1
0
Fork 0
flightgear/src/FDM/YASim/BodyEnvironment.hpp

98 lines
3.3 KiB
C++
Raw Normal View History

#ifndef _BODYENVIRONMENT_HPP
#define _BODYENVIRONMENT_HPP
#include "RigidBody.hpp"
#include "Math.hpp"
namespace yasim {
// The values for position and orientation within the global reference
// frame, along with their first and second time derivatives. The
// orientation is stored as a matrix for simplicity. Note that
// because it is orthonormal, its inverse is simply its transpose.
// You can get local->global transformations by calling Math::tmul33()
// and using the same matrix.
struct State {
double pos[3]; // position
float orient[9]; // global->local xform matrix
float v[3]; // velocity
float rot[3]; // rotational velocity
float acc[3]; // acceleration
float racc[3]; // rotational acceleration
// Simple initialization
State() {
2001-12-07 20:00:59 +00:00
int i;
for(i=0; i<3; i++) {
pos[i] = v[i] = rot[i] = acc[i] = racc[i] = 0;
2001-12-07 20:00:59 +00:00
int j;
for(j=0; j<3; j++)
orient[3*i+j] = i==j ? 1.0f : 0.0f;
}
}
void posLocalToGlobal(float* lpos, double *gpos) {
float tmp[3];
Math::tmul33(orient, lpos, tmp);
gpos[0] = tmp[0] + pos[0];
gpos[1] = tmp[1] + pos[1];
gpos[2] = tmp[2] + pos[2];
}
void posGlobalToLocal(double* gpos, float *lpos) {
lpos[0] = gpos[0] - pos[0];
lpos[1] = gpos[1] - pos[1];
lpos[2] = gpos[2] - pos[2];
Math::vmul33(orient, lpos, lpos);
}
void velLocalToGlobal(float* lvel, float *gvel) {
Math::tmul33(orient, lvel, gvel);
}
void velGlobalToLocal(float* gvel, float *lvel) {
Math::vmul33(orient, gvel, lvel);
}
void planeGlobalToLocal(double* gplane, float *lplane) {
// First the normal vector transformed to local coordinates.
lplane[0] = -gplane[0];
lplane[1] = -gplane[1];
lplane[2] = -gplane[2];
Math::vmul33(orient, lplane, lplane);
// Then the distance from the plane to the Aircraft's origin.
lplane[3] = (float)(pos[0]*gplane[0] + pos[1]*gplane[1]
+ pos[2]*gplane[2] - gplane[3]);
}
};
//
// Objects implementing this interface are responsible for calculating
// external forces on a RigidBody object. These will then be used by
// an Integrator to decide on a new solution to the state equations,
// which will be reported to the BodyEnvironment for further action.
//
class BodyEnvironment
{
public:
// This method inspects the "environment" in which a RigidBody
// exists, calculates forces and torques on the body, and sets
// them via addForce()/addTorque(). Because this method is called
// multiple times ("trials") as part of a Runge-Kutta integration,
// this is NOT the place to make decisions about anything but the
// forces on the object. Note that the acc and racc fields of the
// passed-in State object are undefined! (They are calculed BY
// this method).
virtual void calcForces(State* state) = 0;
// Called when the RK4 integrator has determined a "real" new
// point on the curve of life. Any side-effect producing checks
// of body state vs. the environment can happen here (crashes,
// etc...).
virtual void newState(State* state) = 0;
virtual ~BodyEnvironment() {} // #!$!?! gcc warning...
};
}; // namespace yasim
#endif // _BODYENVIRONMENT_HPP