1
0
Fork 0

Updates from Tony, mostly to landing gear.

This commit is contained in:
curt 1999-11-15 23:54:07 +00:00
parent 40a1a07730
commit 5bcd8c700b
4 changed files with 222 additions and 202 deletions

View file

@ -147,6 +147,7 @@ void aero( SCALAR dt, int Initialize ) {
static int init = 0; static int init = 0;
static int flap_dir=0; static int flap_dir=0;
static SCALAR lastFlapHandle=0; static SCALAR lastFlapHandle=0;
static SCALAR Ai;
static SCALAR trim_inc = 0.0002; static SCALAR trim_inc = 0.0002;
@ -180,9 +181,8 @@ void aero( SCALAR dt, int Initialize ) {
CLob=0; CLob=0;
Ai=1.24;
/* original */ /* Cdob=0.031; */ Cdob=0.036;
Cdob=0.046;
Cda=0.13; /*Not used*/ Cda=0.13; /*Not used*/
Cdde=0.06; Cdde=0.06;
@ -263,11 +263,13 @@ void aero( SCALAR dt, int Initialize ) {
{ {
if((Flap_handle != lastFlapHandle) && (dt > 0)) { if((Flap_handle != lastFlapHandle) && (dt > 0))
{
Flaps_In_Transit=1; Flaps_In_Transit=1;
} else if(dt <= 0) {
Flap_Position=Flap_handle;
} }
else if(dt <= 0)
Flap_Position=Flap_handle;
lastFlapHandle=Flap_handle; lastFlapHandle=Flap_handle;
if((Flaps_In_Transit) && (dt > 0)) if((Flaps_In_Transit) && (dt > 0))
@ -317,7 +319,7 @@ void aero( SCALAR dt, int Initialize ) {
/*calculate rate derivative nondimensionalization (is that a word?) factors */ /*calculate rate derivative nondimensionalization (is that a word?) factors */
/*hack to avoid divide by zero*/ /*hack to avoid divide by zero*/
/*the dynamic terms might be negligible at low ground speeds anyway*/ /*the dynamic terms are negligible at low ground speeds anyway*/
/* printf("Vinf: %g, Span: %g\n",V_rel_wind,b); /* printf("Vinf: %g, Span: %g\n",V_rel_wind,b);
*/ */
@ -357,12 +359,14 @@ void aero( SCALAR dt, int Initialize ) {
/* printf("FP: %g\n",Flap_Position); /* printf("FP: %g\n",Flap_Position);
printf("CLo: %g\n",CLo); printf("CLo: %g\n",CLo);
printf("Cdo: %g\n",Cdo); printf("Cdo: %g\n",Cdo);
printf("Cmo: %g\n",Cmo); */ printf("Cmo: %g\n",Cmo); */
CL = CLo + CLwbh + (CLadot*Alpha_dot + CLq*Theta_dot)*cbar_2V + CLde*elevator; CL = CLo + CLwbh + (CLadot*Alpha_dot + CLq*Theta_dot)*cbar_2V + CLde*elevator;
cd = Cdo + rPiARe*CL*CL + Cdde*elevator; cd = Cdo + rPiARe*Ai*Ai*CL*CL + Cdde*elevator;
cy = Cybeta*Beta + (Cyp*P_body + Cyr*R_body)*b_2V + Cyda*aileron + Cydr*rudder; cy = Cybeta*Beta + (Cyp*P_body + Cyr*R_body)*b_2V + Cyda*aileron + Cydr*rudder;
cm = Cmo + Cma*Alpha + (Cmq*Q_body + Cmadot*Alpha_dot)*cbar_2V + Cmde*(elevator); cm = Cmo + Cma*Alpha + (Cmq*Q_body + Cmadot*Alpha_dot)*cbar_2V + Cmde*(elevator);

View file

@ -70,18 +70,26 @@ $Header$
extern SIM_CONTROL sim_control_; extern SIM_CONTROL sim_control_;
void engine( SCALAR dt, int init ) { void engine( SCALAR dt, int init ) {
/* if (init) { */
Throttle[3] = Throttle_pct;
/* } */
/* F_X_engine = Throttle[3]*813.4/0.2; */ /* original code */ float v,h,pa;
/* F_Z_engine = Throttle[3]*11.36/0.2; */ /* original code */ float bhp=160;
F_X_engine = Throttle[3]*400/0.83;
F_Z_engine = Throttle[3]*4.9/0.83; Throttle[3] = Throttle_pct;
v=V_rel_wind;
h=Altitude;
if(V_rel_wind < 10)
v=10;
if(Altitude < 0)
h=0;
pa=(0.00144*v + 0.546)*(1 - 1.6E-5*h)*bhp;
if(pa < 0)
pa=0;
F_X_engine= Throttle[3]*(pa*550)/v;
M_m_engine = F_X_engine*0.734*cbar; M_m_engine = F_X_engine*0.734*cbar;
