1
0
Fork 0

Removed at CM's request.

This commit is contained in:
david 2002-03-16 22:36:33 +00:00
parent d4c49d65ac
commit 2c4eb0c56b
2 changed files with 0 additions and 718 deletions

View file

@ -1,546 +0,0 @@
/*
WARNING - Do not remove this header.
This code is a templated version of the 'magic-software' spherical
interpolation code by Dave Eberly. The original (un-hacked) code can be
obtained from here: http://www.magic-software.com/gr_appr.htm
This code is derived from linintp2.h/cpp and sphrintp.h/cpp.
Dave Eberly says that the conditions for use are:
* You may distribute the original source code to others at no charge.
* You may modify the original source code and distribute it to others at
no charge. The modified code must be documented to indicate that it is
not part of the original package.
* You may use this code for non-commercial purposes. You may also
incorporate this code into commercial packages. However, you may not
sell any of your source code which contains my original and/or modified
source code. In such a case, you need to factor out my code and freely
distribute it.
* The original code comes with absolutely no warranty and no guarantee is
made that the code is bug-free.
This does not seem incompatible with GPL - so this modified version
is hereby placed under GPL along with the rest of FlightGear.
Christian Mayer
*/
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include "linintp2.h"
//---------------------------------------------------------------------------
template<class T>
mgcLinInterp2D<T>::mgcLinInterp2D (int _numPoints, double* x, double* y,
T* _f)
{
if ( (numPoints = _numPoints) < 3 )
{
point = 0;
edge = 0;
triangle = 0;
numTriangles = 0;
return;
}
cout << "[ 20%] allocating memory \r";
point = new double*[numPoints];
tmppoint = new double*[numPoints+3];
f = new T[numPoints];
int i;
for (i = 0; i < numPoints; i++)
point[i] = new double[2];
for (i = 0; i < numPoints+3; i++)
tmppoint[i] = new double[2];
for (i = 0; i < numPoints; i++)
{
point[i][0] = tmppoint[i][0] = x[i];
point[i][1] = tmppoint[i][1] = y[i];
f[i] = _f[i];
}
cout << "[ 30%] creating delaunay diagram \r";
Delaunay2D();
}
//---------------------------------------------------------------------------
template<class T>
mgcLinInterp2D<T>::~mgcLinInterp2D ()
{
if ( numPoints < 3 )
return;
int i;
if ( point )
{
for (i = 0; i < numPoints; i++)
delete[] point[i];
delete[] point;
}
if ( tmppoint )
{
for (i = 0; i < numPoints+3; i++)
delete[] tmppoint[i];
delete[] tmppoint;
}
delete[] f;
delete[] edge;
delete[] triangle;
}
//---------------------------------------------------------------------------
template<class T>
void mgcLinInterp2D<T>::ComputeBarycenter (Vertex& v0, Vertex& v1, Vertex& v2,
Vertex& ver, double c[3])
{
double a0 = v0.x-v2.x;
double b0 = v0.y-v2.y;
double a1 = v1.x-v2.x;
double b1 = v1.y-v2.y;
double a2 = ver.x-v2.x;
double b2 = ver.y-v2.y;
double m00 = a0*a0+b0*b0;
double m01 = a0*a1+b0*b1;
double m11 = a1*a1+b1*b1;
double r0 = a2*a0+b2*b0;
double r1 = a2*a1+b2*b1;
double det = m00*m11-m01*m01;
c[0] = (m11*r0-m01*r1)/det;
c[1] = (m00*r1-m01*r0)/det;
c[2] = 1-c[0]-c[1];
}
//---------------------------------------------------------------------------
template<class T>
