Send geod from Nasal, properly document the code, take some parameters from properties
This commit is contained in:
parent
971c2820b9
commit
10e933dc53
3 changed files with 126 additions and 101 deletions
|
@ -37,7 +37,7 @@
|
|||
FGRadioTransmission::FGRadioTransmission() {
|
||||
|
||||
|
||||
_receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
|
||||
_receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD or less
|
||||
|
||||
/** AM transmitter power in dBm.
|
||||
* Typical output powers for ATC ground equipment, VHF-UHF:
|
||||
|
@ -91,17 +91,15 @@ double FGRadioTransmission::getFrequency(int radio) {
|
|||
return freq;
|
||||
}
|
||||
|
||||
/*** TODO: receive multiplayer chat message and voice
|
||||
***/
|
||||
|
||||
void FGRadioTransmission::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) {
|
||||
|
||||
}
|
||||
|
||||
/*** TODO: receive navaid
|
||||
***/
|
||||
|
||||
double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
|
||||
|
||||
// typical VOR/LOC transmitter power appears to be 200 Watt ~ 53 dBm
|
||||
// typical VOR/LOC transmitter power appears to be 100 - 200 Watt i.e 50 - 53 dBm
|
||||
// vor/loc typical sensitivity between -107 and -101 dBm
|
||||
// glideslope sensitivity between -85 and -81 dBm
|
||||
if ( _propagation_model == 1) {
|
||||
|
@ -115,40 +113,42 @@ double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmiss
|
|||
|
||||
}
|
||||
|
||||
double FGRadioTransmission::receiveBeacon(double lat, double lon, double elev, double heading, double pitch) {
|
||||
|
||||
double FGRadioTransmission::receiveBeacon(SGGeod &tx_pos, double heading, double pitch) {
|
||||
|
||||
// these properties should be set by an instrument
|
||||
_receiver_sensitivity = _root_node->getDoubleValue("station[0]/rx-sensitivity", _receiver_sensitivity);
|
||||
_transmitter_power = watt_to_dbm(_root_node->getDoubleValue("station[0]/tx-power-watt", _transmitter_power));
|
||||
_polarization = _root_node->getIntValue("station[0]/polarization", 1);
|
||||
_tx_antenna_height += _root_node->getDoubleValue("station[0]/tx-antenna-height", 0);
|
||||
_rx_antenna_height += _root_node->getDoubleValue("station[0]/rx-antenna-height", 0);
|
||||
_tx_antenna_gain += _root_node->getDoubleValue("station[0]/tx-antenna-gain", 0);
|
||||
_rx_antenna_gain += _root_node->getDoubleValue("station[0]/rx-antenna-gain", 0);
|
||||
|
||||
double freq = _root_node->getDoubleValue("station[0]/frequency", 144.8); // by default stay in the ham 2 meter band
|
||||
|
||||
_transmitter_power = 36;
|
||||
_tx_antenna_height += 0.0;
|
||||
_tx_antenna_gain += 0.5;
|
||||
elev = elev * SG_FEET_TO_METER;
|
||||
double freq = _root_node->getDoubleValue("station[0]/frequency", 118.0);
|
||||
int ground_to_air = 1;
|
||||
string text = "Beacon1";
|
||||
double comm1 = getFrequency(1);
|
||||
double comm2 = getFrequency(2);
|
||||
if ( !(fabs(freq - comm1) <= 0.0001) && !(fabs(freq - comm2) <= 0.0001) ) {
|
||||
return -1;
|
||||
}
|
||||
SGGeod tx_pos = SGGeod::fromDegM( lon, lat, elev );
|
||||
double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
|
||||
|
||||
double signal = ITM_calculate_attenuation(tx_pos, freq, 1);
|
||||
|
||||
return signal;
|
||||
}
|
||||
|
||||
|
||||
/*** Receive ATC radio communication as text
|
||||
***/
|
||||
|
||||
void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
|
||||
|
||||
|
||||
// adjust some default parameters in case the ATC code does not set them
|
||||
if(ground_to_air == 1) {
|
||||
_transmitter_power += 4.0;
|
||||
_tx_antenna_height += 30.0;
|
||||
_tx_antenna_gain += 2.0;
|
||||
}
|
||||
|
||||
|
||||
double comm1 = getFrequency(1);
|
||||
double comm2 = getFrequency(2);
|
||||
if ( !(fabs(freq - comm1) <= 0.0001) && !(fabs(freq - comm2) <= 0.0001) ) {
|
||||
|
@ -156,30 +156,27 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
