1
0
Fork 0

Incorporated previously missed updates.

This commit is contained in:
curt 2000-09-14 17:36:02 +00:00
parent be88681d69
commit 3be255a9ed

View file

@ -34,19 +34,133 @@
#include <string>
#include "panel.hxx"
#include "steam.hxx"
#include "panel_io.hxx"
using std::istream;
using std::string;
////////////////////////////////////////////////////////////////////////
// Built-in layer for the magnetic compass ribbon layer.
//
// TODO: move this out into a special directory for built-in
// layers of various sorts.
////////////////////////////////////////////////////////////////////////
class FGMagRibbon : public FGTexturedLayer
{
public:
FGMagRibbon (int w, int h);
virtual ~FGMagRibbon () {}
virtual void draw ();
};
FGMagRibbon::FGMagRibbon (int w, int h)
: FGTexturedLayer(w, h)
{
CroppedTexture texture("Textures/Panel/compass-ribbon.rgb");
setTexture(texture);
}
void
FGMagRibbon::draw ()
{
double heading = FGSteam::get_MH_deg();
double xoffset, yoffset;
while (heading >= 360.0) {
heading -= 360.0;
}
while (heading < 0.0) {
heading += 360.0;
}
if (heading >= 60.0 && heading <= 180.0) {
xoffset = heading / 240.0;
yoffset = 0.75;
} else if (heading >= 150.0 && heading <= 270.0) {
xoffset = (heading - 90.0) / 240.0;
yoffset = 0.50;
} else if (heading >= 240.0 && heading <= 360.0) {
xoffset = (heading - 180.0) / 240.0;
yoffset = 0.25;
} else {
if (heading < 270.0)
heading += 360.0;
xoffset = (heading - 270.0) / 240.0;
yoffset = 0.0;
}
xoffset = 1.0 - xoffset;
// Adjust to put the number in the centre
xoffset -= 0.25;
CroppedTexture &t = getTexture();
t.minX = xoffset;
t.minY = yoffset;
t.maxX = xoffset + 0.5;
t.maxY = yoffset + 0.25;
FGTexturedLayer::draw();
}
////////////////////////////////////////////////////////////////////////
// Read and construct a panel.
//
// The panel is specified as a regular property list, and each of the
// instruments is its own, separate property list (and thus, a separate
// XML document). The functions in this section read in the files
// as property lists, then extract properties to set up the panel
// itself.
//
// A panel contains zero or more instruments.
//
// An instrument contains one or more layers and zero or more actions.
//
// A layer contains zero or more transformations.
//
// Some special types of layers also contain other objects, such as
// chunks of text or other layers.
//
// There are currently four types of layers:
//
// 1. Textured Layer (type="texture"), the default
// 2. Text Layer (type="text")
// 3. Switch Layer (type="switch")
// 4. Built-in Layer (type="built-in", must also specify class)
//
// The only built-in layer so far is the ribbon for the magnetic compass
// (class="compass-ribbon").
//
// There are three types of actions:
//
// 1. Adjust (type="adjust"), the default
// 2. Swap (type="swap")
// 3. Toggle (type="toggle")
//
// There are three types of transformations:
//
// 1. X shift (type="x-shift"), the default
// 2. Y shift (type="y-shift")
// 3. Rotation (type="rotation")
//
// Each of these may be associated with a property, so that a needle
// will rotate with the airspeed, for example, or may have a fixed
// floating-point value.
////////////////////////////////////////////////////////////////////////
/**
* Read a cropped texture.
* Read a cropped texture from the instrument's property list.
*
* The x1 and y1 properties give the starting position of the texture
* (between 0.0 and 1.0), and the the x2 and y2 properties give the
* ending position. For example, to use the bottom-left quarter of a
* texture, x1=0.0, y1=0.0, x2=0.5, y2=0.5.
*/
static CroppedTexture
readTexture (SGPropertyNode node)
@ -62,22 +176,49 @@ readTexture (SGPropertyNode node)
/**
* Read an action.
* Read an action from the instrument's property list.
*
* The action will be performed when the user clicks a mouse button
* within the specified region of the instrument. Actions always
* work by modifying the value of a property (see the SGValue class).
*
* The following action types are defined:
*
* "adjust" - modify the value of a floating-point property by
* the increment specified. This is the default.
*
* "swap" - swap the values of two-floating-point properties.
*
* "toggle" - toggle the value of a boolean property between true and
* false.
*
* For the adjust action, it is possible to specify an increment
* (use a negative number for a decrement), a minimum allowed value,
* a maximum allowed value, and a flag to indicate whether the value
* should freeze or wrap-around when it reachs the minimum or maximum.
*
* The action will be scaled automatically if the instrument is not
* being drawn at its regular size.
