Merge branch 'merge-requests/1555' into next
This commit is contained in:
commit
32eb0fd00c
10 changed files with 3045 additions and 11 deletions
|
@ -47,6 +47,7 @@
|
|||
#include <Airports/groundnetwork.hxx>
|
||||
#include <Airports/dynamics.hxx>
|
||||
#include <Airports/simple.hxx>
|
||||
#include <Radio/radio.hxx>
|
||||
|
||||
using std::sort;
|
||||
|
||||
|
@ -508,7 +509,7 @@ bool FGATCController::isUserAircraft(FGAIAircraft* ac)
|
|||
return (ac->getCallSign() == fgGetString("/sim/multiplay/callsign")) ? true : false;
|
||||
};
|
||||
|
||||
void FGATCController::transmit(FGTrafficRecord * rec, AtcMsgId msgId,
|
||||
void FGATCController::transmit(FGTrafficRecord * rec, FGAirportDynamics *parent, AtcMsgId msgId,
|
||||
AtcMsgDir msgDir, bool audible)
|
||||
{
|
||||
string sender, receiver;
|
||||
|
@ -529,6 +530,7 @@ void FGATCController::transmit(FGTrafficRecord * rec, AtcMsgId msgId,
|
|||
FGAIFlightPlan *fp;
|
||||
string fltRules;
|
||||
string instructionText;
|
||||
int ground_to_air=0;
|
||||
|
||||
//double commFreqD;
|
||||
sender = rec->getAircraft()->getTrafficRef()->getCallSign();
|
||||
|
@ -569,6 +571,7 @@ void FGATCController::transmit(FGTrafficRecord * rec, AtcMsgId msgId,
|
|||
string tmp = sender;
|
||||
sender = receiver;
|
||||
receiver = tmp;
|
||||
ground_to_air=1;
|
||||
}
|
||||
switch (msgId) {
|
||||
case MSG_ANNOUNCE_ENGINE_START:
|
||||
|
@ -736,10 +739,35 @@ void FGATCController::transmit(FGTrafficRecord * rec, AtcMsgId msgId,
|
|||
// Display ATC message only when one of the radios is tuned
|
||||
// the relevant frequency.
|
||||
// Note that distance attenuation is currently not yet implemented
|
||||
|
||||
if ((onBoardRadioFreqI0 == stationFreq)
|
||||
|| (onBoardRadioFreqI1 == stationFreq)) {
|
||||
if (rec->allowTransmissions()) {
|
||||
fgSetString("/sim/messages/atc", text.c_str());
|
||||
|
||||
if( fgGetBool( "/sim/radio/use-itm-attenuation", false ) ) {
|
||||
//cerr << "Using ITM radio propagation" << endl;
|
||||
FGRadioTransmission* radio = new FGRadioTransmission();
|
||||
SGGeod sender_pos;
|
||||
double sender_alt_ft, sender_alt;
|
||||
if(ground_to_air) {
|
||||
sender_alt_ft = parent->getElevation();
|
||||
sender_alt = sender_alt_ft * SG_FEET_TO_METER;
|
||||
sender_pos= SGGeod::fromDegM( parent->getLongitude(),
|
||||
parent->getLatitude(), sender_alt );
|
||||
}
|
||||
else {
|
||||
sender_alt_ft = rec->getAltitude();
|
||||
sender_alt = sender_alt_ft * SG_FEET_TO_METER;
|
||||
sender_pos= SGGeod::fromDegM( rec->getLongitude(),
|
||||
rec->getLatitude(), sender_alt );
|
||||
}
|
||||
double frequency = ((double)stationFreq) / 100;
|
||||
radio->receiveATC(sender_pos, frequency, text, ground_to_air);
|
||||
delete radio;
|
||||
}
|
||||
else {
|
||||
fgSetString("/sim/messages/atc", text.c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
@ -747,6 +775,7 @@ void FGATCController::transmit(FGTrafficRecord * rec, AtcMsgId msgId,
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
string FGATCController::formatATCFrequency3_2(int freq)
|
||||
{
|
||||
char buffer[7];
|
||||
|
@ -1186,13 +1215,13 @@ bool FGStartupController::checkTransmissionState(int st, time_t now, time_t star
|
|||
FGATCDialogNew::instance()->removeEntry(1);
|
||||
} else {
|
||||
//cerr << "creading message for " << i->getAircraft()->getCallSign() << endl;
|
||||
transmit(&(*i), msgId, msgDir, false);
|
||||
transmit(&(*i), &(*parent), msgId, msgDir, false);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (now > startTime) {
|
||||
//cerr << "Transmitting startup msg" << endl;
|
||||
transmit(&(*i), msgId, msgDir, true);
|
||||
transmit(&(*i), &(*parent), msgId, msgDir, true);
|
||||
i->updateState();
|
||||
lastTransmission = now;
|
||||
available = false;
|
||||
|
@ -1261,11 +1290,11 @@ void FGStartupController::updateAircraftInformation(int id, double lat, double l
|
|||
if (now > startTime + 200) {
|
||||
if (i->pushBackAllowed()) {
|
||||
i->allowRepeatedTransmissions();
|
||||
transmit(&(*i), MSG_PERMIT_PUSHBACK_CLEARANCE,
|
||||
transmit(&(*i), &(*parent), MSG_PERMIT_PUSHBACK_CLEARANCE,
|
||||
ATC_GROUND_TO_AIR, true);
|
||||
i->updateState();
|
||||
} else {
|
||||
transmit(&(*i), MSG_HOLD_PUSHBACK_CLEARANCE,
|
||||
transmit(&(*i), &(*parent), MSG_HOLD_PUSHBACK_CLEARANCE,
|
||||
ATC_GROUND_TO_AIR, true);
|
||||
i->suppressRepeatedTransmissions();
|
||||
}
|
||||
|
|
|
@ -453,7 +453,7 @@ public:
|
|||
void setDt(double dt) {
|
||||
dt_count = dt;
|
||||
};
|
||||
void transmit(FGTrafficRecord *rec, AtcMsgId msgId, AtcMsgDir msgDir, bool audible);
|
||||
void transmit(FGTrafficRecord *rec, FGAirportDynamics *parent, AtcMsgId msgId, AtcMsgDir msgDir, bool audible);
|
||||
string getGateName(FGAIAircraft *aircraft);
|
||||
virtual void render(bool) = 0;
|
||||
