Merge /u/jsb1685/flightgear/ branch yasim into next
https://sourceforge.net/p/flightgear/flightgear/merge-requests/87/
This commit is contained in:
commit
503907be34
9 changed files with 181 additions and 117 deletions
|
@ -57,8 +57,10 @@ Airplane::Airplane()
|
|||
|
||||
_failureMsg = 0;
|
||||
_wingsN = 0;
|
||||
_cgMaxX = -1e6;
|
||||
_cgMinX = 1e6;
|
||||
_cgMax = -1e6;
|
||||
_cgMin = 1e6;
|
||||
_cgDesiredMax = 0.33f; // FIXME find reasonable default value
|
||||
_cgDesiredMin = 0.1f; // FIXME find reasonable default value
|
||||
}
|
||||
|
||||
Airplane::~Airplane()
|
||||
|
@ -115,7 +117,7 @@ void Airplane::calcFuelWeights()
|
|||
}
|
||||
}
|
||||
|
||||
void Airplane::getPilotAccel(float* out)
|
||||
const void Airplane::getPilotAccel(float* out)
|
||||
{
|
||||
State* s = _model.getState();
|
||||
|
||||
|
@ -125,14 +127,13 @@ void Airplane::getPilotAccel(float* out)
|
|||
Math::vmul33(s->orient, out, out);
|
||||
out[0] = -out[0];
|
||||
|
||||
// The regular acceleration
|
||||
float tmp[3];
|
||||
float acceleration[3];
|
||||
// Convert to aircraft coordinates
|
||||
Math::vmul33(s->orient, s->acc, tmp);
|
||||
tmp[1] = -tmp[1];
|
||||
tmp[2] = -tmp[2];
|
||||
Math::vmul33(s->orient, s->acc, acceleration);
|
||||
acceleration[1] = -acceleration[1];
|
||||
acceleration[2] = -acceleration[2];
|
||||
|
||||
Math::add3(tmp, out, out);
|
||||
Math::add3(acceleration, out, out);
|
||||
|
||||
// FIXME: rotational & centripetal acceleration needed
|
||||
}
|
||||
|
@ -240,10 +241,6 @@ void Airplane::addGear(Gear* gear)
|
|||
g->gear = gear;
|
||||
g->surf = 0;
|
||||
_gears.add(g);
|
||||
float pos[3];
|
||||
g->gear->getPosition(pos);
|
||||
if (pos[0] > _cgMaxX) _cgMaxX = pos[0];
|
||||
if (pos[0] < _cgMinX) _cgMinX = pos[0];
|
||||
}
|
||||
|
||||
void Airplane::addThruster(Thruster* thruster, float mass, float* cg)
|
||||
|
@ -371,6 +368,9 @@ float Airplane::compileWing(Wing* w)
|
|||
_wingsN->getNode("wing-area", true)->setFloatValue(w->getArea());
|
||||
_wingsN->getNode("aspect-ratio", true)->setFloatValue(w->getAspectRatio());
|
||||
_wingsN->getNode("standard-mean-chord", true)->setFloatValue(w->getSMC());
|
||||
_wingsN->getNode("mac", true)->setFloatValue(w->getMAC());
|
||||
_wingsN->getNode("mac-x", true)->setFloatValue(w->getMACx());
|
||||
_wingsN->getNode("mac-y", true)->setFloatValue(w->getMACy());
|
||||
}
|
||||
|
||||
float wgt = 0;
|
||||
|
@ -582,7 +582,6 @@ void Airplane::compile()
|
|||
RigidBody* body = _model.getBody();
|
||||
int firstMass = body->numMasses();
|
||||
SGPropertyNode_ptr baseN = fgGetNode("/fdm/yasim/model/wings", true);
|
||||
SGPropertyNode_ptr n;
|
||||
|
||||
// Generate the point masses for the plane. Just use unitless
|
||||
// numbers for a first pass, then go back through and rescale to
|
||||
|
@ -594,6 +593,15 @@ void Airplane::compile()
|
|||
{
|
||||
if (baseN != 0) _wingsN = baseN->getChild("wing", 0, true);
|
||||
aeroWgt += compileWing(_wing);
|
||||
|
||||
// convert % to absolute x coordinates
|
||||
_cgDesiredFront = _wing->getMACx() - _wing->getMAC()*_cgDesiredMin;
|
||||
_cgDesiredAft = _wing->getMACx() - _wing->getMAC()*_cgDesiredMax;
|
||||
if (baseN != 0) {
|
||||
SGPropertyNode_ptr n = fgGetNode("/fdm/yasim/model", true);
|
||||
n->getNode("cg-range-front", true)->setFloatValue(_cgDesiredFront);
|
||||
n->getNode("cg-range-aft", true)->setFloatValue(_cgDesiredAft);
|
||||
}
|
||||
}
|
||||
if (_tail)
|
||||
{
|
||||
|
@ -649,25 +657,25 @@ void Airplane::compile()
|
|||
tr->handle = _model.addThruster(tr->thruster);
|
||||
}
|
||||
|
||||
if(_wing) {
|
||||
// Ground effect
|
||||
// If a double tapered wing is modelled with wing and mstab, wing must
|
||||
// be outboard to get correct wingspan.