|
|||
}
|
||||
else {
|
||||
|
||||
if ( _propagation_model == 0) {
|
||||
// skip propagation routines entirely
|
||||
if ( _propagation_model == 0) { // skip propagation routines entirely
|
||||
fgSetString("/sim/messages/atc", text.c_str());
|
||||
}
|
||||
else if ( _propagation_model == 1 ) {
|
||||
// Use free-space, round earth
|
||||
else if ( _propagation_model == 1 ) { // Use free-space, round earth
|
||||
|
||||
double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
|
||||
if (signal <= 0.0) {
|
||||
return;
|
||||
}
|
||||
else {
|
||||
|
||||
fgSetString("/sim/messages/atc", text.c_str());
|
||||
|
||||
}
|
||||
}
|
||||
else if ( _propagation_model == 2 ) {
|
||||
// Use ITM propagation model
|
||||
else if ( _propagation_model == 2 ) { // Use ITM propagation model
|
||||
|
||||
double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
|
||||
if (signal <= 0.0) {
|
||||
return;
|
||||
}
|
||||
if ((signal > 0.0) && (signal < 12.0)) {
|
||||
/** for low SNR values implement a way to make the conversation
|
||||
/** for low SNR values need a way to make the conversation
|
||||
* hard to understand but audible
|
||||
* in the real world, the receiver AGC fails to capture the slope
|
||||
* and the signal, due to being amplitude modulated, decreases volume after demodulation
|
||||
|
@ -195,27 +192,21 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
|
|||
text.replace(pos,1, hash_noise);
|
||||
}
|
||||
*/
|
||||
double volume = (fabs(signal - 12.0) / 12);
|
||||
double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
|
||||
SG_LOG(SG_GENERAL, SG_BULK, "Usable signal at limit: " << signal);
|
||||
//cerr << "Usable signal at limit: " << signal << endl;
|
||||
fgSetDouble("/sim/sound/voices/voice/volume", volume);
|
||||
//double volume = (fabs(signal - 12.0) / 12);
|
||||
//double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
|
||||
|
||||
//fgSetDouble("/sim/sound/voices/voice/volume", volume);
|
||||
fgSetString("/sim/messages/atc", text.c_str());
|
||||
fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
|
||||
//fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
|
||||
}
|
||||
else {
|
||||
fgSetString("/sim/messages/atc", text.c_str());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*** Implement radio attenuation
|
||||
based on the Longley-Rice propagation model
|
||||
***/
|
||||
|
||||
double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
|
||||
|
||||
|
||||
|
@ -282,10 +273,10 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
|
|||
double reverse_course = SGGeodesy::courseRad(sender_pos_c, own_pos_c);
|
||||
double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
|
||||
double probe_distance = 0.0;
|
||||
/** If distance larger than this value (300 km), assume reception imposssible */
|
||||
/** If distance larger than this value (300 km), assume reception imposssible to spare CPU cycles */
|
||||
if (distance_m > 300000)
|
||||
return -1.0;
|
||||
/** If above 8000 meters, consider LOS mode and calculate free-space att */
|
||||
/** If above 8000 meters, consider LOS mode and calculate free-space att to spare CPU cycles */
|
||||
if (own_alt > 8000) {
|
||||
dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
|
||||
SG_LOG(SG_GENERAL, SG_BULK,
|
||||
|
@ -320,9 +311,6 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
|
|||
transmitter_height += _tx_antenna_height;
|
||||
receiver_height += _rx_antenna_height;
|
||||
|
||||
|
||||
SG_LOG(SG_GENERAL, SG_BULK,
|
||||
"ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters");
|
||||
//cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
|
||||
_root_node->setDoubleValue("station[0]/rx-height", receiver_height);
|
||||
_root_node->setDoubleValue("station[0]/tx-height", transmitter_height);
|
||||
|