*/
static FGPanelAction *
readAction (SGPropertyNode node)
readAction (SGPropertyNode node, float hscale, float vscale)
{
FGPanelAction * action = 0;
cerr << "Reading action\n";
string name = node.getStringValue("name");
string type = node.getStringValue("type");
int button = node.getIntValue("button");
int x = node.getIntValue("x");
int y = node.getIntValue("y");
int w = node.getIntValue("w");
int h = node.getIntValue("h");
int x = int(node.getIntValue("x") * hscale);
int y = int(node.getIntValue("y") * vscale);
int w = int(node.getIntValue("w") * hscale);
int h = int(node.getIntValue("h") * vscale);
if (type == "") {
FG_LOG(FG_INPUT, FG_ALERT,
"No type supplied for action " << name << " assuming \"adjust\"");
type = "adjust";
}
// Adjust a property value
if (type == "adjust") {
@ -110,16 +251,9 @@ readAction (SGPropertyNode node)
action = new FGToggleAction(button, x, y, w, h, value);
}
// No type supplied
else if (type == "") {
FG_LOG(FG_INPUT, FG_ALERT, "No type specified for action "
<< node.getName());
return 0;
}
// Unrecognized type
else {
FG_LOG(FG_INPUT, FG_ALERT, "Unrecognized action type " << node.getName());
FG_LOG(FG_INPUT, FG_ALERT, "Unrecognized action type " << type);
return 0;
}
@ -128,10 +262,32 @@ readAction (SGPropertyNode node)
/**
* Read a single transformation.
* Read a transformation from the instrument's property list.
*
* The panel module uses the transformations to slide or spin needles,
* knobs, and other indicators, and to place layers in the correct
* positions. Every layer starts centered exactly on the x,y co-ordinate,
* and many layers need to be moved or rotated simply to display the
* instrument correctly.
*
* There are three types of transformations:
*
* "x-shift" - move the layer horizontally.
*
* "y-shift" - move the layer vertically.
*
* "rotation" - rotate the layer.
*
* Each transformation may have a fixed offset, and may also have
* a floating-point property value to add to the offset. The
* floating-point property may be clamped to a minimum and/or
* maximum range and scaled (after clamping).
*
* Note that because of the way OpenGL works, transformations will
* appear to be applied backwards.
*/
static FGPanelTransformation *
readTransformation (SGPropertyNode node)
readTransformation (SGPropertyNode node, float hscale, float vscale)
{
FGPanelTransformation * t = new FGPanelTransformation;
@ -140,28 +296,48 @@ readTransformation (SGPropertyNode node)
string propName = node.getStringValue("property", "");
SGValue * value = 0;
if (type == "") {
FG_LOG(FG_INPUT, FG_ALERT,
"No type supplied for transformation " << name
<< " assuming \"rotation\"");
type = "rotation";
}
if (propName != "") {
value = current_properties.getValue(propName, true);
}
t->value = value;
t->min = node.getFloatValue("min", 0.0);
t->max = node.getFloatValue("max", 1.0);
t->factor = node.getFloatValue("factor", 1.0);
t->min = node.getFloatValue("min", -9999999);
t->max = node.getFloatValue("max", 99999999);
t->factor = node.getFloatValue("scale", 1.0);
t->offset = node.getFloatValue("offset", 0.0);
// Move the layer horizontally.
if (type == "x-shift") {
t->type = FGPanelTransformation::XSHIFT;
} else if (type == "y-shift") {
t->min *= hscale;
t->max *= hscale;
t->offset *= hscale;
}
// Move the layer vertically.
else if (type == "y-shift") {
t->type = FGPanelTransformation::YSHIFT;
} else if (type == "rotation") {
t->min *= vscale;
t->max *= vscale;
t->offset *= vscale;
}
// Rotate the layer. The rotation
// is in degrees, and does not need
// to scale with the instrument size.
else if (type == "rotation") {
t->type = FGPanelTransformation::ROTATION;
} else if (type == "") {
FG_LOG(FG_INPUT, FG_ALERT,
"'type' must be specified for transformation");
delete t;
return 0;
} else {
FG_LOG(FG_INPUT, FG_ALERT, "Unrecognized transformation: " << type);
}
else {
FG_LOG(FG_INPUT, FG_ALERT, "Unrecognized transformation type " << type);
delete t;
return 0;
}
@ -172,18 +348,187 @@ readTransformation (SGPropertyNode node)
/**
* Read a single layer of an instrument.
* Read a chunk of text from the instrument's property list.
*
* A text layer consists of one or more chunks of text. All chunks
* share the same font size and color (and eventually, font), but
* each can come from a different source. There are three types of
* text chunks:
*
* "literal" - a literal text string (the default)
*
* "text-value" - the current value of a string property
*
* "number-value" - the current value of a floating-point property.
