Some view tweaks.
This commit is contained in:
parent
0e5ecc165c
commit
b274e7ce4a
3 changed files with 111 additions and 382 deletions
|
@ -551,8 +551,11 @@ void fgReInitSubsystems( void )
|
|||
cur_fdm_state.set_CG_Position( 0.0, 0.0, 0.0 );
|
||||
|
||||
// Initialize view parameters
|
||||
FG_LOG( FG_GENERAL, FG_DEBUG, "Before v->init()");
|
||||
v->Init();
|
||||
// FG_LOG( FG_GENERAL, FG_DEBUG, "Before v->init()");
|
||||
// v->Init();
|
||||
v->set_view_offset( 0.0 );
|
||||
v->set_goal_view_offset( 0.0 );
|
||||
|
||||
FG_LOG( FG_GENERAL, FG_DEBUG, "After v->init()");
|
||||
v->UpdateViewMath(cur_fdm_state);
|
||||
FG_LOG( FG_GENERAL, FG_DEBUG, " abs_view_pos = " << v->get_abs_view_pos());
|
||||
|
|
|
@ -362,7 +362,8 @@ static void fgRenderFrame( void ) {
|
|||
|
||||
// xglMatrixMode( GL_PROJECTION );
|
||||
// xglLoadIdentity();
|
||||
ssgSetFOV( current_options.get_fov(), 0.0f );
|
||||
float fov = current_options.get_fov();
|
||||
ssgSetFOV(fov * current_view.get_win_ratio(), fov);
|
||||
|
||||
double agl = current_aircraft.fdm_state->get_Altitude() * FEET_TO_METER
|
||||
- scenery.cur_elev;
|
||||
|
@ -937,6 +938,11 @@ void fgReshape( int width, int height ) {
|
|||
current_view.set_winHeight( height );
|
||||
current_view.force_update_fov_math();
|
||||
|
||||
// set these fov to be the same as in fgRenderFrame()
|
||||
float x_fov = current_options.get_fov();
|
||||
float y_fov = x_fov * 1.0 / current_view.get_win_ratio();
|
||||
ssgSetFOV( x_fov, y_fov );
|
||||
|
||||
glViewport ( 0, 0, width, height );
|
||||
|
||||
if ( idle_state == 1000 ) {
|
||||
|
|
|
@ -43,25 +43,10 @@
|
|||
#include "views.hxx"
|
||||
|
||||
|
||||
// Define following to extract various vectors directly
|
||||
// from matrices we have allready computed
|
||||
// rather then performing 'textbook algebra' to rederive them
|
||||
// Norman Vine -- nhv@yahoo.com
|
||||
// #define FG_VIEW_INLINE_OPTIMIZATIONS
|
||||
|
||||
// temporary (hopefully) hack
|
||||
static int panel_hist = 0;
|
||||
|
||||
|
||||
// specify code paths ... these are done as variable rather than
|
||||
// #define's because down the road we may want to choose between them
|
||||
// on the fly for different flight models ... this way magic carpet
|
||||
// and external modes wouldn't need to recreate the LaRCsim matrices
|
||||
// themselves.
|
||||
|
||||
static const bool use_larcsim_local_to_body = false;
|
||||
|
||||
|
||||
// This is a record containing current view parameters for the current
|
||||
// aircraft position
|
||||
FGView pilot_view;
|
||||
|
@ -93,48 +78,30 @@ void FGView::Init( void ) {
|
|||
((GLfloat) (winHeight)*0.4232) );
|
||||
}
|
||||
|
||||
// This never changes -- NHV
|
||||
sgLARC_TO_SSG[0][0] = 0.0;
|
||||
sgLARC_TO_SSG[0][1] = 1.0;
|
||||
sgLARC_TO_SSG[0][2] = -0.0;
|
||||
sgLARC_TO_SSG[0][3] = 0.0;
|
||||
|
||||
sgLARC_TO_SSG[1][0] = 0.0;
|
||||
sgLARC_TO_SSG[1][1] = 0.0;
|
||||
sgLARC_TO_SSG[1][2] = 1.0;
|
||||
sgLARC_TO_SSG[1][3] = 0.0;
|
||||
|
||||
sgLARC_TO_SSG[2][0] = 1.0;
|
||||
sgLARC_TO_SSG[2][1] = -0.0;
|
||||
sgLARC_TO_SSG[2][2] = 0.0;
|
||||
sgLARC_TO_SSG[2][3] = 0.0;
|
||||
|
||||
sgLARC_TO_SSG[3][0] = 0.0;
|
||||
sgLARC_TO_SSG[3][1] = 0.0;
|
||||
sgLARC_TO_SSG[3][2] = 0.0;
|
||||
sgLARC_TO_SSG[3][3] = 1.0;
|
||||
|
||||
force_update_fov_math();
