Removed at CM's request.
This commit is contained in:
parent
d4c49d65ac
commit
2c4eb0c56b
2 changed files with 0 additions and 718 deletions
|
@ -1,546 +0,0 @@
|
|||
/*
|
||||
WARNING - Do not remove this header.
|
||||
|
||||
This code is a templated version of the 'magic-software' spherical
|
||||
interpolation code by Dave Eberly. The original (un-hacked) code can be
|
||||
obtained from here: http://www.magic-software.com/gr_appr.htm
|
||||
This code is derived from linintp2.h/cpp and sphrintp.h/cpp.
|
||||
|
||||
Dave Eberly says that the conditions for use are:
|
||||
|
||||
* You may distribute the original source code to others at no charge.
|
||||
|
||||
* You may modify the original source code and distribute it to others at
|
||||
no charge. The modified code must be documented to indicate that it is
|
||||
not part of the original package.
|
||||
|
||||
* You may use this code for non-commercial purposes. You may also
|
||||
incorporate this code into commercial packages. However, you may not
|
||||
sell any of your source code which contains my original and/or modified
|
||||
source code. In such a case, you need to factor out my code and freely
|
||||
distribute it.
|
||||
|
||||
* The original code comes with absolutely no warranty and no guarantee is
|
||||
made that the code is bug-free.
|
||||
|
||||
This does not seem incompatible with GPL - so this modified version
|
||||
is hereby placed under GPL along with the rest of FlightGear.
|
||||
|
||||
Christian Mayer
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include "linintp2.h"
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
mgcLinInterp2D<T>::mgcLinInterp2D (int _numPoints, double* x, double* y,
|
||||
T* _f)
|
||||
{
|
||||
if ( (numPoints = _numPoints) < 3 )
|
||||
{
|
||||
point = 0;
|
||||
edge = 0;
|
||||
triangle = 0;
|
||||
numTriangles = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
cout << "[ 20%] allocating memory \r";
|
||||
|
||||
point = new double*[numPoints];
|
||||
tmppoint = new double*[numPoints+3];
|
||||
f = new T[numPoints];
|
||||
int i;
|
||||
for (i = 0; i < numPoints; i++)
|
||||
point[i] = new double[2];
|
||||
for (i = 0; i < numPoints+3; i++)
|
||||
tmppoint[i] = new double[2];
|
||||
for (i = 0; i < numPoints; i++)
|
||||
{
|
||||
point[i][0] = tmppoint[i][0] = x[i];
|
||||
point[i][1] = tmppoint[i][1] = y[i];
|
||||
|
||||
f[i] = _f[i];
|
||||
}
|
||||
|
||||
cout << "[ 30%] creating delaunay diagram \r";
|
||||
|
||||
Delaunay2D();
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
mgcLinInterp2D<T>::~mgcLinInterp2D ()
|
||||
{
|
||||
if ( numPoints < 3 )
|
||||
return;
|
||||
|
||||
int i;
|
||||
|
||||
if ( point )
|
||||
{
|
||||
for (i = 0; i < numPoints; i++)
|
||||
delete[] point[i];
|
||||
delete[] point;
|
||||
}
|
||||
if ( tmppoint )