virtual string getName() = 0;
|
||||
|
|
|
@ -756,11 +756,11 @@ bool FGGroundNetwork::checkTransmissionState(int minState, int maxState, Traffic
|
|||
FGATCDialogNew::instance()->removeEntry(1);
|
||||
} else {
|
||||
//cerr << "creating message for " << i->getAircraft()->getCallSign() << endl;
|
||||
transmit(&(*i), msgId, msgDir, false);
|
||||
transmit(&(*i), &(*parent->getDynamics()), msgId, msgDir, false);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
transmit(&(*i), msgId, msgDir, true);
|
||||
transmit(&(*i), &(*parent->getDynamics()), msgId, msgDir, true);
|
||||
i->updateState();
|
||||
lastTransmission = now;
|
||||
available = false;
|
||||
|
@ -1098,11 +1098,11 @@ void FGGroundNetwork::checkHoldPosition(int id, double lat,
|
|||
if ((origStatus != currStatus) && available) {
|
||||
//cerr << "Issueing hold short instrudtion " << currStatus << " " << available << endl;
|
||||
if (currStatus == true) { // No has a hold short instruction
|
||||
transmit(&(*current), MSG_HOLD_POSITION, ATC_GROUND_TO_AIR, true);
|
||||
transmit(&(*current), &(*parent->getDynamics()), MSG_HOLD_POSITION, ATC_GROUND_TO_AIR, true);
|
||||
//cerr << "Transmittin hold short instrudtion " << currStatus << " " << available << endl;
|
||||
current->setState(1);
|
||||
} else {
|
||||
transmit(&(*current), MSG_RESUME_TAXI, ATC_GROUND_TO_AIR, true);
|
||||
transmit(&(*current), &(*parent->getDynamics()), MSG_RESUME_TAXI, ATC_GROUND_TO_AIR, true);
|
||||
//cerr << "Transmittig resume instrudtion " << currStatus << " " << available << endl;
|
||||
current->setState(2);
|
||||
}
|
||||
|
|
|
@ -8,6 +8,7 @@ foreach( mylibfolder
|
|||
Aircraft
|
||||
ATC
|
||||
ATCDCL
|
||||
Radio
|
||||
Autopilot
|
||||
Cockpit
|
||||
Environment
|
||||
|
|
16
src/Radio/CMakeLists.txt
Normal file
16
src/Radio/CMakeLists.txt
Normal file
|
@ -0,0 +1,16 @@
|
|||
include(FlightGearComponent)
|
||||
|
||||
set(SOURCES
|
||||
antenna.cxx
|
||||
radio.cxx
|
||||
itm.cpp
|
||||
)
|
||||
|
||||
set(HEADERS
|
||||
antenna.hxx
|
||||
radio.hxx
|
||||
)
|
||||
|
||||
|
||||
flightgear_component(Radio "${SOURCES}" "${HEADERS}")
|
||||
|
53
src/Radio/antenna.cxx
Normal file
53
src/Radio/antenna.cxx
Normal file
|
@ -0,0 +1,53 @@
|
|||
// antenna.cxx -- implementation of FGRadioAntenna
|
||||
// Class to represent a virtual radio antenna properties
|
||||
// Written by Adrian Musceac, started December 2011.
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but
|
||||
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
# include <config.h>
|
||||
#endif
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <Scenery/scenery.hxx>
|
||||
#include "antenna.hxx"
|
||||
|
||||
|
||||
FGRadioAntenna::FGRadioAntenna() {
|
||||
|
||||
_mirror_y = 1;
|
||||
_mirror_z = 1;
|
||||
_invert_ground = 0;
|
||||
}
|
||||
|
||||
FGRadioAntenna::~FGRadioAntenna() {
|
||||
|
||||
}
|
||||
|
||||
double FGRadioAntenna::calculate_gain(double azimuth, double elevation) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*** load external plot file generated by NEC4
|
||||
***/
|
||||
void FGRadioAntenna::load_antenna_pattern() {
|
||||
|
||||
}
|
55
src/Radio/antenna.hxx
Normal file
55
src/Radio/antenna.hxx
Normal file
|
@ -0,0 +1,55 @@
|
|||
// antenna.hxx -- FGRadioAntenna: class to represent antenna properties
|
||||
//
|
||||
// Written by Adrian Musceac, started December 2011.
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but
|
||||
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
#ifndef __cplusplus
|
||||
# error This library requires C++
|
||||
#endif
|
||||
|
||||
#include <simgear/compiler.h>
|
||||
#include <simgear/structure/subsystem_mgr.hxx>
|
||||
#include <Main/fg_props.hxx>
|
||||
|
||||
#include <simgear/math/sg_geodesy.hxx>
|
||||
#include <simgear/debug/logstream.hxx>
|
||||
|
||||
class FGRadioAntenna
|
||||
{
|
||||
private:
|
||||
void load_antenna_pattern();
|
||||
int _mirror_y;
|
||||
int _mirror_z;
|
||||
int _invert_ground;
|
||||
double _heading_deg;
|
||||
double _elevation_angle_deg;
|
||||
struct AntennaGain {
|
||||
double azimuth;
|
||||
double elevation;
|
||||
double gain;
|
||||
};
|
||||
|
||||
typedef std::vector<AntennaGain> AntennaPattern;
|
||||
AntennaPattern _pattern;
|
||||
|
||||
public:
|
||||
|
||||
FGRadioAntenna();
|
||||
~FGRadioAntenna();
|
||||
double calculate_gain(double azimuth, double elevation);
|
||||
|
||||
|
||||
};
|
1851
src/Radio/itm.cpp
Normal file
1851
src/Radio/itm.cpp
Normal file
File diff suppressed because it is too large
Load diff
932
src/Radio/radio.cxx
Normal file
932
src/Radio/radio.cxx
Normal file
|
@ -0,0 +1,932 @@
|
|||
// radio.cxx -- implementation of FGRadio
|
||||
// Class to manage radio propagation using the ITM model
|
||||
// Written by Adrian Musceac, started August 2011.