int mgcLinInterp2D<T>::InTriangle (Vertex& v0, Vertex& v1, Vertex& v2,
Vertex& test)
{
const double eps = 1e-08;
double tx, ty, nx, ny;
// test against normal to first edge
tx = test.x - v0.x;
ty = test.y - v0.y;
nx = v0.y - v1.y;
ny = v1.x - v0.x;
if ( tx*nx + ty*ny < -eps )
return 0;
// test against normal to second edge
tx = test.x - v1.x;
ty = test.y - v1.y;
nx = v1.y - v2.y;
ny = v2.x - v1.x;
if ( tx*nx + ty*ny < -eps )
return 0;
// test against normal to third edge
tx = test.x - v2.x;
ty = test.y - v2.y;
nx = v2.y - v0.y;
ny = v0.x - v2.x;
if ( tx*nx + ty*ny < -eps )
return 0;
return 1;
}
//---------------------------------------------------------------------------
template<class T>
int mgcLinInterp2D<T>::Evaluate (double x, double y, T& F)
{
Vertex ver = { x, y };
// determine which triangle contains the target point
int i;
Vertex v0, v1, v2;
for (i = 0; i < numTriangles; i++)
{
Triangle& t = triangle[i];
v0.x = point[t.vertex[0]][0];
v0.y = point[t.vertex[0]][1];
v1.x = point[t.vertex[1]][0];
v1.y = point[t.vertex[1]][1];
v2.x = point[t.vertex[2]][0];
v2.y = point[t.vertex[2]][1];
if ( InTriangle(v0,v1,v2,ver) )
break;
}
if ( i == numTriangles ) // point is outside interpolation region
{
return 0;
}
Triangle& t = triangle[i]; // (x,y) is in this triangle
// compute barycentric coordinates with respect to subtriangle
double bary[3];
ComputeBarycenter(v0,v1,v2,ver,bary);
// compute barycentric combination of function values at vertices
F = bary[0]*f[t.vertex[0]]+bary[1]*f[t.vertex[1]]+bary[2]*f[t.vertex[2]];
return 1;
}
//---------------------------------------------------------------------------
template<class T>
int mgcLinInterp2D<T>::Delaunay2D ()
{
int result;
const double EPSILON = 1e-12;
const int TSIZE = 75;
const double RANGE = 10.0;
xmin = tmppoint[0][0];
xmax = xmin;
ymin = tmppoint[0][1];
ymax = ymin;
int i;
for (i = 0; i < numPoints; i++)
{
double value = tmppoint[i][0];
if ( xmax < value )
xmax = value;
if ( xmin > value )
xmin = value;
value = tmppoint[i][1];
if ( ymax < value )
ymax = value;
if ( ymin > value )
ymin = value;
}
double xrange = xmax-xmin, yrange = ymax-ymin;
double maxrange = xrange;
if ( maxrange < yrange )
maxrange = yrange;
// need to scale the data later to do a correct triangle count
double maxrange2 = maxrange*maxrange;
// tweak the points by very small random numbers
double bgs = EPSILON*maxrange;
srand(367);
for (i = 0; i < numPoints; i++)
{
tmppoint[i][0] += bgs*(0.5 - rand()/double(RAND_MAX));
tmppoint[i][1] += bgs*(0.5 - rand()/double(RAND_MAX));
}
double wrk[2][3] =
{
{ 5*RANGE, -RANGE, -RANGE },
{ -RANGE, 5*RANGE, -RANGE }
};
for (i = 0; i < 3; i++)
{
tmppoint[numPoints+i][0] = xmin+xrange*wrk[0][i];
tmppoint[numPoints+i][1] = ymin+yrange*wrk[1][i];
}
int i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i11;
int nts, ii[3];
double xx;
int tsz = 2*TSIZE;
int** tmp = new int*[tsz+1];
tmp[0] = new int[2*(tsz+1)];
for (i0 = 1; i0 < tsz+1; i0++)
tmp[i0] = tmp[0] + 2*i0;
i1 = 2*(numPoints + 2);
int* id = new int[i1];
for (i0 = 0; i0 < i1; i0++)
id[i0] = i0;
int** a3s = new int*[i1];
a3s[0] = new int[3*i1];
for (i0 = 1; i0 < i1; i0++)
a3s[i0] = a3s[0] + 3*i0;
a3s[0][0] = numPoints;
a3s[0][1] = numPoints+1;
a3s[0][2] = numPoints+2;
double** ccr = new double*[i1]; // circumscribed centers and radii