|
||||
{
|
||||
for (i = 0; i < numPoints+3; i++)
|
||||
delete[] tmppoint[i];
|
||||
delete[] tmppoint;
|
||||
}
|
||||
|
||||
delete[] f;
|
||||
delete[] edge;
|
||||
delete[] triangle;
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
void mgcLinInterp2D<T>::ComputeBarycenter (Vertex& v0, Vertex& v1, Vertex& v2,
|
||||
Vertex& ver, double c[3])
|
||||
{
|
||||
double a0 = v0.x-v2.x;
|
||||
double b0 = v0.y-v2.y;
|
||||
double a1 = v1.x-v2.x;
|
||||
double b1 = v1.y-v2.y;
|
||||
double a2 = ver.x-v2.x;
|
||||
double b2 = ver.y-v2.y;
|
||||
|
||||
double m00 = a0*a0+b0*b0;
|
||||
double m01 = a0*a1+b0*b1;
|
||||
double m11 = a1*a1+b1*b1;
|
||||
double r0 = a2*a0+b2*b0;
|
||||
double r1 = a2*a1+b2*b1;
|
||||
double det = m00*m11-m01*m01;
|
||||
|
||||
c[0] = (m11*r0-m01*r1)/det;
|
||||
c[1] = (m00*r1-m01*r0)/det;
|
||||
c[2] = 1-c[0]-c[1];
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
int mgcLinInterp2D<T>::InTriangle (Vertex& v0, Vertex& v1, Vertex& v2,
|
||||
Vertex& test)
|
||||
{
|
||||
const double eps = 1e-08;
|
||||
double tx, ty, nx, ny;
|
||||
|
||||
// test against normal to first edge
|
||||
tx = test.x - v0.x;
|
||||
ty = test.y - v0.y;
|
||||
nx = v0.y - v1.y;
|
||||
ny = v1.x - v0.x;
|
||||
if ( tx*nx + ty*ny < -eps )
|
||||
return 0;
|
||||
|
||||
// test against normal to second edge
|
||||
tx = test.x - v1.x;
|
||||
ty = test.y - v1.y;
|
||||
nx = v1.y - v2.y;
|
||||
ny = v2.x - v1.x;
|
||||
if ( tx*nx + ty*ny < -eps )
|
||||
return 0;
|
||||
|
||||
// test against normal to third edge
|
||||
tx = test.x - v2.x;
|
||||
ty = test.y - v2.y;
|
||||
nx = v2.y - v0.y;
|
||||
ny = v0.x - v2.x;
|
||||
if ( tx*nx + ty*ny < -eps )
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
int mgcLinInterp2D<T>::Evaluate (double x, double y, T& F)
|
||||
{
|
||||
Vertex ver = { x, y };
|
||||
// determine which triangle contains the target point
|
||||
|
||||
int i;
|
||||
Vertex v0, v1, v2;
|
||||
for (i = 0; i < numTriangles; i++)
|
||||
{
|
||||
Triangle& t = triangle[i];
|
||||
v0.x = point[t.vertex[0]][0];
|
||||
v0.y = point[t.vertex[0]][1];
|
||||
v1.x = point[t.vertex[1]][0];
|
||||
v1.y = point[t.vertex[1]][1];
|
||||
v2.x = point[t.vertex[2]][0];
|
||||
v2.y = point[t.vertex[2]][1];
|
||||
|
||||
if ( InTriangle(v0,v1,v2,ver) )
|
||||
break;
|
||||
}
|
||||
|
||||
if ( i == numTriangles ) // point is outside interpolation region
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
Triangle& t = triangle[i]; // (x,y) is in this triangle
|
||||
|
||||
// compute barycentric coordinates with respect to subtriangle
|
||||
double bary[3];
|
||||
ComputeBarycenter(v0,v1,v2,ver,bary);
|
||||
|
||||
// compute barycentric combination of function values at vertices
|
||||
F = bary[0]*f[t.vertex[0]]+bary[1]*f[t.vertex[1]]+bary[2]*f[t.vertex[2]];