|
||||
}
|
||||
|
||||
|
||||
// Update the field of view coefficients
|
||||
void FGView::UpdateFOV( const fgOPTIONS& o ) {
|
||||
ssgSetFOV( o.get_fov(), 0.0 );
|
||||
|
||||
double fov, theta_x, theta_y;
|
||||
|
||||
fov = o.get_fov();
|
||||
|
||||
// printf("win_ratio = %.2f\n", win_ratio);
|
||||
// calculate sin() and cos() of fov / 2 in X direction;
|
||||
theta_x = (fov * win_ratio * DEG_TO_RAD) / 2.0;
|
||||
// printf("theta_x = %.2f\n", theta_x);
|
||||
sin_fov_x = sin(theta_x);
|
||||
cos_fov_x = cos(theta_x);
|
||||
slope_x = -cos_fov_x / sin_fov_x;
|
||||
// printf("slope_x = %.2f\n", slope_x);
|
||||
|
||||
// fov_x_clip and fov_y_clip convoluted algebraic simplification
|
||||
// see code executed in tilemgr.cxx when USE_FAST_FOV_CLIP not
|
||||
// defined Norman Vine -- nhv@yahoo.com
|
||||
#if defined( USE_FAST_FOV_CLIP )
|
||||
fov_x_clip = slope_x*cos_fov_x - sin_fov_x;
|
||||
#endif // defined( USE_FAST_FOV_CLIP )
|
||||
|
||||
// calculate sin() and cos() of fov / 2 in Y direction;
|
||||
theta_y = (fov * DEG_TO_RAD) / 2.0;
|
||||
// printf("theta_y = %.2f\n", theta_y);
|
||||
sin_fov_y = sin(theta_y);
|
||||
cos_fov_y = cos(theta_y);
|
||||
slope_y = cos_fov_y / sin_fov_y;
|
||||
// printf("slope_y = %.2f\n", slope_y);
|
||||
|
||||
#if defined( USE_FAST_FOV_CLIP )
|
||||
fov_y_clip = -(slope_y*cos_fov_y + sin_fov_y);
|
||||
#endif // defined( USE_FAST_FOV_CLIP )
|
||||
}
|
||||
|
||||
|
||||
// Update the view volume, position, and orientation
|
||||
void FGView::UpdateViewParams( const FGInterface& f ) {
|
||||
UpdateViewMath(f);
|
||||
|
@ -155,120 +122,38 @@ void FGView::UpdateViewParams( const FGInterface& f ) {
|
|||
}
|
||||
|
||||
|
||||
void getRotMatrix(double* out, MAT3vec vec, double radians)
|
||||
{
|
||||
/* This function contributed by Erich Boleyn (erich@uruk.org) */
|
||||
/* This function used from the Mesa OpenGL code (matrix.c) */
|
||||
double s, c; // mag,
|
||||
double vx, vy, vz, xy, yz, zx, xs, ys, zs, one_c; //, xx, yy, zz
|
||||
|
||||
MAT3identity(out);
|
||||
s = sin(radians);
|
||||
c = cos(radians);
|
||||
|
||||
// mag = getMagnitude();
|
||||
|
||||
vx = vec[0];
|
||||
vy = vec[1];
|
||||
vz = vec[2];
|
||||
|
||||
#define M(row,col) out[row*4 + col]
|
||||
|
||||
/*
|
||||
* Arbitrary axis rotation matrix.
|
||||
*
|
||||
* This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
|
||||
* like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
|
||||
* (which is about the X-axis), and the two composite transforms
|
||||
* Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
|
||||
* from the arbitrary axis to the X-axis then back. They are
|
||||
* all elementary rotations.
|
||||
*
|
||||
* Rz' is a rotation about the Z-axis, to bring the axis vector
|
||||
* into the x-z plane. Then Ry' is applied, rotating about the
|
||||
* Y-axis to bring the axis vector parallel with the X-axis. The
|
||||
* rotation about the X-axis is then performed. Ry and Rz are
|
||||
* simply the respective inverse transforms to bring the arbitrary
|
||||
* axis back to it's original orientation. The first transforms
|
||||
* Rz' and Ry' are considered inverses, since the data from the
|
||||
* arbitrary axis gives you info on how to get to it, not how
|
||||
* to get away from it, and an inverse must be applied.
