315 lines
9.2 KiB
C
315 lines
9.2 KiB
C
|
/***************************************************************************
|
||
|
|
||
|
TITLE: gear
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
FUNCTION: Landing gear model for example simulation
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
MODULE STATUS: developmental
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
GENEALOGY: Created 931012 by E. B. Jackson
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
DESIGNED BY: E. B. Jackson
|
||
|
|
||
|
CODED BY: E. B. Jackson
|
||
|
|
||
|
MAINTAINED BY: E. B. Jackson
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
MODIFICATION HISTORY:
|
||
|
|
||
|
DATE PURPOSE BY
|
||
|
|
||
|
931218 Added navion.h header to allow connection with
|
||
|
aileron displacement for nosewheel steering. EBJ
|
||
|
940511 Connected nosewheel to rudder pedal; adjusted gain.
|
||
|
|
||
|
CURRENT RCS HEADER:
|
||
|
|
||
|
$Header$
|
||
|
$Log$
|
||
|
Revision 1.1 1997/05/29 00:10:02 curt
|
||
|
Initial Flight Gear revision.
|
||
|
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
REFERENCES:
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
CALLED BY:
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
CALLS TO:
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
INPUTS:
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
OUTPUTS:
|
||
|
|
||
|
--------------------------------------------------------------------------*/
|
||
|
#include <math.h>
|
||
|
#include "ls_types.h"
|
||
|
#include "ls_constants.h"
|
||
|
#include "ls_generic.h"
|
||
|
#include "ls_cockpit.h"
|
||
|
|
||
|
|
||
|
sub3( DATA v1[], DATA v2[], DATA result[] )
|
||
|
{
|
||
|
result[0] = v1[0] - v2[0];
|
||
|
result[1] = v1[1] - v2[1];
|
||
|
result[2] = v1[2] - v2[2];
|
||
|
}
|
||
|
|
||
|
add3( DATA v1[], DATA v2[], DATA result[] )
|
||
|
{
|
||
|
result[0] = v1[0] + v2[0];
|
||
|
result[1] = v1[1] + v2[1];
|
||
|
result[2] = v1[2] + v2[2];
|
||
|
}
|
||
|
|
||
|
cross3( DATA v1[], DATA v2[], DATA result[] )
|
||
|
{
|
||
|
result[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
||
|
result[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
||
|
result[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
||
|
}
|
||
|
|
||
|
multtrans3x3by3( DATA m[][3], DATA v[], DATA result[] )
|
||
|
{
|
||
|
result[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
|
||
|
result[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
|
||
|
result[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
|
||
|
}
|
||
|
|
||
|
mult3x3by3( DATA m[][3], DATA v[], DATA result[] )
|
||
|
{
|
||
|
result[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
|
||
|
result[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
|
||
|
result[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
|
||
|
}
|
||
|
|
||
|
clear3( DATA v[] )
|
||
|
{
|
||
|
v[0] = 0.; v[1] = 0.; v[2] = 0.;
|
||
|
}
|
||
|
|
||
|
gear()
|
||
|
{
|
||
|
char rcsid[] = "$Id$";
|
||
|
|
||
|
/*
|
||
|
* Aircraft specific initializations and data goes here
|
||
|
*/
|
||
|
|
||
|
#define NUM_WHEELS 3
|
||
|
|
||
|
static int num_wheels = NUM_WHEELS; /* number of wheels */
|
||
|
static DATA d_wheel_rp_body_v[NUM_WHEELS][3] = /* X, Y, Z locations */
|
||
|
{
|
||
|
{ 10., 0., 4. }, /* in feet */
|
||
|
{ -1., 3., 4. },
|
||
|
{ -1., -3., 4. }
|
||
|
};