|
||||
if(_wing) {
|
||||
float gepos[3];
|
||||
float pos[3];
|
||||
float gespan = 0;
|
||||
gespan = _wing->getSpan();
|
||||
_wing->getBase(gepos);
|
||||
_wing->getBase(pos);
|
||||
if(!isVersionOrNewer( Version::YASIM_VERSION_2017_2 )) {
|
||||
//old code
|
||||
//float span = _length * Math::cos(_sweep) * Math::cos(_dihedral);
|
||||
//span = 2*(span + Math::abs(_base[2]));
|
||||
gespan -= 2*gepos[1]; // cut away base (y-distance)
|
||||
gespan += 2*Math::abs(gepos[2]); // add (wrong) z-distance
|
||||
gespan -= 2*pos[1]; // cut away base (y-distance)
|
||||
gespan += 2*Math::abs(pos[2]); // add (wrong) z-distance
|
||||
}
|
||||
if (baseN != 0)
|
||||
baseN->getChild("wing", 0)->getNode("gnd-eff-span", true)->setFloatValue(gespan);
|
||||
// where does the hard coded factor 0.15 come from?
|
||||
_model.setGroundEffect(gepos, gespan, 0.15f);
|
||||
_model.setGroundEffect(pos, gespan, 0.15f);
|
||||
}
|
||||
|
||||
// solve function below resets failure message
|
||||
|
@ -675,6 +683,8 @@ void Airplane::compile()
|
|||
if (_failureMsg) return;
|
||||
|
||||
solveGear();
|
||||
calculateCGHardLimits();
|
||||
|
||||
if(_wing && _tail) solve();
|
||||
else
|
||||
{
|
||||
|
@ -742,6 +752,19 @@ void Airplane::solveGear()
|
|||
}
|
||||
}
|
||||
|
||||
void Airplane::calculateCGHardLimits()
|
||||
{
|
||||
_cgMax = -1e6;
|
||||
_cgMin = 1e6;
|
||||
for (int i = 0; i < _gears.size(); i++) {
|
||||
GearRec* gr = (GearRec*)_gears.get(i);
|
||||
float pos[3];
|
||||
gr->gear->getPosition(pos);
|
||||
if (pos[0] > _cgMax) _cgMax = pos[0];
|
||||
if (pos[0] < _cgMin) _cgMin = pos[0];
|
||||
}
|
||||
}
|
||||
|
||||
void Airplane::initEngines()
|
||||
{
|
||||
for(int i=0; i<_thrusters.size(); i++) {
|
||||
|
@ -770,11 +793,11 @@ void Airplane::setupWeights(bool isApproach)
|
|||
}
|
||||
|
||||
/// load values for controls as defined in cruise configuration
|
||||
void Airplane::loadCruiseControls()
|
||||
void Airplane::loadControls(Vector& controls)
|
||||
{
|
||||
_controls.reset();
|
||||
for(int i=0; i<_cruiseControls.size(); i++) {
|
||||
Control* c = (Control*)_cruiseControls.get(i);
|
||||
for(int i=0; i < controls.size(); i++) {
|
||||
Control* c = (Control*)controls.get(i);
|
||||
_controls.setInput(c->control, c->val);
|
||||
}
|
||||
_controls.applyControls();
|
||||
|
@ -789,7 +812,7 @@ void Airplane::runCruise()
|
|||
Atmosphere::calcStdDensity(_cruiseP, _cruiseT));
|
||||
|
||||
// The control configuration
|
||||
loadCruiseControls();
|
||||
loadControls(_cruiseControls);
|
||||
|
||||
// The local wind
|
||||
float wind[3];
|
||||
|
@ -818,17 +841,6 @@ void Airplane::runCruise()
|
|||
_model.calcForces(&_cruiseState);
|
||||
}
|
||||
|
||||
/// load values for controls as defined in approach configuration
|
||||
void Airplane::loadApproachControls()
|
||||
{
|
||||
_controls.reset();
|
||||
for(int i=0; i<_approachControls.size(); i++) {
|
||||
Control* c = (Control*)_approachControls.get(i);
|
||||
_controls.setInput(c->control, c->val);
|
||||
}
|
||||
_controls.applyControls();
|
||||
}
|
||||
|
||||
/// Helper for solve()
|
||||
void Airplane::runApproach()
|
||||
{
|
||||
|
@ -838,7 +850,7 @@ void Airplane::runApproach()
|
|||
Atmosphere::calcStdDensity(_approachP, _approachT));
|
||||
|
||||
// The control configuration
|
||||