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but
|
||||
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
# include <config.h>
|
||||
#endif
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <deque>
|
||||
#include "radio.hxx"
|
||||
#include <simgear/scene/material/mat.hxx>
|
||||
#include <Scenery/scenery.hxx>
|
||||
|
||||
#define WITH_POINT_TO_POINT 1
|
||||
#include "itm.cpp"
|
||||
|
||||
|
||||
FGRadioTransmission::FGRadioTransmission() {
|
||||
|
||||
|
||||
_receiver_sensitivity = -110.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
|
||||
|
||||
/** AM transmitter power in dBm.
|
||||
* Typical output powers for ATC ground equipment, VHF-UHF:
|
||||
* 40 dBm - 10 W (ground, clearance)
|
||||
* 44 dBm - 20 W (tower)
|
||||
* 47 dBm - 50 W (center, sectors)
|
||||
* 50 dBm - 100 W (center, sectors)
|
||||
* 53 dBm - 200 W (sectors, on directional arrays)
|
||||
**/
|
||||
_transmitter_power = 43.0;
|
||||
|
||||
_tx_antenna_height = 2.0; // TX antenna height above ground level
|
||||
|
||||
_rx_antenna_height = 2.0; // RX antenna height above ground level
|
||||
|
||||
|
||||
_rx_antenna_gain = 1.0; // gain expressed in dBi
|
||||
_tx_antenna_gain = 1.0;
|
||||
|
||||
_rx_line_losses = 2.0; // to be configured for each station
|
||||
_tx_line_losses = 2.0;
|
||||
|
||||
_polarization = 1; // default vertical
|
||||
|
||||
_propagation_model = 2;
|
||||
|
||||
_root_node = fgGetNode("sim/radio", true);
|
||||
_terrain_sampling_distance = _root_node->getDoubleValue("sampling-distance", 90.0); // regular SRTM is 90 meters
|
||||
}
|
||||
|
||||
FGRadioTransmission::~FGRadioTransmission()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
double FGRadioTransmission::getFrequency(int radio) {
|
||||
double freq = 118.0;
|
||||
switch (radio) {
|
||||
case 1:
|
||||
freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
|
||||
break;
|
||||
case 2:
|
||||
freq = fgGetDouble("/instrumentation/comm[1]/frequencies/selected-mhz");
|
||||
break;
|
||||
default:
|
||||
freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
|
||||
|
||||
}
|
||||
return freq;
|
||||
}
|
||||
|
||||
/*** TODO: receive multiplayer chat message and voice
|
||||
***/
|
||||
void FGRadioTransmission::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) {
|
||||
|
||||
}
|
||||
|
||||
/*** TODO: receive navaid
|
||||
***/
|
||||
double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
|
||||
|
||||
// typical VOR/LOC transmitter power appears to be 200 Watt ~ 53 dBm
|
||||
// vor/loc typical sensitivity between -107 and -101 dBm
|
||||
// glideslope sensitivity between -85 and -81 dBm
|
||||
if ( _propagation_model == 1) {
|
||||
return LOS_calculate_attenuation(tx_pos, freq, 1);
|
||||
}
|
||||
else if ( _propagation_model == 2) {
|
||||
return ITM_calculate_attenuation(tx_pos, freq, 1);
|
||||
}
|
||||
|
||||
return -1;
|
||||
|
||||
}
|
||||
|
||||
/*** Receive ATC radio communication as text
|
||||
***/
|
||||
void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
|
||||
|
||||
|
||||
if(ground_to_air == 1) {
|
||||
_transmitter_power += 4.0;
|
||||
_tx_antenna_height += 30.0;
|
||||
_tx_antenna_gain += 2.0;
|
||||
}
|
||||
|
||||
|
||||
double comm1 = getFrequency(1);
|
||||
double comm2 = getFrequency(2);
|
||||
if ( !(fabs(freq - comm1) <= 0.0001) && !(fabs(freq - comm2) <= 0.0001) ) {
|
||||
return;
|
||||
}
|
||||
else {
|
||||
|
||||
if ( _propagation_model == 0) {
|
||||
// skip propagation routines entirely
|
||||
fgSetString("/sim/messages/atc", text.c_str());
|
||||
}
|
||||
else if ( _propagation_model == 1 ) {
|
||||
// Use free-space, round earth
|
||||
double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
|
||||
if (signal <= 0.0) {
|
||||
return;
|
||||
}
|
||||
else {
|
||||
|
||||
fgSetString("/sim/messages/atc", text.c_str());
|
||||
|
||||
}
|
||||
}
|
||||
else if ( _propagation_model == 2 ) {
|
||||
// Use ITM propagation model
|
||||
double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
|
||||
if (signal <= 0.0) {
|
||||
return;
|
||||
}
|
||||
if ((signal > 0.0) && (signal < 12.0)) {
|
||||
/** for low SNR values implement a way to make the conversation
|
||||
* hard to understand but audible
|
||||
* in the real world, the receiver AGC fails to capture the slope
|
||||
* and the signal, due to being amplitude modulated, decreases volume after demodulation
|
||||
* the workaround below is more akin to what would happen on a FM transmission
|
||||
* therefore the correct way would be to work on the volume
|
||||
**/
|
||||
/*
|
||||
string hash_noise = " ";
|
||||
int reps = (int) (fabs(floor(signal - 11.0)) * 2);
|
||||
int t_size = text.size();
|
||||
for (int n = 1; n <= reps; ++n) {
|
||||
int pos = rand() % (t_size -1);
|
||||
text.replace(pos,1, hash_noise);
|
||||
}
|
||||
*/
|
||||
double volume = (fabs(signal - 12.0) / 12);
|
||||
double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
|
||||
SG_LOG(SG_GENERAL, SG_BULK, "Usable signal at limit: " << signal);
|
||||
//cerr << "Usable signal at limit: " << signal << endl;
|
||||
fgSetDouble("/sim/sound/voices/voice/volume", volume);
|
||||
fgSetString("/sim/messages/atc", text.c_str());
|
||||
fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
|
||||
}
|
||||
else {
|
||||
fgSetString("/sim/messages/atc", text.c_str());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*** Implement radio attenuation
|
||||
based on the Longley-Rice propagation model
|
||||
***/
|
||||
double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
|
||||
|
||||
|
||||
|
||||
/** ITM default parameters
|
||||
TODO: take them from tile materials (especially for sea)?