|
||||
*
|
||||
* The basic calculation used is to recognize that the arbitrary
|
||||
* axis vector (x, y, z), since it is of unit length, actually
|
||||
* represents the sines and cosines of the angles to rotate the
|
||||
* X-axis to the same orientation, with theta being the angle about
|
||||
* Z and phi the angle about Y (in the order described above)
|
||||
* as follows:
|
||||
*
|
||||
* cos ( theta ) = x / sqrt ( 1 - z^2 )
|
||||
* sin ( theta ) = y / sqrt ( 1 - z^2 )
|
||||
*
|
||||
* cos ( phi ) = sqrt ( 1 - z^2 )
|
||||
* sin ( phi ) = z
|
||||
*
|
||||
* Note that cos ( phi ) can further be inserted to the above
|
||||
* formulas:
|
||||
*
|
||||
* cos ( theta ) = x / cos ( phi )
|
||||
* sin ( theta ) = y / cos ( phi )
|
||||
*
|
||||
* ...etc. Because of those relations and the standard trigonometric
|
||||
* relations, it is pssible to reduce the transforms down to what
|
||||
* is used below. It may be that any primary axis chosen will give the
|
||||
* same results (modulo a sign convention) using thie method.
|
||||
*
|
||||
* Particularly nice is to notice that all divisions that might
|
||||
* have caused trouble when parallel to certain planes or
|
||||
* axis go away with care paid to reducing the expressions.
|
||||
* After checking, it does perform correctly under all cases, since
|
||||
* in all the cases of division where the denominator would have
|
||||
* been zero, the numerator would have been zero as well, giving
|
||||
* the expected result.
|
||||
*/
|
||||
|
||||
one_c = 1.0F - c;
|
||||
|
||||
// xx = vx * vx;
|
||||
// yy = vy * vy;
|
||||
// zz = vz * vz;
|
||||
|
||||
// xy = vx * vy;
|
||||
// yz = vy * vz;
|
||||
// zx = vz * vx;
|
||||
// convert sgMat4 to MAT3 and print
|
||||
static void print_sgMat4( sgMat4 &in) {
|
||||
MAT3mat print;
|
||||
int i;
|
||||
int j;
|
||||
for ( i = 0; i < 4; i++ ) {
|
||||
for ( j = 0; j < 4; j++ ) {
|
||||
print[i][j] = in[i][j];
|
||||
}
|
||||
}
|
||||
MAT3print( print, stdout);
|
||||
}
|
||||
|
||||
|
||||
M(0,0) = (one_c * vx * vx) + c;
|
||||
xs = vx * s;
|
||||
yz = vy * vz * one_c;
|
||||
M(1,2) = yz + xs;
|
||||
M(2,1) = yz - xs;
|
||||
|
||||
M(1,1) = (one_c * vy * vy) + c;
|
||||
ys = vy * s;
|
||||
zx = vz * vx * one_c;
|
||||
M(0,2) = zx - ys;
|
||||
M(2,0) = zx + ys;
|
||||
|
||||
M(2,2) = (one_c * vz *vz) + c;
|
||||
zs = vz * s;
|
||||
xy = vx * vy * one_c;
|
||||
M(0,1) = xy + zs;
|
||||
M(1,0) = xy - zs;
|
||||
|
||||
// M(0,0) = (one_c * xx) + c;
|
||||
// M(1,0) = (one_c * xy) - zs;
|
||||
// M(2,0) = (one_c * zx) + ys;
|
||||
|
||||
// M(0,1) = (one_c * xy) + zs;
|
||||
// M(1,1) = (one_c * yy) + c;
|
||||
// M(2,1) = (one_c * yz) - xs;
|
||||
|
||||
// M(0,2) = (one_c * zx) - ys;
|
||||
// M(1,2) = (one_c * yz) + xs;
|
||||
// M(2,2) = (one_c * zz) + c;
|
||||
|
||||
#undef M
|
||||
// convert convert MAT3 to sgMat4
|
||||
static void MAT3mat_To_sgMat4( MAT3mat &in, sgMat4 &out ) {