@ -393,8 +381,6 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
|
|||
|
||||
for(int i=0;i<size;i++) {
|
||||
itm_elev[i]=elevations[i];
|
||||
|
||||
|
||||
}
|
||||
|
||||
if((transmission_type == 3) || (transmission_type == 4)) {
|
||||
|
@ -414,39 +400,43 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
|
|||
}
|
||||
|
||||
double pol_loss = 0.0;
|
||||
// TODO: remove this check after we check a bit the axis calculations in this function
|
||||
if (_polarization == 1) {
|
||||
pol_loss = polarization_loss();
|
||||
}
|
||||
SG_LOG(SG_GENERAL, SG_BULK,
|
||||
"ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
|
||||
//SG_LOG(SG_GENERAL, SG_BULK,
|
||||
// "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
|
||||
//cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
|
||||
_root_node->setDoubleValue("station[0]/link-budget", link_budget);
|
||||
_root_node->setDoubleValue("station[0]/terrain-attenuation", dbloss);
|
||||
_root_node->setStringValue("station[0]/prop-mode", strmode);
|
||||
_root_node->setDoubleValue("station[0]/clutter-attenuation", clutter_loss);
|
||||
_root_node->setDoubleValue("station[0]/polarization-attenuation", pol_loss);
|
||||
//if (errnum == 4) // if parameters are outside sane values for lrprop, the alternative method is used
|
||||
//if (errnum == 4) // if parameters are outside sane values for lrprop, bail out fast
|
||||
// return -1;
|
||||
|
||||
// temporary, keep this antenna radiation pattern code here
|
||||
double tx_pattern_gain = 0.0;
|
||||
double rx_pattern_gain = 0.0;
|
||||
if (_root_node->getBoolValue("use-antenna-pattern", false)) {
|
||||
double sender_heading = 270.0; // due West
|
||||
double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES;
|
||||
double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES;
|
||||
double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES;
|
||||
double tx_elev_angle = 0.0 - rx_elev_angle;
|
||||
double sender_heading = 270.0; // due West
|
||||
double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES;
|
||||
double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES;
|
||||
double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES;
|
||||
double tx_elev_angle = 0.0 - rx_elev_angle;
|
||||
if (_root_node->getBoolValue("use-tx-antenna-pattern", false)) {
|
||||
FGRadioAntenna* TX_antenna;
|
||||
FGRadioAntenna* RX_antenna;
|
||||
TX_antenna = new FGRadioAntenna("Plot2");
|
||||
TX_antenna->set_heading(sender_heading);
|
||||
TX_antenna->set_elevation_angle(0);
|
||||
tx_pattern_gain = TX_antenna->calculate_gain(tx_antenna_bearing, tx_elev_angle);
|
||||
delete TX_antenna;
|
||||
}
|
||||
if (_root_node->getBoolValue("use-rx-antenna-pattern", false)) {
|
||||
FGRadioAntenna* RX_antenna;
|
||||
RX_antenna = new FGRadioAntenna("Plot2");
|
||||
RX_antenna->set_heading(own_heading);
|
||||
RX_antenna->set_elevation_angle(fgGetDouble("/orientation/pitch-deg"));
|
||||
rx_pattern_gain = RX_antenna->calculate_gain(rx_antenna_bearing, rx_elev_angle);
|
||||
|
||||
delete TX_antenna;
|
||||
delete RX_antenna;
|
||||
}
|
||||
|
||||
|
@ -467,10 +457,7 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
|
|||
|
||||
}
|
||||
|
||||
/*** Calculate losses due to vegetation and urban clutter (WIP)
|
||||
* We are only worried about clutter loss, terrain influence
|
||||
* on the first Fresnel zone is calculated in the ITM functions
|
||||
***/
|
||||
|
||||
void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[], deque<string> &materials,
|
||||
double transmitter_height, double receiver_height, int p_mode,
|
||||
double horizons[], double &clutter_loss) {
|
||||
|
@ -757,16 +744,13 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
|
|||
|
||||
}
|
||||
}
|
||||
else if (p_mode == 2) { // troposcatter: ignore ground clutter for now...