|
||||
**/
|
||||
double eps_dielect=15.0;
|
||||
double sgm_conductivity = 0.005;
|
||||
double eno = 301.0;
|
||||
double frq_mhz;
|
||||
if( (freq < 118.0) || (freq > 137.0) )
|
||||
frq_mhz = 125.0; // sane value, middle of bandplan
|
||||
else
|
||||
frq_mhz = freq;
|
||||
int radio_climate = 5; // continental temperate
|
||||
int pol= _polarization;
|
||||
double conf = 0.90; // 90% of situations and time, take into account speed
|
||||
double rel = 0.90;
|
||||
double dbloss;
|
||||
char strmode[150];
|
||||
int p_mode = 0; // propgation mode selector: 0 LOS, 1 diffraction dominant, 2 troposcatter
|
||||
double horizons[2];
|
||||
int errnum;
|
||||
|
||||
double clutter_loss = 0.0; // loss due to vegetation and urban
|
||||
double tx_pow = _transmitter_power;
|
||||
double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
|
||||
double signal = 0.0;
|
||||
|
||||
|
||||
double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;
|
||||
double signal_strength = tx_pow - _rx_line_losses - _tx_line_losses + ant_gain;
|
||||
double tx_erp = dbm_to_watt(tx_pow + _tx_antenna_gain - _tx_line_losses);
|
||||
|
||||
|
||||
FGScenery * scenery = globals->get_scenery();
|
||||
|
||||
double own_lat = fgGetDouble("/position/latitude-deg");
|
||||
double own_lon = fgGetDouble("/position/longitude-deg");
|
||||
double own_alt_ft = fgGetDouble("/position/altitude-ft");
|
||||
double own_alt= own_alt_ft * SG_FEET_TO_METER;
|
||||
|
||||
|
||||
//cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
|
||||
|
||||
SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
|
||||
SGGeod max_own_pos = SGGeod::fromDegM( own_lon, own_lat, SG_MAX_ELEVATION_M );
|
||||
SGGeoc center = SGGeoc::fromGeod( max_own_pos );
|
||||
SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos );
|
||||
|
||||
|
||||
double sender_alt_ft,sender_alt;
|
||||
double transmitter_height=0.0;
|
||||
double receiver_height=0.0;
|
||||
SGGeod sender_pos = pos;
|
||||
|
||||
sender_alt_ft = sender_pos.getElevationFt();
|
||||
sender_alt = sender_alt_ft * SG_FEET_TO_METER;
|
||||
SGGeod max_sender_pos = SGGeod::fromGeodM( pos, SG_MAX_ELEVATION_M );
|
||||
SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
|
||||
//cerr << "ITM:: sender Lat: " << parent->getLatitude() << ", Lon: " << parent->getLongitude() << ", Alt: " << sender_alt << endl;
|
||||
|
||||
double point_distance= _terrain_sampling_distance;
|
||||
double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
|
||||
double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
|
||||
double probe_distance = 0.0;
|
||||
/** If distance larger than this value (300 km), assume reception imposssible */
|
||||
if (distance_m > 300000)
|
||||
return -1.0;
|
||||
/** If above 8000 meters, consider LOS mode and calculate free-space att */
|
||||
if (own_alt > 8000) {
|
||||
dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
|
||||
SG_LOG(SG_GENERAL, SG_BULK,
|
||||
"ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation");
|
||||
//cerr << "ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation" << endl;
|
||||
signal = link_budget - dbloss;
|
||||
return signal;
|
||||
}
|
||||
|
||||
|
||||
int max_points = (int)floor(distance_m / point_distance);
|
||||
double delta_last = fmod(distance_m, point_distance);
|
||||
|
||||
deque<double> _elevations;
|
||||
deque<string> materials;
|
||||
|
||||
|
||||
double elevation_under_pilot = 0.0;
|
||||
if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) {
|
||||
receiver_height = own_alt - elevation_under_pilot;
|
||||
}
|
||||
|
||||
double elevation_under_sender = 0.0;
|
||||
if (scenery->get_elevation_m( max_sender_pos, elevation_under_sender, NULL )) {
|
||||
transmitter_height = sender_alt - elevation_under_sender;
|
||||
}
|
||||
else {
|
||||
transmitter_height = sender_alt;
|
||||
}
|
||||
|
||||
|
||||
transmitter_height += _tx_antenna_height;
|
||||
receiver_height += _rx_antenna_height;
|
||||
|
||||
|
||||
SG_LOG(SG_GENERAL, SG_BULK,
|
||||
"ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters");
|
||||
//cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
|
||||
_root_node->setDoubleValue("station[0]/rx-height", receiver_height);
|
||||
_root_node->setDoubleValue("station[0]/tx-height", transmitter_height);
|
||||
_root_node->setDoubleValue("station[0]/distance", distance_m / 1000);
|
||||
|
||||
unsigned int e_size = (deque<unsigned>::size_type)max_points;
|
||||
|
||||
while (_elevations.size() <= e_size) {
|
||||
probe_distance += point_distance;
|
||||
SGGeod probe = SGGeod::fromGeoc(center.advanceRadM( course, probe_distance ));
|
||||
const SGMaterial *mat = 0;
|
||||
double elevation_m = 0.0;
|
||||
|
||||
if (scenery->get_elevation_m( probe, elevation_m, &mat )) {
|
||||
if((transmission_type == 3) || (transmission_type == 4)) {
|
||||
_elevations.push_back(elevation_m);
|
||||
if(mat) {
|
||||
const std::vector<string> mat_names = mat->get_names();
|
||||
materials.push_back(mat_names[0]);
|
||||
}
|
||||
else {
|
||||
materials.push_back("None");
|
||||
}
|
||||
}
|
||||
else {
|
||||
_elevations.push_front(elevation_m);
|
||||
if(mat) {
|
||||
const std::vector<string> mat_names = mat->get_names();
|
||||
materials.push_front(mat_names[0]);
|
||||
}
|
||||
else {
|
||||
materials.push_front("None");
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
if((transmission_type == 3) || (transmission_type == 4)) {
|
||||
_elevations.push_back(0.0);
|
||||
materials.push_back("None");
|
||||
}
|
||||
else {
|
||||
_elevations.push_front(0.0);
|
||||
materials.push_front("None");
|
||||
}
|
||||
}
|
||||
}
|
||||
if((transmission_type == 3) || (transmission_type == 4)) {
|
||||
_elevations.push_front(elevation_under_pilot);
|
||||
if (delta_last > (point_distance / 2) ) // only add last point if it's farther than half point_distance
|
||||
_elevations.push_back(elevation_under_sender);
|
||||
}
|
||||
else {
|
||||
_elevations.push_back(elevation_under_pilot);
|
||||
if (delta_last > (point_distance / 2) )
|
||||
_elevations.push_front(elevation_under_sender);
|
||||
}
|
||||
|
||||
|
||||
double num_points= (double)_elevations.size();
|
||||
|
||||
_elevations.push_front(point_distance);
|
||||
_elevations.push_front(num_points -1);
|
||||
int size = _elevations.size();
|
||||
double itm_elev[size];
|
||||
for(int i=0;i<size;i++) {
|
||||
itm_elev[i]=_elevations[i];
|
||||
//cerr << "ITM:: itm_elev: " << _elevations[i] << endl;
|
||||
}
|
||||
|
||||
if((transmission_type == 3) || (transmission_type == 4)) {
|
||||
// the sender and receiver roles are switched
|
||||