|
||||
|
||||
return 1;
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
int mgcLinInterp2D<T>::Delaunay2D ()
|
||||
{
|
||||
int result;
|
||||
|
||||
const double EPSILON = 1e-12;
|
||||
const int TSIZE = 75;
|
||||
const double RANGE = 10.0;
|
||||
|
||||
xmin = tmppoint[0][0];
|
||||
xmax = xmin;
|
||||
ymin = tmppoint[0][1];
|
||||
ymax = ymin;
|
||||
|
||||
int i;
|
||||
for (i = 0; i < numPoints; i++)
|
||||
{
|
||||
double value = tmppoint[i][0];
|
||||
if ( xmax < value )
|
||||
xmax = value;
|
||||
if ( xmin > value )
|
||||
xmin = value;
|
||||
|
||||
value = tmppoint[i][1];
|
||||
if ( ymax < value )
|
||||
ymax = value;
|
||||
if ( ymin > value )
|
||||
ymin = value;
|
||||
}
|
||||
|
||||
double xrange = xmax-xmin, yrange = ymax-ymin;
|
||||
double maxrange = xrange;
|
||||
if ( maxrange < yrange )
|
||||
maxrange = yrange;
|
||||
|
||||
// need to scale the data later to do a correct triangle count
|
||||
double maxrange2 = maxrange*maxrange;
|
||||
|
||||
// tweak the points by very small random numbers
|
||||
double bgs = EPSILON*maxrange;
|
||||
srand(367);
|
||||
for (i = 0; i < numPoints; i++)
|
||||
{
|
||||
tmppoint[i][0] += bgs*(0.5 - rand()/double(RAND_MAX));
|
||||
tmppoint[i][1] += bgs*(0.5 - rand()/double(RAND_MAX));
|
||||
}
|
||||
|
||||
double wrk[2][3] =
|
||||
{
|
||||
{ 5*RANGE, -RANGE, -RANGE },
|
||||
{ -RANGE, 5*RANGE, -RANGE }
|
||||
};
|
||||
for (i = 0; i < 3; i++)
|
||||
{
|
||||
tmppoint[numPoints+i][0] = xmin+xrange*wrk[0][i];
|
||||
tmppoint[numPoints+i][1] = ymin+yrange*wrk[1][i];
|
||||
}
|
||||
|
||||
int i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i11;
|
||||
int nts, ii[3];
|
||||
double xx;
|
||||
|
||||
int tsz = 2*TSIZE;
|
||||
int** tmp = new int*[tsz+1];
|
||||
tmp[0] = new int[2*(tsz+1)];
|
||||
for (i0 = 1; i0 < tsz+1; i0++)
|
||||
tmp[i0] = tmp[0] + 2*i0;
|
||||
i1 = 2*(numPoints + 2);
|
||||
|
||||
int* id = new int[i1];
|
||||
for (i0 = 0; i0 < i1; i0++)
|
||||
id[i0] = i0;
|
||||
|
||||
int** a3s = new int*[i1];
|
||||
a3s[0] = new int[3*i1];
|
||||
for (i0 = 1; i0 < i1; i0++)
|
||||
a3s[i0] = a3s[0] + 3*i0;
|
||||
a3s[0][0] = numPoints;
|
||||
a3s[0][1] = numPoints+1;
|
||||
a3s[0][2] = numPoints+2;
|
||||
|
||||
double** ccr = new double*[i1]; // circumscribed centers and radii
|
||||
ccr[0] = new double[3*i1];
|
||||
for (i0 = 1; i0 < i1; i0++)
|
||||
ccr[i0] = ccr[0] + 3*i0;
|
||||
ccr[0][0] = 0.0;
|
||||
ccr[0][1] = 0.0;
|
||||
ccr[0][2] = FLT_MAX;
|
||||
|
||||
nts = 1; // number of triangles
|
||||
i4 = 1;
|
||||
|
||||
cout << "[ 40%] create triangulation \r";
|
||||
|
||||
// compute triangulation
|
||||
for (i0 = 0; i0 < numPoints; i0++)
|
||||
{
|
||||
i1 = i7 = -1;
|
||||
i9 = 0;
|
||||
for (i11 = 0; i11 < nts; i11++)
|
||||
{
|
||||
i1++;
|
||||
while ( a3s[i1][0] < 0 )