|
||
|
static DATA spring_constant[NUM_WHEELS] = /* springiness, lbs/ft */
|
||
|
{ 1500., 5000., 5000. };
|
||
|
static DATA spring_damping[NUM_WHEELS] = /* damping, lbs/ft/sec */
|
||
|
{ 100., 150., 150. };
|
||
|
static DATA percent_brake[NUM_WHEELS] = /* percent applied braking */
|
||
|
{ 0., 0., 0. }; /* 0 = none, 1 = full */
|
||
|
static DATA caster_angle_rad[NUM_WHEELS] = /* steerable tires - in */
|
||
|
{ 0., 0., 0.}; /* radians, +CW */
|
||
|
/*
|
||
|
* End of aircraft specific code
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Constants & coefficients for tyres on tarmac - ref [1]
|
||
|
*/
|
||
|
|
||
|
/* skid function looks like:
|
||
|
*
|
||
|
* mu ^
|
||
|
* |
|
||
|
* max_mu | +
|
||
|
* | /|
|
||
|
* sliding_mu | / +------
|
||
|
* | /
|
||
|
* | /
|
||
|
* +--+------------------------>
|
||
|
* | | | sideward V
|
||
|
* 0 bkout skid
|
||
|
* V V
|
||
|
*/
|
||
|
|
||
|
|
||
|
static DATA sliding_mu = 0.5;
|
||
|
static DATA rolling_mu = 0.01;
|
||
|
static DATA max_brake_mu = 0.6;
|
||
|
static DATA max_mu = 0.8;
|
||
|
static DATA bkout_v = 0.1;
|
||
|
static DATA skid_v = 1.0;
|
||
|
/*
|
||
|
* Local data variables
|
||
|
*/
|
||
|
|
||
|
DATA d_wheel_cg_body_v[3]; /* wheel offset from cg, X-Y-Z */
|
||
|
DATA d_wheel_cg_local_v[3]; /* wheel offset from cg, N-E-D */
|
||
|
DATA d_wheel_rwy_local_v[3]; /* wheel offset from rwy, N-E-U */
|
||
|
DATA v_wheel_body_v[3]; /* wheel velocity, X-Y-Z */
|
||
|
DATA v_wheel_local_v[3]; /* wheel velocity, N-E-D */
|
||
|
DATA f_wheel_local_v[3]; /* wheel reaction force, N-E-D */
|
||
|
DATA temp3a[3], temp3b[3], tempF[3], tempM[3];
|
||
|
DATA reaction_normal_force; /* wheel normal (to rwy) force */
|
||
|
DATA cos_wheel_hdg_angle, sin_wheel_hdg_angle; /* temp storage */
|
||
|
DATA v_wheel_forward, v_wheel_sideward, abs_v_wheel_sideward;
|
||
|
DATA forward_mu, sideward_mu; /* friction coefficients */
|
||
|
DATA beta_mu; /* breakout friction slope */
|
||
|
DATA forward_wheel_force, sideward_wheel_force;
|
||
|
|
||
|
int i; /* per wheel loop counter */
|
||
|
|
||
|
/*
|
||
|
* Execution starts here
|
||
|
*/
|
||
|
|
||
|
beta_mu = max_mu/(skid_v-bkout_v);
|
||
|
clear3( F_gear_v ); /* Initialize sum of forces... */
|
||
|
clear3( M_gear_v ); /* ...and moments */
|
||
|
|
||
|
/*
|
||
|
* Put aircraft specific executable code here
|
||
|
*/
|
||
|
|
||
|
percent_brake[1] = 0.; /* replace with cockpit brake handle connection code */
|
||
|
percent_brake[2] = percent_brake[1];
|
||
|
|
||
|
caster_angle_rad[0] = 0.03*Rudder_pedal;
|
||
|
|
||
|
for (i=0;i<num_wheels;i++) /* Loop for each wheel */
|
||
|
{
|
||
|
/*========================================*/
|
||
|
/* Calculate wheel position w.r.t. runway */
|
||
|
/*========================================*/
|
||
|
|
||
|
/* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
|
||
|
|
||
|
sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
|
||
|
|
||
|
/* then converting to local (North-East-Down) axes... */
|
||
|
|
||
|
multtrans3x3by3( T_local_to_body_m, d_wheel_cg_body_v, d_wheel_cg_local_v );
|
||
|
|
||
|
/* Runway axes correction - third element is Altitude, not (-)Z... */
|
||
|
|
||
|
d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
|
||
|
|
||
|
/* Add wheel offset to cg location in local axes */
|
||
|
|
||
|
add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