*
* All three may also include a printf-style format string.
*/
FGTextLayer::Chunk *
readTextChunk (SGPropertyNode node)
{
FGTextLayer::Chunk * chunk;
string name = node.getStringValue("name");
string type = node.getStringValue("type");
string format = node.getStringValue("format");
// Default to literal text.
if (type == "") {
FG_LOG(FG_INPUT, FG_INFO, "No type provided for text chunk " << name
<< " assuming \"literal\"");
type = "literal";
}
// A literal text string.
if (type == "literal") {
string text = node.getStringValue("text");
chunk = new FGTextLayer::Chunk(text, format);
}
// The value of a string property.
else if (type == "text-value") {
SGValue * value =
current_properties.getValue(node.getStringValue("property"), true);
chunk = new FGTextLayer::Chunk(FGTextLayer::TEXT_VALUE, value, format);
}
// The value of a float property.
else if (type == "number-value") {
string propName = node.getStringValue("property");
float scale = node.getFloatValue("scale", 1.0);
SGValue * value = current_properties.getValue(propName, true);
chunk = new FGTextLayer::Chunk(FGTextLayer::DOUBLE_VALUE, value,
format, scale);
}
// Unknown type.
else {
FG_LOG(FG_INPUT, FG_ALERT, "Unrecognized type " << type
<< " for text chunk " << name);
return 0;
}
return chunk;
}
/**
* Read a single layer from an instrument's property list.
*
* Each instrument consists of one or more layers stacked on top
* of each other; the lower layers show through only where the upper
* layers contain an alpha component. Each layer can be moved
* horizontally and vertically and rotated using transformations.
*
* This module currently recognizes four kinds of layers:
*
* "texture" - a layer containing a texture (the default)
*
* "text" - a layer containing text
*
* "switch" - a layer that switches between two other layers
* based on the current value of a boolean property.
*
* "built-in" - a hard-coded layer supported by C++ code in FlightGear.
*
* Currently, the only built-in layer class is "compass-ribbon".
*/
static FGInstrumentLayer *
readLayer (SGPropertyNode node)
readLayer (SGPropertyNode node, float hscale, float vscale)
{
FGInstrumentLayer * l;
string name = node.getName();
FGInstrumentLayer * layer;
string name = node.getStringValue("name");
string type = node.getStringValue("type");
int w = node.getIntValue("w", -1);
int h = node.getIntValue("h", -1);
if (w != -1)
w = int(w * hscale);
if (h != -1)
h = int(h * vscale);
CroppedTexture texture = readTexture(node.getSubNode("texture"));
l = new FGTexturedLayer(texture,
node.getIntValue("w", -1),
node.getIntValue("h", -1));
if (type == "") {
FG_LOG(FG_INPUT, FG_ALERT,
"No type supplied for layer " << name
<< " assuming \"texture\"");
type = "texture";
}
// A textured instrument layer.
if (type == "texture") {
CroppedTexture texture = readTexture(node.getSubNode("texture"));
layer = new FGTexturedLayer(texture, w, h);
}
// A textual instrument layer.
else if (type == "text") {
FGTextLayer * tlayer = new FGTextLayer(w, h); // FIXME
// Set the text color.
float red = node.getFloatValue("color/red", 0.0);
float green = node.getFloatValue("color/green", 0.0);
float blue = node.getFloatValue("color/blue", 0.0);
tlayer->setColor(red, green, blue);
// Set the point size.
float pointSize = node.getFloatValue("point-size", 10.0) * hscale;
tlayer->setPointSize(pointSize);
// Set the font.
// TODO
SGPropertyNode chunk_group = node.getSubNode("chunks");
int nChunks = chunk_group.size();
for (int i = 0; i < nChunks; i++) {
FGTextLayer::Chunk * chunk = readTextChunk(chunk_group.getChild(i));
if (chunk == 0) {
delete layer;
return 0;
}
tlayer->addChunk(chunk);
}
layer = tlayer;
}
// A switch instrument layer.
else if (type == "switch") {
SGValue * value =
current_properties.getValue(node.getStringValue("property"));
FGInstrumentLayer * layer1 =
readLayer(node.getSubNode("layer1"), hscale, vscale);
FGInstrumentLayer * layer2 =
readLayer(node.getSubNode("layer2"), hscale, vscale);
layer = new FGSwitchLayer(w, h, value, layer1, layer2);
}
// A built-in instrument layer.
else if (type == "built-in") {
string layerclass = node.getStringValue("class");
if (layerclass == "mag-ribbon") {
layer = new FGMagRibbon(w, h);
}
else if (layerclass == "") {
FG_LOG(FG_INPUT, FG_ALERT, "No class provided for built-in layer "
<< name);
return 0;
}
else {
FG_LOG(FG_INPUT, FG_ALERT, "Unknown built-in layer class "
<< layerclass);
return 0;
}
}
// An unknown type.
else {
FG_LOG(FG_INPUT, FG_ALERT, "Unrecognized layer type " << type);
delete layer;
return 0;
}
//
// Get the transformations for each layer.
