1
0
Fork 0

Optimization by Norman Vine.

This commit is contained in:
curt 1998-09-08 15:05:10 +00:00
parent 032806000b
commit 780814812a

View file

@ -53,10 +53,22 @@
#include "tilecache.hxx" #include "tilecache.hxx"
// to test clipping speedup in fgTileMgrRender()
#if defined ( USE_FAST_FOV_CLIP )
// #define TEST_FOV_CLIP
// #define TEST_ELEV
#endif
#define FG_LOCAL_X_Y 81 // max(o->tile_diameter) ** 2 #define FG_LOCAL_X_Y 81 // max(o->tile_diameter) ** 2
#define FG_SQUARE( X ) ( (X) * (X) ) #define FG_SQUARE( X ) ( (X) * (X) )
#ifdef WIN32
# define FG_MEM_COPY(to,from,n) memcpy(to, from, n)
#else
# define FG_MEM_COPY(to,from,n) bcopy(from, to, n)
#endif
// closest (potentially viewable) tiles, centered on current tile. // closest (potentially viewable) tiles, centered on current tile.
// This is an array of pointers to cache indexes. // This is an array of pointers to cache indexes.
@ -237,10 +249,55 @@ static double point_line_dist_squared( fgPoint3d *tc, fgPoint3d *vp,
// Calculate if point/radius is inside view frustum // Calculate if point/radius is inside view frustum
static int viewable( fgPoint3d *cp, double radius ) { static int viewable( fgPoint3d *cp, double radius ) {
int viewable = 1; // start by assuming it's viewable
double x1, y1;
/********************************/
#if defined( USE_FAST_FOV_CLIP ) // views.hxx
/********************************/
MAT3vec eye;
double *mat;
double x, y, z;
x = cp->x;
y = cp->y;
z = cp->z;
mat = (double *)(current_view.WORLD_TO_EYE);
eye[0] = (x*mat[0] + y*mat[4] + z*mat[8] + mat[12]) * current_view.slope_x;
eye[1] = (x*mat[1] + y*mat[5] + z*mat[9] + mat[13]) * current_view.slope_y;
eye[2] = x*mat[2] + y*mat[6] + z*mat[10] + mat[14];
// Check near and far clip plane
if( ( eye[2] > radius ) ||
( eye[2] + radius + current_weather.visibility < 0) )
{
return(0);
}
// check right and left clip plane (from eye perspective)
x1 = radius * current_view.fov_x_clip;
if( (eye[2] > -(eye[0]+x1)) || (eye[2] > (eye[0]-x1)) )
{
return(0);
}
// check bottom and top clip plane (from eye perspective)
y1 = radius * current_view.fov_y_clip;
if( (eye[2] > -(eye[1]+y1)) || (eye[2] > (eye[1]-y1)) )
{
return(0);
}
/********************************/
#else // DO NOT USE_FAST_FOV_CLIP
/********************************/
fgVIEW *v; fgVIEW *v;
MAT3hvec world, eye; MAT3hvec world, eye;
int viewable = 1; // start by assuming it's viewable double x0, slope;
double x0, x1, y1, slope;
v = &current_view; v = &current_view;
@ -318,10 +375,50 @@ static int viewable( fgPoint3d *cp, double radius ) {
return(0); return(0);
} }
#endif // defined( USE_FAST_FOV_CLIP )
return(viewable); return(viewable);
} }
// NEW
// inrange() IS THIS POINT WITHIN POSSIBLE VIEWING RANGE ?
// calculate distance from vertical tangent line at
// current position to center of object.
// this is equivalent to
// dist = point_line_dist_squared( &(t->center), &(v->abs_view_pos),
// v->local_up );
// if ( dist < FG_SQUARE(t->bounding_radius) ) {
//
// the compiler should inline this for us
static int
inrange( const double radius, const fgPoint3d *center, const fgPoint3d *vp,
const MAT3vec up)
{
MAT3vec u, u1, v;
// double tmp;
// u = p - p0
u[0] = center->x - vp->x;
u[1] = center->y - vp->y;
u[2] = center->z - vp->z;
// calculate the projection, u1, of u along d.
// u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
MAT3_SCALE_VEC(u1, up,
(MAT3_DOT_PRODUCT(u, up) / MAT3_DOT_PRODUCT(up, up)) );
// v = u - u1 = vector from closest point on line, p1, to the
// original point, p.
MAT3_SUB_VEC(v, u, u1);
return( FG_SQUARE(radius) >= MAT3_DOT_PRODUCT(v, v));
}
// Determine scenery altitude. Normally this just happens when we // Determine scenery altitude. Normally this just happens when we
// render the scene, but we'd also like to be able to do this // render the scene, but we'd also like to be able to do this
// explicitely. lat & lon are in radians. abs_view_pos in meters. // explicitely. lat & lon are in radians. abs_view_pos in meters.
