1
0
Fork 0

Various "inline" code optimizations contributed by Norman Vine.

This commit is contained in:
curt 1998-08-24 20:04:08 +00:00
parent dacc051a57
commit aef484d5fc
7 changed files with 225 additions and 43 deletions

View file

@ -28,6 +28,8 @@
/* -------------------------- Public Routines ---------------------------- */ /* -------------------------- Public Routines ---------------------------- */
#if !defined( USE_XTRA_MAT3_INLINES )
/* /*
* Sets a matrix to identity. * Sets a matrix to identity.
*/ */
@ -95,6 +97,7 @@ MAT3mult (double (*result_mat)[4], register double (*mat1)[4], register double (
mat1[i][3] * mat2[3][j]); mat1[i][3] * mat2[3][j]);
MAT3copy (result_mat, tmp_mat); MAT3copy (result_mat, tmp_mat);
} }
#endif // !defined( USE_XTRA_MAT3_INLINES )
/* /*
* This returns the transpose of a matrix. The result matrix may be * This returns the transpose of a matrix. The result matrix may be

View file

@ -29,6 +29,7 @@
# define FALSE 0 # define FALSE 0
#endif #endif
#if !defined( USE_XTRA_MAT3_INLINES )
void void
MAT3mult_vec(double *result_vec, register double *vec, register double (*mat)[4]) MAT3mult_vec(double *result_vec, register double *vec, register double (*mat)[4])
@ -45,6 +46,7 @@ MAT3mult_vec(double *result_vec, register double *vec, register double (*mat)[4]
MAT3_COPY_VEC(result_vec, temp); MAT3_COPY_VEC(result_vec, temp);
} }
#endif // !defined( USE_XTRA_MAT3_INLINES )
/* /*
* Multiplies a vector of size 4 by a matrix, setting the result vector. * Multiplies a vector of size 4 by a matrix, setting the result vector.
@ -92,6 +94,8 @@ MAT3mult_hvec(double *result_vec, register double *vec, register double (*mat)[4
return(ret); return(ret);
} }
#if !defined( USE_XTRA_MAT3_INLINES )
/* /*
* Sets the first vector to be the cross-product of the last two vectors. * Sets the first vector to be the cross-product of the last two vectors.
*/ */
@ -108,6 +112,7 @@ MAT3cross_product(double *result_vec, register double *vec1, register double *ve
MAT3_COPY_VEC(result_vec, temp); MAT3_COPY_VEC(result_vec, temp);
} }
#endif // !defined( USE_XTRA_MAT3_INLINES )
/* /*
* Finds a vector perpendicular to vec and stores it in result_vec. * Finds a vector perpendicular to vec and stores it in result_vec.