point_to_point(itm_elev, receiver_height, transmitter_height,
|
||||
eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
|
||||
pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
|
||||
if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
|
||||
clutterLoss(frq_mhz, distance_m, itm_elev, materials, receiver_height, transmitter_height, p_mode, horizons, clutter_loss);
|
||||
}
|
||||
else {
|
||||
point_to_point(itm_elev, transmitter_height, receiver_height,
|
||||
eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
|
||||
pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
|
||||
if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
|
||||
clutterLoss(frq_mhz, distance_m, itm_elev, materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss);
|
||||
}
|
||||
|
||||
double pol_loss = 0.0;
|
||||
if (_polarization == 1) {
|
||||
pol_loss = polarization_loss();
|
||||
}
|
||||
SG_LOG(SG_GENERAL, SG_BULK,
|
||||
"ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
|
||||
//cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
|
||||
_root_node->setDoubleValue("station[0]/link-budget", link_budget);
|
||||
_root_node->setDoubleValue("station[0]/terrain-attenuation", dbloss);
|
||||
_root_node->setStringValue("station[0]/prop-mode", strmode);
|
||||
_root_node->setDoubleValue("station[0]/clutter-attenuation", clutter_loss);
|
||||
_root_node->setDoubleValue("station[0]/polarization-attenuation", pol_loss);
|
||||
//cerr << "Clutter loss: " << clutter_loss << endl;
|
||||
//if (errnum == 4) // if parameters are outside sane values for lrprop, the alternative method is used
|
||||
// return -1;
|
||||
signal = link_budget - dbloss - clutter_loss + pol_loss;
|
||||
double signal_strength_dbm = signal_strength - dbloss - clutter_loss + pol_loss;
|
||||
double field_strength_uV = dbm_to_microvolt(signal_strength_dbm);
|
||||
_root_node->setDoubleValue("station[0]/signal-dbm", signal_strength_dbm);
|
||||
_root_node->setDoubleValue("station[0]/field-strength-uV", field_strength_uV);
|
||||
_root_node->setDoubleValue("station[0]/signal", signal);
|
||||
_root_node->setDoubleValue("station[0]/tx-erp", tx_erp);
|
||||
return signal;
|
||||
|
||||
}
|
||||
|
||||
/*** Calculate losses due to vegetation and urban clutter (WIP)
|
||||
* We are only worried about clutter loss, terrain influence
|
||||
* on the first Fresnel zone is calculated in the ITM functions
|
||||
***/
|
||||
void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm_elev[], deque<string> materials,
|
||||
double transmitter_height, double receiver_height, int p_mode,
|
||||
double horizons[], double &clutter_loss) {
|
||||
|
||||
distance_m = itm_elev[0] * itm_elev[1]; // only consider elevation points
|
||||
|
||||
if (p_mode == 0) { // LOS: take each point and see how clutter height affects first Fresnel zone
|
||||
int mat = 0;
|
||||
int j=1;
|
||||
for (int k=3;k < (int)(itm_elev[0]) + 2;k++) {
|
||||
|
||||
double clutter_height = 0.0; // mean clutter height for a certain terrain type
|
||||
double clutter_density = 0.0; // percent of reflected wave
|
||||
get_material_properties(materials[mat], clutter_height, clutter_density);
|
||||
|
||||
double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
|
||||
// First Fresnel radius
|
||||
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (itm_elev[0] - j) * itm_elev[1] / 1000000) / ( distance_m * freq / 1000) );
|
||||
|
||||
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
|
||||
|
||||
double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
|
||||
double d1 = j * itm_elev[1];
|
||||
if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
|
||||
d1 = (itm_elev[0] - j) * itm_elev[1];
|
||||
}
|
||||
double ray_height = (grad * d1) + min_elev;
|
||||
|
||||
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
|
||||
double intrusion = fabs(clearance);
|
||||
|
||||
if (clearance >= 0) {
|
||||
// no losses
|
||||
}
|
||||
else if (clearance < 0 && (intrusion < clutter_height)) {
|
||||
|
||||
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else if (clearance < 0 && (intrusion > clutter_height)) {
|
||||
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else {
|
||||
// no losses
|
||||
}
|
||||
j++;
|
||||
mat++;
|
||||
}
|
||||
|
||||
}
|
||||
else if (p_mode == 1) { // diffraction
|
||||
|
||||
if (horizons[1] == 0.0) { // single horizon: same as above, except pass twice using the highest point
|
||||
int num_points_1st = (int)floor( horizons[0] * itm_elev[0]/ distance_m );
|
||||
int num_points_2nd = (int)ceil( (distance_m - horizons[0]) * itm_elev[0] / distance_m );
|
||||
//cerr << "Diffraction 1 horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << endl;
|
||||
int last = 1;
|
||||
/** perform the first pass */
|
||||
int mat = 0;
|
||||
int j=1;
|
||||
for (int k=3;k < num_points_1st + 2;k++) {
|
||||
if (num_points_1st < 1)
|
||||
break;
|
||||
double clutter_height = 0.0; // mean clutter height for a certain terrain type
|
||||
double clutter_density = 0.0; // percent of reflected wave
|
||||
get_material_properties(materials[mat], clutter_height, clutter_density);
|
||||
|
||||
double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
|
||||
// First Fresnel radius
|
||||
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) );
|
||||
|
||||
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
|
||||
|
||||
double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
|
||||
double d1 = j * itm_elev[1];
|
||||
if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
|
||||
d1 = (num_points_1st - j) * itm_elev[1];
|
||||
}
|
||||
double ray_height = (grad * d1) + min_elev;
|
||||
|
||||
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
|
||||
double intrusion = fabs(clearance);
|
||||
|
||||
if (clearance >= 0) {
|
||||
// no losses
|
||||
}
|
||||
else if (clearance < 0 && (intrusion < clutter_height)) {
|
||||
|
||||
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else if (clearance < 0 && (intrusion > clutter_height)) {
|
||||
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else {
|
||||
// no losses
|
||||
}
|
||||
j++;
|
||||
mat++;
|
||||
last = k;
|
||||
}
|
||||
|
||||
/** and the second pass */
|
||||
mat +=1;
|
||||
j =1; // first point is diffraction edge, 2nd the RX elevation
|
||||
for (int k=last+2;k < (int)(itm_elev[0]) + 2;k++) {
|
||||
if (num_points_2nd < 1)
|
||||
break;
|
||||
double clutter_height = 0.0; // mean clutter height for a certain terrain type
|
||||
double clutter_density = 0.0; // percent of reflected wave
|
||||
get_material_properties(materials[mat], clutter_height, clutter_density);
|
||||
|
||||