@ -191,42 +536,64 @@ readLayer (SGPropertyNode node)
SGPropertyNode trans_group = node.getSubNode("transformations");
int nTransformations = trans_group.size();
for (int k = 0; k < nTransformations; k++) {
FGPanelTransformation * t = readTransformation(trans_group.getChild(k));
FGPanelTransformation * t = readTransformation(trans_group.getChild(k),
hscale, vscale);
if (t == 0) {
delete l;
delete layer;
return 0;
}
l->addTransformation(t);
layer->addTransformation(t);
}
FG_LOG(FG_INPUT, FG_INFO, "Read layer " << name);
return l;
return layer;
}
/**
* Read an instrument.
* Read an instrument from a property list.
*
* The instrument consists of a preferred width and height
* (the panel may override these), together with a list of layers
* and a list of actions to be performed when the user clicks
* the mouse over the instrument. All co-ordinates are relative
* to the instrument's position, so instruments are fully relocatable;
* likewise, co-ordinates for actions and transformations will be
* scaled automatically if the instrument is not at its preferred size.
*/
static FGPanelInstrument *
readInstrument (SGPropertyNode node)
readInstrument (SGPropertyNode node, int x, int y, int real_w, int real_h)
{
int w = node.getIntValue("w");
int h = node.getIntValue("h");
const string &name = node.getStringValue("name");
float hscale = 1.0;
float vscale = 1.0;
if (real_w != -1) {
hscale = float(real_w) / float(w);
w = real_w;
cerr << "hscale is " << hscale << endl;
}
if (real_h != -1) {
vscale = float(real_h) / float(h);
h = real_h;
cerr << "vscale is " << hscale << endl;
}
FG_LOG(FG_INPUT, FG_INFO, "Reading instrument " << name);
FGLayeredInstrument * instrument =
new FGLayeredInstrument(0, 0,
node.getIntValue("w"),
node.getIntValue("h"));
new FGLayeredInstrument(x, y, w, h);
//
// Get the actions for the instrument.
//
SGPropertyNode action_group = node.getSubNode("actions");
int nActions = action_group.size();
cerr << "There are " << nActions << " actions\n";
for (int j = 0; j < nActions; j++) {
FGPanelAction * action = readAction(action_group.getChild(j));
FGPanelAction * action = readAction(action_group.getChild(j),
hscale, vscale);
if (action == 0) {
delete instrument;
return 0;
@ -240,7 +607,8 @@ readInstrument (SGPropertyNode node)
SGPropertyNode layer_group = node.getSubNode("layers");
int nLayers = layer_group.size();
for (int j = 0; j < nLayers; j++) {
FGInstrumentLayer * layer = readLayer(layer_group.getChild(j));
FGInstrumentLayer * layer = readLayer(layer_group.getChild(j),
hscale, vscale);
if (layer == 0) {
delete instrument;
return 0;
@ -254,7 +622,12 @@ readInstrument (SGPropertyNode node)
/**
* Read a property list defining an instrument panel.
pp * Read a panel from a property list.
*
* Each panel instrument will appear in its own, separate
* property list. The top level simply names the panel and
* places the instruments in their appropriate locations (and
* optionally resizes them if necessary).
*
* Returns 0 if the read fails for any reason.
*/
@ -300,29 +673,35 @@ fgReadPanel (istream &input)
SGPropertyNode node = instrument_group.getChild(i);
string path = node.getStringValue("path");
int x = node.getIntValue("x");
int y = node.getIntValue("y");
int w = node.getIntValue("w");
int h = node.getIntValue("h");
FG_LOG(FG_INPUT, FG_INFO, "Reading instrument "
<< node.getName()
<< " from "
<< path);
int x = node.getIntValue("x", -1);
int y = node.getIntValue("y", -1);
int w = node.getIntValue("w", -1);
int h = node.getIntValue("h", -1);
if (x == -1 || y == -1) {
FG_LOG(FG_INPUT, FG_ALERT, "x and y positions must be specified and >0");
delete panel;
return 0;
}
if (!readPropertyList(path, &props2)) {
delete panel;
return 0;
}
FGPanelInstrument * instrument =
readInstrument(SGPropertyNode("/", &props2));
readInstrument(SGPropertyNode("/", &props2), x, y, w, h);
if (instrument == 0) {
delete instrument;
delete panel;
return 0;
}
instrument->setPosition(x, y);
panel->addInstrument(instrument);
}
FG_LOG(FG_INPUT, FG_INFO, "Done reading panel instruments");