|
||||
out[0][0] = in[0][0];
|
||||
out[0][1] = in[0][1];
|
||||
out[0][2] = in[0][2];
|
||||
out[0][3] = in[0][3];
|
||||
out[1][0] = in[1][0];
|
||||
out[1][1] = in[1][1];
|
||||
out[1][2] = in[1][2];
|
||||
out[1][3] = in[1][3];
|
||||
out[2][0] = in[2][0];
|
||||
out[2][1] = in[2][1];
|
||||
out[2][2] = in[2][2];
|
||||
out[2][3] = in[2][3];
|
||||
out[3][0] = in[3][0];
|
||||
out[3][1] = in[3][1];
|
||||
out[3][2] = in[3][2];
|
||||
out[3][3] = in[3][3];
|
||||
}
|
||||
|
||||
|
||||
|
@ -280,14 +165,13 @@ void FGView::UpdateViewMath( const FGInterface& f ) {
|
|||
double ntmp;
|
||||
|
||||
if ( update_fov ) {
|
||||
// printf("Updating fov\n");
|
||||
UpdateFOV( current_options );
|
||||
ssgSetFOV( current_options.get_fov(),
|
||||
current_options.get_fov() * win_ratio );
|
||||
update_fov = false;
|
||||
}
|
||||
|
||||
scenery.center = scenery.next_center;
|
||||
|
||||
#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
|
||||
// printf("scenery center = %.2f %.2f %.2f\n", scenery.center.x,
|
||||
// scenery.center.y, scenery.center.z);
|
||||
|
||||
|
@ -310,94 +194,12 @@ void FGView::UpdateViewMath( const FGInterface& f ) {
|
|||
|
||||
abs_view_pos = fgPolarToCart3d(p);
|
||||
|
||||
#else // FG_VIEW_INLINE_OPTIMIZATIONS
|
||||
|
||||
double tmp_radius = f.get_Sea_level_radius() * FEET_TO_METER;
|
||||
double tmp = f.get_cos_lat_geocentric() * tmp_radius;
|
||||
|
||||
cur_zero_elev.setx(f.get_cos_longitude()*tmp - scenery.center.x());
|
||||
cur_zero_elev.sety(f.get_sin_longitude()*tmp - scenery.center.y());
|
||||
cur_zero_elev.setz(f.get_sin_lat_geocentric()*tmp_radius - scenery.center.z());
|
||||
|
||||
// calculate view position in current FG view coordinate system
|
||||
// p.lon & p.lat are already defined earlier, p.radius was set to
|
||||
// the sea level radius, so now we add in our altitude.
|
||||
if ( f.get_Altitude() * FEET_TO_METER >
|
||||
(scenery.cur_elev + 0.5 * METER_TO_FEET) ) {
|
||||
tmp_radius += f.get_Altitude() * FEET_TO_METER;
|
||||
} else {
|
||||
tmp_radius += scenery.cur_elev + 0.5 * METER_TO_FEET ;
|
||||
}
|
||||
tmp = f.get_cos_lat_geocentric() * tmp_radius;
|
||||
abs_view_pos.setx(f.get_cos_longitude()*tmp);
|
||||
abs_view_pos.sety(f.get_sin_longitude()*tmp);
|
||||
abs_view_pos.setz(f.get_sin_lat_geocentric()*tmp_radius);
|
||||
|
||||
#endif // FG_VIEW_INLINE_OPTIMIZATIONS
|
||||
|
||||
view_pos = abs_view_pos - scenery.center;
|
||||
|
||||
FG_LOG( FG_VIEW, FG_DEBUG, "Polar view pos = " << p );
|
||||
FG_LOG( FG_VIEW, FG_DEBUG, "Absolute view pos = " << abs_view_pos );
|
||||
FG_LOG( FG_VIEW, FG_DEBUG, "Relative view pos = " << view_pos );
|
||||
|
||||
// Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw)
|
||||
// from FG_T_local_to_body[3][3]
|
||||
|
||||
if ( use_larcsim_local_to_body ) {
|
||||
|
||||
// Question: Why is the LaRCsim matrix arranged so differently
|
||||
// than the one we need???