View file

@ -18,6 +18,7 @@
#endif #endif
#include <stdio.h> #include <stdio.h>
#include <string.h>
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -26,7 +27,15 @@ extern "C" {
#define MAT3_DET0 -1 /* Indicates singular mat */ #define MAT3_DET0 -1 /* Indicates singular mat */
#define MAT3_EPSILON 1e-12 /* Close enough to zero */ #define MAT3_EPSILON 1e-12 /* Close enough to zero */
#define MAT3_PI 3.141592653589793 /* Pi */
#ifdef M_PI
# define MAT3_PI M_PI
#else
# define MAT3_PI 3.14159265358979323846
#endif
#define USE_XTRA_MAT3_INLINES
/* ------------------------------ Types --------------------------------- */ /* ------------------------------ Types --------------------------------- */
@ -126,27 +135,95 @@ void MAT3translate (MAT3mat result_mat, MAT3vec trans);
void MAT3scale (MAT3mat result_mat, MAT3vec scale); void MAT3scale (MAT3mat result_mat, MAT3vec scale);
void MAT3shear(MAT3mat result_mat, double xshear, double yshear); void MAT3shear(MAT3mat result_mat, double xshear, double yshear);
#if defined( USE_XTRA_MAT3_INLINES )
#define MAT3mult_vec( result_vec, vec, mat) { \
MAT3vec tempvec; \
tempvec[0]=vec[0]*mat[0][0]+vec[1]*mat[1][0]+vec[2]*mat[2][0]+mat[3][0]; \
tempvec[1]=vec[0]*mat[0][1]+vec[1]*mat[1][1]+vec[2]*mat[2][1]+mat[3][1]; \
tempvec[2]=vec[0]*mat[0][2]+vec[1]*mat[1][2]+vec[2]*mat[2][2]+mat[3][2]; \
result_vec[0] = tempvec[0]; \
result_vec[1] = tempvec[1]; \
result_vec[2] = tempvec[2]; \
}
#define MAT3cross_product(result_vec, vec1, vec2) { \
MAT3vec tempvec; \
tempvec[0] = vec1[1] * vec2[2] - vec1[2] * vec2[1]; \
tempvec[1] = vec1[2] * vec2[0] - vec1[0] * vec2[2]; \
tempvec[2] = vec1[0] * vec2[1] - vec1[1] * vec2[0]; \
result_vec[0] = tempvec[0]; \
result_vec[1] = tempvec[1]; \
result_vec[2] = tempvec[2]; \
}
#if defined( USE_MEM ) || defined( WIN32 )
#define MAT3copy( to, from) memcpy(to, from, sizeof(MAT3mat))
#define MAT3zero(mat) memset(mat,0x00, sizeof(MAT3mat))
#define MAT3mult( result_mat, mat1, mat2) { \
register int i, j; \
MAT3mat tmp_mat; \
for (i = 0; i < 4; i++) \
for (j = 0; j < 4; j++) \
tmp_mat[i][j] = (mat1[i][0] * mat2[0][j] + mat1[i][1] * mat2[1][j] \
+ mat1[i][2] * mat2[2][j] + mat1[i][3] * mat2[3][j]); \
memcpy(result_mat, tmp_mat, sizeof(MAT3mat)); \
}
#define MAT3identity(mat) { \
register int i; \
memset(mat, 0x00, sizeof(MAT3mat)); \
for (i = 0; i < 4; i++) mat[i][i] = 1.0; \
}
#else !defined( USE_MEM ) || !defined( WIN32 )
#define MAT3copy( to, from) bcopy(from, to, sizeof(MAT3mat))
#define MAT3zero(mat) bzero (mat, sizeof(MAT3mat))
#define MAT3mult( result_mat, mat1, mat2) { \
register int i, j; \
MAT3mat tmp_mat; \
for (i = 0; i < 4; i++) \
for (j = 0; j < 4; j++) \
tmp_mat[i][j] = (mat1[i][0] * mat2[0][j] + mat1[i][1] * mat2[1][j] \
+ mat1[i][2] * mat2[2][j] + mat1[i][3] * mat2[3][j]); \
bcopy(tmp_mat, result_mat, sizeof(MAT3mat)); \
}
#define MAT3identity(mat) { \
register int i; \
bzero(mat, sizeof(MAT3mat)); \
for(i = 0; i < 4; i++) mat[i][i] = 1.0; \
}
#endif
#else // !defined( USE_XTRA_MAT3_INLINES )
/* In MAT3mat.c */ /* In MAT3mat.c */
void MAT3identity(MAT3mat); void MAT3identity(MAT3mat);
void MAT3zero(MAT3mat); void MAT3zero(MAT3mat);
void MAT3copy (MAT3mat to, MAT3mat from); void MAT3copy (MAT3mat to, MAT3mat from);
void MAT3mult (MAT3mat result, MAT3mat, MAT3mat); void MAT3mult (MAT3mat result, MAT3mat, MAT3mat);
#endif // defined( USE_XTRA_MAT3_INLINES )
void MAT3transpose (MAT3mat result, MAT3mat); void MAT3transpose (MAT3mat result, MAT3mat);
int MAT3invert (MAT3mat result, MAT3mat); int MAT3invert (MAT3mat result, MAT3mat);
void MAT3print (MAT3mat, FILE *fp); void MAT3print (MAT3mat, FILE *fp);
void MAT3print_formatted (MAT3mat, FILE *fp, void MAT3print_formatted (MAT3mat, FILE *fp,
char *title, char *head, char *format, char *tail); char *title, char *head, char *format, char *tail);
extern int MAT3equal( void ); int MAT3equal( void );
extern double MAT3trace( void ); double MAT3trace( void );
extern int MAT3power( void ); int MAT3power( void );
extern int MAT3column_reduce( void ); int MAT3column_reduce( void );
extern int MAT3kernel_basis( void ); int MAT3kernel_basis( void );
/* In MAT3vec.c */ /* In MAT3vec.c */
void MAT3mult_vec(MAT3vec result_vec, MAT3vec vec, MAT3mat mat);
int MAT3mult_hvec (MAT3hvec result_vec, MAT3hvec vec, MAT3mat mat, int normalize); int MAT3mult_hvec (MAT3hvec result_vec, MAT3hvec vec, MAT3mat mat, int normalize);
void MAT3cross_product(MAT3vec result,MAT3vec,MAT3vec);
void MAT3perp_vec(MAT3vec result_vec, MAT3vec vec, int is_unit); void MAT3perp_vec(MAT3vec result_vec, MAT3vec vec, int is_unit);
#if !defined( USE_XTRA_MAT3_INLINES )
void MAT3mult_vec(MAT3vec result_vec, MAT3vec vec, MAT3mat mat);
void MAT3cross_product(MAT3vec result,MAT3vec,MAT3vec);
#endif // !defined( USE_XTRA_MAT3_INLINES )
#ifdef __cplusplus #ifdef __cplusplus

