1
0
Fork 0

Rewrite the spatial index to use a sparse octree on the cartesian coordinates of items.

* Fixes errors selecting 'nearest' items, including duplicates
* Stable behaviour around the poles and dateline
* Decently efficient, even for 'everything within 500nm' queries
This commit is contained in:
James Turner 2009-12-17 12:36:51 +00:00 committed by Tim Moore
parent 35cb89626e
commit 34bbc6d974
2 changed files with 358 additions and 190 deletions

View file

@ -72,6 +72,21 @@ int main(int argc, char* argv[])
SG_LOG(SG_GENERAL, SG_ALERT, "hello world!");
const FGAirport* egph = fgFindAirportID("EGPH");
SG_LOG(SG_GENERAL, SG_ALERT, "egph: cart location:" << egph->cart());
FGAirport::AirportFilter af;
FGPositioned::List l = FGPositioned::findClosestN(egph->geod(), 20, 2000.0, &af);
for (unsigned int i=0; i<l.size(); ++i) {
SG_LOG(SG_GENERAL, SG_ALERT, "\t" << l[i]->ident() << "/" << l[i]->name());
}
//l = FGPositioned::findWithinRange(egph->geod(), 500.0, &af);
//for (unsigned int i=0; i<l.size(); ++i) {
// SG_LOG(SG_GENERAL, SG_ALERT, "\t" << l[i]->ident() << "/" << l[i]->name());
//}
FGRouteMgr* rm = new FGRouteMgr;
globals->add_subsystem( "route-manager", rm );
@ -84,7 +99,7 @@ int main(int argc, char* argv[])
GPS* gps = new GPS(nd);
globals->add_subsystem("gps", gps);
const FGAirport* egph = fgFindAirportID("EGPH");
testSetPosition(egph->geod());
// startup the route manager

View file

@ -25,9 +25,7 @@
#include <map>
#include <set>
#include <algorithm> // for sort
#include <locale> // for char-traits toupper
#include <iostream>
#include <queue>
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/algorithm/string/predicate.hpp>
@ -36,6 +34,7 @@
#include <simgear/timing/timestamp.hxx>
#include <simgear/debug/logstream.hxx>
#include <simgear/structure/exception.hxx>
#include <simgear/math/SGBox.hxx>
#include "positioned.hxx"
@ -45,62 +44,337 @@ typedef std::pair<NamedPositionedIndex::const_iterator, NamedPositionedIndex::co
using std::lower_bound;
using std::upper_bound;
/**
* Order positioned elements by type, then pointer address. This allows us to
* use range searches (lower_ and upper_bound) to grab items of a particular
* type out of bucket efficently.
*/
class OrderByType
{
public:
bool operator()(const FGPositioned* a, const FGPositioned* b) const
{
if (a->type() == b->type()) return a < b;
return a->type() < b->type();
}
};
class LowerLimitOfType
{
public:
bool operator()(const FGPositioned* a, const FGPositioned::Type b) const
{
return a->type() < b;
}
bool operator()(const FGPositioned::Type a, const FGPositioned* b) const
{
return a < b->type();
}
// The operator below is required by VS2005 in debug mode
bool operator()(const FGPositioned* a, const FGPositioned* b) const
{
return a->type() < b->type();
}
};
typedef std::set<FGPositioned*, OrderByType> BucketEntry;
typedef std::map<long int, BucketEntry> SpatialPositionedIndex;
static NamedPositionedIndex global_identIndex;
static NamedPositionedIndex global_nameIndex;
static SpatialPositionedIndex global_spatialIndex;
SpatialPositionedIndex::iterator
bucketEntryForPositioned(FGPositioned* aPos)
//////////////////////////////////////////////////////////////////////////////
namespace Octree
{
int bucketIndex = aPos->bucket().gen_index();
