_col, cur_row;
// output nodes
fitnode_list node_list;
// Initialize output mesh structure
void outputmesh_init( void );
// void outputmesh_init( void );
// Get the value of a mesh node
double outputmesh_get_pt( int i, int j );
// double outputmesh_get_pt( int i, int j );
// Set the value of a mesh node
void outputmesh_set_pt( int i, int j, double value );
// void outputmesh_set_pt( int i, int j, double value );
#if 0
// Write out a node file that can be used by the "triangle" program
void outputmesh_output_nodes( const string& fg_root, FGBucket& p );
// void outputmesh_output_nodes( const string& fg_root, FGBucket& p );
#endif
public:
@ -112,6 +110,9 @@ public:
// Use least squares to fit a simpler data set to dem data
void fit( double error );
// add a node to the output (fitted) node list
void add_fit_node( int i, int j, double val );
// return the current altitude based on grid data. We should
// rewrite this to interpolate exact values, but for now this is
// good enough
@ -124,6 +125,8 @@ public:
inline int get_rows() const { return rows; }
inline double get_col_step() const { return col_step; }
inline double get_row_step() const { return row_step; }
inline fitnode_list get_fit_node_list() const { return node_list; }
};
@ -131,6 +134,10 @@ public:
// $Log$
// Revision 1.3 1999/03/20 20:32:52 curt
// First mostly successful tile triangulation works. There's plenty of tweaking
// to do, but we are marching in the right direction.
//
// Revision 1.2 1999/03/13 23:50:27 curt
// Tweaked output formatting a bit.
//

View file

@ -7,6 +7,7 @@ construct_LDADD = \
$(top_builddir)/Tools/Construct/Clipper/libClipper.a \
$(top_builddir)/Tools/Construct/Triangulate/libTriangulate.a \
$(top_builddir)/Tools/Lib/Polygon/libPolygon.a \
$(top_builddir)/Tools/Lib/Triangle/libTriangle.a \
$(top_builddir)/Lib/Bucket/libBucket.a \
$(top_builddir)/Lib/Math/libMath.a \
$(top_builddir)/Lib/Misc/libMisc.a \

View file

@ -32,8 +32,10 @@
#include <Triangulate/triangle.hxx>
// load regular grid of elevation data (dem based)
// load regular grid of elevation data (dem based), return list of
// fitted nodes
int load_dem(const string& work_base, FGBucket& b, FGArray& array) {
fitnode_list result;
char tile_name[256];
string base = b.gen_base_path();
long int b_index = b.gen_index();
@ -44,8 +46,10 @@ int load_dem(const string& work_base, FGBucket& b, FGArray& array) {
cout << "dem_path = " << dem_path << endl;
if ( ! array.open(dem_path) ) {
cout << "ERROR: cannot open " << dem_path << endl;
return 0;
}
array.parse();
array.fit( 100 );
@ -133,21 +137,26 @@ int load_polys( const string& work_base, FGBucket& b, FGClipper& clipper) {
// triangulate the data for each polygon
void triangulate( const FGArray& array, const FGClipper& clipper,
void do_triangulate( const FGArray& array, const FGClipper& clipper,
FGTriangle& t ) {
// first we need to consolidate the points of all the polygons
// into a more "Triangle" friendly format
FGgpcPolyList gpc_polys;
// first we need to consolidate the points of the DEM fit list and
// all the polygons into a more "Triangle" friendly format
gpc_polys = clipper.get_polys_clipped();
fitnode_list fit_list = array.get_fit_node_list();
FGgpcPolyList gpc_polys = clipper.get_polys_clipped();
cout << "ready to build node list and polygons" << endl;
t.build( gpc_polys );
t.build( fit_list, gpc_polys );
cout << "done building node list and polygons" << endl;
cout << "ready to do triangulation" << endl;
t.run_triangulate();
cout << "finished triangulation" << endl;
}
main(int argc, char **argv) {
fitnode_list fit_list;
double lon, lat;
if ( argc != 2 ) {
@ -173,11 +182,15 @@ main(int argc, char **argv) {
// triangulate the data for each polygon
FGTriangle t;
triangulate( array, clipper, t );
do_triangulate( array, clipper, t );
}
// $Log$
// Revision 1.4 1999/03/20 20:32:54 curt
// First mostly successful tile triangulation works. There's plenty of tweaking
// to do, but we are marching in the right direction.
//
// Revision 1.3 1999/03/19 00:26:52 curt
// Minor tweaks ...
//

