1
0
Fork 0

Separated out flight gear scenery specifics into a separate Scenery

Generation section.
This commit is contained in:
curt 1999-02-15 00:49:18 +00:00
parent 1d390b6f66
commit 7260c176a9
3 changed files with 13 additions and 149 deletions

View file

@ -150,95 +150,22 @@ coordinate systems. LaRCsim comes with code to convert back and forth
between geodetic and geocentric coordinates. So, we only need to
convert between geocentric and cartesian coordinates to complete the
picture. Converting from geocentric to cartesian coordinates is done
by using the following formula: \\
$x = cos(lon_\mathit{geocentric}) * cos(lat_\mathit{geocentric}) *
radius_\mathit{geocentric}$ \\
$y = sin(lon_\mathit{geocentric}) * cos(lat_\mathit{geocentric}) *
radius_\mathit{geocentric}$ \\
$z = sin(lat_\mathit{geocentric}) * radius_\mathit{geocentric}$
by using the following formula:
So far I haven't needed to convert from the cartesian coordinate
system back into any of the polar representations so I haven't derived
that part yet. However, it should be pretty straightforward.
\noindent
\[ x = cos(lon_\mathit{geocentric}) * cos(lat_\mathit{geocentric}) *
radius_\mathit{geocentric} \]
\[ y = sin(lon_\mathit{geocentric}) * cos(lat_\mathit{geocentric}) *
radius_\mathit{geocentric} \]
\[ z = sin(lat_\mathit{geocentric}) * radius_\mathit{geocentric} \]
Here is the formula to convert from cartesian coordinates back into
geocentric coordinates:
\section{Scenery Representation}
This section is a work in progress. I am hashing out ideas as I
write, so please feel free to send me your comments and suggestions.
\subsection{External Scenery Representation}
This section should deal with the external file format(s) that FG can
use for input.
\subsection{Internal Scenery Representation}
This section describes how FG represents, manipulates, and
transforms scenery internally.
Internal, all FG scenery is defined using the coordinate system shown
in figure \ref{fig:coords}. This means that regardless of the
external scenery representation, FG will convert all object to it's
internal coordinate system when it loads the external file. Note,
when a default external FG scenery representation is created, its
representation should probably parallel the internal FG representation
as close as possible. This way, most necessary conversions can then
be done offline in advance.
\subsection{Scenery Partitioning}
For a first stab, scenery will be partitioned along longitude and
latitude lines. This will form trapezium shaped chunks. I'd like to
shoot for 10km x 10km chunks. So, as we move towards the poles, the
width in degrees of these areas will have to increase. Figure
\ref{fig:trap} shows an exaggerated scenery area.
\begin{figure}[hbt]
\centerline{
\psfig{file=trap.eps}
}
\caption{Scenery Partitioning Scheme}
\label{fig:trap}
\end{figure}
\subsection{Reference Points}
Each scenery area will have a reference point at the center of its
area. This reference point (for purposes of avoiding floating point
precision problems) defines the origin of a local coordinate system
which is oriented the same as the global coordinate system. The only
difference is the origin is translated from the center of the earth to
the center of the individual areas. Figure \ref{fig:reference}
demonstrates this.
\begin{figure}[hbt]
\centerline{
\psfig{file=ref.eps}
}
\caption{Reference Points and Translations}
\label{fig:reference}
\end{figure}
All the objects for a specific scenery area will be defined based on
this local coordinate system. For each scenery area we define a
vector $\vec{\mathbf{a}}$ which represents the distance from the
center of the earth to the local coordinate system.
\subsection{Putting the pieces of scenery together}
To render a scene, the scenery manager will need to load all the
nearby areas. Also, we define a vector $\vec{\mathbf{v}}$ which
represents the distance from the center of the earth to the current
view point. Before rendering each scenery area we translate it by
$\vec{\mathbf{a}} - \vec{\mathbf{v}}$. This moves all the current
scenery areas near the origin, while maintaining the relative
positions and orientations. All these transformations are inexpensive
to calculate and can be done easily with standard OpenGL calls.
It is straightforward to calculate the proper view point and up vector
so that the scenery will appear right side up when it is rendered.
\noindent
\[ lon = atan2( y, x ) \]
\[ lat = \frac{\pi}{2} - atan2( \sqrt{x*x + y*y}, z ) \]
\[ radius = \sqrt{x*x + y*y + z*z} \]