/* 0.734 - estimated (WAGged) location of thrust line in the z-axis*/ /* 0.734 - estimated (WAGged) location of thrust line in the z-axis*/
Throttle_pct = Throttle[3];
} }

View file

@ -36,12 +36,8 @@
$Header$ $Header$
$Log$ $Log$
Revision 1.10 1999/11/03 16:46:24 curt Revision 1.11 1999/11/15 22:54:07 curt
Patches from Tony to enable brakes. Updates from Tony, mostly to landing gear.
Revision 1.9 1999/11/01 18:17:16 curt
c172 updates from Tony. Fix extra yaw when using ailerons. Flaps and elevator
tweaks.
---------------------------------------------------------------------------- ----------------------------------------------------------------------------
@ -71,6 +67,8 @@ tweaks.
#include "ls_generic.h" #include "ls_generic.h"
#include "ls_cockpit.h" #include "ls_cockpit.h"
#define HEIGHT_AGL_WHEEL d_wheel_rwy_local_v[2]
sub3( DATA v1[], DATA v2[], DATA result[] ) sub3( DATA v1[], DATA v2[], DATA result[] )
{ {
@ -115,7 +113,7 @@ clear3( DATA v[] )
gear() gear()
{ {
char rcsid[] = "$Id$"; char rcsid[] = "$Id$";
char gear_strings[3][12]={"nose","right main", "left main"};
/* /*
* Aircraft specific initializations and data goes here * Aircraft specific initializations and data goes here
*/ */
@ -125,14 +123,14 @@ char rcsid[] = "$Id$";
static int num_wheels = NUM_WHEELS; /* number of wheels */ static int num_wheels = NUM_WHEELS; /* number of wheels */
static DATA d_wheel_rp_body_v[NUM_WHEELS][3] = /* X, Y, Z locations */ static DATA d_wheel_rp_body_v[NUM_WHEELS][3] = /* X, Y, Z locations */
{ {
{ 10., 0., 4. }, /* in feet */ { 5, 0., 7.0 }, /*nose*/ /* in feet */
{ -1., 3., 4. }, { -2.0, 3.6, 6.5 }, /*right main*/
{ -1., -3., 4. } { -2.0, -3.6, 6.5 } /*left main*/
}; };
static DATA spring_constant[NUM_WHEELS] = /* springiness, lbs/ft */ static DATA spring_constant[NUM_WHEELS] = /* springiness, lbs/ft */
{ 1500., 5000., 5000. }; { 1500., 5000., 5000. };
static DATA spring_damping[NUM_WHEELS] = /* damping, lbs/ft/sec */ static DATA spring_damping[NUM_WHEELS] = /* damping, lbs/ft/sec */
{ 100., 150., 150. }; { 1000., 1500., 1500. };
static DATA percent_brake[NUM_WHEELS] = /* percent applied braking */ static DATA percent_brake[NUM_WHEELS] = /* percent applied braking */
{ 0., 0., 0. }; /* 0 = none, 1 = full */ { 0., 0., 0. }; /* 0 = none, 1 = full */
static DATA caster_angle_rad[NUM_WHEELS] = /* steerable tires - in */ static DATA caster_angle_rad[NUM_WHEELS] = /* steerable tires - in */
@ -202,117 +200,134 @@ char rcsid[] = "$Id$";
percent_brake[1] = Brake_pct; /* replace with cockpit brake handle connection code */ percent_brake[1] = Brake_pct; /* replace with cockpit brake handle connection code */
percent_brake[2] = percent_brake[1]; percent_brake[2] = percent_brake[1];
caster_angle_rad[0] = 0.03*Rudder_pedal; caster_angle_rad[0] = 0.52*Rudder_pedal;
for (i=0;i<num_wheels;i++) /* Loop for each wheel */
for (i=0;i<num_wheels;i++) /* Loop for each wheel */
{ {
/*========================================*/ /* printf("%s:\n",gear_strings[i]); */
/* Calculate wheel position w.r.t. runway */
/*========================================*/
/* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */ /*========================================*/
/* Calculate wheel position w.r.t. runway */
/*========================================*/
sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v ); /* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
/* then converting to local (North-East-Down) axes... */ sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
multtrans3x3by3( T_local_to_body_m, d_wheel_cg_body_v, d_wheel_cg_local_v ); /* then converting to local (North-East-Down) axes... */
/* Runway axes correction - third element is Altitude, not (-)Z... */ multtrans3x3by3( T_local_to_body_m, d_wheel_cg_body_v, d_wheel_cg_local_v );
d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */ /* Runway axes correction - third element is Altitude, not (-)Z... */
/* Add wheel offset to cg location in local axes */ d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v ); /* Add wheel offset to cg location in local axes */
/* remove Runway axes correction so right hand rule applies */ add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */ /* remove Runway axes correction so right hand rule applies */
/*============================*/ d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
/* Calculate wheel velocities */
/*============================*/
/* contribution due to angular rates */ /*============================*/
/* Calculate wheel velocities */
/*============================*/
cross3( Omega_body_v, d_wheel_cg_body_v, temp3a ); /* contribution due to angular rates */
/* transform into local axes */ cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
multtrans3x3by3( T_local_to_body_m, temp3a, temp3b ); /* transform into local axes */
/* plus contribution due to cg velocities */ multtrans3x3by3( T_local_to_body_m, temp3a, temp3b );
add3( temp3b, V_local_rel_ground_v, v_wheel_local_v ); /* plus contribution due to cg velocities */
add3( temp3b, V_local_rel_ground_v, v_wheel_local_v );
clear3(f_wheel_local_v);
reaction_normal_force=0;
if( HEIGHT_AGL_WHEEL < 0. )
/*the wheel is underground -- which implies ground contact
so calculate reaction forces */
{
/*===========================================*/
/* Calculate forces & moments for this wheel */
/*===========================================*/
/* Add any anticipation, or frame lead/prediction, here... */
/* no lead used at present */
/* Calculate sideward and forward velocities of the wheel
in the runway plane */
cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
v_wheel_forward = v_wheel_local_v[0]*cos_wheel_hdg_angle
+ v_wheel_local_v[1]*sin_wheel_hdg_angle;
v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
- v_wheel_local_v[0]*sin_wheel_hdg_angle;
/* Calculate normal load force (simple spring constant) */
reaction_normal_force = 0.;
reaction_normal_force = spring_constant[i]*HEIGHT_AGL_WHEEL
- v_wheel_local_v[2]*spring_damping[i];
if (reaction_normal_force > 0.) reaction_normal_force = 0.;
/* to prevent damping component from swamping spring component */
/*===========================================*/ /* Calculate friction coefficients */
/* Calculate forces & moments for this wheel */
/*===========================================*/
/* Add any anticipation, or frame lead/prediction, here... */ forward_mu = (max_brake_mu - rolling_mu)*percent_brake[i] + rolling_mu;
abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
sideward_mu = sliding_mu;
if (abs_v_wheel_sideward < skid_v)
sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