|
||||
else if (p_mode == 2) { // troposcatter: ignore ground clutter for now... maybe do something with weather
|
||||
clutter_loss = 0.0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*** Temporary material properties database
|
||||
* height: median clutter height
|
||||
* density: radiowave attenuation factor
|
||||
***/
|
||||
|
||||
void FGRadioTransmission::get_material_properties(string mat_name, double &height, double &density) {
|
||||
|
||||
if(mat_name == "Landmass") {
|
||||
|
@ -878,14 +862,10 @@ void FGRadioTransmission::get_material_properties(string mat_name, double &heigh
|
|||
|
||||
}
|
||||
|
||||
/*** implement simple LOS propagation model (WIP)
|
||||
***/
|
||||
|
||||
double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
|
||||
double frq_mhz;
|
||||
if( (freq < 118.0) || (freq > 137.0) )
|
||||
frq_mhz = 125.0; // sane value, middle of bandplan
|
||||
else
|
||||
frq_mhz = freq;
|
||||
|
||||
double frq_mhz = freq;
|
||||
double dbloss;
|
||||
double tx_pow = _transmitter_power;
|
||||
double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
|
||||
|
@ -936,8 +916,7 @@ double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, i
|
|||
// free-space loss (distance calculation should be changed)
|
||||
dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
|
||||
signal = link_budget - dbloss + pol_loss;
|
||||
SG_LOG(SG_GENERAL, SG_BULK,
|
||||
"LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm ");
|
||||
|
||||
//cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
|
||||
return signal;
|
||||
|
||||
|
|
|
@ -36,9 +36,6 @@ using std::string;
|
|||
class FGRadioTransmission
|
||||
{
|
||||
private:
|
||||
bool isOperable() const
|
||||
{ return _operable; }
|
||||
bool _operable; ///< is the unit serviceable, on, powered, etc
|
||||
|
||||
double _receiver_sensitivity;
|
||||
double _transmitter_power;
|
||||
|
@ -55,44 +52,92 @@ private:
|
|||
SGPropertyNode *_root_node;
|
||||
int _propagation_model; /// 0 none, 1 round Earth, 2 ITM
|
||||
double polarization_loss();
|
||||
|
||||
|
||||
/*** Implement radio attenuation
|
||||
* based on the Longley-Rice propagation model
|
||||
* ground_to_air: 0 for air to ground 1 for ground to air, 2 for air to air, 3 for pilot to ground, 4 for pilot to air
|
||||
* @param: transmitter position, frequency, flag to indicate if the transmission is from a ground station
|
||||
* @return: signal level above receiver treshhold sensitivity
|
||||
***/
|
||||
double ITM_calculate_attenuation(SGGeod tx_pos, double freq, int ground_to_air);
|
||||
|
||||
/*** a simple alternative LOS propagation model (WIP)
|
||||
* @param: transmitter position, frequency, flag to indicate if the transmission is from a ground station
|
||||
* @return: signal level above receiver treshhold sensitivity
|
||||
***/
|
||||
double LOS_calculate_attenuation(SGGeod tx_pos, double freq, int ground_to_air);
|
||||
|
||||
/*** Calculate losses due to vegetation and urban clutter (WIP)
|
||||
* We are only worried about clutter loss, terrain influence
|
||||
* on the first Fresnel zone is calculated in the ITM functions
|
||||
* @param: frequency, elevation data, terrain type, horizon distances, calculated loss
|
||||
* @return: none
|
||||
***/
|
||||
void calculate_clutter_loss(double freq, double itm_elev[], std::deque<string> &materials,
|
||||
double transmitter_height, double receiver_height, int p_mode,
|
||||
double horizons[], double &clutter_loss);
|
||||
|
||||
/*** Temporary material properties database
|
||||
* @param: terrain type, median clutter height, radiowave attenuation factor
|
||||
* @return: none
|
||||
***/
|
||||
void get_material_properties(string mat_name, double &height, double &density);
|
||||
|
||||
|
||||
public:
|
||||
|
||||
FGRadioTransmission();
|
||||
~FGRadioTransmission();
|
||||
|
||||
// a couple of setters and getters for convenience
|
||||
/// a couple of setters and getters for convenience, call after initializing
|
||||
/// frequency is in MHz, sensitivity in dBm, antenna gain and losses in dB, transmitter power in dBm
|
||||
/// polarization can be: 0 horizontal, 1 vertical
|
||||
void setFrequency(double freq, int radio);
|
||||
double getFrequency(int radio);
|
||||
void setTxPower(double txpower) { _transmitter_power = txpower; };
|
||||
void setRxSensitivity(double sensitivity) { _receiver_sensitivity = sensitivity; };
|
||||
void setTxAntennaHeight(double tx_antenna_height) { _tx_antenna_height = tx_antenna_height; };