View file

@ -1,47 +0,0 @@
#FIG 3.2
Landscape
Center
Inches
Letter
100.00
Single
0
1200 2
5 1 0 1 0 7 0 0 -1 0.000 0 1 0 0 6900.000 3304.688 5100 5700 6975 6300 8700 5700
5 1 1 1 0 7 0 0 -1 4.000 0 0 0 0 6900.000 8100.000 5100 5700 6900 5100 8700 5700
5 1 0 1 0 7 0 0 -1 4.000 0 0 0 0 6900.000 5175.000 5925 5100 6075 4650 6375 4350
5 1 0 1 0 7 0 0 -1 4.000 0 0 0 0 8887.500 5062.500 6600 5325 6600 4800 6675 4425
5 1 0 1 0 7 0 0 -1 4.000 0 1 0 0 6675.000 3975.000 5925 5100 6225 5250 6600 5325
5 1 0 1 0 7 0 0 -1 4.000 0 1 0 0 6600.000 4087.500 6375 4350 6525 4425 6675 4425
1 3 0 1 0 7 0 0 -1 0.000 1 0.0000 6900 5700 1802 1802 6900 5700 8700 5775
2 1 0 1 0 7 0 0 -1 0.000 0 0 -1 1 0 2
2 1 1.00 60.00 120.00
6300 4800 6300 3600
2 1 0 2 0 7 0 0 -1 0.000 0 0 -1 1 0 2
2 1 2.00 120.00 240.00
6900 5700 9300 5700
2 1 0 2 0 7 0 0 -1 0.000 0 0 -1 1 0 2
2 1 2.00 120.00 240.00
6900 5700 7800 4800
2 1 0 2 0 7 0 0 -1 0.000 0 0 -1 1 0 2
2 1 2.00 120.00 240.00
6900 5700 6900 3300
2 1 0 1 0 7 0 0 -1 0.000 0 0 -1 1 0 2
2 1 1.00 60.00 120.00
6300 4800 7200 4800
2 1 0 1 0 7 0 0 -1 0.000 0 0 -1 1 0 2
2 1 1.00 60.00 120.00
6300 4800 6750 4350
2 1 0 1 0 7 0 0 -1 0.000 0 0 -1 1 0 2
0 0 1.00 60.00 120.00
6900 5700 6300 4800
2 1 0 1 0 7 0 0 -1 0.000 0 0 -1 1 0 2
0 0 1.00 60.00 120.00
6075 4950 6300 4950
4 0 0 0 0 0 14 0.0000 4 150 120 6825 3150 Z\001
4 0 0 0 0 0 14 0.0000 4 150 135 7875 4800 Y\001
4 0 0 0 0 0 14 0.0000 4 150 150 9450 5775 X\001
4 0 0 0 0 0 12 0.0000 4 135 135 7275 4875 X\001
4 0 0 0 0 0 12 0.0000 4 135 135 6675 4275 Y\001
4 0 0 0 0 0 12 0.0000 4 135 120 6300 3525 Z\001
4 0 0 0 0 0 12 0.0000 4 90 90 6150 5100 a\001

View file

@ -1,16 +0,0 @@
#FIG 3.2
Landscape
Center
Inches
Letter
100.00
Single
0
1200 2
5 1 0 1 0 7 0 0 -1 0.000 0 1 0 0 6900.000 3304.688 5100 5700 6975 6300 8700 5700
5 1 1 1 0 7 0 0 -1 4.000 0 0 0 0 6900.000 8100.000 5100 5700 6900 5100 8700 5700
5 1 0 1 0 7 0 0 -1 4.000 0 0 0 0 6900.000 5175.000 5925 5100 6075 4650 6375 4350
5 1 0 1 0 7 0 0 -1 4.000 0 0 0 0 8887.500 5062.500 6600 5325 6600 4800 6675 4425
5 1 0 1 0 7 0 0 -1 4.000 0 1 0 0 6675.000 3975.000 5925 5100 6225 5250 6600 5325
5 1 0 1 0 7 0 0 -1 4.000 0 1 0 0 6600.000 4087.500 6375 4350 6525 4425 6675 4425
1 3 0 1 0 7 0 0 -1 0.000 1 0.0000 6900 5700 1802 1802 6900 5700 8700 5775