ccr[0] = new double[3*i1];
for (i0 = 1; i0 < i1; i0++)
ccr[i0] = ccr[0] + 3*i0;
ccr[0][0] = 0.0;
ccr[0][1] = 0.0;
ccr[0][2] = FLT_MAX;
nts = 1; // number of triangles
i4 = 1;
cout << "[ 40%] create triangulation \r";
// compute triangulation
for (i0 = 0; i0 < numPoints; i0++)
{
i1 = i7 = -1;
i9 = 0;
for (i11 = 0; i11 < nts; i11++)
{
i1++;
while ( a3s[i1][0] < 0 )
i1++;
xx = ccr[i1][2];
for (i2 = 0; i2 < 2; i2++)
{
double z = tmppoint[i0][i2]-ccr[i1][i2];
xx -= z*z;
if ( xx < 0 )
goto Corner3;
}
i9--;
i4--;
id[i4] = i1;
for (i2 = 0; i2 < 3; i2++)
{
ii[0] = 0;
if (ii[0] == i2)
ii[0]++;
for (i3 = 1; i3 < 2; i3++)
{
ii[i3] = ii[i3-1] + 1;
if (ii[i3] == i2)
ii[i3]++;
}
if ( i7 > 1 )
{
i8 = i7;
for (i3 = 0; i3 <= i8; i3++)
{
for (i5 = 0; i5 < 2; i5++)
if ( a3s[i1][ii[i5]] != tmp[i3][i5] )
goto Corner1;
for (i6 = 0; i6 < 2; i6++)
tmp[i3][i6] = tmp[i8][i6];
i7--;
goto Corner2;
Corner1:;
}
}
if ( ++i7 > tsz )
{
// temporary storage exceeded, increase TSIZE
result = 0;
goto ExitDelaunay;
}
for (i3 = 0; i3 < 2; i3++)
tmp[i7][i3] = a3s[i1][ii[i3]];
Corner2:;
}
a3s[i1][0] = -1;
Corner3:;
}
for (i1 = 0; i1 <= i7; i1++)
{
for (i2 = 0; i2 < 2; i2++)
for (wrk[i2][2] = 0, i3 = 0; i3 < 2; i3++)
{
wrk[i2][i3] = tmppoint[tmp[i1][i2]][i3]-tmppoint[i0][i3];
wrk[i2][2] +=
0.5*wrk[i2][i3]*(tmppoint[tmp[i1][i2]][i3]+
tmppoint[i0][i3]);
}
xx = wrk[0][0]*wrk[1][1]-wrk[1][0]*wrk[0][1];
ccr[id[i4]][0] = (wrk[0][2]*wrk[1][1]-wrk[1][2]*wrk[0][1])/xx;
ccr[id[i4]][1] = (wrk[0][0]*wrk[1][2]-wrk[1][0]*wrk[0][2])/xx;
for (ccr[id[i4]][2] = 0, i2 = 0; i2 < 2; i2++)
{
double z = tmppoint[i0][i2]-ccr[id[i4]][i2];
ccr[id[i4]][2] += z*z;
a3s[id[i4]][i2] = tmp[i1][i2];
}
a3s[id[i4]][2] = i0;
i4++;
i9++;
}
nts += i9;
}
// count the number of triangles
cout << "[ 50%] count the number of triangles \r";
numTriangles = 0;
i0 = -1;
for (i11 = 0; i11 < nts; i11++)
{
i0++;
while ( a3s[i0][0] < 0 )
i0++;
if ( a3s[i0][0] < numPoints )
{
for (i1 = 0; i1 < 2; i1++)
for (i2 = 0; i2 < 2; i2++)
wrk[i1][i2] =
tmppoint[a3s[i0][i1]][i2]-tmppoint[a3s[i0][2]][i2];
if ( fabs(wrk[0][0]*wrk[1][1]-wrk[0][1]*wrk[1][0]) > EPSILON*maxrange2 )
numTriangles++;
}
}
// create the triangles
cout << "[ 60%] create the triangles \r";
triangle = new Triangle[numTriangles];
numTriangles = 0;
i0 = -1;
for (i11 = 0; i11 < nts; i11++)
{
i0++;
while ( a3s[i0][0] < 0 )
i0++;
if ( a3s[i0][0] < numPoints )
{
for (i1 = 0; i1 < 2; i1++)
for (i2 = 0; i2 < 2; i2++)
wrk[i1][i2] =
tmppoint[a3s[i0][i1]][i2]-tmppoint[a3s[i0][2]][i2];
xx = wrk[0][0]*wrk[1][1]-wrk[0][1]*wrk[1][0];
if ( fabs(xx) > EPSILON*maxrange2 )
{
int delta = xx < 0 ? 1 : 0;
Triangle& tri = triangle[numTriangles];
tri.vertex[0] = a3s[i0][0];
tri.vertex[1] = a3s[i0][1+delta];
tri.vertex[2] = a3s[i0][2-delta];
tri.adj[0] = -1;
tri.adj[1] = -1;
tri.adj[2] = -1;
numTriangles++;
}
}
}
// build edge table
cout << "[ 70%] build the edge table \r";
numEdges = 0;
edge = new Edge[3*numTriangles];
int j, j0, j1;
for (i = 0; i < numTriangles; i++)
{
if ( (i%500) == 0)
cout << "[ 7" << 10*i/numTriangles << "%] build the edge table \r";
Triangle& t = triangle[i];
for (j0 = 0, j1 = 1; j0 < 3; j0++, j1 = (j1+1)%3)
{
for (j = 0; j < numEdges; j++)
{
Edge& e = edge[j];
if ( (t.vertex[j0] == e.vertex[0]
&& t.vertex[j1] == e.vertex[1])