View file

@ -25,7 +25,6 @@
#include "triangle.hxx"
#include "tripoly.hxx"
// Constructor
FGTriangle::FGTriangle( void ) {
}
@ -37,11 +36,23 @@ FGTriangle::~FGTriangle( void ) {
// populate this class based on the specified gpc_polys list
int FGTriangle::build( const FGgpcPolyList& gpc_polys ) {
int
FGTriangle::build( const fitnode_list& fit_list,
const FGgpcPolyList& gpc_polys )
{
int index;
// traverse the gpc_polys and build a unified node list and a set
// of Triangle PSLG that reference the node list by index
// (starting at zero)
// traverse the dem fit list and gpc_polys building a unified node
// list and converting the polygons so that they reference the
// node list by index (starting at zero) rather than listing the
// points explicitely
const_fitnode_list_iterator f_current, f_last;
f_current = fit_list.begin();
f_last = fit_list.end();
for ( ; f_current != f_last; ++f_current ) {
index = trinodes.unique_add( *f_current );
}
gpc_polygon *gpc_poly;
const_gpcpoly_iterator current, last;
@ -67,7 +78,7 @@ int FGTriangle::build( const FGgpcPolyList& gpc_polys ) {
if (gpc_poly->num_contours > 1 ) {
cout << "FATAL ERROR! no multi-contour support" << endl;
sleep(5);
sleep(2);
// exit(-1);
}
@ -93,30 +104,31 @@ int FGTriangle::build( const FGgpcPolyList& gpc_polys ) {
<< polylist[i].size() << endl;
}
}
return 0;
}
// traverse the polygon lists and build the segment (edge) list
// that is used by the "Triangle" lib.
// do actual triangulation
int FGTriangle::do_triangulate( const FGTriPoly& poly ) {
trinode_list node_list;
struct triangulateio in, out;
int counter;
FGTriPoly poly;
int i1, i2;
for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
cout << "area type = " << i << endl;
tripoly_list_iterator tp_current, tp_last;
tp_current = polylist[i].begin();
tp_last = polylist[i].end();
// define input points
node_list = trinodes.get_node_list();
// process each polygon in list
for ( ; tp_current != tp_last; ++tp_current ) {
poly = *tp_current;
in.numberofpoints = node_list.size();
in.numberofpointattributes = 0;
in.pointlist = (REAL *) malloc(in.numberofpoints * 2 * sizeof(REAL));
trinode_list_iterator current, last;
current = node_list.begin();
last = node_list.end();
counter = 0;
for ( ; current != last; ++current ) {
in.pointlist[counter++] = current->x();
in.pointlist[counter++] = current->y();
for ( int j = 0; j < (int)(poly.size()) - 1; ++j ) {
i1 = poly.get_pt_index( j );
i2 = poly.get_pt_index( j + 1 );
trisegs.unique_add( FGTriSeg(i1, i2) );
}
i1 = poly.get_pt_index( 0 );
i2 = poly.get_pt_index( poly.size() - 1 );
trisegs.unique_add( FGTriSeg(i1, i2) );
}
}
return 0;
@ -124,72 +136,175 @@ int FGTriangle::do_triangulate( const FGTriPoly& poly ) {
// triangulate each of the polygon areas
int FGTriangle::triangulate() {
int FGTriangle::run_triangulate() {
FGTriPoly poly;
struct triangulateio in, out;
trinode_list node_list = trinodes.get_node_list();
Point3D p;
struct triangulateio in, out, vorout;
int counter;
// point list
trinode_list node_list = trinodes.get_node_list();
in.numberofpoints = node_list.size();
in.numberofpointattributes = 1;
in.pointlist = (REAL *) malloc(in.numberofpoints * 2 * sizeof(REAL));