|
||
|
|
||
|
/* remove Runway axes correction so right hand rule applies */
|
||
|
|
||
|
d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
|
||
|
|
||
|
/*============================*/
|
||
|
/* Calculate wheel velocities */
|
||
|
/*============================*/
|
||
|
|
||
|
/* contribution due to angular rates */
|
||
|
|
||
|
cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
|
||
|
|
||
|
/* transform into local axes */
|
||
|
|
||
|
multtrans3x3by3( T_local_to_body_m, temp3a, temp3b );
|
||
|
|
||
|
/* plus contribution due to cg velocities */
|
||
|
|
||
|
add3( temp3b, V_local_rel_ground_v, v_wheel_local_v );
|
||
|
|
||
|
|
||
|
/*===========================================*/
|
||
|
/* Calculate forces & moments for this wheel */
|
||
|
/*===========================================*/
|
||
|
|
||
|
/* Add any anticipation, or frame lead/prediction, here... */
|
||
|
|
||
|
/* no lead used at present */
|
||
|
|
||
|
/* Calculate sideward and forward velocities of the wheel
|
||
|
in the runway plane */
|
||
|
|
||
|
cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
|
||
|
sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
|
||
|
|
||
|
v_wheel_forward = v_wheel_local_v[0]*cos_wheel_hdg_angle
|
||
|
+ v_wheel_local_v[1]*sin_wheel_hdg_angle;
|
||
|
v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
|
||
|
- v_wheel_local_v[0]*sin_wheel_hdg_angle;
|
||
|
|
||
|
/* Calculate normal load force (simple spring constant) */
|
||
|
|
||
|
reaction_normal_force = 0.;
|
||
|
if( d_wheel_rwy_local_v[2] < 0. )
|
||
|
{
|
||
|
reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
|
||
|
- v_wheel_local_v[2]*spring_damping[i];
|
||
|
if (reaction_normal_force > 0.) reaction_normal_force = 0.;
|
||
|
/* to prevent damping component from swamping spring component */
|
||
|
}
|
||
|
|
||
|
/* Calculate friction coefficients */
|
||
|
|
||
|
forward_mu = (max_brake_mu - rolling_mu)*percent_brake[i] + rolling_mu;
|
||
|
abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
|
||
|
sideward_mu = sliding_mu;
|
||
|
if (abs_v_wheel_sideward < skid_v)
|
||
|
sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
|
||
|
if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
|
||
|
|
||
|
/* Calculate foreward and sideward reaction forces */
|
||
|
|
||
|
forward_wheel_force = forward_mu*reaction_normal_force;
|
||
|
sideward_wheel_force = sideward_mu*reaction_normal_force;
|
||
|
if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
|
||
|
if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
|
||
|
|
||
|
/* Rotate into local (N-E-D) axes */
|
||
|
|
||
|
f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
|
||
|
- sideward_wheel_force*sin_wheel_hdg_angle;
|
||
|
f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
|
||
|
+ sideward_wheel_force*cos_wheel_hdg_angle;
|
||
|
f_wheel_local_v[2] = reaction_normal_force;
|
||
|
|
||
|
/* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
|
||
|
|
||
|
mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
|
||
|
|
||
|
/* Calculate moments from force and offsets in body axes */
|
||
|
|
||
|
cross3( d_wheel_cg_body_v, tempF, tempM );
|
||
|
|
||
|
/* Sum forces and moments across all wheels */
|
||
|
|
||
|
add3( tempF, F_gear_v, F_gear_v );
|
||
|
add3( tempM, M_gear_v, M_gear_v );
|
||
|
|
||
|
}
|
||
|
}
|