1
0
Fork 0
flightgear/Simulator/LaRCsim/ls_geodesy.c

161 lines
5 KiB
C
Raw Normal View History

1997-05-29 00:09:51 +00:00
/***************************************************************************
TITLE: ls_geodesy
----------------------------------------------------------------------------
FUNCTION: Converts geocentric coordinates to geodetic positions
----------------------------------------------------------------------------
MODULE STATUS: developmental
----------------------------------------------------------------------------
GENEALOGY: Written as part of LaRCSim project by E. B. Jackson
----------------------------------------------------------------------------
DESIGNED BY: E. B. Jackson
CODED BY: E. B. Jackson
MAINTAINED BY: E. B. Jackson
----------------------------------------------------------------------------
MODIFICATION HISTORY:
DATE PURPOSE BY
930208 Modified to avoid singularity near polar region. EBJ
930602 Moved backwards calcs here from ls_step. EBJ
931214 Changed erroneous Latitude and Altitude variables to
*lat_geod and *alt in routine ls_geoc_to_geod. EBJ
940111 Changed header files from old ls_eom.h style to ls_types,
and ls_constants. Also replaced old DATA type with new
SCALAR type. EBJ
CURRENT RCS HEADER:
$Header$
$Log$
1998-07-08 14:41:37 +00:00
Revision 1.3 1998/07/08 14:41:37 curt
.
Revision 1.2 1998/01/19 18:40:25 curt
Tons of little changes to clean up the code and to remove fatal errors
when building with the c++ compiler.
1997-05-29 00:09:51 +00:00
Revision 1.1 1997/05/29 00:09:56 curt
Initial Flight Gear revision.
* Revision 1.5 1994/01/11 18:47:05 bjax
* Changed include files to use types and constants, not ls_eom.h
* Also changed DATA type to SCALAR type.
*
* Revision 1.4 1993/12/14 21:06:47 bjax
* Removed global variable references Altitude and Latitude. EBJ
*
* Revision 1.3 1993/06/02 15:03:40 bjax
* Made new subroutine for calculating geodetic to geocentric; changed name
* of forward conversion routine from ls_geodesy to ls_geoc_to_geod.
*
----------------------------------------------------------------------------
REFERENCES:
[ 1] Stevens, Brian L.; and Lewis, Frank L.: "Aircraft
Control and Simulation", Wiley and Sons, 1992.
ISBN 0-471-61397-5
----------------------------------------------------------------------------
CALLED BY: ls_aux
----------------------------------------------------------------------------
CALLS TO:
----------------------------------------------------------------------------
INPUTS:
lat_geoc Geocentric latitude, radians, + = North
radius C.G. radius to earth center, ft
----------------------------------------------------------------------------
OUTPUTS:
lat_geod Geodetic latitude, radians, + = North
alt C.G. altitude above mean sea level, ft
sea_level_r radius from earth center to sea level at
local vertical (surface normal) of C.G.
--------------------------------------------------------------------------*/
#include "ls_types.h"
#include "ls_constants.h"
#include "ls_geodesy.h"
1997-05-29 00:09:51 +00:00
#include <math.h>
/* ONE_SECOND is pi/180/60/60, or about 100 feet at earths' equator */
#define ONE_SECOND 4.848136811E-6
#define HALF_PI 0.5*PI
void ls_geoc_to_geod( SCALAR lat_geoc, SCALAR radius, SCALAR *lat_geod,
SCALAR *alt, SCALAR *sea_level_r )
1997-05-29 00:09:51 +00:00
{
SCALAR t_lat, x_alpha, mu_alpha, delt_mu, r_alpha, l_point, rho_alpha;
SCALAR sin_mu_a, denom,delt_lambda, lambda_sl, sin_lambda_sl;
if( ( (HALF_PI - lat_geoc) < ONE_SECOND ) /* near North pole */
|| ( (HALF_PI + lat_geoc) < ONE_SECOND ) ) /* near South pole */
{
*lat_geod = lat_geoc;
*sea_level_r = EQUATORIAL_RADIUS*E;
*alt = radius - *sea_level_r;
}
else
{
t_lat = tan(lat_geoc);
x_alpha = E*EQUATORIAL_RADIUS/sqrt(t_lat*t_lat + E*E);
mu_alpha = atan2(sqrt(RESQ - x_alpha*x_alpha),E*x_alpha);
if (lat_geoc < 0) mu_alpha = - mu_alpha;
sin_mu_a = sin(mu_alpha);
delt_lambda = mu_alpha - lat_geoc;
r_alpha = x_alpha/cos(lat_geoc);
l_point = radius - r_alpha;
*alt = l_point*cos(delt_lambda);
denom = sqrt(1-EPS*EPS*sin_mu_a*sin_mu_a);
rho_alpha = EQUATORIAL_RADIUS*(1-EPS)/
(denom*denom*denom);
delt_mu = atan2(l_point*sin(delt_lambda),rho_alpha + *alt);
*lat_geod = mu_alpha - delt_mu;
lambda_sl = atan( E*E * tan(*lat_geod) ); /* SL geoc. latitude */
sin_lambda_sl = sin( lambda_sl );
*sea_level_r = sqrt(RESQ
/(1 + ((1/(E*E))-1)*sin_lambda_sl*sin_lambda_sl));
}
}
void ls_geod_to_geoc( SCALAR lat_geod, SCALAR alt,
SCALAR *sl_radius, SCALAR *lat_geoc )
1997-05-29 00:09:51 +00:00
{
SCALAR lambda_sl, sin_lambda_sl, cos_lambda_sl, sin_mu, cos_mu, px, py;
lambda_sl = atan( E*E * tan(lat_geod) ); /* sea level geocentric latitude */
sin_lambda_sl = sin( lambda_sl );
cos_lambda_sl = cos( lambda_sl );
sin_mu = sin(lat_geod); /* Geodetic (map makers') latitude */
cos_mu = cos(lat_geod);
*sl_radius = sqrt(RESQ
/(1 + ((1/(E*E))-1)*sin_lambda_sl*sin_lambda_sl));
py = *sl_radius*sin_lambda_sl + alt*sin_mu;
px = *sl_radius*cos_lambda_sl + alt*cos_mu;
*lat_geoc = atan2( py, px );
}