trinode_list_iterator tn_current, tn_last;
tn_current = node_list.begin();
tn_last = node_list.end();
int counter = 0;
counter = 0;
for ( ; tn_current != tn_last; ++tn_current ) {
in.pointlist[counter++] = tn_current->x();
in.pointlist[counter++] = tn_current->y();
}
in.pointattributelist = (REAL *) NULL;
in.pointmarkerlist = (int *) NULL;
in.numberofpointattributes = 1;
in.pointattributelist = (REAL *) malloc(in.numberofpoints *
in.numberofpointattributes *
sizeof(REAL));
for ( int i = 0; i < in.numberofpoints * in.numberofpointattributes; i++) {
in.pointattributelist[i] = 0.0;
}
in.pointmarkerlist = (int *) malloc(in.numberofpoints * sizeof(int));
for ( int i = 0; i < in.numberofpoints; i++) {
in.pointmarkerlist[i] = 0;
}
// segment list
in.numberofsegments = 0;
triseg_list seg_list = trisegs.get_seg_list();
in.numberofsegments = seg_list.size();
in.segmentlist = (int *) malloc(in.numberofsegments * 2 * sizeof(int));
tripoly_list_iterator tp_current, tp_last;
triseg_list_iterator s_current, s_last;
s_current = seg_list.begin();
s_last = seg_list.end();
counter = 0;
for ( ; s_current != s_last; ++s_current ) {
in.segmentlist[counter++] = s_current->get_n1();
in.segmentlist[counter++] = s_current->get_n2();
}
// hole list (make holes for airport ignore areas)
in.numberofholes = polylist[(int)AirportIgnoreArea].size();
in.holelist = (REAL *) malloc(in.numberofholes * 2 * sizeof(REAL));
tripoly_list_iterator h_current, h_last;
h_current = polylist[(int)AirportIgnoreArea].begin();
h_last = polylist[(int)AirportIgnoreArea].end();
counter = 0;
for ( ; h_current != h_last; ++h_current ) {
poly = *h_current;
p = poly.get_point_inside();
in.holelist[counter++] = p.x();
in.holelist[counter++] = p.y();
}
// region list
in.numberofregions = 0;
for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
cout << "area type = " << i << endl;
tp_current = polylist[i].begin();
tp_last = polylist[i].end();
for ( ; tp_current != tp_last; ++tp_current ) {
poly = *tp_current;
in.numberofsegments += poly.size() + 1;
in.numberofregions += polylist[i].size();
}
in.regionlist = (REAL *) malloc(in.numberofregions * 4 * sizeof(REAL));
for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
tripoly_list_iterator h_current, h_last;
h_current = polylist[(int)AirportIgnoreArea].begin();
h_last = polylist[(int)AirportIgnoreArea].end();
counter = 0;
for ( ; h_current != h_last; ++h_current ) {
poly = *h_current;
p = poly.get_point_inside();
in.regionlist[counter++] = p.x(); // x coord
in.regionlist[counter++] = p.y(); // y coord
in.regionlist[counter++] = i; // region attribute
in.regionlist[counter++] = -1.0; // area constraint (unused)
}
}
in.numberofsegments = 0;
// prep the output structures
out.pointlist = (REAL *) NULL; // Not needed if -N switch used.
// Not needed if -N switch used or number of point attributes is zero:
out.pointattributelist = (REAL *) NULL;
out.pointmarkerlist = (int *) NULL; // Not needed if -N or -B switch used.
out.trianglelist = (int *) NULL; // Not needed if -E switch used.
// Not needed if -E switch used or number of triangle attributes is zero:
out.triangleattributelist = (REAL *) NULL;