|
||||
i1++;
|
||||
xx = ccr[i1][2];
|
||||
for (i2 = 0; i2 < 2; i2++)
|
||||
{
|
||||
double z = tmppoint[i0][i2]-ccr[i1][i2];
|
||||
xx -= z*z;
|
||||
if ( xx < 0 )
|
||||
goto Corner3;
|
||||
}
|
||||
i9--;
|
||||
i4--;
|
||||
id[i4] = i1;
|
||||
for (i2 = 0; i2 < 3; i2++)
|
||||
{
|
||||
ii[0] = 0;
|
||||
if (ii[0] == i2)
|
||||
ii[0]++;
|
||||
for (i3 = 1; i3 < 2; i3++)
|
||||
{
|
||||
ii[i3] = ii[i3-1] + 1;
|
||||
if (ii[i3] == i2)
|
||||
ii[i3]++;
|
||||
}
|
||||
if ( i7 > 1 )
|
||||
{
|
||||
i8 = i7;
|
||||
for (i3 = 0; i3 <= i8; i3++)
|
||||
{
|
||||
for (i5 = 0; i5 < 2; i5++)
|
||||
if ( a3s[i1][ii[i5]] != tmp[i3][i5] )
|
||||
goto Corner1;
|
||||
for (i6 = 0; i6 < 2; i6++)
|
||||
tmp[i3][i6] = tmp[i8][i6];
|
||||
i7--;
|
||||
goto Corner2;
|
||||
Corner1:;
|
||||
}
|
||||
}
|
||||
if ( ++i7 > tsz )
|
||||
{
|
||||
// temporary storage exceeded, increase TSIZE
|
||||
result = 0;
|
||||
goto ExitDelaunay;
|
||||
}
|
||||
for (i3 = 0; i3 < 2; i3++)
|
||||
tmp[i7][i3] = a3s[i1][ii[i3]];
|
||||
Corner2:;
|
||||
}
|
||||
a3s[i1][0] = -1;
|
||||
Corner3:;
|
||||
}
|
||||
|
||||
for (i1 = 0; i1 <= i7; i1++)
|
||||
{
|
||||
for (i2 = 0; i2 < 2; i2++)
|
||||
for (wrk[i2][2] = 0, i3 = 0; i3 < 2; i3++)
|
||||
{
|
||||
wrk[i2][i3] = tmppoint[tmp[i1][i2]][i3]-tmppoint[i0][i3];
|
||||
wrk[i2][2] +=
|
||||
0.5*wrk[i2][i3]*(tmppoint[tmp[i1][i2]][i3]+
|
||||
tmppoint[i0][i3]);
|
||||
}
|
||||
|
||||
xx = wrk[0][0]*wrk[1][1]-wrk[1][0]*wrk[0][1];
|
||||
ccr[id[i4]][0] = (wrk[0][2]*wrk[1][1]-wrk[1][2]*wrk[0][1])/xx;
|
||||
ccr[id[i4]][1] = (wrk[0][0]*wrk[1][2]-wrk[1][0]*wrk[0][2])/xx;
|
||||
|
||||
for (ccr[id[i4]][2] = 0, i2 = 0; i2 < 2; i2++)
|
||||
{
|
||||
double z = tmppoint[i0][i2]-ccr[id[i4]][i2];
|
||||
ccr[id[i4]][2] += z*z;
|
||||
a3s[id[i4]][i2] = tmp[i1][i2];
|
||||
}
|
||||
|
||||
a3s[id[i4]][2] = i0;
|
||||
i4++;
|
||||
i9++;
|
||||
}
|
||||
nts += i9;
|
||||
}
|
||||
|
||||
// count the number of triangles
|
||||
cout << "[ 50%] count the number of triangles \r";
|
||||
|
||||
numTriangles = 0;
|
||||
i0 = -1;
|
||||
for (i11 = 0; i11 < nts; i11++)
|
||||
{
|
||||
i0++;
|
||||
while ( a3s[i0][0] < 0 )
|
||||
i0++;
|
||||
if ( a3s[i0][0] < numPoints )
|
||||
{
|
||||
for (i1 = 0; i1 < 2; i1++)
|
||||
for (i2 = 0; i2 < 2; i2++)
|
||||
wrk[i1][i2] =
|
||||
tmppoint[a3s[i0][i1]][i2]-tmppoint[a3s[i0][2]][i2];
|
||||
|
||||
if ( fabs(wrk[0][0]*wrk[1][1]-wrk[0][1]*wrk[1][0]) > EPSILON*maxrange2 )
|
||||
numTriangles++;
|
||||
}
|
||||
}
|
||||
|
||||
// create the triangles
|
||||
cout << "[ 60%] create the triangles \r";
|
||||
|
||||
triangle = new Triangle[numTriangles];
|
||||
|
||||
numTriangles = 0;
|
||||
i0 = -1;
|
||||
for (i11 = 0; i11 < nts; i11++)
|
||||
{
|
||||
i0++;
|
||||
while ( a3s[i0][0] < 0 )
|
||||
i0++;
|
||||
if ( a3s[i0][0] < numPoints )