double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
|
||||
// First Fresnel radius
|
||||
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / ( num_points_2nd * itm_elev[1] * freq / 1000) );
|
||||
|
||||
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
|
||||
|
||||
double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
|
||||
double d1 = j * itm_elev[1];
|
||||
if ( (itm_elev[last+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
|
||||
d1 = (num_points_2nd - j) * itm_elev[1];
|
||||
}
|
||||
double ray_height = (grad * d1) + min_elev;
|
||||
|
||||
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
|
||||
double intrusion = fabs(clearance);
|
||||
|
||||
if (clearance >= 0) {
|
||||
// no losses
|
||||
}
|
||||
else if (clearance < 0 && (intrusion < clutter_height)) {
|
||||
|
||||
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else if (clearance < 0 && (intrusion > clutter_height)) {
|
||||
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else {
|
||||
// no losses
|
||||
}
|
||||
j++;
|
||||
mat++;
|
||||
}
|
||||
|
||||
}
|
||||
else { // double horizon: same as single horizon, except there are 3 segments
|
||||
|
||||
int num_points_1st = (int)floor( horizons[0] * itm_elev[0] / distance_m );
|
||||
int num_points_2nd = (int)floor(horizons[1] * itm_elev[0] / distance_m );
|
||||
int num_points_3rd = (int)itm_elev[0] - num_points_1st - num_points_2nd;
|
||||
//cerr << "Double horizon:: horizon1: " << horizons[0] << " horizon2: " << horizons[1] << " distance: " << distance_m << endl;
|
||||
//cerr << "Double horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << " points3: " << num_points_3rd << endl;
|
||||
int last = 1;
|
||||
/** perform the first pass */
|
||||
int mat = 0;
|
||||
int j=1; // first point is TX elevation, 2nd is obstruction elevation
|
||||
for (int k=3;k < num_points_1st +2;k++) {
|
||||
if (num_points_1st < 1)
|
||||
break;
|
||||
double clutter_height = 0.0; // mean clutter height for a certain terrain type
|
||||
double clutter_density = 0.0; // percent of reflected wave
|
||||
get_material_properties(materials[mat], clutter_height, clutter_density);
|
||||
|
||||
double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
|
||||
// First Fresnel radius
|
||||
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) );
|
||||
|
||||
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
|
||||
|
||||
double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
|
||||
double d1 = j * itm_elev[1];
|
||||
if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
|
||||
d1 = (num_points_1st - j) * itm_elev[1];
|
||||
}
|
||||
double ray_height = (grad * d1) + min_elev;
|
||||
|
||||
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
|
||||
double intrusion = fabs(clearance);
|
||||
|
||||
if (clearance >= 0) {
|
||||
// no losses
|
||||
}
|
||||
else if (clearance < 0 && (intrusion < clutter_height)) {
|
||||
|
||||
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else if (clearance < 0 && (intrusion > clutter_height)) {
|
||||
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else {
|
||||
// no losses
|
||||
}
|
||||
j++;
|
||||
last = k;
|
||||
}
|
||||
mat +=1;
|
||||
/** and the second pass */
|
||||
int last2=1;
|
||||
j =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation
|
||||
for (int k=last+2;k < num_points_1st + num_points_2nd +2;k++) {
|
||||
if (num_points_2nd < 1)
|
||||
break;
|
||||
double clutter_height = 0.0; // mean clutter height for a certain terrain type
|
||||
double clutter_density = 0.0; // percent of reflected wave
|
||||
get_material_properties(materials[mat], clutter_height, clutter_density);
|
||||
|
||||
double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) / distance_m;
|
||||
// First Fresnel radius
|
||||
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / ( num_points_2nd * itm_elev[1] * freq / 1000) );
|
||||
|
||||
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
|
||||
|
||||
double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[num_points_1st + num_points_2nd +2] + clutter_height);
|
||||
double d1 = j * itm_elev[1];
|
||||
if ( (itm_elev[last+1] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) ) {
|
||||
d1 = (num_points_2nd - j) * itm_elev[1];
|
||||
}
|
||||
double ray_height = (grad * d1) + min_elev;
|
||||
|
||||
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
|
||||
double intrusion = fabs(clearance);
|
||||
|
||||
if (clearance >= 0) {
|
||||
// no losses
|
||||
}
|
||||
else if (clearance < 0 && (intrusion < clutter_height)) {
|
||||
|
||||
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else if (clearance < 0 && (intrusion > clutter_height)) {
|
||||
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else {
|
||||
// no losses
|
||||
}
|
||||
j++;
|
||||
mat++;
|
||||
last2 = k;
|
||||
}
|
||||
|
||||
/** third and final pass */
|
||||
mat +=1;
|
||||
j =1; // first point is 2nd obstruction elevation, 3rd is RX elevation
|
||||
for (int k=last2+2;k < (int)itm_elev[0] + 2;k++) {
|
||||
if (num_points_3rd < 1)
|
||||
break;
|
||||
double clutter_height = 0.0; // mean clutter height for a certain terrain type
|
||||
double clutter_density = 0.0; // percent of reflected wave
|
||||
get_material_properties(materials[mat], clutter_height, clutter_density);
|
||||
|
||||
double grad = fabs(itm_elev[last2+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
|
||||
// First Fresnel radius
|
||||
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_3rd - j) * itm_elev[1] / 1000000) / ( num_points_3rd * itm_elev[1] * freq / 1000) );
|
||||
|
||||
|
||||
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
|
||||
|
||||
double min_elev = SGMiscd::min(itm_elev[last2+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
|
||||
double d1 = j * itm_elev[1];
|
||||
if ( (itm_elev[last2+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
|
||||
d1 = (num_points_3rd - j) * itm_elev[1];
|
||||
}
|
||||
double ray_height = (grad * d1) + min_elev;
|
||||
|
||||
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
|
||||
double intrusion = fabs(clearance);
|
||||
|
||||
if (clearance >= 0) {
|
||||
// no losses
|
||||
}
|
||||
else if (clearance < 0 && (intrusion < clutter_height)) {
|
||||
|
||||
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else if (clearance < 0 && (intrusion > clutter_height)) {
|
||||
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
|
||||
}
|
||||
else {
|
||||
// no losses
|
||||
}
|
||||
j++;
|
||||
mat++;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
else if (p_mode == 2) { // troposcatter: ignore ground clutter for now...