out.neighborlist = (int *) NULL; // Needed only if -n switch used.
// Needed only if segments are output (-p or -c) and -P not used:
out.segmentlist = (int *) NULL;
// Needed only if segments are output (-p or -c) and -P and -B not used:
out.segmentmarkerlist = (int *) NULL;
out.edgelist = (int *) NULL; // Needed only if -e switch used.
out.edgemarkerlist = (int *) NULL; // Needed if -e used and -B not used.
vorout.pointlist = (REAL *) NULL; // Needed only if -v switch used.
// Needed only if -v switch used and number of attributes is not zero:
vorout.pointattributelist = (REAL *) NULL;
vorout.edgelist = (int *) NULL; // Needed only if -v switch used.
vorout.normlist = (REAL *) NULL; // Needed only if -v switch used.
// Triangulate the points. Switches are chosen to read and write
// a PSLG (p), preserve the convex hull (c), number everything
// from zero (z), assign a regional attribute to each element (A),
// and produce an edge list (e), and a triangle neighbor list (n).
in.numberofholes = 0;
in.numberofregions = 1;
in.regionlist = (REAL *) malloc(in.numberofregions * 4 * sizeof(REAL));
in.regionlist[0] = 0.5;
in.regionlist[1] = 5.0;
in.regionlist[2] = 7.0; /* Regional attribute (for whole mesh). */
in.regionlist[3] = 0.1; /* Area constraint that will not be used. */
triangulate("pczAen", &in, &out, &vorout);
/*
tripoly_list_iterator current, last;
for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
cout << "area type = " << i << endl;
current = polylist[i].begin();
last = polylist[i].end();
for ( ; current != last; ++current ) {
poly = *current;
cout << "triangulating a polygon, size = " << poly.size() << endl;
// TEMPORARY
//
do_triangulate( poly );
}
// Write out the triangulated data to files so we can check
// visually that things seem reasonable
FILE *node = fopen("tile.node", "w");
fprintf(node, "%d 2 %d 0\n",
out.numberofpoints, out.numberofpointattributes);
for (int i = 0; i < out.numberofpoints; i++) {
fprintf(node, "%d %.6f %.6f %.2f\n",
i, out.pointlist[2*i], out.pointlist[2*i + 1], 0.0);
}
*/
fclose(node);
FILE *ele = fopen("tile.ele", "w");
fprintf(ele, "%d 3 0\n", out.numberoftriangles);
for (int i = 0; i < out.numberoftriangles; i++) {
fprintf(ele, "%d ", i);
for (int j = 0; j < out.numberofcorners; j++) {
fprintf(ele, "%d ", out.trianglelist[i * out.numberofcorners + j]);
}
fprintf(ele, "\n");
}
fclose(ele);
// free mem allocated to the "Triangle" structures
free(in.pointlist);
free(in.pointattributelist);
free(in.pointmarkerlist);
free(in.regionlist);
free(out.pointlist);
free(out.pointattributelist);
free(out.pointmarkerlist);
free(out.trianglelist);
free(out.triangleattributelist);
// free(out.trianglearealist);
free(out.neighborlist);
free(out.segmentlist);
free(out.segmentmarkerlist);
free(out.edgelist);
free(out.edgemarkerlist);
free(vorout.pointlist);
free(vorout.pointattributelist);
free(vorout.edgelist);
free(vorout.normlist);
return 0;
}
// $Log$
// Revision 1.7 1999/03/20 20:32:55 curt
// First mostly successful tile triangulation works. There's plenty of tweaking
// to do, but we are marching in the right direction.
//
// Revision 1.6 1999/03/20 13:22:11 curt
// Added trisegs.[ch]xx tripoly.[ch]xx.
//