|| (t.vertex[j0] == e.vertex[1]
&& t.vertex[j1] == e.vertex[0]) )
break;
}
if ( j == numEdges ) // add edge to table
{
edge[j].vertex[0] = t.vertex[j0];
edge[j].vertex[1] = t.vertex[j1];
edge[j].triangle[0] = i;
edge[j].index[0] = j0;
edge[j].triangle[1] = -1;
numEdges++;
}
else // edge already exists, add triangle to table
{
edge[j].triangle[1] = i;
edge[j].index[1] = j0;
}
}
}
// establish links between adjacent triangles
cout << "[ 80%] establishing links between adjacent triangles \r";
for (i = 0; i < numEdges; i++)
{
if ( edge[i].triangle[1] != -1 )
{
j0 = edge[i].triangle[0];
j1 = edge[i].triangle[1];
triangle[j0].adj[edge[i].index[0]] = j1;
triangle[j1].adj[edge[i].index[1]] = j0;
}
}
result = 1;
ExitDelaunay:;
delete[] tmp[0];
delete[] tmp;
delete[] id;
delete[] a3s[0];
delete[] a3s;
delete[] ccr[0];
delete[] ccr;
cout << "[ 90%] finsishes delauney triangulation \r";
return result;
}
//---------------------------------------------------------------------------
template<class T>
void mgcLinInterp2D<T>::GetPoint (int i, double& x, double& y)
{
// assumes i is valid [can use PointCount() before passing i]
x = point[i][0];
y = point[i][1];
}
//---------------------------------------------------------------------------
template<class T>
void mgcLinInterp2D<T>::GetEdge (int i, double& x0, double& y0, double& x1,
double& y1)
{
// assumes i is valid [can use EdgeCount() before passing i]
int v0 = edge[i].vertex[0], v1 = edge[i].vertex[1];
x0 = point[v0][0];
y0 = point[v0][1];
x1 = point[v1][0];
y1 = point[v1][1];
}
//---------------------------------------------------------------------------
template<class T>
void mgcLinInterp2D<T>::GetTriangle (int i, double& x0, double& y0, double& x1,
double& y1, double& x2, double& y2)
{
// assumes i is valid [can use TriangleCount() before passing i]
int v0 = triangle[i].vertex[0];
int v1 = triangle[i].vertex[1];
int v2 = triangle[i].vertex[2];
x0 = point[v0][0];
y0 = point[v0][1];
x1 = point[v1][0];
y1 = point[v1][1];
x2 = point[v2][0];
y2 = point[v2][1];
}
//---------------------------------------------------------------------------

View file

@ -1,172 +0,0 @@
/*
WARNING - Do not remove this header.
This code is a templated version of the 'magic-software' spherical
interpolation code by Dave Eberly. The original (un-hacked) code can be
obtained from here: http://www.magic-software.com/gr_appr.htm
This code is derived from linintp2.h/cpp and sphrintp.h/cpp.
Dave Eberly says that the conditions for use are:
* You may distribute the original source code to others at no charge.
* You may modify the original source code and distribute it to others at
no charge. The modified code must be documented to indicate that it is
not part of the original package.
* You may use this code for non-commercial purposes. You may also
incorporate this code into commercial packages. However, you may not
sell any of your source code which contains my original and/or modified
source code. In such a case, you need to factor out my code and freely
distribute it.
* The original code comes with absolutely no warranty and no guarantee is
made that the code is bug-free.
This does not seem incompatible with GPL - so this modified version
is hereby placed under GPL along with the rest of FlightGear.