|
||||
clutter_loss = 0.0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*** Temporary material properties database
|
||||
* height: median clutter height
|
||||
* density: radiowave attenuation factor
|
||||
***/
|
||||
void FGRadioTransmission::get_material_properties(string mat_name, double &height, double &density) {
|
||||
|
||||
if(mat_name == "Landmass") {
|
||||
height = 15.0;
|
||||
density = 0.2;
|
||||
}
|
||||
|
||||
else if(mat_name == "SomeSort") {
|
||||
height = 15.0;
|
||||
density = 0.2;
|
||||
}
|
||||
|
||||
else if(mat_name == "Island") {
|
||||
height = 15.0;
|
||||
density = 0.2;
|
||||
}
|
||||
else if(mat_name == "Default") {
|
||||
height = 15.0;
|
||||
density = 0.2;
|
||||
}
|
||||
else if(mat_name == "EvergreenBroadCover") {
|
||||
height = 20.0;
|
||||
density = 0.2;
|
||||
}
|
||||
else if(mat_name == "EvergreenForest") {
|
||||
height = 20.0;
|
||||
density = 0.2;
|
||||
}
|
||||
else if(mat_name == "DeciduousBroadCover") {
|
||||
height = 15.0;
|
||||
density = 0.3;
|
||||
}
|
||||
else if(mat_name == "DeciduousForest") {
|
||||
height = 15.0;
|
||||
density = 0.3;
|
||||
}
|
||||
else if(mat_name == "MixedForestCover") {
|
||||
height = 20.0;
|
||||
density = 0.25;
|
||||
}
|
||||
else if(mat_name == "MixedForest") {
|
||||
height = 15.0;
|
||||
density = 0.25;
|
||||
}
|
||||
else if(mat_name == "RainForest") {
|
||||
height = 25.0;
|
||||
density = 0.55;
|
||||
}
|
||||
else if(mat_name == "EvergreenNeedleCover") {
|
||||
height = 15.0;
|
||||
density = 0.2;
|
||||
}
|
||||
else if(mat_name == "WoodedTundraCover") {
|
||||
height = 5.0;
|
||||
density = 0.15;
|
||||
}
|
||||
else if(mat_name == "DeciduousNeedleCover") {
|
||||
height = 5.0;
|
||||
density = 0.2;
|
||||
}
|
||||
else if(mat_name == "ScrubCover") {
|
||||
height = 3.0;
|
||||
density = 0.15;
|
||||
}
|
||||
else if(mat_name == "BuiltUpCover") {
|
||||
height = 30.0;
|
||||
density = 0.7;
|
||||
}
|
||||
else if(mat_name == "Urban") {
|
||||
height = 30.0;
|
||||
density = 0.7;
|
||||
}
|
||||
else if(mat_name == "Construction") {
|
||||
height = 30.0;
|
||||
density = 0.7;
|
||||
}
|
||||
else if(mat_name == "Industrial") {
|
||||
height = 30.0;
|
||||
density = 0.7;
|
||||
}
|
||||
else if(mat_name == "Port") {
|
||||
height = 30.0;
|
||||
density = 0.7;
|
||||
}
|
||||
else if(mat_name == "Town") {
|
||||
height = 10.0;
|
||||
density = 0.5;
|
||||
}
|
||||
else if(mat_name == "SubUrban") {
|
||||
height = 10.0;
|
||||
density = 0.5;
|
||||
}
|
||||
else if(mat_name == "CropWoodCover") {
|
||||
height = 10.0;
|
||||
density = 0.1;
|
||||
}
|
||||
else if(mat_name == "CropWood") {
|
||||
height = 10.0;
|
||||
density = 0.1;
|
||||
}
|
||||
else if(mat_name == "AgroForest") {
|
||||
height = 10.0;
|
||||
density = 0.1;
|
||||
}
|
||||
else {
|
||||
height = 0.0;
|
||||
density = 0.0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*** implement simple LOS propagation model (WIP)
|
||||
***/
|
||||
double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
|
||||
double frq_mhz;
|
||||
if( (freq < 118.0) || (freq > 137.0) )
|
||||
frq_mhz = 125.0; // sane value, middle of bandplan
|
||||
else
|
||||
frq_mhz = freq;
|
||||
double dbloss;
|
||||
double tx_pow = _transmitter_power;
|
||||
double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
|
||||
double signal = 0.0;
|
||||
|
||||
double sender_alt_ft,sender_alt;
|
||||
double transmitter_height=0.0;
|
||||
double receiver_height=0.0;
|
||||
double own_lat = fgGetDouble("/position/latitude-deg");
|
||||
double own_lon = fgGetDouble("/position/longitude-deg");
|
||||
double own_alt_ft = fgGetDouble("/position/altitude-ft");
|
||||
double own_alt= own_alt_ft * SG_FEET_TO_METER;
|
||||
|
||||
|
||||
double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;
|
||||
|
||||
//cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
|
||||
|
||||
SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
|
||||
|
||||
SGGeod sender_pos = pos;
|
||||
|
||||
sender_alt_ft = sender_pos.getElevationFt();
|
||||
sender_alt = sender_alt_ft * SG_FEET_TO_METER;
|
||||
|
||||
receiver_height = own_alt;
|
||||
transmitter_height = sender_alt;
|
||||
|
||||
double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
|
||||
|
||||
|
||||
transmitter_height += _tx_antenna_height;
|
||||
receiver_height += _rx_antenna_height;
|
||||
|
||||
|
||||
/** radio horizon calculation with wave bending k=4/3 */
|
||||
double receiver_horizon = 4.12 * sqrt(receiver_height);
|
||||
double transmitter_horizon = 4.12 * sqrt(transmitter_height);
|
||||
double total_horizon = receiver_horizon + transmitter_horizon;
|
||||
|
||||
if (distance_m > total_horizon) {
|
||||
return -1;
|
||||
}
|
||||
double pol_loss = 0.0;
|
||||
if (_polarization == 1) {
|
||||
pol_loss = polarization_loss();
|
||||
}
|
||||
// free-space loss (distance calculation should be changed)
|
||||
dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
|
||||
signal = link_budget - dbloss + pol_loss;
|
||||
SG_LOG(SG_GENERAL, SG_BULK,
|
||||
"LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm ");
|
||||
//cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
|
||||
return signal;
|
||||
|
||||
}
|
||||
|
||||
/*** calculate loss due to polarization mismatch
|
||||