SpatialPositionedIndex::iterator it = global_spatialIndex.find(bucketIndex);
if (it != global_spatialIndex.end()) {
return it;
}
// create a new BucketEntry
return global_spatialIndex.insert(it, std::make_pair(bucketIndex, BucketEntry()));
const double LEAF_SIZE = SG_NM_TO_METER * 8.0;
const double LEAF_SIZE_SQR = LEAF_SIZE * LEAF_SIZE;
typedef SGBox<double> SGBoxd;
template<typename T1, typename T2>
inline bool
intersects(const SGVec3<T1>& v, const SGBox<T2>& box)
{
if (v[0] < box.getMin()[0])
return false;
if (box.getMax()[0] < v[0])
return false;
if (v[1] < box.getMin()[1])
return false;
if (box.getMax()[1] < v[1])
return false;
if (v[2] < box.getMin()[2])
return false;
if (box.getMax()[2] < v[2])
return false;
return true;
}
/**
* Decorate an object with a double value, and use that value to order
* items, for the purpoises of the STL algorithms
*/
template <class T>
class Ordered
{
public:
Ordered(const T& v, double x) :
_order(x),
_inner(v)
{
}
Ordered(const Ordered<T>& a) :
_order(a._order),
_inner(a._inner)
{
}
Ordered<T>& operator=(const Ordered<T>& a)
{
_order = a._order;
_inner = a._inner;
return *this;
}
bool operator<(const Ordered<T>& other) const
{
return _order < other._order;
}
bool operator>(const Ordered<T>& other) const
{
return _order > other._order;
}
const T& get() const
{ return _inner; }
double order() const
{ return _order; }
private:
double _order;
T _inner;
};
class Node;
typedef Ordered<Node*> OrderedNode;
typedef std::greater<OrderedNode> FNPQCompare;
/**
* the priority queue is fundamental to our search algorithm. When searching,
* we know the front of the queue is the nearest unexpanded node (to the search
* location). The default STL pqueue returns the 'largest' item from top(), so
* to get the smallest, we need to replace the default Compare functor (less<>)
* with greater<>.
*/
typedef std::priority_queue<OrderedNode, std::vector<OrderedNode>, FNPQCompare> FindNearestPQueue;
typedef Ordered<FGPositioned*> OrderedPositioned;
typedef std::vector<OrderedPositioned> FindNearestResults;
Node* global_spatialOctree = NULL;
/**
* Octree node base class, tracks its bounding box and provides various
* queries relating to it
*/
class Node
{
public:
bool contains(const SGVec3d& aPos) const
{
return intersects(aPos, _box);
}
double distSqrToNearest(const SGVec3d& aPos) const
{
return distSqr(aPos, getClosestPoint(aPos));
}
virtual void insert(FGPositioned* aP) = 0;
SGVec3d getClosestPoint(const SGVec3d& aPos) const
{
SGVec3d r;
for (unsigned int i=0;i<3; ++i) {
if (aPos[i] < _box.getMin()[i]) {
r[i] = _box.getMin()[i];
} else if (aPos[i] > _box.getMax()[i]) {
r[i] = _box.getMax()[i];
} else {
r[i] = aPos[i];
}
} // of axis iteration
return r;
}
virtual void visit(const SGVec3d& aPos, double aCutoff,
FGPositioned::Filter* aFilter,
FindNearestResults& aResults, FindNearestPQueue&) = 0;
protected:
Node(const SGBoxd &aBox) :
_box(aBox)
{
}
const SGBoxd _box;
};
class Leaf : public Node
{
public:
Leaf(const SGBoxd& aBox) :
Node(aBox)
{
}
const FGPositioned::List& members() const
{ return _members; }
virtual void insert(FGPositioned* aP)
{
_members.push_back(aP);
}
virtual void visit(const SGVec3d& aPos, double aCutoff,
FGPositioned::Filter* aFilter,