View file

@ -37,9 +37,12 @@
* to be specified in meters */ * to be specified in meters */
fgPoint3d fgPolarToCart3d(fgPoint3d p) { fgPoint3d fgPolarToCart3d(fgPoint3d p) {
fgPoint3d pnew; fgPoint3d pnew;
double tmp;
pnew.x = cos(p.lon) * cos(p.lat) * p.radius; tmp = cos(p.lat) * p.radius;
pnew.y = sin(p.lon) * cos(p.lat) * p.radius;
pnew.x = cos(p.lon) * tmp;
pnew.y = sin(p.lon) * tmp;
pnew.z = sin(p.lat) * p.radius; pnew.z = sin(p.lat) * p.radius;
return(pnew); return(pnew);
@ -61,12 +64,45 @@ fgPoint3d fgCartToPolar3d(fgPoint3d cp) {
} }
/* Find the Altitude above the Ellipsoid (WGS84) given the Earth
* Centered Cartesian coordinate vector Distances are specified in
* meters. */
double fgGeodAltFromCart(fgPoint3d cp)
{
double t_lat, x_alpha, mu_alpha;
double lat_geoc, radius;
double result;
lat_geoc = FG_PI_2 - atan2( sqrt(cp.x*cp.x + cp.y*cp.y), cp.z );
radius = sqrt(cp.x*cp.x + cp.y*cp.y + cp.z*cp.z);
if( ( (FG_PI_2 - lat_geoc) < ONE_SECOND ) /* near North pole */
|| ( (FG_PI_2 + lat_geoc) < ONE_SECOND ) ) /* near South pole */
{
result = radius - EQUATORIAL_RADIUS_M*E;
} else {
t_lat = tan(lat_geoc);
x_alpha = E*EQUATORIAL_RADIUS_M/sqrt(t_lat*t_lat + E*E);
mu_alpha = atan2(sqrt(RESQ_M - x_alpha*x_alpha),E*x_alpha);
if (lat_geoc < 0) {
mu_alpha = - mu_alpha;
}
result = (radius - x_alpha/cos(lat_geoc))*cos(mu_alpha - lat_geoc);
}
return(result);
}
/* $Log$ /* $Log$
/* Revision 1.1 1998/07/08 14:40:08 curt /* Revision 1.2 1998/08/24 20:04:11 curt
/* polar3d.[ch] renamed to polar3d.[ch]xx, vector.[ch] renamed to vector.[ch]xx /* Various "inline" code optimizations contributed by Norman Vine.
/* Updated fg_geodesy comments to reflect that routines expect and produce
/* meters.
/* /*
* Revision 1.1 1998/07/08 14:40:08 curt
* polar3d.[ch] renamed to polar3d.[ch]xx, vector.[ch] renamed to vector.[ch]xx
* Updated fg_geodesy comments to reflect that routines expect and produce
* meters.
*
* Revision 1.2 1998/05/03 00:45:49 curt * Revision 1.2 1998/05/03 00:45:49 curt
* Commented out a debugging printf. * Commented out a debugging printf.
* *