/* no lead used at present */ /* Calculate foreward and sideward reaction forces */
/* Calculate sideward and forward velocities of the wheel forward_wheel_force = forward_mu*reaction_normal_force;
in the runway plane */ sideward_wheel_force = sideward_mu*reaction_normal_force;
if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
/* printf("\tFfwdgear: %g Fsidegear: %g\n",forward_wheel_force,sideward_wheel_force);
*/
/* Rotate into local (N-E-D) axes */
cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi); f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi); - sideward_wheel_force*sin_wheel_hdg_angle;
f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
+ sideward_wheel_force*cos_wheel_hdg_angle;
f_wheel_local_v[2] = reaction_normal_force;
v_wheel_forward = v_wheel_local_v[0]*cos_wheel_hdg_angle /* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
+ v_wheel_local_v[1]*sin_wheel_hdg_angle; mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
- v_wheel_local_v[0]*sin_wheel_hdg_angle;
/* Calculate normal load force (simple spring constant) */ /* Calculate moments from force and offsets in body axes */
reaction_normal_force = 0.; cross3( d_wheel_cg_body_v, tempF, tempM );
if( d_wheel_rwy_local_v[2] < 0. )
{
reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
- v_wheel_local_v[2]*spring_damping[i];
if (reaction_normal_force > 0.) reaction_normal_force = 0.;
/* to prevent damping component from swamping spring component */
}
/* Calculate friction coefficients */ /* Sum forces and moments across all wheels */
forward_mu = (max_brake_mu - rolling_mu)*percent_brake[i] + rolling_mu; add3( tempF, F_gear_v, F_gear_v );
abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward); add3( tempM, M_gear_v, M_gear_v );
sideward_mu = sliding_mu;
if (abs_v_wheel_sideward < skid_v)
sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
/* Calculate foreward and sideward reaction forces */
forward_wheel_force = forward_mu*reaction_normal_force; }
sideward_wheel_force = sideward_mu*reaction_normal_force;
if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
/* Rotate into local (N-E-D) axes */
f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
- sideward_wheel_force*sin_wheel_hdg_angle;
f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
+ sideward_wheel_force*cos_wheel_hdg_angle;
f_wheel_local_v[2] = reaction_normal_force;
/* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */ /* printf("\tN: %g,dZrwy: %g\n",reaction_normal_force,HEIGHT_AGL_WHEEL);
printf("\tFxgear: %g Fygear: %g, Fzgear: %g\n",F_X_gear,F_Y_gear,F_Z_gear);
printf("\tMgear: %g, Lgear: %g, Ngear: %g\n\n",M_m_gear,M_l_gear,M_n_gear); */
mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
/* Calculate moments from force and offsets in body axes */
cross3( d_wheel_cg_body_v, tempF, tempM );
/* Sum forces and moments across all wheels */
add3( tempF, F_gear_v, F_gear_v );
add3( tempM, M_gear_v, M_gear_v );
} }
} }

View file

@ -43,22 +43,22 @@
void do_trims(int kmax,FILE *out,InitialConditions IC) void do_trims(int kmax,FILE *out,InitialConditions IC)
{ {
int k=0,i,j; int bad_trim=0,i,j;
double speed,elevator,cmcl,maxspeed; double speed,elevator,cmcl,maxspeed;
out=fopen("trims.out","w"); out=fopen("trims.out","w");
speed=55; speed=55;
for(j=0;j<=30;j+=10) for(j=0;j<=0;j+=10)
{ {
IC.flap_handle=j; IC.flap_handle=j;
for(i=1;i<=5;i++) for(i=4;i<=4;i++)
{ {
switch(i) switch(i)
{ {
case 1: IC.weight=1500;IC.cg=0.155;break; case 1: IC.weight=1500;IC.cg=0.155;break;
case 2: IC.weight=1500;IC.cg=0.364;break; case 2: IC.weight=1500;IC.cg=0.364;break;
case 3: IC.weight=1950;IC.cg=0.155;break; case 3: IC.weight=1950;IC.cg=0.155;break;
case 4: IC.weight=2550;IC.cg=0.257;break; case 4: IC.weight=2400;IC.cg=0.257;break;
case 5: IC.weight=2550;IC.cg=0.364;break; case 5: IC.weight=2550;IC.cg=0.364;break;
} }
@ -70,7 +70,7 @@ void do_trims(int kmax,FILE *out,InitialConditions IC)
IC.vc=speed; IC.vc=speed;
Long_control=0;Theta=0;Throttle_pct=0.0; Long_control=0;Theta=0;Throttle_pct=0.0;
k=trim_long(kmax,IC); bad_trim=trim_long(kmax,IC);
if(Long_control <= 0) if(Long_control <= 0)
elevator=Long_control*28; elevator=Long_control*28;
else else
@ -79,15 +79,15 @@ void do_trims(int kmax,FILE *out,InitialConditions IC)
{ {
cmcl=cm / CL; cmcl=cm / CL;
} }
if(k < kmax) if(!bad_trim)
{ {
fprintf(out,"%g,%g,%g,%g,%g,%d",V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control,Throttle_pct,Flap_Position,k); fprintf(out,"%g,%g,%g,%g,%g",V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control,Throttle_pct,Flap_Position);
fprintf(out,",%g,%g,%g,%g,%g\n",CL,cm,cmcl,Weight,Cg); fprintf(out,",%g,%g,%g,%g,%g\n",CL,cm,cmcl,Weight,Cg);
/* printf("%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n",V_calibrated_kts,Alpha*RAD_TO_DEG,elevator,CL,cm,Cmo,Cma,Cmde,Mass*32.174,Dx_cg); /* printf("%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n",V_calibrated_kts,Alpha*RAD_TO_DEG,elevator,CL,cm,Cmo,Cma,Cmde,Mass*32.174,Dx_cg);
*/ } */ }
else else
{ {
printf("kmax exceeded at: %g knots, %g lbs, %g %%MAC, Flaps: %g\n",V_calibrated_kts,Weight,Cg,Flap_Position); printf("kmax exceeded at: %g knots, %g lbs, %g %%MAC, Flaps: %g\n",V_true_kts,Weight,Cg,Flap_Position);
printf("wdot: %g, udot: %g, qdot: %g\n",W_dot_body,U_dot_body,Q_dot_body); printf("wdot: %g, udot: %g, qdot: %g\n",W_dot_body,U_dot_body,Q_dot_body);
printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha*RAD_TO_DEG,Throttle_pct,Long_control); printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha*RAD_TO_DEG,Throttle_pct,Long_control);
} }
@ -98,6 +98,37 @@ void do_trims(int kmax,FILE *out,InitialConditions IC)
fclose(out); fclose(out);
} }
find_max_alt(int kmax,InitialConditions IC)
{
int bad_trim=0,i=0;
float min=0,max=30000;
IC.use_gamma_tmg=1;
IC.gamma=0;
IC.vc=73;
IC.altitude==1000;
while(!bad_trim)
{
bad_trim=trim_long(200,IC);
IC.altitude+=1000;
}
while((fabs(max-min) > 100) && (i < 50))
{
IC.altitude=(max-min)/2 + min;
printf("\nIC.altitude: %g, max: %g, min: %g, bad_trim: %d\n",IC.altitude,max,min,bad_trim);
printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha*RAD_TO_DEG,Throttle_pct,Long_control);
bad_trim=trim_long(200,IC);
if(bad_trim == 1 )
max=IC.altitude;
else
min=IC.altitude;
i++;
}
}
void find_trim_stall(int kmax,FILE *out,InitialConditions IC) void find_trim_stall(int kmax,FILE *out,InitialConditions IC)
{ {
int k=0,i,j; int k=0,i,j;
@ -213,79 +244,41 @@ int main(int argc, char *argv[]) {
IC.latitude=47.5299892; //BFI IC.latitude=47.5299892; //BFI
IC.longitude=122.3019561; IC.longitude=122.3019561;