Christian Mayer
*/
#include <math.h>
#include "sphrintp.h"
static const double PI = 4.0*atan(1.0);
static const double TWOPI = 2.0*PI;
//---------------------------------------------------------------------------
template<class T>
SphereInterpolate<T>::SphereInterpolate (int n, const double* x,
const double* y, const double* z,
const T* f)
{
// Assumes (x[i],y[i],z[i]) is unit length for all 0 <= i < n.
// For complete spherical coverage, include the two antipodal points
// (0,0,1,f(0,0,1)) and (0,0,-1,f(0,0,-1)) in the data set.
cout << "Initialising spherical interpolator.\n";
cout << "[ 0%] Allocating memory \r";
theta = new double[3*n];
phi = new double[3*n];
func = new T[3*n];
// convert data to spherical coordinates
int i;
T empty;
for (i = 0; i < n; i++)
{
GetSphericalCoords(x[i],y[i],z[i],theta[i],phi[i]);
func[i] = f[i];
}
// use periodicity to get wrap-around in the Delaunay triangulation
cout << "[ 10%] copying vertices for wrap-around\r";
int j, k;
for (i = 0, j = n, k = 2*n; i < n; i++, j++, k++)
{
theta[j] = theta[i]+TWOPI;
theta[k] = theta[i]-TWOPI;
phi[j] = phi[i];
phi[k] = phi[i];
func[j] = func[i];
func[k] = func[i];
}
pInterp = new mgcLinInterp2D<T>(3*n,theta,phi,func);
cout << "[100%] Finished initialising spherical interpolator. \n";
}
template<class T>
SphereInterpolate<T>::SphereInterpolate (int n, const sgVec2* p, const T* f)
{
// Assumes (x[i],y[i],z[i]) is unit length for all 0 <= i < n.
// For complete spherical coverage, include the two antipodal points
// (0,0,1,f(0,0,1)) and (0,0,-1,f(0,0,-1)) in the data set.
cout << "Initialising spherical interpolator.\n";
cout << "[ 0%] Allocating memory \r";
theta = new double[3*n];
phi = new double[3*n];
func = new T[3*n];
// convert data to spherical coordinates
cout << "[ 10%] copying vertices for wrap-around \r";
int i, j, k;
for (i = 0, j = n, k = 2*n; i < n; i++, j++, k++)
{
phi[i] = p[i][0];
theta[i] = p[i][1];
func[i] = f[i];
// use periodicity to get wrap-around in the Delaunay triangulation
phi[j] = phi[i];
phi[k] = phi[i];
theta[j] = theta[i]+TWOPI;
theta[k] = theta[i]-TWOPI;
func[j] = func[i];
func[k] = func[i];
}
pInterp = new mgcLinInterp2D<T>(3*n,theta,phi,func);
cout << "[100%] Finished initialising spherical interpolator. \n";
}
//---------------------------------------------------------------------------
template<class T>
SphereInterpolate<T>::~SphereInterpolate ()
{
delete pInterp;
delete[] theta;
delete[] phi;
delete[] func;
}
//---------------------------------------------------------------------------
template<class T>
void SphereInterpolate<T>::GetSphericalCoords (const double x, const double y, const double z,
double& thetaAngle,
double& phiAngle) const
{
// Assumes (x,y,z) is unit length. Returns -PI <= thetaAngle <= PI
// and 0 <= phiAngle <= PI.
if ( z < 1.0f )
{
if ( z > -1.0f )
{
thetaAngle = atan2(y,x);
phiAngle = acos(z);
}
else
{
thetaAngle = -PI;
phiAngle = PI;
}
}
else
{
thetaAngle = -PI;
phiAngle = 0.0f;
}
}
//---------------------------------------------------------------------------
template<class T>
int SphereInterpolate<T>::Evaluate (const double x, const double y, const double z, T& f) const
{
// assumes (x,y,z) is unit length
double thetaAngle, phiAngle;
GetSphericalCoords(x,y,z,thetaAngle,phiAngle);
return pInterp->Evaluate(thetaAngle,phiAngle,f);
}
//---------------------------------------------------------------------------
template<class T>
int SphereInterpolate<T>::Evaluate (const double thetaAngle, const double phiAngle, T& f) const
{
return pInterp->Evaluate(thetaAngle,phiAngle,f);
}
//---------------------------------------------------------------------------