loadApproachControls();
|
||||
loadControls(_approachControls);
|
||||
|
||||
// The local wind
|
||||
float wind[3];
|
||||
|
@ -846,7 +858,6 @@ void Airplane::runApproach()
|
|||
Math::vmul33(_approachState.orient, wind, wind);
|
||||
|
||||
setFuelFraction(_approachFuel);
|
||||
|
||||
setupWeights(true);
|
||||
|
||||
// Run the thrusters until they get to a stable setting. FIXME:
|
||||
|
@ -1105,4 +1116,11 @@ void Airplane::solveHelicopter()
|
|||
|
||||
}
|
||||
|
||||
const float Airplane::getCGMAC()
|
||||
{
|
||||
float cg[3];
|
||||
_model.getBody()->getCG(cg);
|
||||
return (_wing->getMACx() - cg[0]) / _wing->getMAC();
|
||||
}
|
||||
|
||||
}; // namespace yasim
|
||||
|
|
|
@ -33,11 +33,12 @@ public:
|
|||
void setPilotPos(float* pos) { Math::set3(pos, _pilotPos); }
|
||||
void getPilotPos(float* out) { Math::set3(_pilotPos, out); }
|
||||
|
||||
void getPilotAccel(float* out);
|
||||
const void getPilotAccel(float* out);
|
||||
|
||||
void setEmptyWeight(float weight) { _emptyWeight = weight; }
|
||||
|
||||
void setWing(Wing* wing) { _wing = wing; }
|
||||
Wing* getWing() { return _wing; }
|
||||
void setTail(Wing* tail) { _tail = tail; }
|
||||
void addVStab(Wing* vstab) { _vstabs.add(vstab); }
|
||||
|
||||
|
@ -64,47 +65,53 @@ public:
|
|||
|
||||
void addSolutionWeight(bool approach, int idx, float wgt);
|
||||
|
||||
int numGear() { return _gears.size(); }
|
||||
const int numGear() { return _gears.size(); }
|
||||
Gear* getGear(int g) { return ((GearRec*)_gears.get(g))->gear; }
|
||||
Hook* getHook() { return _model.getHook(); }
|
||||
int numHitches() { return _hitches.size(); }
|
||||
const int numHitches() { return _hitches.size(); }
|
||||
Hitch* getHitch(int h);
|
||||
Rotorgear* getRotorgear() { return _model.getRotorgear(); }
|
||||
Launchbar* getLaunchbar() { return _model.getLaunchbar(); }
|
||||
|
||||
int numThrusters() { return _thrusters.size(); }
|
||||
const int numThrusters() { return _thrusters.size(); }
|
||||
Thruster* getThruster(int n) {
|
||||
return ((ThrustRec*)_thrusters.get(n))->thruster; }
|
||||
|
||||
int numTanks() { return _tanks.size(); }
|
||||
const int numTanks() { return _tanks.size(); }
|
||||
void setFuelFraction(float frac); // 0-1, total amount of fuel
|
||||
// get fuel in kg
|
||||
float getFuel(int tank) { return ((Tank*)_tanks.get(tank))->fill; }
|
||||
const float getFuel(int tank) { return ((Tank*)_tanks.get(tank))->fill; }
|
||||
// set fuel in kg
|
||||
float setFuel(int tank, float fuel) { return ((Tank*)_tanks.get(tank))->fill = fuel; }
|
||||
// get fuel density in kg/m^3
|
||||
float getFuelDensity(int tank) { return ((Tank*)_tanks.get(tank))->density; }
|
||||
float getTankCapacity(int tank) { return ((Tank*)_tanks.get(tank))->cap; }
|
||||
const float getFuelDensity(int tank) { return ((Tank*)_tanks.get(tank))->density; }
|
||||
const float getTankCapacity(int tank) { return ((Tank*)_tanks.get(tank))->cap; }
|
||||
|
||||
void compile(); // generate point masses & such, then solve
|
||||
void initEngines();
|
||||
void stabilizeThrust();
|
||||
|
||||
// Solution output values
|
||||
int getSolutionIterations() { return _solutionIterations; }
|
||||
float getDragCoefficient() { return _dragFactor; }
|
||||
float getLiftRatio() { return _liftRatio; }
|
||||