|
||||
{
|
||||
for (i1 = 0; i1 < 2; i1++)
|
||||
for (i2 = 0; i2 < 2; i2++)
|
||||
wrk[i1][i2] =
|
||||
tmppoint[a3s[i0][i1]][i2]-tmppoint[a3s[i0][2]][i2];
|
||||
xx = wrk[0][0]*wrk[1][1]-wrk[0][1]*wrk[1][0];
|
||||
if ( fabs(xx) > EPSILON*maxrange2 )
|
||||
{
|
||||
int delta = xx < 0 ? 1 : 0;
|
||||
Triangle& tri = triangle[numTriangles];
|
||||
tri.vertex[0] = a3s[i0][0];
|
||||
tri.vertex[1] = a3s[i0][1+delta];
|
||||
tri.vertex[2] = a3s[i0][2-delta];
|
||||
tri.adj[0] = -1;
|
||||
tri.adj[1] = -1;
|
||||
tri.adj[2] = -1;
|
||||
numTriangles++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// build edge table
|
||||
cout << "[ 70%] build the edge table \r";
|
||||
|
||||
numEdges = 0;
|
||||
edge = new Edge[3*numTriangles];
|
||||
|
||||
int j, j0, j1;
|
||||
for (i = 0; i < numTriangles; i++)
|
||||
{
|
||||
if ( (i%500) == 0)
|
||||
cout << "[ 7" << 10*i/numTriangles << "%] build the edge table \r";
|
||||
|
||||
Triangle& t = triangle[i];
|
||||
|
||||
for (j0 = 0, j1 = 1; j0 < 3; j0++, j1 = (j1+1)%3)
|
||||
{
|
||||
for (j = 0; j < numEdges; j++)
|
||||
{
|
||||
Edge& e = edge[j];
|
||||
if ( (t.vertex[j0] == e.vertex[0]
|
||||
&& t.vertex[j1] == e.vertex[1])
|
||||
|| (t.vertex[j0] == e.vertex[1]
|
||||
&& t.vertex[j1] == e.vertex[0]) )
|
||||
break;
|
||||
}
|
||||
if ( j == numEdges ) // add edge to table
|
||||
{
|
||||
edge[j].vertex[0] = t.vertex[j0];
|
||||
edge[j].vertex[1] = t.vertex[j1];
|
||||
edge[j].triangle[0] = i;
|
||||
edge[j].index[0] = j0;
|
||||
edge[j].triangle[1] = -1;
|
||||
numEdges++;
|
||||
}
|
||||
else // edge already exists, add triangle to table
|
||||
{
|
||||
edge[j].triangle[1] = i;
|
||||
edge[j].index[1] = j0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// establish links between adjacent triangles
|
||||
cout << "[ 80%] establishing links between adjacent triangles \r";
|
||||
|
||||
for (i = 0; i < numEdges; i++)
|
||||
{
|
||||
if ( edge[i].triangle[1] != -1 )
|
||||
{
|
||||
j0 = edge[i].triangle[0];
|
||||
j1 = edge[i].triangle[1];
|
||||
triangle[j0].adj[edge[i].index[0]] = j1;
|
||||
triangle[j1].adj[edge[i].index[1]] = j0;
|
||||
}
|
||||
}
|
||||
|
||||
result = 1;
|
||||
|
||||
ExitDelaunay:;
|
||||
delete[] tmp[0];
|
||||
delete[] tmp;
|
||||
delete[] id;
|
||||
delete[] a3s[0];
|
||||
delete[] a3s;
|
||||
delete[] ccr[0];
|
||||
delete[] ccr;
|
||||
|
||||
cout << "[ 90%] finsishes delauney triangulation \r";
|
||||
|
||||
return result;
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
void mgcLinInterp2D<T>::GetPoint (int i, double& x, double& y)
|
||||
{
|
||||
// assumes i is valid [can use PointCount() before passing i]
|
||||
x = point[i][0];
|
||||
y = point[i][1];
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
void mgcLinInterp2D<T>::GetEdge (int i, double& x0, double& y0, double& x1,