FindNearestResults& aResults, FindNearestPQueue&)
{
std::vector<Ordered<FGPositioned*> > results;
for (unsigned int i=0; i<_members.size(); ++i) {
FGPositioned* p = _members[i];
double d2 = distSqr(aPos, p->cart());
if (d2 > aCutoff) {
continue;
}
if (aFilter) {
if (aFilter->hasTypeRange() && !aFilter->passType(p->type())) {
continue;
}
if (!aFilter->pass(p)) {
continue;
}
} // of have a filter
aResults.push_back(OrderedPositioned(p, d2));
}
}
private:
FGPositioned::List _members;
};
class Branch : public Node
{
public:
Branch(const SGBoxd& aBox) :
Node(aBox)
{
memset(children, 0, sizeof(Node*) * 8);
}
virtual void insert(FGPositioned* aP)
{
SGVec3d cart(aP->cart());
assert(contains(cart));
int childIndex = 0;
SGVec3d center(_box.getCenter());
// tests must match indices in SGbox::getCorner
if (cart.x() < center.x()) {
childIndex += 1;
}
if (cart.y() < center.y()) {
childIndex += 2;
}
if (cart.z() < center.z()) {
childIndex += 4;
}
Node* child = children[childIndex];
if (!child) { // lazy building of children
SGBoxd cb(boxForChild(childIndex));
double d2 = dot(cb.getSize(), cb.getSize());
if (d2 < LEAF_SIZE_SQR) {
child = new Leaf(cb);
} else {
child = new Branch(cb);
}
children[childIndex] = child;
}
child->insert(aP);
}
virtual void visit(const SGVec3d& aPos, double aCutoff,
FGPositioned::Filter*,
FindNearestResults&, FindNearestPQueue& aQ)
{
for (unsigned int i=0; i<8; ++i) {
if (!children[i]) {
continue;
}
double d2 = children[i]->distSqrToNearest(aPos);
if (d2 > aCutoff) {
continue; // exceeded cutoff
}
aQ.push(Ordered<Node*>(children[i], d2));
} // of child iteration
}
private:
/**
* Return the box for a child touching the specified corner
*/
SGBoxd boxForChild(unsigned int aCorner) const
{
SGBoxd r(_box.getCenter());
r.expandBy(_box.getCorner(aCorner));
return r;
}
Node* children[8];
};
void findNearestN(const SGVec3d& aPos, unsigned int aN, double aCutoffM, FGPositioned::Filter* aFilter, FGPositioned::List& aResults)
{
aResults.clear();
FindNearestPQueue pq;
FindNearestResults results;
pq.push(Ordered<Node*>(global_spatialOctree, 0));
double cut = aCutoffM * aCutoffM;
while (aResults.size() < aN) {
if (pq.empty()) {
break;
}
Node* nd = pq.top().get();
pq.pop();
nd->visit(aPos, cut, aFilter, results, pq);
} // of queue iteration
// sort by distance
std::sort(results.begin(), results.end());
// depending on leaf population, we may have (slighty) more results
// than requested
unsigned int numResults = std::min((unsigned int) results.size(), aN);
// copy results out
aResults.resize(numResults);
for (unsigned int r=0; r<numResults; ++r) {
aResults[r] = results[r].get();
}
}
void findAllWithinRange(const SGVec3d& aPos, double aRangeM, FGPositioned::Filter* aFilter, FGPositioned::List& aResults)
{
aResults.clear();
FindNearestPQueue pq;
FindNearestResults results;
pq.push(Ordered<Node*>(global_spatialOctree, 0));
double rng = aRangeM * aRangeM;
while (!pq.empty()) {
Node* nd = pq.top().get();
pq.pop();
nd->visit(aPos, rng, aFilter, results, pq);
} // of queue iteration
// sort by distance
std::sort(results.begin(), results.end());
unsigned int numResults = results.size();
// copy results out
aResults.resize(numResults);
for (unsigned int r=0; r<numResults; ++r) {
aResults[r] = results[r].get();
}
}