float getCruiseAoA() { return _cruiseAoA; }
|
||||
float getTailIncidence() { return _tailIncidence; }
|
||||
float getApproachElevator() { return _approachElevator.val; }
|
||||
const int getSolutionIterations() { return _solutionIterations; }
|
||||
const float getDragCoefficient() { return _dragFactor; }
|
||||
const float getLiftRatio() { return _liftRatio; }
|
||||
const float getCruiseAoA() { return _cruiseAoA; }
|
||||
const float getTailIncidence() { return _tailIncidence; }
|
||||
const float getApproachElevator() { return _approachElevator.val; }
|
||||
const char* getFailureMsg() { return _failureMsg; }
|
||||
|
||||
static void setupState(const float aoa, const float speed, const float gla, yasim::State* s); // utility
|
||||
void loadApproachControls();
|
||||
void loadCruiseControls();
|
||||
void loadApproachControls() { loadControls(_approachControls); }
|
||||
void loadCruiseControls() { loadControls(_cruiseControls); }
|
||||
|
||||
float getCGMinX() { return _cgMinX; }
|
||||
float getCGMaxX() { return _cgMaxX; }
|
||||
const float getCGHardLimitXMin() { return _cgMin; } // get min x-coordinate for c.g (from main gear)
|
||||
const float getCGHardLimitXMax() { return _cgMax; } // get max x-coordinate for c.g (from nose gear)
|
||||
const float getCGMAC(); // return c.g. x as fraction of MAC
|
||||
// set desired range for C.G. in % of MAC, 0% = leading edge, 100% trailing edge
|
||||
void setDesiredCGRangeInPercentOfMAC(float MACPercentMin, float MACPercentMax) { _cgDesiredMin = MACPercentMin; _cgDesiredMax = MACPercentMax; }
|
||||
const float getCGSoftLimitXMin() { return _cgDesiredAft; } // get x-coordinate limit calculated from MAC and setCGRange values
|
||||
const float getCGSoftLimitXMax() { return _cgDesiredFront; } // get x-coordinate limit calculated from MAC and setCGRange values
|
||||
void setAutoBallast(bool allowed) { _autoBallast = allowed; }
|
||||
|
||||
private:
|
||||
struct Tank { float pos[3]; float cap; float fill;
|
||||
|
@ -119,6 +126,7 @@ private:
|
|||
struct SolveWeight { bool approach; int idx; float wgt; };
|
||||
struct ContactRec { Gear* gear; float p[3]; };
|
||||
|
||||
void loadControls(Vector &controls);
|
||||
void runCruise();
|
||||
void runApproach();
|
||||
void solveGear();
|
||||
|
@ -135,6 +143,7 @@ private:
|
|||
float normFactor(float f);
|
||||
void updateGearState();
|
||||
void setupWeights(bool isApproach);
|
||||
void calculateCGHardLimits();
|
||||
|
||||
Model _model;
|
||||
ControlMap _controls;
|
||||
|
@ -186,9 +195,13 @@ private:
|
|||
Control _approachElevator;
|
||||
const char* _failureMsg;
|
||||
|
||||
// hard limits for cg from gear positions
|
||||
float _cgMaxX;
|
||||
float _cgMinX;
|
||||
float _cgMax; // hard limits for cg from gear position
|
||||
float _cgMin; // hard limits for cg from gear position
|
||||
float _cgDesiredMax; // desired cg max in %MAC from config
|
||||
float _cgDesiredMin; // desired cg min in %MAC from config
|
||||
float _cgDesiredFront; // calculated desired cg x max
|
||||
float _cgDesiredAft; // calculated desired cg x min
|
||||
bool _autoBallast = false;
|
||||
};
|
||||
|
||||
}; // namespace yasim
|
||||
|
|
|
@ -133,11 +133,12 @@ void FGFDM::init()
|
|||
|
||||
// write some compile time information to property tree
|
||||