View file

@ -33,6 +33,7 @@
#endif #endif
#include <Include/fg_constants.h>
#include <Include/fg_types.h> #include <Include/fg_types.h>
@ -47,15 +48,24 @@ fgPoint3d fgPolarToCart3d(fgPoint3d p);
fgPoint3d fgCartToPolar3d(fgPoint3d cp); fgPoint3d fgCartToPolar3d(fgPoint3d cp);
/* Find the Altitude above the Ellipsoid (WGS84) given the Earth
* Centered Cartesian coordinate vector Distances are specified in
* meters. */
double fgGeodAltFromCart(fgPoint3d cp);
#endif /* _POLAR_HXX */ #endif /* _POLAR_HXX */
/* $Log$ /* $Log$
/* Revision 1.1 1998/07/08 14:40:09 curt /* Revision 1.2 1998/08/24 20:04:12 curt
/* polar3d.[ch] renamed to polar3d.[ch]xx, vector.[ch] renamed to vector.[ch]xx /* Various "inline" code optimizations contributed by Norman Vine.
/* Updated fg_geodesy comments to reflect that routines expect and produce
/* meters.
/* /*
* Revision 1.1 1998/07/08 14:40:09 curt
* polar3d.[ch] renamed to polar3d.[ch]xx, vector.[ch] renamed to vector.[ch]xx
* Updated fg_geodesy comments to reflect that routines expect and produce
* meters.
*
* Revision 1.1 1998/05/02 01:50:11 curt * Revision 1.1 1998/05/02 01:50:11 curt
* polar.[ch] renamed to polar3d.[ch] * polar.[ch] renamed to polar3d.[ch]
* *

View file

@ -34,6 +34,7 @@
#include "mat3.h" #include "mat3.h"
#if !defined( USE_XTRA_MAT3_INLINES )
/* Map a vector onto the plane specified by normal */ /* Map a vector onto the plane specified by normal */
void map_vec_onto_cur_surface_plane(MAT3vec normal, MAT3vec v0, MAT3vec vec, void map_vec_onto_cur_surface_plane(MAT3vec normal, MAT3vec v0, MAT3vec vec,
MAT3vec result) MAT3vec result)
@ -78,6 +79,34 @@ void map_vec_onto_cur_surface_plane(MAT3vec normal, MAT3vec v0, MAT3vec vec,
/* printf(" result = %.2f, %.2f, %.2f\n", /* printf(" result = %.2f, %.2f, %.2f\n",
result[0], result[1], result[2]); */ result[0], result[1], result[2]); */
} }
#endif // !defined( USE_XTRA_MAT3_INLINES )
// Given a point p, and a line through p0 with direction vector d,
// find the shortest distance from the point to the line
double fgPointLine(MAT3vec p, MAT3vec p0, MAT3vec d) {
MAT3vec u, u1, v;
double ud, dd, tmp, dist;
// u = p - p0
MAT3_SUB_VEC(u, p, p0);
// calculate the projection, u1, of u along d.
// u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
ud = MAT3_DOT_PRODUCT(u, d);
dd = MAT3_DOT_PRODUCT(d, d);
tmp = ud / dd;
MAT3_SCALE_VEC(u1, d, tmp);;
// v = u - u1 = vector from closest point on line, p1, to the
// original point, p.
MAT3_SUB_VEC(v, u, u1);
dist = sqrt(MAT3_DOT_PRODUCT(v, v));
return( dist );
}
// Given a point p, and a line through p0 with direction vector d, // Given a point p, and a line through p0 with direction vector d,
@ -106,10 +135,13 @@ double fgPointLineSquared(MAT3vec p, MAT3vec p0, MAT3vec d) {
/* $Log$ /* $Log$
/* Revision 1.2 1998/07/24 21:34:38 curt /* Revision 1.3 1998/08/24 20:04:12 curt
/* fgPointLine() rewritten into fgPointLineSquared() ... this ultimately saves /* Various "inline" code optimizations contributed by Norman Vine.
/* us from doing a sqrt().
/* /*
* Revision 1.2 1998/07/24 21:34:38 curt
* fgPointLine() rewritten into fgPointLineSquared() ... this ultimately saves
* us from doing a sqrt().
*
* Revision 1.1 1998/07/08 14:40:10 curt * Revision 1.1 1998/07/08 14:40:10 curt
* polar3d.[ch] renamed to polar3d.[ch]xx, vector.[ch] renamed to vector.[ch]xx * polar3d.[ch] renamed to polar3d.[ch]xx, vector.[ch] renamed to vector.[ch]xx
* Updated fg_geodesy comments to reflect that routines expect and produce * Updated fg_geodesy comments to reflect that routines expect and produce