} // of namespace Octree
//////////////////////////////////////////////////////////////////////////////
static void
addToIndices(FGPositioned* aPos)
{
@ -115,9 +389,12 @@ addToIndices(FGPositioned* aPos)
std::make_pair(aPos->name(), aPos));
}
SpatialPositionedIndex::iterator it = bucketEntryForPositioned(aPos);
it->second.insert(aPos);
if (!Octree::global_spatialOctree) {
double RADIUS_EARTH_M = 7000 * 1000.0; // 7000km is plenty
SGVec3d earthExtent(RADIUS_EARTH_M, RADIUS_EARTH_M, RADIUS_EARTH_M);
Octree::global_spatialOctree = new Octree::Branch(SGBox<double>(-earthExtent, earthExtent));
}
Octree::global_spatialOctree->insert(aPos);
}
static void
@ -148,88 +425,6 @@ removeFromIndices(FGPositioned* aPos)
++it;
} // of multimap walk
}
SpatialPositionedIndex::iterator sit = bucketEntryForPositioned(aPos);
sit->second.erase(aPos);
}
static void
spatialFilterInBucket(const SGBucket& aBucket, FGPositioned::Filter* aFilter, FGPositioned::List& aResult)
{
SpatialPositionedIndex::const_iterator it;
it = global_spatialIndex.find(aBucket.gen_index());
if (it == global_spatialIndex.end()) {
return;
}
BucketEntry::const_iterator l = it->second.begin();
BucketEntry::const_iterator u = it->second.end();
if (!aFilter) { // pass everything
aResult.insert(aResult.end(), l, u);
return;
}
if (aFilter->hasTypeRange()) {
// avoid many calls to the filter hook
l = lower_bound(it->second.begin(), it->second.end(), aFilter->minType(), LowerLimitOfType());
u = upper_bound(l, it->second.end(), aFilter->maxType(), LowerLimitOfType());
}
for ( ; l != u; ++l) {
if ((*aFilter)(*l)) {
aResult.push_back(*l);
}
}
}
static void
spatialFind(const SGGeod& aPos, double aRange,
FGPositioned::Filter* aFilter, FGPositioned::List& aResult)
{
SGBucket buck(aPos);
double lat = aPos.getLatitudeDeg(),
lon = aPos.getLongitudeDeg();
int bx = (int)( aRange*SG_NM_TO_METER / buck.get_width_m() / 2);
int by = (int)( aRange*SG_NM_TO_METER / buck.get_height_m() / 2 );
// loop over bucket range
for ( int i=-bx; i<=bx; i++) {
for ( int j=-by; j<=by; j++) {
spatialFilterInBucket(sgBucketOffset(lon, lat, i, j), aFilter, aResult);
} // of j-iteration
} // of i-iteration
}
/**
*/
class RangePredictate
{
public:
RangePredictate(const SGGeod& aOrigin, double aRange) :
mOrigin(SGVec3d::fromGeod(aOrigin)),
mRangeSqr(aRange * aRange)
{ ; }
bool operator()(const FGPositionedRef& aPos)
{
double dSqr = distSqr(aPos->cart(), mOrigin);
return (dSqr > mRangeSqr);
}
private:
SGVec3d mOrigin;
double mRangeSqr;
};
static void
filterListByRange(const SGGeod& aPos, double aRange, FGPositioned::List& aResult)
{
RangePredictate pred(aPos, aRange * SG_NM_TO_METER);
FGPositioned::List::iterator newEnd;
newEnd = std::remove_if(aResult.begin(), aResult.end(), pred);
aResult.erase(newEnd, aResult.end());
}
class DistanceOrdering
@ -317,51 +512,6 @@ namedFindClosest(const NamedPositionedIndex& aIndex, const std::string& aName,
return result;
}
static FGPositioned::List
spatialGetClosest(const SGGeod& aPos, unsigned int aN, double aCutoffNm, FGPositioned::Filter* aFilter)
{
FGPositioned::List result;
int radius = 1; // start at 1, radius 0 is handled explicitly
SGBucket buck;
double lat = aPos.getLatitudeDeg(),
lon = aPos.getLongitudeDeg();
// final cutoff is in metres, and scaled to account for testing the corners