_yasimN->getNode("config-version",true)->setIntValue(_airplane.getVersion());
|
||||
_yasimN->getNode("model/cg-x-min",true)->setFloatValue(_airplane.getCGMinX());
|
||||
_yasimN->getNode("model/cg-x-max",true)->setFloatValue(_airplane.getCGMaxX());
|
||||
_yasimN->getNode("model/cg-x-min",true)->setFloatValue(_airplane.getCGHardLimitXMin());
|
||||
_yasimN->getNode("model/cg-x-max",true)->setFloatValue(_airplane.getCGHardLimitXMax());
|
||||
|
||||
// prepare nodes for write at runtime
|
||||
_cg_x = _yasimN->getNode("cg-x-m", true);
|
||||
_cg_xmacN = _yasimN->getNode("cg-x-mac", true);
|
||||
_cg_y = _yasimN->getNode("cg-y-m", true);
|
||||
_cg_z = _yasimN->getNode("cg-z-m", true);
|
||||
_vxN = _yasimN->getNode("velocities/v-x", true);
|
||||
|
@ -258,6 +259,10 @@ void FGFDM::startElement(const char* name, const XMLAttributes &atts)
|
|||
if( !_airplane.isVersionOrNewer( Version::YASIM_VERSION_CURRENT ) ) {
|
||||
SG_LOG(SG_FLIGHT, SG_DEV_ALERT, "This aircraft does not use the latest yasim configuration version.");
|
||||
}
|
||||
_airplane.setDesiredCGRangeInPercentOfMAC(attrf(a, "cg-min", 0.1f), attrf(a, "cg-max", 0.3f)); //FIXME find reasonable defaults
|
||||
if (attrb(a, "auto-ballast")) {
|
||||
_airplane.setAutoBallast(true);
|
||||
}
|
||||
} else if(eq(name, "approach")) {
|
||||
float spd, alt = 0;
|
||||
if (a->hasAttribute("speed")) { spd = attrf(a, "speed") * KTS2MPS; }
|
||||
|
@ -691,6 +696,7 @@ void FGFDM::setOutputProperties(float dt)
|
|||
_cg_x->setFloatValue(cg[0]);
|
||||
_cg_y->setFloatValue(cg[1]);
|
||||
_cg_z->setFloatValue(cg[2]);
|
||||
_cg_xmacN->setFloatValue(_airplane.getCGMAC());
|
||||
|
||||
State* s = _airplane.getModel()->getState();
|
||||
float v[3], acc[3], rot[3], racc[3];
|
||||
|
|
|
@ -118,6 +118,7 @@ private:
|
|||
SGPropertyNode_ptr _arxN;
|
||||
SGPropertyNode_ptr _aryN;
|
||||
SGPropertyNode_ptr _arzN;
|
||||
SGPropertyNode_ptr _cg_xmacN;
|
||||
};
|
||||
|
||||
}; // namespace yasim
|
||||
|
|
|
@ -73,13 +73,14 @@ Model::Model()
|
|||
_global_ground[0] = 0; _global_ground[1] = 0; _global_ground[2] = 1;
|
||||
_global_ground[3] = -100000;
|
||||
_modelN = fgGetNode("/fdm/yasim/forces", true);
|
||||
_f0xN = _modelN->getNode("f0-aero-x-drag", true);
|
||||
_f0yN = _modelN->getNode("f0-aero-y-side", true);
|
||||
_f0zN = _modelN->getNode("f0-aero-z-lift", true);
|
||||
_gefxN = _modelN->getNode("gndeff-f-x", true);
|
||||
_gefyN = _modelN->getNode("gndeff-f-y", true);
|
||||
_gefzN = _modelN->getNode("gndeff-f-z", true);
|
||||
_wgdistN = _modelN->getNode("wing-gnd-dist", true);
|
||||
_fAeroXN = _modelN->getNode("f-x-drag", true);
|
||||
_fAeroYN = _modelN->getNode("f-y-side", true);
|
||||
_fAeroZN = _modelN->getNode("f-z-lift", true);
|
||||
|
||||
_gefxN = fgGetNode("/fdm/yasim/debug/ground-effect/ge-f-x", true);
|
||||
_gefyN = fgGetNode("/fdm/yasim/debug/ground-effect/ge-f-y", true);
|
||||
_gefzN = fgGetNode("/fdm/yasim/debug/ground-effect/ge-f-z", true);
|
||||
_wgdistN = fgGetNode("/fdm/yasim/debug/ground-effect/wing-gnd-dist", true);
|
||||
}
|
||||
|
||||
Model::~Model()
|
||||
|
@ -209,6 +210,13 @@ void Model::setAir(const float pressure, const float temp, const float density)
|
|||
_rho = density;
|
||||
}
|
||||
|
||||
void Model::setAirFromStandardAtmosphere(const float altitude)
|
||||
{
|
||||