* this function is only reliable for vertical polarization
|
||||
* due to the V-shape of horizontally polarized antennas
|
||||
***/
|
||||
double FGRadioTransmission::polarization_loss() {
|
||||
|
||||
double theta_deg;
|
||||
double roll = fgGetDouble("/orientation/roll-deg");
|
||||
if (fabs(roll) > 85.0)
|
||||
roll = 85.0;
|
||||
double pitch = fgGetDouble("/orientation/pitch-deg");
|
||||
if (fabs(pitch) > 85.0)
|
||||
pitch = 85.0;
|
||||
double theta = fabs( atan( sqrt(
|
||||
pow(tan(roll * SGD_DEGREES_TO_RADIANS), 2) +
|
||||
pow(tan(pitch * SGD_DEGREES_TO_RADIANS), 2) )) * SGD_RADIANS_TO_DEGREES);
|
||||
|
||||
if (_polarization == 0)
|
||||
theta_deg = 90.0 - theta;
|
||||
else
|
||||
theta_deg = theta;
|
||||
if (theta_deg > 85.0) // we don't want to converge into infinity
|
||||
theta_deg = 85.0;
|
||||
|
||||
double loss = 10 * log10( pow(cos(theta_deg * SGD_DEGREES_TO_RADIANS), 2) );
|
||||
//cerr << "Polarization loss: " << loss << " dBm " << endl;
|
||||
return loss;
|
||||
}
|
||||
|
||||
|
||||
double FGRadioTransmission::watt_to_dbm(double power_watt) {
|
||||
return 10 * log10(1000 * power_watt); // returns dbm
|
||||
}
|
||||
|
||||
double FGRadioTransmission::dbm_to_watt(double dbm) {
|
||||
return exp( (dbm-30) * log(10) / 10); // returns Watts
|
||||
}
|
||||
|
||||
double FGRadioTransmission::dbm_to_microvolt(double dbm) {
|
||||
return sqrt(dbm_to_watt(dbm) * 50) * 1000000; // returns microvolts
|
||||
}
|
||||
|
||||
|
97
src/Radio/radio.hxx
Normal file
97
src/Radio/radio.hxx
Normal file
|
@ -0,0 +1,97 @@
|
|||
// radio.hxx -- FGRadio: class to manage radio propagation
|
||||
//
|
||||
// Written by Adrian Musceac, started August 2011.
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but
|
||||
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
|
||||
#ifndef __cplusplus
|
||||
# error This library requires C++
|
||||
#endif
|
||||
|
||||
#include <simgear/compiler.h>
|
||||
#include <simgear/structure/subsystem_mgr.hxx>
|
||||
#include <deque>
|
||||
#include <Main/fg_props.hxx>
|
||||
|
||||
#include <simgear/math/sg_geodesy.hxx>
|
||||
#include <simgear/debug/logstream.hxx>
|
||||
|
||||
|
||||
using std::string;
|
||||
|
||||
|
||||
class FGRadioTransmission
|
||||
{
|
||||
private:
|
||||
bool isOperable() const
|
||||
{ return _operable; }
|
||||
bool _operable; ///< is the unit serviceable, on, powered, etc
|
||||
|
||||
double _receiver_sensitivity;
|
||||
double _transmitter_power;
|
||||
double _tx_antenna_height;
|
||||
double _rx_antenna_height;
|
||||
double _rx_antenna_gain;
|
||||
double _tx_antenna_gain;
|
||||
double _rx_line_losses;
|
||||
double _tx_line_losses;
|
||||
double _terrain_sampling_distance;
|
||||
int _polarization;
|
||||
std::map<string, double[2]> _mat_database;
|
||||
SGPropertyNode *_root_node;
|
||||
int _propagation_model; /// 0 none, 1 round Earth, 2 ITM
|
||||
double polarization_loss();
|
||||
double ITM_calculate_attenuation(SGGeod tx_pos, double freq, int ground_to_air);
|
||||
double LOS_calculate_attenuation(SGGeod tx_pos, double freq, int ground_to_air);
|
||||
void clutterLoss(double freq, double distance_m, double itm_elev[], std::deque<string> materials,
|
||||
double transmitter_height, double receiver_height, int p_mode,
|
||||
double horizons[], double &clutter_loss);
|
||||
void get_material_properties(string mat_name, double &height, double &density);
|
||||
|
||||
public:
|
||||
|
||||
FGRadioTransmission();
|
||||
~FGRadioTransmission();
|
||||
|
||||
// a couple of setters and getters for convenience
|
||||
void setFrequency(double freq, int radio);
|
||||
double getFrequency(int radio);
|
||||
void setTxPower(double txpower) { _transmitter_power = txpower; };
|
||||
void setRxSensitivity(double sensitivity) { _receiver_sensitivity = sensitivity; };
|
||||
void setTxAntennaHeight(double tx_antenna_height) { _tx_antenna_height = tx_antenna_height; };
|
||||
void setRxAntennaHeight(double rx_antenna_height) { _rx_antenna_height = rx_antenna_height; };
|
||||
void setTxAntennaGain(double tx_antenna_gain) { _tx_antenna_gain = tx_antenna_gain; };
|
||||
void setRxAntennaGain(double rx_antenna_gain) { _rx_antenna_gain = rx_antenna_gain; };
|
||||
void setTxLineLosses(double tx_line_losses) { _tx_line_losses = tx_line_losses; };
|
||||
void setRxLineLosses(double rx_line_losses) { _rx_line_losses = rx_line_losses; };
|
||||
void setPropagationModel(int model) { _propagation_model = model; };
|
||||
void setPolarization(int polarization) { _polarization = polarization; };
|
||||
// accessory functions for unit conversions
|
||||
double watt_to_dbm(double power_watt);
|
||||
double dbm_to_watt(double dbm);
|
||||
double dbm_to_microvolt(double dbm);
|
||||
|
||||
|
||||
// transmission_type: 0 for air to ground 1 for ground to air, 2 for air to air, 3 for pilot to ground, 4 for pilot to air
|
||||
void receiveATC(SGGeod tx_pos, double freq, string text, int transmission_type);
|
||||
void receiveChat(SGGeod tx_pos, double freq, string text, int transmission_type);
|
||||
// returns signal quality
|
||||
// transmission_type: 0 for VOR, 1 for ILS
|
||||
double receiveNav(SGGeod tx_pos, double freq, int transmission_type);
|
||||
|
||||
};
|
||||
|
||||
|
Loading…
Add table
Reference in a new issue