@ -348,8 +445,6 @@ double fgTileMgrCurElev( double lon, double lat, fgPoint3d *abs_view_pos ) {
local_up[1] = abs_view_pos->y; local_up[1] = abs_view_pos->y;
local_up[2] = abs_view_pos->z; local_up[2] = abs_view_pos->z;
tile_diameter = current_options.get_tile_diameter();
// Find current translation offset // Find current translation offset
fgBucketFind(lon * RAD_TO_DEG, lat * RAD_TO_DEG, &p); fgBucketFind(lon * RAD_TO_DEG, lat * RAD_TO_DEG, &p);
index = c->Exists(&p); index = c->Exists(&p);
@ -368,55 +463,48 @@ double fgTileMgrCurElev( double lon, double lat, fgPoint3d *abs_view_pos ) {
lon * RAD_TO_DEG, lat * RAD_TO_DEG, lon * RAD_TO_DEG, lat * RAD_TO_DEG,
p.lon, p.lat, p.x, p.y, fgBucketGenIndex(&p) ); p.lon, p.lat, p.x, p.y, fgBucketGenIndex(&p) );
// traverse the potentially viewable tile list // calculate tile offset
for ( i = 0; i < (tile_diameter * tile_diameter); i++ ) { x = (t->offset.x = t->center.x - scenery.center.x);
index = tiles[i]; y = (t->offset.y = t->center.y - scenery.center.y);
// fgPrintf( FG_TERRAIN, FG_DEBUG, "Index = %d\n", index); z = (t->offset.z = t->center.z - scenery.center.z);
t = c->GetTile(index);
// calculate tile offset // calc current terrain elevation calculate distance from
x = (t->offset.x = t->center.x - scenery.center.x); // vertical tangent line at current position to center of
y = (t->offset.y = t->center.y - scenery.center.y); // tile.
z = (t->offset.z = t->center.z - scenery.center.z);
// calc current terrain elevation calculate distance from /* printf("distance squared = %.2f, bounding radius = %.2f\n",
// vertical tangent line at current position to center of point_line_dist_squared(&(t->offset), &(v->view_pos),
// tile. v->local_up), t->bounding_radius); */
/* printf("distance squared = %.2f, bounding radius = %.2f\n", dist = point_line_dist_squared( &(t->center), abs_view_pos,
point_line_dist_squared(&(t->offset), &(v->view_pos),
v->local_up), t->bounding_radius); */
dist = point_line_dist_squared( &(t->center), abs_view_pos,
local_up ); local_up );
if ( dist < FG_SQUARE(t->bounding_radius) ) { if ( dist < FG_SQUARE(t->bounding_radius) ) {
// traverse fragment list for tile // traverse fragment list for tile
current = t->fragment_list.begin(); current = t->fragment_list.begin();
last = t->fragment_list.end(); last = t->fragment_list.end();
while ( current != last ) { while ( current != last ) {
frag_ptr = &(*current); frag_ptr = &(*current);
current++; current++;
/* printf("distance squared = %.2f, bounding radius = %.2f\n", /* printf("distance squared = %.2f, bounding radius = %.2f\n",
point_line_dist_squared( &(frag_ptr->center), point_line_dist_squared( &(frag_ptr->center),
&abs_view_pos), local_up), &abs_view_pos), local_up),
frag_ptr->bounding_radius); */ frag_ptr->bounding_radius); */
dist = point_line_dist_squared( &(frag_ptr->center), dist = point_line_dist_squared( &(frag_ptr->center),
abs_view_pos, local_up); abs_view_pos, local_up);
if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) { if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) {
if ( frag_ptr->intersect( abs_view_pos, if ( frag_ptr->intersect( abs_view_pos,
&earth_center, 0, &result ) ) { &earth_center, 0, &result ) ) {
// compute geocentric coordinates of tile center // compute geocentric coordinates of tile center
pp = fgCartToPolar3d(result); pp = fgCartToPolar3d(result);
// convert to geodetic coordinates // convert to geodetic coordinates
fgGeocToGeod(pp.lat, pp.radius, &lat_geod, fgGeocToGeod(pp.lat, pp.radius, &lat_geod,
&alt, &sea_level_r); &alt, &sea_level_r);
// printf("alt = %.2f\n", alt); // printf("alt = %.2f\n", alt);
// exit since we found an intersection // exit since we found an intersection
return(alt); return(alt);
}
} }
} }
} }
@ -427,6 +515,36 @@ double fgTileMgrCurElev( double lon, double lat, fgPoint3d *abs_view_pos ) {
} }
// NEW for legibility
// update this tile's geometry for current view
// The Compiler should inline this
static void
update_tile_geometry( fgTILE *t, GLdouble *MODEL_VIEW)
{
GLdouble *m;
double x, y, z;
// calculate tile offset
x = (t->offset.x = t->center.x - scenery.center.x);
y = (t->offset.y = t->center.y - scenery.center.y);