_pressure = Atmosphere::getStdPressure(altitude);
|
||||
_temp = Atmosphere::getStdTemperature(altitude);
|
||||
_rho = Atmosphere::getStdDensity(altitude);
|
||||
}
|
||||
|
||||
void Model::updateGround(State* s)
|
||||
{
|
||||
float dummy[3];
|
||||
|
@ -334,11 +342,6 @@ void Model::calcForces(State* s)
|
|||
_body.addForce(pos, force);
|
||||
_body.addTorque(torque);
|
||||
}
|
||||
if (_modelN != 0) {
|
||||
_f0xN->setFloatValue(faero[0]);
|
||||
_f0yN->setFloatValue(faero[1]);
|
||||
_f0zN->setFloatValue(faero[2]);
|
||||
}
|
||||
|
||||
for (j=0; j<_rotorgear.getRotors()->size();j++)
|
||||
{
|
||||
|
@ -384,7 +387,7 @@ void Model::calcForces(State* s)
|
|||
// distance between ground and wing ref. point
|
||||
float dist = ground[3] - Math::dot3(ground, _geRefPoint);
|
||||
float fz = 0;
|
||||
float geForce[3];
|
||||
float geForce[3] = {0, 0, 0};
|
||||
if(dist > 0 && dist < _wingSpan) {
|
||||
fz = Math::dot3(faero, ground);
|
||||
fz *= (_wingSpan - dist) / _wingSpan;
|
||||
|
@ -397,12 +400,13 @@ void Model::calcForces(State* s)
|
|||
_gefyN->setFloatValue(geForce[1]);
|
||||
_gefzN->setFloatValue(geForce[2]);
|
||||
_wgdistN->setFloatValue(dist);
|
||||
//float ld0 = faero[2]/faero[0];
|
||||
//float ld = (geForce[2]+faero[2])/(geForce[0]+faero[0]);
|
||||
//n->getNode("gndeff-ld-ld0", true)->setFloatValue(ld/ld0);
|
||||
|
||||
}
|
||||
}
|
||||
if (_modelN != 0) {
|
||||
_fAeroXN->setFloatValue(faero[0]);
|
||||
_fAeroYN->setFloatValue(faero[1]);
|
||||
_fAeroZN->setFloatValue(faero[2]);
|
||||
}
|
||||
// Convert the velocity and rotation vectors to local coordinates
|
||||
float lrot[3], lv[3];
|
||||
Math::vmul33(s->orient, s->rot, lrot);
|
||||
|
|
|
@ -70,6 +70,7 @@ public:
|
|||
void setGroundEffect(const float* pos, const float span, const float mul);
|
||||
void setWind(float* wind) { Math::set3(wind, _wind); }
|
||||
void setAir(const float pressure, const float temp, const float density);
|
||||
void setAirFromStandardAtmosphere(const float altitude);
|
||||
|
||||
void updateGround(State* s);
|
||||
|
||||
|
@ -115,9 +116,9 @@ private:
|
|||
bool _crashed;
|
||||
float _agl;
|
||||
SGPropertyNode_ptr _modelN;
|
||||
SGPropertyNode_ptr _f0xN;
|
||||
SGPropertyNode_ptr _f0yN;
|
||||
SGPropertyNode_ptr _f0zN;
|
||||
SGPropertyNode_ptr _fAeroXN;
|
||||
SGPropertyNode_ptr _fAeroYN;
|
||||
SGPropertyNode_ptr _fAeroZN;
|
||||
SGPropertyNode_ptr _gefxN;
|
||||
SGPropertyNode_ptr _gefyN;
|
||||
SGPropertyNode_ptr _gefzN;
|
||||
|
|
|
@ -213,6 +213,13 @@ void Wing::compile()
|
|||
_wingspan = Math::abs(2*_tip[1]);
|
||||
_aspectRatio = _wingspan / _meanChord;
|
||||
|
||||
_netSpan = Math::abs(2*(_tip[1]-_base[1]));
|
||||
// http://www.nasascale.org/p2/wp-content/uploads/mac-calculator.htm
|
||||
const float commonFactor = _chord*(0.5+_taper)/(3*_chord*(1+_taper));
|
||||
_mac = _chord-(2*_chord*(1-_taper)*commonFactor);
|
||||
_macRootDistance = _netSpan*commonFactor;
|
||||
_macX = _base[0]-Math::tan(_sweep) * _macRootDistance + _mac/2;
|
||||
|
||||
// The wing's Y axis will be the "left" vector. The Z axis will
|
||||
// be perpendicular to this and the local (!) X axis, because we
|
||||
// want motion along the local X axis to be zero AoA (i.e. in the
|
||||
|
|
|
@ -17,28 +17,28 @@ public:
|
|||
|
||||
// Do we mirror ourselves about the XZ plane?