View file

@ -33,12 +33,28 @@
#endif #endif
#include <Math/mat3.h> #include "mat3.h"
/* Map a vector onto the plane specified by normal */ /* Map a vector onto the plane specified by normal */
#if defined( USE_XTRA_MAT3_INLINES )
# define map_vec_onto_cur_surface_plane(normal, v0, vec, result) { \
double scale = ((normal[0]*vec[0]+normal[1]*vec[1]+normal[2]*vec[2]) / \
(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2])); \
result[0] = vec[0]-normal[0]*scale; \
result[1] = vec[1]-normal[1]*scale; \
result[2] = vec[2]-normal[2]*scale; \
}
#else
void map_vec_onto_cur_surface_plane(MAT3vec normal, MAT3vec v0, MAT3vec vec, void map_vec_onto_cur_surface_plane(MAT3vec normal, MAT3vec v0, MAT3vec vec,
MAT3vec result); MAT3vec result);
#endif //defined( USE_XTRA_MAT3_INLINES )
// Given a point p, and a line through p0 with direction vector d,
// find the shortest distance from the point to the line
double fgPointLine(MAT3vec p, MAT3vec p0, MAT3vec d);
// Given a point p, and a line through p0 with direction vector d, // Given a point p, and a line through p0 with direction vector d,
// find the shortest distance (squared) from the point to the line // find the shortest distance (squared) from the point to the line
@ -49,10 +65,13 @@ double fgPointLineSquared(MAT3vec p, MAT3vec p0, MAT3vec d);
/* $Log$ /* $Log$
/* Revision 1.2 1998/07/24 21:34:38 curt /* Revision 1.3 1998/08/24 20:04:13 curt
/* fgPointLine() rewritten into fgPointLineSquared() ... this ultimately saves /* Various "inline" code optimizations contributed by Norman Vine.
/* us from doing a sqrt().
/* /*
* Revision 1.2 1998/07/24 21:34:38 curt
* fgPointLine() rewritten into fgPointLineSquared() ... this ultimately saves
* us from doing a sqrt().
*
* Revision 1.1 1998/07/08 14:40:10 curt * Revision 1.1 1998/07/08 14:40:10 curt
* polar3d.[ch] renamed to polar3d.[ch]xx, vector.[ch] renamed to vector.[ch]xx * polar3d.[ch] renamed to polar3d.[ch]xx, vector.[ch] renamed to vector.[ch]xx
* Updated fg_geodesy comments to reflect that routines expect and produce * Updated fg_geodesy comments to reflect that routines expect and produce