z = (t->offset.z = t->center.z - scenery.center.z);
m = t->model_view;
// Calculate the model_view transformation matrix for this tile
FG_MEM_COPY( m, MODEL_VIEW, 16*sizeof(GLdouble) );
// This is equivalent to doing a glTranslatef(x, y, z);
m[12] += (m[0]*x + m[4]*y + m[8] *z);
m[13] += (m[1]*x + m[5]*y + m[9] *z);
m[14] += (m[2]*x + m[6]*y + m[10]*z);
// m[15] += (m[3]*x + m[7]*y + m[11]*z);
// m[3] m7[] m[11] are 0.0 see LookAt() in views.cxx
// so m[15] is unchanged
}
// Render the local tiles // Render the local tiles
void fgTileMgrRender( void ) { void fgTileMgrRender( void ) {
fgTILECACHE *c; fgTILECACHE *c;
@ -479,6 +597,9 @@ void fgTileMgrRender( void ) {
material_mgr.init_transient_material_lists(); material_mgr.init_transient_material_lists();
min_dist = 100000.0; min_dist = 100000.0;
scenery.cur_elev = fgTileMgrCurElev( FG_Longitude, FG_Latitude,
&(v->abs_view_pos) );
// Pass 1 // Pass 1
// traverse the potentially viewable tile list // traverse the potentially viewable tile list
for ( i = 0; i < (tile_diameter * tile_diameter); i++ ) { for ( i = 0; i < (tile_diameter * tile_diameter); i++ ) {
@ -503,48 +624,14 @@ void fgTileMgrRender( void ) {
m[14] = m[2] * x + m[6] * y + m[10] * z + m[14]; m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
m[15] = m[3] * x + m[7] * y + m[11] * z + m[15]; m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
// temp ... calc current terrain elevation #if defined( TEST_FOV_CLIP )
// calculate distance from vertical tangent line at if( viewable(&(t->offset), t->bounding_radius) !=
// current position to center of tile. viewable2(&(t->offset), t->bounding_radius) )
{
/* printf("distance squared = %.2f, bounding radius = %.2f\n", printf("FOV PROBLEM\n");
point_line_dist_squared(&(t->offset), &(v->view_pos), exit(10);
v->local_up), t->bounding_radius); */
dist = point_line_dist_squared( &(t->center), &(v->abs_view_pos),
v->local_up );
if ( dist < FG_SQUARE(t->bounding_radius) ) {
// traverse fragment list for tile
current = t->fragment_list.begin();
last = t->fragment_list.end();
while ( current != last ) {
frag_ptr = &(*current);
current++;
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
point_line_dist_squared( &(frag_ptr->center),
&(v->abs_view_pos), v->local_up),
frag_ptr->bounding_radius); */
dist = point_line_dist_squared( &(frag_ptr->center),
&(v->abs_view_pos), v->local_up);
if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) {
if ( frag_ptr->intersect( &(v->abs_view_pos),
&earth_center, 0, &result ) ) {
// compute geocentric coordinates of tile center
pp = fgCartToPolar3d(result);
// convert to geodetic coordinates
fgGeocToGeod(pp.lat, pp.radius, &lat_geod,
&alt, &sea_level_r);
// printf("alt = %.2f\n", alt);
scenery.cur_elev = alt;
// exit this loop since we found an intersection
break;
}
}
}
} }
#endif // defined( TEST_FOV_CLIP )
// Course (tile based) culling // Course (tile based) culling
if ( viewable(&(t->offset), t->bounding_radius) ) { if ( viewable(&(t->offset), t->bounding_radius) ) {
@ -567,6 +654,15 @@ void fgTileMgrRender( void ) {
frag_offset.y = frag_ptr->center.y - scenery.center.y; frag_offset.y = frag_ptr->center.y - scenery.center.y;
frag_offset.z = frag_ptr->center.z - scenery.center.z; frag_offset.z = frag_ptr->center.z - scenery.center.z;
#if defined( TEST_FOV_CLIP )
radius = frag_ptr->bounding_radius*2;
if ( viewable(&frag_offset, radius) !=
viewable2(&frag_offset, radius) ) {
printf("FOV PROBLEM\n");
exit(10);
}
#endif // defined( TEST_FOV_CLIP )
if ( viewable(&frag_offset, frag_ptr->bounding_radius*2) ) { if ( viewable(&frag_offset, frag_ptr->bounding_radius*2) ) {
// add to transient per-material property fragment list // add to transient per-material property fragment list
// frag_ptr->tile_offset.x = t->offset.x; // frag_ptr->tile_offset.x = t->offset.x;
@ -679,6 +775,9 @@ void fgTileMgrRender( void ) {
// $Log$ // $Log$
// Revision 1.33 1998/09/08 15:05:10 curt
// Optimization by Norman Vine.
//
// Revision 1.32 1998/08/25 16:52:44 curt // Revision 1.32 1998/08/25 16:52:44 curt
// material.cxx material.hxx obj.cxx obj.hxx texload.c texload.h moved to // material.cxx material.hxx obj.cxx obj.hxx texload.c texload.h moved to
// ../Objects // ../Objects