|
||||
void setMirror(bool mirror) { _mirror = mirror; }
|
||||
bool isMirrored() { return _mirror; };
|
||||
const bool isMirrored() { return _mirror; };
|
||||
|
||||
// Wing geometry in local coordinates:
|
||||
|
||||
// base point of wing
|
||||
void setBase(const float* base) { Math::set3(base, _base); }
|
||||
void getBase(float* base) { Math::set3(_base, base); };
|
||||
const void getBase(float* base) { Math::set3(_base, base); };
|
||||
// dist. ALONG wing (not span!)
|
||||
void setLength(float length) { _length = length; }
|
||||
float getLength() { return _length; };
|
||||
const float getLength() { return _length; };
|
||||
// at base, measured along X axis
|
||||
void setChord(float chord) { _chord = chord; }
|
||||
float getChord() { return _chord; };
|
||||
const float getChord() { return _chord; };
|
||||
// fraction of chord at wing tip, 0..1
|
||||
void setTaper(float taper) { _taper = taper; }
|
||||
float getTaper() { return _taper; };
|
||||
const float getTaper() { return _taper; };
|
||||
// radians
|
||||
void setSweep(float sweep) { _sweep = sweep; }
|
||||
float getSweep() { return _sweep; };
|
||||
const float getSweep() { return _sweep; };
|
||||
// radians, positive is "up"
|
||||
void setDihedral(float dihedral) { _dihedral = dihedral; }
|
||||
float getDihedral() { return _dihedral; };
|
||||
const float getDihedral() { return _dihedral; };
|
||||
|
||||
void setIncidence(float incidence);
|
||||
void setTwist(float angle) { _twist = angle; }
|
||||
|
@ -67,27 +67,31 @@ public:
|
|||
|
||||
// Compile the thing into a bunch of Surface objects
|
||||
void compile();
|
||||
void getTip(float* tip) { Math::set3(_tip, tip);};
|
||||
const void getTip(float* tip) { Math::set3(_tip, tip);};
|
||||
|
||||
// valid only after Wing::compile() was called
|
||||
float getSpan() { return _wingspan; };
|
||||
float getArea() { return _wingspan*_meanChord; };
|
||||
float getAspectRatio() { return _aspectRatio; };
|
||||
float getSMC() { return _meanChord; };
|
||||
const float getSpan() { return _wingspan; };
|
||||
const float getArea() { return _wingspan*_meanChord; };
|
||||
const float getAspectRatio() { return _aspectRatio; };
|
||||
const float getSMC() { return _meanChord; };
|
||||
const float getMAC() { return _mac; }; // get length of MAC
|
||||
const float getMACx() { return _macX; }; // get x-coord of MAC leading edge
|
||||
const float getMACy() { return _base[1]+_macRootDistance; }; // get y-coord of MAC leading edge
|
||||
|
||||
int numSurfaces() { return _surfs.size(); }
|
||||
|
||||
const int numSurfaces() { return _surfs.size(); }
|
||||
Surface* getSurface(int n) { return ((SurfRec*)_surfs.get(n))->surface; }
|
||||
float getSurfaceWeight(int n) { return ((SurfRec*)_surfs.get(n))->weight; }
|
||||
const float getSurfaceWeight(int n) { return ((SurfRec*)_surfs.get(n))->weight; }
|
||||
|
||||
// The overall drag coefficient for the wing as a whole. Units are
|
||||
// arbitrary.
|
||||
void setDragScale(float scale);
|
||||
float getDragScale() { return _dragScale; }
|
||||
const float getDragScale() { return _dragScale; }
|
||||
|
||||
// The ratio of force along the Z (lift) direction of each wing
|
||||
// segment to that along the X (drag) direction.