View file

@ -35,6 +35,7 @@
#include <vector>
#include <Array/array.hxx>
#include <Clipper/clipper.hxx>
#include <Math/point3d.hxx>
#include <Polygon/names.hxx>
@ -46,6 +47,7 @@ extern "C" {
#include "trinodes.hxx"
#include "tripoly.hxx"
#include "trisegs.hxx"
FG_USING_STD(vector);
@ -59,9 +61,15 @@ class FGTriangle {
private:
// list of nodes
FGTriNodes trinodes;
tripoly_list polylist[FG_MAX_AREA_TYPES];
// list of segments
FGTriSegments trisegs;
// polygon list
tripoly_list polylist[FG_MAX_AREA_TYPES];
public:
// Constructor and destructor
@ -72,13 +80,10 @@ public:
int add_nodes();
// populate this class based on the specified gpc_polys list
int build( const FGgpcPolyList& gpc_polys );
// do actual triangulation
int do_triangulate( const FGTriPoly& poly );
int build( const fitnode_list& fit_list, const FGgpcPolyList& gpc_polys );
// front end triangulator for polygon list
int triangulate();
int run_triangulate();
};
@ -86,6 +91,10 @@ public:
// $Log$
// Revision 1.6 1999/03/20 20:32:56 curt
// First mostly successful tile triangulation works. There's plenty of tweaking
// to do, but we are marching in the right direction.
//
// Revision 1.5 1999/03/20 02:21:53 curt
// Continue shaping the code towards triangulation bliss. Added code to
// calculate some point guaranteed to be inside a polygon.

View file

@ -64,9 +64,13 @@ public:
// return size
inline int size() const { return poly.size(); }
// return the ith polygon point index
inline int get_pt_index( int i ) const { return poly[i]; }
// calculate an "arbitrary" point inside this polygon for
// assigning attribute areas
void calc_point_inside( const FGTriNodes& trinodes );
inline Point3D get_point_inside() const { return inside; }
};
@ -74,6 +78,10 @@ public:
// $Log$
// Revision 1.2 1999/03/20 20:32:58 curt
// First mostly successful tile triangulation works. There's plenty of tweaking
// to do, but we are marching in the right direction.
//
// Revision 1.1 1999/03/20 13:21:36 curt
// Initial revision.
//

View file

@ -25,7 +25,48 @@
#include "trisegs.hxx"
// Constructor
FGTriSegments::FGTriSegments( void ) {
}
// Destructor
FGTriSegments::~FGTriSegments( void ) {
}
// Add a point to the point list if it doesn't already exist.
// Returns the index (starting at zero) of the point in the list.
int FGTriSegments::unique_add( const FGTriSeg& s ) {
triseg_list_iterator current, last;
int counter = 0;
cout << s.get_n1() << "," << s.get_n2() << endl;
// see if point already exists
current = seg_list.begin();
last = seg_list.end();
for ( ; current != last; ++current ) {
if ( s == *current ) {
cout << "found an existing segment match" << endl;
return counter;
}
++counter;
}
// add to list
seg_list.push_back( s );
return counter;
}
// $Log$
// Revision 1.2 1999/03/20 20:32:59 curt
// First mostly successful tile triangulation works. There's plenty of tweaking
// to do, but we are marching in the right direction.
//
// Revision 1.1 1999/03/20 13:21:36 curt
// Initial revision.
//

View file

@ -40,10 +40,31 @@ FG_USING_STD(vector);
// a segment is two integer pointers into the node list
class FGTriSeg {
public:
int n1, n2;
public:
// Constructor and destructor
inline FGTriSeg( void ) { };
inline FGTriSeg( int i1, int i2 ) { n1 = i1; n2 = i2; }
inline ~FGTriSeg( void ) { };
inline int get_n1() const { return n1; }
inline void set_n1( int i ) { n1 = i; }
inline int get_n2() const { return n2; }
inline void set_n2( int i ) { n2 = i; }
friend bool operator == (const FGTriSeg& a, const FGTriSeg& b);
};
inline bool operator == (const FGTriSeg& a, const FGTriSeg& b)
{
return ((a.n1 == b.n1) && (a.n2 == b.n2))
|| ((a.n1 == b.n2) && (a.n2 == b.n1));
}
typedef vector < FGTriSeg > triseg_list;
typedef triseg_list::iterator triseg_list_iterator;
@ -78,6 +99,10 @@ public:
// $Log$
// Revision 1.2 1999/03/20 20:33:00 curt
// First mostly successful tile triangulation works. There's plenty of tweaking
// to do, but we are marching in the right direction.
//
// Revision 1.1 1999/03/20 13:21:36 curt
// Initial revision.
//