|
||||
double& y1)
|
||||
{
|
||||
// assumes i is valid [can use EdgeCount() before passing i]
|
||||
int v0 = edge[i].vertex[0], v1 = edge[i].vertex[1];
|
||||
|
||||
x0 = point[v0][0];
|
||||
y0 = point[v0][1];
|
||||
x1 = point[v1][0];
|
||||
y1 = point[v1][1];
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
void mgcLinInterp2D<T>::GetTriangle (int i, double& x0, double& y0, double& x1,
|
||||
double& y1, double& x2, double& y2)
|
||||
{
|
||||
// assumes i is valid [can use TriangleCount() before passing i]
|
||||
int v0 = triangle[i].vertex[0];
|
||||
int v1 = triangle[i].vertex[1];
|
||||
int v2 = triangle[i].vertex[2];
|
||||
|
||||
x0 = point[v0][0];
|
||||
y0 = point[v0][1];
|
||||
x1 = point[v1][0];
|
||||
y1 = point[v1][1];
|
||||
x2 = point[v2][0];
|
||||
y2 = point[v2][1];
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
|
@ -1,172 +0,0 @@
|
|||
/*
|
||||
WARNING - Do not remove this header.
|
||||
|
||||
This code is a templated version of the 'magic-software' spherical
|
||||
interpolation code by Dave Eberly. The original (un-hacked) code can be
|
||||
obtained from here: http://www.magic-software.com/gr_appr.htm
|
||||
This code is derived from linintp2.h/cpp and sphrintp.h/cpp.
|
||||
|
||||
Dave Eberly says that the conditions for use are:
|
||||
|
||||
* You may distribute the original source code to others at no charge.
|
||||
|
||||
* You may modify the original source code and distribute it to others at
|
||||
no charge. The modified code must be documented to indicate that it is
|
||||
not part of the original package.
|
||||
|
||||
* You may use this code for non-commercial purposes. You may also
|
||||
incorporate this code into commercial packages. However, you may not
|
||||
sell any of your source code which contains my original and/or modified
|
||||
source code. In such a case, you need to factor out my code and freely
|
||||
distribute it.
|
||||
|
||||
* The original code comes with absolutely no warranty and no guarantee is
|
||||
made that the code is bug-free.
|
||||
|
||||
This does not seem incompatible with GPL - so this modified version
|
||||
is hereby placed under GPL along with the rest of FlightGear.
|
||||
|
||||
Christian Mayer
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include "sphrintp.h"
|
||||
|
||||
static const double PI = 4.0*atan(1.0);
|
||||
static const double TWOPI = 2.0*PI;
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
SphereInterpolate<T>::SphereInterpolate (int n, const double* x,
|
||||
const double* y, const double* z,
|
||||
const T* f)
|
||||
{
|
||||
// Assumes (x[i],y[i],z[i]) is unit length for all 0 <= i < n.
|
||||
// For complete spherical coverage, include the two antipodal points
|
||||
// (0,0,1,f(0,0,1)) and (0,0,-1,f(0,0,-1)) in the data set.
|
||||
|
||||
cout << "Initialising spherical interpolator.\n";
|
||||
cout << "[ 0%] Allocating memory \r";
|
||||
|
||||
theta = new double[3*n];
|
||||
phi = new double[3*n];
|
||||
func = new T[3*n];
|
||||
|
||||
// convert data to spherical coordinates
|
||||
int i;
|
||||
T empty;
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
GetSphericalCoords(x[i],y[i],z[i],theta[i],phi[i]);
|
||||
func[i] = f[i];
|
||||
}
|
||||
|
||||
// use periodicity to get wrap-around in the Delaunay triangulation
|
||||
cout << "[ 10%] copying vertices for wrap-around\r";
|
||||
int j, k;
|
||||
for (i = 0, j = n, k = 2*n; i < n; i++, j++, k++)
|
||||
{
|
||||
theta[j] = theta[i]+TWOPI;
|
||||
theta[k] = theta[i]-TWOPI;
|
||||
phi[j] = phi[i];
|
||||
phi[k] = phi[i];
|
||||
func[j] = func[i];
|
||||
func[k] = func[i];
|
||||
}
|
||||
|
||||
pInterp = new mgcLinInterp2D<T>(3*n,theta,phi,func);
|
||||
|
||||
cout << "[100%] Finished initialising spherical interpolator. \n";
|
||||
}
|
||||
|
||||
template<class T>
|
||||
SphereInterpolate<T>::SphereInterpolate (int n, const sgVec2* p, const T* f)
|
||||
{
|
||||
// Assumes (x[i],y[i],z[i]) is unit length for all 0 <= i < n.
|
||||
// For complete spherical coverage, include the two antipodal points
|
||||
// (0,0,1,f(0,0,1)) and (0,0,-1,f(0,0,-1)) in the data set.
|
||||
cout << "Initialising spherical interpolator.\n";
|
||||
cout << "[ 0%] Allocating memory \r";
|
||||
|
||||
theta = new double[3*n];
|
||||
phi = new double[3*n];
|
||||
func = new T[3*n];
|
||||
|
||||
// convert data to spherical coordinates
|
||||
cout << "[ 10%] copying vertices for wrap-around \r";
|
||||
|
||||
int i, j, k;
|
||||
for (i = 0, j = n, k = 2*n; i < n; i++, j++, k++)
|
||||
{
|
||||
phi[i] = p[i][0];
|
||||
theta[i] = p[i][1];
|
||||
func[i] = f[i];
|
||||
|
||||
// use periodicity to get wrap-around in the Delaunay triangulation
|
||||
phi[j] = phi[i];
|
||||
phi[k] = phi[i];
|
||||
theta[j] = theta[i]+TWOPI;
|
||||
theta[k] = theta[i]-TWOPI;
|
||||
func[j] = func[i];
|
||||
func[k] = func[i];
|
||||
}
|
||||
|
||||
pInterp = new mgcLinInterp2D<T>(3*n,theta,phi,func);
|
||||
|
||||
cout << "[100%] Finished initialising spherical interpolator. \n";
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
SphereInterpolate<T>::~SphereInterpolate ()
|
||||
{
|
||||
delete pInterp;
|
||||
delete[] theta;
|
||||
delete[] phi;
|
||||
delete[] func;
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
void SphereInterpolate<T>::GetSphericalCoords (const double x, const double y, const double z,
|
||||
double& thetaAngle,
|
||||
double& phiAngle) const
|
||||
{
|
||||
// Assumes (x,y,z) is unit length. Returns -PI <= thetaAngle <= PI
|
||||
// and 0 <= phiAngle <= PI.
|
||||
|
||||
if ( z < 1.0f )
|
||||
{
|
||||
if ( z > -1.0f )
|
||||
{
|
||||
thetaAngle = atan2(y,x);
|
||||
phiAngle = acos(z);
|
||||
}
|
||||
else
|
||||
{
|
||||
thetaAngle = -PI;
|
||||
phiAngle = PI;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
thetaAngle = -PI;
|
||||
phiAngle = 0.0f;
|
||||
}
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
int SphereInterpolate<T>::Evaluate (const double x, const double y, const double z, T& f) const
|
||||
{
|
||||
// assumes (x,y,z) is unit length
|
||||
|
||||
double thetaAngle, phiAngle;
|
||||
GetSphericalCoords(x,y,z,thetaAngle,phiAngle);
|
||||
return pInterp->Evaluate(thetaAngle,phiAngle,f);
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
template<class T>
|
||||
int SphereInterpolate<T>::Evaluate (const double thetaAngle, const double phiAngle, T& f) const
|
||||
{
|
||||
return pInterp->Evaluate(thetaAngle,phiAngle,f);
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
Loading…
Reference in a new issue