|
||||
void setLiftRatio(float ratio);
|
||||
float getLiftRatio() { return _liftRatio; }
|
||||
const float getLiftRatio() { return _liftRatio; }
|
||||
|
||||
private:
|
||||
void interp(const float* v1, const float* v2, const float frac, float* out);
|
||||
|
@ -114,6 +118,10 @@ private:
|
|||
// calculated from above
|
||||
float _tip[3];
|
||||
float _meanChord; // std. mean chord
|
||||
float _mac; // mean aerodynamic chord length
|
||||
float _macRootDistance; // y-distance of mac from root
|
||||
float _macX; // x-coordinate of mac (leading edge)
|
||||
float _netSpan;
|
||||
float _wingspan;
|
||||
float _aspectRatio;
|
||||
|
||||
|
|
|
@ -54,9 +54,7 @@ void yasim_graph(Airplane* a, const float alt, const float kts, int cfg = CONFIG
|
|||
Model* m = a->getModel();
|
||||
State s;
|
||||
|
||||
m->setAir(Atmosphere::getStdPressure(alt),
|
||||
Atmosphere::getStdTemperature(alt),
|
||||
Atmosphere::getStdDensity(alt));
|
||||
m->setAirFromStandardAtmosphere(alt);
|
||||
|
||||
switch (cfg) {
|
||||
case CONFIG_APPROACH:
|
||||
|
@ -131,9 +129,7 @@ void yasim_drag(Airplane* a, const float aoa, const float alt, int cfg = CONFIG_
|
|||
Model* m = a->getModel();
|
||||
State s;
|
||||
|
||||
m->setAir(Atmosphere::getStdPressure(alt),
|
||||
Atmosphere::getStdTemperature(alt),
|
||||
Atmosphere::getStdDensity(alt));
|
||||
m->setAirFromStandardAtmosphere(alt);
|
||||
|
||||
switch (cfg) {
|
||||
case CONFIG_APPROACH:
|
||||
|
@ -241,7 +237,9 @@ int main(int argc, char** argv)
|
|||
}
|
||||
}
|
||||
else {
|
||||
printf("Solution results:");
|
||||
printf("==========================\n");
|
||||
printf("= YASim solution results =\n");
|
||||
printf("==========================\n");
|
||||
float aoa = a->getCruiseAoA() * RAD2DEG;
|
||||
float tail = -1 * a->getTailIncidence() * RAD2DEG;
|
||||
float drag = 1000 * a->getDragCoefficient();
|
||||
|
@ -251,18 +249,26 @@ int main(int argc, char** argv)
|
|||
|
||||
float SI_inertia[9];
|
||||
a->getModel()->getBody()->getInertiaMatrix(SI_inertia);
|
||||
float MAC = a->getWing()->getMAC();
|
||||
float MACx = a->getWing()->getMACx();
|
||||
float MACy = a->getWing()->getMACy();
|
||||
|
||||
printf(" Iterations: %d\n", a->getSolutionIterations());
|
||||
printf(" Drag Coefficient: %f\n", drag);
|
||||
printf(" Lift Ratio: %f\n", a->getLiftRatio());
|
||||
printf(" Cruise AoA: %f\n", aoa);
|
||||
printf(" Tail Incidence: %f\n", tail);
|
||||
printf("Approach Elevator: %f\n", a->getApproachElevator());
|
||||
printf(" CG: x:%.3f, y:%.3f, z:%.3f\n\n", cg[0], cg[1], cg[2]);
|
||||
printf("Inertia tensor [kg*m^2], origo at CG:\n");
|
||||
printf(" Cruise AoA: %f deg\n", aoa);
|
||||
printf(" Tail Incidence: %f deg\n", tail);
|
||||
printf("Approach Elevator: %f\n\n", a->getApproachElevator());
|
||||
printf(" CG: x:%.3f, y:%.3f, z:%.3f\n", cg[0], cg[1], cg[2]);
|
||||
printf(" Wing MAC (*1): x:%.2f, y:%.2f, length:%.1f \n", MACx, MACy, MAC);
|
||||
printf(" CG-x rel. MAC: %.3f\n", a->getCGMAC());
|
||||
printf(" CG-x desired: %.3f < %.3f < %.3f \n", a->getCGSoftLimitXMin(), cg[0], a->getCGSoftLimitXMax());
|
||||
|
||||
printf("\nInertia tensor [kg*m^2], origo at CG:\n\n");
|
||||
printf(" %7.3f, %7.3f, %7.3f\n", SI_inertia[0], SI_inertia[1], SI_inertia[2]);
|
||||
printf(" %7.3f, %7.3f, %7.3f\n", SI_inertia[3], SI_inertia[4], SI_inertia[5]);
|
||||
printf(" %7.3f, %7.3f, %7.3f\n", SI_inertia[6], SI_inertia[7], SI_inertia[8]);
|
||||
printf("\n(*1) MAC calculation works on <wing> only! Numbers will be wrong for segmented wings, e.g. <wing>+<mstab>.\n");
|
||||
}
|
||||
delete fdm;
|
||||
return 0;
|
||||
|
|
Loading…
Reference in a new issue