|
||||
|
||||
// Answer (I think): The LaRCsim matrix is generated in a
|
||||
// different reference frame than we've set up for our world
|
||||
|
||||
LOCAL[0][0] = f.get_T_local_to_body_33();
|
||||
LOCAL[0][1] = -f.get_T_local_to_body_32();
|
||||
LOCAL[0][2] = -f.get_T_local_to_body_31();
|
||||
LOCAL[0][3] = 0.0;
|
||||
LOCAL[1][0] = -f.get_T_local_to_body_23();
|
||||
LOCAL[1][1] = f.get_T_local_to_body_22();
|
||||
LOCAL[1][2] = f.get_T_local_to_body_21();
|
||||
LOCAL[1][3] = 0.0;
|
||||
LOCAL[2][0] = -f.get_T_local_to_body_13();
|
||||
LOCAL[2][1] = f.get_T_local_to_body_12();
|
||||
LOCAL[2][2] = f.get_T_local_to_body_11();
|
||||
LOCAL[2][3] = 0.0;
|
||||
LOCAL[3][0] = LOCAL[3][1] = LOCAL[3][2] = LOCAL[3][3] = 0.0;
|
||||
LOCAL[3][3] = 1.0;
|
||||
|
||||
// printf("LaRCsim LOCAL matrix\n");
|
||||
// MAT3print(LOCAL, stdout);
|
||||
|
||||
} else {
|
||||
|
||||
// calculate the transformation matrix to go from LaRCsim to ssg
|
||||
sgVec3 vec1;
|
||||
sgSetVec3( vec1, 0.0, 1.0, 0.0 );
|
||||
sgMat4 mat1;
|
||||
sgMakeRotMat4( mat1, 90, vec1 );
|
||||
|
||||
sgVec3 vec2;
|
||||
sgSetVec3( vec2, 1.0, 0.0, 0.0 );
|
||||
sgMat4 mat2;
|
||||
sgMakeRotMat4( mat2, 90, vec2 );
|
||||
|
||||
sgMultMat4( sgLARC_TO_SSG, mat1, mat2 );
|
||||
|
||||
/*
|
||||
cout << "LaRCsim to SSG:" << endl;
|
||||
MAT3mat print;
|
||||
int i;
|
||||
int j;
|
||||
for ( i = 0; i < 4; i++ ) {
|
||||
for ( j = 0; j < 4; j++ ) {
|
||||
print[i][j] = sgLARC_TO_SSG[i][j];
|
||||
}
|
||||
}
|
||||
MAT3print( print, stdout);
|
||||
*/
|
||||
|
||||
// code to calculate LOCAL matrix calculated from Phi, Theta, and
|
||||
// Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our
|
||||
// flight model
|
||||
|
@ -412,7 +214,6 @@ void FGView::UpdateViewMath( const FGInterface& f ) {
|
|||
sgMat4 sgPHI; // roll
|
||||
sgMakeRotMat4( sgPHI, f.get_Phi() * RAD_TO_DEG, sgrollvec );
|
||||
|
||||
|
||||
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
|
||||
MAT3rotate(TMP, vec, f.get_Theta());
|
||||
// cout << "Pitch matrix" << endl;;
|
||||
|
@ -430,7 +231,6 @@ void FGView::UpdateViewMath( const FGInterface& f ) {
|
|||
sgMat4 sgROT;
|
||||
sgMultMat4( sgROT, sgPHI, sgTHETA );
|
||||
|
||||
|
||||
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
|
||||
MAT3rotate(TMP, vec, -f.get_Psi());
|
||||
// cout << "Yaw matrix" << endl;
|
||||
|
@ -445,21 +245,8 @@ void FGView::UpdateViewMath( const FGInterface& f ) {
|
|||
sgMakeRotMat4( sgPSI, -f.get_Psi() * RAD_TO_DEG, sgyawvec );
|
||||
|
||||
sgMultMat4( sgLOCAL, sgROT, sgPSI );
|
||||
|
||||
/*
|
||||
MAT3mat print;
|
||||
int i;
|
||||
int j;
|
||||
for ( i = 0; i < 4; i++ ) {
|
||||
for ( j = 0; j < 4; j++ ) {
|
||||
print[i][j] = sgLOCAL[i][j];
|
||||
}
|
||||
}
|
||||
MAT3print( print, stdout);
|
||||
*/
|
||||
} // if ( use_larcsim_local_to_body )
|
||||
|
||||
#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
|
||||
// cout << "sgLOCAL matrix" << endl;
|
||||
// print_sgMat4( sgLOCAL );
|
||||
|
||||
// Derive the local UP transformation matrix based on *geodetic*
|
||||
// coordinates
|
||||
|
@ -522,19 +309,8 @@ void FGView::UpdateViewMath( const FGInterface& f ) {
|
|||
|
||||
// generate the view offset matrix