// of the 'box' instead of the centre of each edge
double cutoffM = aCutoffNm * SG_NM_TO_METER * 1.5;
// base case, simplifes loop to do it seperately here
spatialFilterInBucket(sgBucketOffset(lon, lat, 0, 0), aFilter, result);
for (;result.size() < aN; ++radius) {
// cutoff check
double az1, az2, d1, d2;
SGGeodesy::inverse(aPos, sgBucketOffset(lon, lat, -radius, -radius).get_center(), az1, az2, d1);
SGGeodesy::inverse(aPos, sgBucketOffset(lon, lat, radius, radius).get_center(), az1, az2, d2);
if ((d1 > cutoffM) && (d2 > cutoffM)) {
//std::cerr << "spatialGetClosest terminating due to range cutoff" << std::endl;
break;
}
FGPositioned::List hits;
for ( int i=-radius; i<=radius; i++) {
spatialFilterInBucket(sgBucketOffset(lon, lat, i, -radius), aFilter, hits);
spatialFilterInBucket(sgBucketOffset(lon, lat, -radius, i), aFilter, hits);
spatialFilterInBucket(sgBucketOffset(lon, lat, i, radius), aFilter, hits);
spatialFilterInBucket(sgBucketOffset(lon, lat, radius, i), aFilter, hits);
}
result.insert(result.end(), hits.begin(), hits.end()); // append
} // of outer loop
sortByDistance(aPos, result);
if (result.size() > aN) {
result.resize(aN); // truncate at requested number of matches
}
return result;
}
//////////////////////////////////////////////////////////////////////////////
class OrderByName
@ -598,6 +748,7 @@ FGPositioned::Type FGPositioned::typeFromName(const std::string& aName)
// aliases
{"waypoint", WAYPOINT},
{"apt", AIRPORT},
{"arpt", AIRPORT},
{"any", INVALID},
{"all", INVALID},
@ -656,8 +807,8 @@ FGPositioned::List
FGPositioned::findWithinRange(const SGGeod& aPos, double aRangeNm, Filter* aFilter)
{
List result;
spatialFind(aPos, aRangeNm, aFilter, result);
filterListByRange(aPos, aRangeNm, result);
Octree::findAllWithinRange(SGVec3d::fromGeod(aPos),
aRangeNm * SG_NM_TO_METER, aFilter, result);
return result;
}
@ -676,7 +827,7 @@ FGPositioned::findAllWithNameSortedByRange(const std::string& aName, const SGGeo
FGPositionedRef
FGPositioned::findClosest(const SGGeod& aPos, double aCutoffNm, Filter* aFilter)
{
FGPositioned::List l(spatialGetClosest(aPos, 1, aCutoffNm, aFilter));
List l(findClosestN(aPos, 1, aCutoffNm, aFilter));
if (l.empty()) {
return NULL;
}
@ -688,7 +839,9 @@ FGPositioned::findClosest(const SGGeod& aPos, double aCutoffNm, Filter* aFilter)
FGPositioned::List
FGPositioned::findClosestN(const SGGeod& aPos, unsigned int aN, double aCutoffNm, Filter* aFilter)
{
return spatialGetClosest(aPos, aN, aCutoffNm, aFilter);
List result;
Octree::findNearestN(SGVec3d::fromGeod(aPos), aN, aCutoffNm * SG_NM_TO_METER, aFilter, result);
return result;
}
FGPositionedRef
@ -789,8 +942,8 @@ findClosestWithPartial(const SGGeod& aPos, FGPositioned::Filter* aFilter, int aO
{
// why aOffset +2 ? at offset=3, we want the fourth search result, but also
// to know if the fifth result exists (to set aNext flag for iterative APIs)
FGPositioned::List matches =
spatialGetClosest(aPos, aOffset + 2, 1000.0, aFilter);
FGPositioned::List matches;
Octree::findNearestN(SGVec3d::fromGeod(aPos), aOffset + 2, 1000 * SG_NM_TO_METER, aFilter, matches);
if ((int) matches.size() <= aOffset) {
SG_LOG(SG_GENERAL, SG_INFO, "findClosestWithPartial, couldn't match enough with prefix");