Runway_altitude = 18.0; Runway_altitude = 18.0;
IC.altitude=strtod(argv[2],NULL); IC.altitude=strtod(argv[2],NULL);
printf("h: %g, argv[2]: %s\n",IC.altitude,argv[2]);
IC.vc=strtod(argv[1],NULL); IC.vc=strtod(argv[1],NULL);
IC.alpha=0; IC.alpha=0;
IC.beta=0; IC.beta=0;
IC.gamma=strtod(argv[3],NULL); IC.theta=strtod(argv[3],NULL);
IC.use_gamma_tmg=1; IC.use_gamma_tmg=0;
IC.phi=0; IC.phi=strtod(argv[4],NULL);
IC.psi=10; IC.psi=0;
IC.weight=2300; IC.weight=2400;
IC.cg=0.25; IC.cg=0.25;
IC.flap_handle=0; IC.flap_handle=0;
IC.long_control=strtod(argv[4],NULL); IC.long_control=0;
IC.rudder_pedal=0; IC.rudder_pedal=0;
printf("IC.vc: %g\n",IC.vc); printf("IC.vc: %g\n",IC.vc);
ls_ForceAltitude(IC.altitude); ls_ForceAltitude(IC.altitude);
fgLaRCsimInit(0.01); fgLaRCsimInit(0.01);
printf("\nLong_control: %g\n\n",Long_control);
IC.cg=0.155;
IC.alpha=-5;
setIC(IC);ls_loop(0.0,-1);
newcm=CLwbh*(IC.cg - 0.557);
lastcm=newcm;
out=fopen("cmcl.out","w");
while(IC.alpha < 22)
{
IC.alpha+=1;
setIC(IC);ls_loop(0.0,-1);
newcm=CLwbh*(IC.cg - 0.557);
cmalpha=newcm-lastcm;
printf("alpha: %4.0f, CL: %5.2f, Cm: %5.2f, Cma: %7.4f\n",Alpha*RAD_TO_DEG,CLwbh,newcm,cmalpha);
fprintf(out,"%g %g\n",newcm,CLwbh);
lastcm=newcm;
}
fclose(out);
/* find_trim_stall(200,out,IC);
IC.vc=120;
IC.altitude=8000;
IC.weight=2300;
IC.cg=0.25;
IC.flap_handle=0;
setIC(IC);
printIC(IC);
k=trim_long(100,IC);
printf("Flap_handle: %g, Flap_Position: %g\n",Flap_handle,Flap_Position);
printf("k: %d, %g knots, %g lbs, %g %%MAC\n",k,V_calibrated_kts,Weight,Cg);
printf("wdot: %g, udot: %g, qdot: %g\n",W_dot_body,U_dot_body,Q_dot_body);
printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha,Throttle_pct,Long_control);
printf("Cme: %g, elevator: %g, Cmde: %g\n",elevator*Cmde,elevator,Cmde);
IC.cg=0.155;
setIC(IC);
k=trim_long(100,IC);
printf("Flap_handle: %g, Flap_Position: %g\n",Flap_handle,Flap_Position);
printf("k: %d, %g knots, %g lbs, %g %%MAC\n",k,V_calibrated_kts,Weight,Cg);
printf("wdot: %g, udot: %g, qdot: %g\n",W_dot_body,U_dot_body,Q_dot_body);
printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha,Throttle_pct,Long_control);
printf("Cme: %g, elevator: %g, Cmde: %g\n",elevator*Cmde,elevator,Cmde);
IC.cg=0.364;
setIC(IC); setIC(IC);
k=trim_long(100,IC); ls_loop(0,-1);
printf("\nAltitude: %g\n\n",Altitude);
i=0;
while(i <= 1)
{
if(i > 0)
Brake_pct=1;
ls_update(1);
printf("\tAltitude: %g, Theta: %g, Phi: %g\n\n",Altitude,Theta*RAD_TO_DEG,Phi*RAD_TO_DEG);
i++;
}
printf("w: %g, u: %g, q: %g\n",W_body,U_body,Q_body);
printf("Flap_handle: %g, Flap_Position: %g\n",Flap_handle,Flap_Position);
/*printf("Flap_handle: %g, Flap_Position: %g\n",Flap_handle,Flap_Position);
printf("k: %d, %g knots, %g lbs, %g %%MAC\n",k,V_calibrated_kts,Weight,Cg); printf("k: %d, %g knots, %g lbs, %g %%MAC\n",k,V_calibrated_kts,Weight,Cg);
printf("wdot: %g, udot: %g, qdot: %g\n",W_dot_body,U_dot_body,Q_dot_body); printf("wdot: %g, udot: %g, qdot: %g\n",W_dot_body,U_dot_body,Q_dot_body);
printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha,Throttle_pct,Long_control); printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha,Throttle_pct,Long_control);
@ -297,7 +290,7 @@ int main(int argc, char *argv[]) {
/* do_trims(400,out,IC); */
/* ls_loop(0.0,-1); /* ls_loop(0.0,-1);