|
||||
sgMakeRotMat4( sgVIEW_OFFSET, view_offset * RAD_TO_DEG, sgview_up );
|
||||
|
||||
/*
|
||||
cout << "sg VIEW_OFFSET matrix" << endl;
|
||||
MAT3mat print;
|
||||
int i;
|
||||
int j;
|
||||
for ( i = 0; i < 4; i++ ) {
|
||||
for ( j = 0; j < 4; j++ ) {
|
||||
print[i][j] = sgVIEW_OFFSET[i][j];
|
||||
}
|
||||
}
|
||||
MAT3print( print, stdout);
|
||||
*/
|
||||
// cout << "sgVIEW_OFFSET matrix" << endl;
|
||||
// print_sgMat4( sgVIEW_OFFSET );
|
||||
|
||||
sgMultMat4( sgTMP2, sgTMP, sgVIEW_OFFSET );
|
||||
sgMultMat4( sgVIEW_ROT, sgLARC_TO_SSG, sgTMP2 );
|
||||
|
@ -591,62 +367,6 @@ void FGView::UpdateViewMath( const FGInterface& f ) {
|
|||
// surface_east[0], surface_east[1], surface_east[2]);
|
||||
// printf( "Should be close to zero = %.2f\n",
|
||||
// MAT3_DOT_PRODUCT(surface_south, surface_east));
|
||||
|
||||
#else // FG_VIEW_INLINE_OPTIMIZATIONS
|
||||
|
||||
// // Build spherical to cartesian transform matrix directly
|
||||
double cos_lat = f.get_cos_latitude(); // cos(-f.get_Latitude());
|
||||
double sin_lat = -f.get_sin_latitude(); // sin(-f.get_Latitude());
|
||||
double cos_lon = f.get_cos_longitude(); //cos(f.get_Longitude());
|
||||
double sin_lon = f.get_sin_longitude(); //sin(f.get_Longitude());
|
||||
|
||||
double *mat = (double *)UP;
|
||||
|
||||
mat[0] = cos_lat*cos_lon;
|
||||
mat[1] = cos_lat*sin_lon;
|
||||
mat[2] = -sin_lat;
|
||||
mat[3] = 0.0;
|
||||
mat[4] = -sin_lon;
|
||||
mat[5] = cos_lon;
|
||||
mat[6] = 0.0;
|
||||
mat[7] = 0.0;
|
||||
mat[8] = sin_lat*cos_lon;
|
||||
mat[9] = sin_lat*sin_lon;
|
||||
mat[10] = cos_lat;
|
||||
mat[11] = mat[12] = mat[13] = mat[14] = 0.0;
|
||||
mat[15] = 1.0;
|
||||
|
||||
MAT3mult(VIEW, LOCAL, UP);
|
||||
|
||||
// THESE COULD JUST BE POINTERS !!!
|
||||
MAT3_SET_VEC(local_up, mat[0], mat[1], mat[2]);
|
||||
MAT3_SET_VEC(view_up, VIEW[0][0], VIEW[0][1], VIEW[0][2]);
|
||||
MAT3_SET_VEC(forward, VIEW[2][0], VIEW[2][1], VIEW[2][2]);
|
||||
|
||||
getRotMatrix((double *)TMP, view_up, view_offset);
|
||||
MAT3mult_vec(view_forward, forward, TMP);
|
||||
|
||||
// make a vector to the current view position
|
||||
MAT3_SET_VEC(v0, view_pos.x(), view_pos.y(), view_pos.z());
|
||||
|
||||
// Given a vector pointing straight down (-Z), map into onto the
|
||||
// local plane representing "horizontal". This should give us the
|
||||
// local direction for moving "south".
|
||||
MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0);
|
||||
map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south);
|
||||
|
||||
MAT3_NORMALIZE_VEC(surface_south, ntmp);
|
||||
// printf( "Surface direction directly south %.6f %.6f %.6f\n",
|
||||
// surface_south[0], surface_south[1], surface_south[2]);
|
||||
|
||||
// now calculate the surface east vector
|
||||
getRotMatrix((double *)TMP, view_up, FG_PI_2);
|
||||
MAT3mult_vec(surface_east, surface_south, TMP);
|
||||
// printf( "Surface direction directly east %.6f %.6f %.6f\n",
|
||||
// surface_east[0], surface_east[1], surface_east[2]);
|
||||
// printf( "Should be close to zero = %.6f\n",
|
||||
// MAT3_DOT_PRODUCT(surface_south, surface_east));
|
||||
#endif // !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue