1
0
Fork 0

Send geod from Nasal, properly document the code, take some parameters from properties

This commit is contained in:
adrian 2011-12-06 23:00:50 +02:00
parent 971c2820b9
commit 10e933dc53
3 changed files with 126 additions and 101 deletions

View file

@ -37,7 +37,7 @@
FGRadioTransmission::FGRadioTransmission() {
_receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
_receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD or less
/** AM transmitter power in dBm.
* Typical output powers for ATC ground equipment, VHF-UHF:
@ -91,17 +91,15 @@ double FGRadioTransmission::getFrequency(int radio) {
return freq;
}
/*** TODO: receive multiplayer chat message and voice
***/
void FGRadioTransmission::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) {
}
/*** TODO: receive navaid
***/
double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
// typical VOR/LOC transmitter power appears to be 200 Watt ~ 53 dBm
// typical VOR/LOC transmitter power appears to be 100 - 200 Watt i.e 50 - 53 dBm
// vor/loc typical sensitivity between -107 and -101 dBm
// glideslope sensitivity between -85 and -81 dBm
if ( _propagation_model == 1) {
@ -115,40 +113,42 @@ double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmiss
}
double FGRadioTransmission::receiveBeacon(double lat, double lon, double elev, double heading, double pitch) {
double FGRadioTransmission::receiveBeacon(SGGeod &tx_pos, double heading, double pitch) {
// these properties should be set by an instrument
_receiver_sensitivity = _root_node->getDoubleValue("station[0]/rx-sensitivity", _receiver_sensitivity);
_transmitter_power = watt_to_dbm(_root_node->getDoubleValue("station[0]/tx-power-watt", _transmitter_power));
_polarization = _root_node->getIntValue("station[0]/polarization", 1);
_tx_antenna_height += _root_node->getDoubleValue("station[0]/tx-antenna-height", 0);
_rx_antenna_height += _root_node->getDoubleValue("station[0]/rx-antenna-height", 0);
_tx_antenna_gain += _root_node->getDoubleValue("station[0]/tx-antenna-gain", 0);
_rx_antenna_gain += _root_node->getDoubleValue("station[0]/rx-antenna-gain", 0);
double freq = _root_node->getDoubleValue("station[0]/frequency", 144.8); // by default stay in the ham 2 meter band
_transmitter_power = 36;
_tx_antenna_height += 0.0;
_tx_antenna_gain += 0.5;
elev = elev * SG_FEET_TO_METER;
double freq = _root_node->getDoubleValue("station[0]/frequency", 118.0);
int ground_to_air = 1;
string text = "Beacon1";
double comm1 = getFrequency(1);
double comm2 = getFrequency(2);
if ( !(fabs(freq - comm1) <= 0.0001) && !(fabs(freq - comm2) <= 0.0001) ) {
return -1;
}
SGGeod tx_pos = SGGeod::fromDegM( lon, lat, elev );
double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
double signal = ITM_calculate_attenuation(tx_pos, freq, 1);
return signal;
}
/*** Receive ATC radio communication as text
***/
void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
// adjust some default parameters in case the ATC code does not set them
if(ground_to_air == 1) {
_transmitter_power += 4.0;
_tx_antenna_height += 30.0;
_tx_antenna_gain += 2.0;
}
double comm1 = getFrequency(1);
double comm2 = getFrequency(2);
if ( !(fabs(freq - comm1) <= 0.0001) && !(fabs(freq - comm2) <= 0.0001) ) {
@ -156,30 +156,27 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
}
else {
if ( _propagation_model == 0) {
// skip propagation routines entirely
if ( _propagation_model == 0) { // skip propagation routines entirely
fgSetString("/sim/messages/atc", text.c_str());
}
else if ( _propagation_model == 1 ) {
// Use free-space, round earth
else if ( _propagation_model == 1 ) { // Use free-space, round earth
double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
if (signal <= 0.0) {
return;
}
else {
fgSetString("/sim/messages/atc", text.c_str());
}
}
else if ( _propagation_model == 2 ) { // Use ITM propagation model
}
}
else if ( _propagation_model == 2 ) {
// Use ITM propagation model
double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
if (signal <= 0.0) {
return;
}
if ((signal > 0.0) && (signal < 12.0)) {
/** for low SNR values implement a way to make the conversation
/** for low SNR values need a way to make the conversation
* hard to understand but audible
* in the real world, the receiver AGC fails to capture the slope
* and the signal, due to being amplitude modulated, decreases volume after demodulation
@ -195,27 +192,21 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
text.replace(pos,1, hash_noise);
}
*/
double volume = (fabs(signal - 12.0) / 12);
double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
SG_LOG(SG_GENERAL, SG_BULK, "Usable signal at limit: " << signal);
//cerr << "Usable signal at limit: " << signal << endl;
fgSetDouble("/sim/sound/voices/voice/volume", volume);
//double volume = (fabs(signal - 12.0) / 12);
//double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
//fgSetDouble("/sim/sound/voices/voice/volume", volume);
fgSetString("/sim/messages/atc", text.c_str());
fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
//fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
}
else {
fgSetString("/sim/messages/atc", text.c_str());
}
}
}
}
}
}
/*** Implement radio attenuation
based on the Longley-Rice propagation model
***/
double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
@ -282,10 +273,10 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
double reverse_course = SGGeodesy::courseRad(sender_pos_c, own_pos_c);
double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
double probe_distance = 0.0;
/** If distance larger than this value (300 km), assume reception imposssible */
/** If distance larger than this value (300 km), assume reception imposssible to spare CPU cycles */
if (distance_m > 300000)
return -1.0;
/** If above 8000 meters, consider LOS mode and calculate free-space att */
/** If above 8000 meters, consider LOS mode and calculate free-space att to spare CPU cycles */
if (own_alt > 8000) {
dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
SG_LOG(SG_GENERAL, SG_BULK,
@ -320,9 +311,6 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
transmitter_height += _tx_antenna_height;
receiver_height += _rx_antenna_height;
SG_LOG(SG_GENERAL, SG_BULK,
"ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters");
//cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
_root_node->setDoubleValue("station[0]/rx-height", receiver_height);
_root_node->setDoubleValue("station[0]/tx-height", transmitter_height);
@ -393,8 +381,6 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
for(int i=0;i<size;i++) {
itm_elev[i]=elevations[i];
}
if((transmission_type == 3) || (transmission_type == 4)) {
@ -414,39 +400,43 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
}
double pol_loss = 0.0;
// TODO: remove this check after we check a bit the axis calculations in this function
if (_polarization == 1) {
pol_loss = polarization_loss();
}
SG_LOG(SG_GENERAL, SG_BULK,
"ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
//SG_LOG(SG_GENERAL, SG_BULK,
// "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
//cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
_root_node->setDoubleValue("station[0]/link-budget", link_budget);
_root_node->setDoubleValue("station[0]/terrain-attenuation", dbloss);
_root_node->setStringValue("station[0]/prop-mode", strmode);
_root_node->setDoubleValue("station[0]/clutter-attenuation", clutter_loss);
_root_node->setDoubleValue("station[0]/polarization-attenuation", pol_loss);
//if (errnum == 4) // if parameters are outside sane values for lrprop, the alternative method is used
//if (errnum == 4) // if parameters are outside sane values for lrprop, bail out fast
// return -1;
// temporary, keep this antenna radiation pattern code here
double tx_pattern_gain = 0.0;
double rx_pattern_gain = 0.0;
if (_root_node->getBoolValue("use-antenna-pattern", false)) {
double sender_heading = 270.0; // due West
double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES;
double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES;
double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES;
double tx_elev_angle = 0.0 - rx_elev_angle;
if (_root_node->getBoolValue("use-tx-antenna-pattern", false)) {
FGRadioAntenna* TX_antenna;
FGRadioAntenna* RX_antenna;
TX_antenna = new FGRadioAntenna("Plot2");
TX_antenna->set_heading(sender_heading);
TX_antenna->set_elevation_angle(0);
tx_pattern_gain = TX_antenna->calculate_gain(tx_antenna_bearing, tx_elev_angle);
delete TX_antenna;
}
if (_root_node->getBoolValue("use-rx-antenna-pattern", false)) {
FGRadioAntenna* RX_antenna;
RX_antenna = new FGRadioAntenna("Plot2");
RX_antenna->set_heading(own_heading);
RX_antenna->set_elevation_angle(fgGetDouble("/orientation/pitch-deg"));
rx_pattern_gain = RX_antenna->calculate_gain(rx_antenna_bearing, rx_elev_angle);
delete TX_antenna;
delete RX_antenna;
}
@ -467,10 +457,7 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
}
/*** Calculate losses due to vegetation and urban clutter (WIP)
* We are only worried about clutter loss, terrain influence
* on the first Fresnel zone is calculated in the ITM functions
***/
void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[], deque<string> &materials,
double transmitter_height, double receiver_height, int p_mode,
double horizons[], double &clutter_loss) {
@ -757,16 +744,13 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
}
}
else if (p_mode == 2) { // troposcatter: ignore ground clutter for now...
else if (p_mode == 2) { // troposcatter: ignore ground clutter for now... maybe do something with weather
clutter_loss = 0.0;
}
}
/*** Temporary material properties database
* height: median clutter height
* density: radiowave attenuation factor
***/
void FGRadioTransmission::get_material_properties(string mat_name, double &height, double &density) {
if(mat_name == "Landmass") {
@ -878,14 +862,10 @@ void FGRadioTransmission::get_material_properties(string mat_name, double &heigh
}
/*** implement simple LOS propagation model (WIP)
***/
double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
double frq_mhz;
if( (freq < 118.0) || (freq > 137.0) )
frq_mhz = 125.0; // sane value, middle of bandplan
else
frq_mhz = freq;
double frq_mhz = freq;
double dbloss;
double tx_pow = _transmitter_power;
double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
@ -936,8 +916,7 @@ double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, i
// free-space loss (distance calculation should be changed)
dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
signal = link_budget - dbloss + pol_loss;
SG_LOG(SG_GENERAL, SG_BULK,
"LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm ");
//cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
return signal;

View file

@ -36,9 +36,6 @@ using std::string;
class FGRadioTransmission
{
private:
bool isOperable() const
{ return _operable; }
bool _operable; ///< is the unit serviceable, on, powered, etc
double _receiver_sensitivity;
double _transmitter_power;
@ -55,44 +52,92 @@ private:
SGPropertyNode *_root_node;
int _propagation_model; /// 0 none, 1 round Earth, 2 ITM
double polarization_loss();
/*** Implement radio attenuation
* based on the Longley-Rice propagation model
* ground_to_air: 0 for air to ground 1 for ground to air, 2 for air to air, 3 for pilot to ground, 4 for pilot to air
* @param: transmitter position, frequency, flag to indicate if the transmission is from a ground station
* @return: signal level above receiver treshhold sensitivity
***/
double ITM_calculate_attenuation(SGGeod tx_pos, double freq, int ground_to_air);
/*** a simple alternative LOS propagation model (WIP)
* @param: transmitter position, frequency, flag to indicate if the transmission is from a ground station
* @return: signal level above receiver treshhold sensitivity
***/
double LOS_calculate_attenuation(SGGeod tx_pos, double freq, int ground_to_air);
/*** Calculate losses due to vegetation and urban clutter (WIP)
* We are only worried about clutter loss, terrain influence
* on the first Fresnel zone is calculated in the ITM functions
* @param: frequency, elevation data, terrain type, horizon distances, calculated loss
* @return: none
***/
void calculate_clutter_loss(double freq, double itm_elev[], std::deque<string> &materials,
double transmitter_height, double receiver_height, int p_mode,
double horizons[], double &clutter_loss);
/*** Temporary material properties database
* @param: terrain type, median clutter height, radiowave attenuation factor
* @return: none
***/
void get_material_properties(string mat_name, double &height, double &density);
public:
FGRadioTransmission();
~FGRadioTransmission();
// a couple of setters and getters for convenience
/// a couple of setters and getters for convenience, call after initializing
/// frequency is in MHz, sensitivity in dBm, antenna gain and losses in dB, transmitter power in dBm
/// polarization can be: 0 horizontal, 1 vertical
void setFrequency(double freq, int radio);
double getFrequency(int radio);
void setTxPower(double txpower) { _transmitter_power = txpower; };
void setRxSensitivity(double sensitivity) { _receiver_sensitivity = sensitivity; };
void setTxAntennaHeight(double tx_antenna_height) { _tx_antenna_height = tx_antenna_height; };
void setRxAntennaHeight(double rx_antenna_height) { _rx_antenna_height = rx_antenna_height; };
void setTxAntennaGain(double tx_antenna_gain) { _tx_antenna_gain = tx_antenna_gain; };
void setRxAntennaGain(double rx_antenna_gain) { _rx_antenna_gain = rx_antenna_gain; };
void setTxLineLosses(double tx_line_losses) { _tx_line_losses = tx_line_losses; };
void setRxLineLosses(double rx_line_losses) { _rx_line_losses = rx_line_losses; };
void setPropagationModel(int model) { _propagation_model = model; };
void setPolarization(int polarization) { _polarization = polarization; };
// accessory functions for unit conversions
double watt_to_dbm(double power_watt);
double dbm_to_watt(double dbm);
double dbm_to_microvolt(double dbm);
inline void setTxPower(double txpower) { _transmitter_power = txpower; };
inline void setRxSensitivity(double sensitivity) { _receiver_sensitivity = sensitivity; };
inline void setTxAntennaHeight(double tx_antenna_height) { _tx_antenna_height = tx_antenna_height; };
inline void setRxAntennaHeight(double rx_antenna_height) { _rx_antenna_height = rx_antenna_height; };
inline void setTxAntennaGain(double tx_antenna_gain) { _tx_antenna_gain = tx_antenna_gain; };
inline void setRxAntennaGain(double rx_antenna_gain) { _rx_antenna_gain = rx_antenna_gain; };
inline void setTxLineLosses(double tx_line_losses) { _tx_line_losses = tx_line_losses; };
inline void setRxLineLosses(double rx_line_losses) { _rx_line_losses = rx_line_losses; };
inline void setPropagationModel(int model) { _propagation_model = model; };
inline void setPolarization(int polarization) { _polarization = polarization; };
/// static convenience functions for unit conversions
static double watt_to_dbm(double power_watt);
static double dbm_to_watt(double dbm);
static double dbm_to_microvolt(double dbm);
// transmission_type: 0 for air to ground 1 for ground to air, 2 for air to air, 3 for pilot to ground, 4 for pilot to air
/*** Receive ATC radio communication as text
* transmission_type: 0 for air to ground 1 for ground to air, 2 for air to air, 3 for pilot to ground, 4 for pilot to air
* @param: transmitter position, frequency, ATC text, flag to indicate whether the transmission comes from an ATC groundstation
* @return: none
***/
void receiveATC(SGGeod tx_pos, double freq, string text, int transmission_type);
/*** TODO: receive multiplayer chat message and voice
* @param: transmitter position, frequency, ATC text, flag to indicate whether the transmission comes from an ATC groundstation
* @return: none
***/
void receiveChat(SGGeod tx_pos, double freq, string text, int transmission_type);
// returns signal quality
// transmission_type: 0 for VOR, 1 for ILS
/*** TODO: receive navaid
* @param: transmitter position, frequency, flag
* @return: signal level above receiver treshhold sensitivity
***/
double receiveNav(SGGeod tx_pos, double freq, int transmission_type);
double receiveBeacon(double lat, double lon, double elev, double heading, double pitch);
/*** Call this function to receive an arbitrary signal
* for instance via the Nasal radioTransmission() function
* returns the signal value above receiver sensitivity treshhold
* @param: transmitter position, object heading in degrees (for antenna), object pitch angle in degrees
* @return: signal level above receiver treshhold sensitivity
***/
double receiveBeacon(SGGeod &tx_pos, double heading, double pitch);
};

View file

@ -515,8 +515,9 @@ static naRef f_radioTransmission(naContext c, naRef me, int argc, naRef* args)
elev = naNumValue(args[2]).num;
heading = naNumValue(args[3]).num;
pitch = naNumValue(args[4]).num;
SGGeod geod = SGGeod::fromDegM(lon, lat, elev * SG_FEET_TO_METER);
FGRadioTransmission *radio = new FGRadioTransmission;
double signal = radio->receiveBeacon(lat,lon,elev,heading,pitch);
double signal = radio->receiveBeacon(geod, heading, pitch);
delete radio;
return naNum(signal);
}