|
||||
void setRxAntennaHeight(double rx_antenna_height) { _rx_antenna_height = rx_antenna_height; };
|
||||
void setTxAntennaGain(double tx_antenna_gain) { _tx_antenna_gain = tx_antenna_gain; };
|
||||
void setRxAntennaGain(double rx_antenna_gain) { _rx_antenna_gain = rx_antenna_gain; };
|
||||
void setTxLineLosses(double tx_line_losses) { _tx_line_losses = tx_line_losses; };
|
||||
void setRxLineLosses(double rx_line_losses) { _rx_line_losses = rx_line_losses; };
|
||||
void setPropagationModel(int model) { _propagation_model = model; };
|
||||
void setPolarization(int polarization) { _polarization = polarization; };
|
||||
// accessory functions for unit conversions
|
||||
double watt_to_dbm(double power_watt);
|
||||
double dbm_to_watt(double dbm);
|
||||
double dbm_to_microvolt(double dbm);
|
||||
inline void setTxPower(double txpower) { _transmitter_power = txpower; };
|
||||
inline void setRxSensitivity(double sensitivity) { _receiver_sensitivity = sensitivity; };
|
||||
inline void setTxAntennaHeight(double tx_antenna_height) { _tx_antenna_height = tx_antenna_height; };
|
||||
inline void setRxAntennaHeight(double rx_antenna_height) { _rx_antenna_height = rx_antenna_height; };
|
||||
inline void setTxAntennaGain(double tx_antenna_gain) { _tx_antenna_gain = tx_antenna_gain; };
|
||||
inline void setRxAntennaGain(double rx_antenna_gain) { _rx_antenna_gain = rx_antenna_gain; };
|
||||
inline void setTxLineLosses(double tx_line_losses) { _tx_line_losses = tx_line_losses; };
|
||||
inline void setRxLineLosses(double rx_line_losses) { _rx_line_losses = rx_line_losses; };
|
||||
inline void setPropagationModel(int model) { _propagation_model = model; };
|
||||
inline void setPolarization(int polarization) { _polarization = polarization; };
|
||||
|
||||
/// static convenience functions for unit conversions
|
||||
static double watt_to_dbm(double power_watt);
|
||||
static double dbm_to_watt(double dbm);
|
||||
static double dbm_to_microvolt(double dbm);
|
||||
|
||||
|
||||
// transmission_type: 0 for air to ground 1 for ground to air, 2 for air to air, 3 for pilot to ground, 4 for pilot to air
|
||||
/*** Receive ATC radio communication as text
|
||||
* transmission_type: 0 for air to ground 1 for ground to air, 2 for air to air, 3 for pilot to ground, 4 for pilot to air
|
||||
* @param: transmitter position, frequency, ATC text, flag to indicate whether the transmission comes from an ATC groundstation
|
||||
* @return: none
|
||||
***/
|
||||
void receiveATC(SGGeod tx_pos, double freq, string text, int transmission_type);
|
||||
|
||||
/*** TODO: receive multiplayer chat message and voice
|
||||
* @param: transmitter position, frequency, ATC text, flag to indicate whether the transmission comes from an ATC groundstation
|
||||
* @return: none
|
||||
***/
|
||||
void receiveChat(SGGeod tx_pos, double freq, string text, int transmission_type);
|
||||
// returns signal quality
|
||||
// transmission_type: 0 for VOR, 1 for ILS
|
||||
|
||||
/*** TODO: receive navaid
|
||||
* @param: transmitter position, frequency, flag
|
||||
* @return: signal level above receiver treshhold sensitivity
|
||||
***/
|
||||
double receiveNav(SGGeod tx_pos, double freq, int transmission_type);
|
||||
double receiveBeacon(double lat, double lon, double elev, double heading, double pitch);
|
||||
|
||||
/*** Call this function to receive an arbitrary signal
|
||||
* for instance via the Nasal radioTransmission() function
|
||||
* returns the signal value above receiver sensitivity treshhold
|
||||
* @param: transmitter position, object heading in degrees (for antenna), object pitch angle in degrees
|
||||
* @return: signal level above receiver treshhold sensitivity
|
||||
***/
|
||||
double receiveBeacon(SGGeod &tx_pos, double heading, double pitch);
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -515,8 +515,9 @@ static naRef f_radioTransmission(naContext c, naRef me, int argc, naRef* args)
|
|||
elev = naNumValue(args[2]).num;
|
||||
heading = naNumValue(args[3]).num;
|
||||
pitch = naNumValue(args[4]).num;
|
||||
SGGeod geod = SGGeod::fromDegM(lon, lat, elev * SG_FEET_TO_METER);
|
||||
FGRadioTransmission *radio = new FGRadioTransmission;
|
||||
double signal = radio->receiveBeacon(lat,lon,elev,heading,pitch);
|
||||
double signal = radio->receiveBeacon(geod, heading, pitch);
|
||||
delete radio;
|
||||
return naNum(signal);
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue